2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dinode.h"
32 #include "xfs_inode.h"
33 #include "xfs_btree.h"
34 #include "xfs_ialloc.h"
35 #include "xfs_alloc.h"
36 #include "xfs_rtalloc.h"
37 #include "xfs_error.h"
39 #include "xfs_cksum.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_icreate_item.h"
42 #include "xfs_icache.h"
46 * Allocation group level functions.
49 xfs_ialloc_cluster_alignment(
50 xfs_alloc_arg_t *args)
52 if (xfs_sb_version_hasalign(&args->mp->m_sb) &&
53 args->mp->m_sb.sb_inoalignmt >=
54 XFS_B_TO_FSBT(args->mp, XFS_INODE_CLUSTER_SIZE(args->mp)))
55 return args->mp->m_sb.sb_inoalignmt;
60 * Lookup a record by ino in the btree given by cur.
64 struct xfs_btree_cur *cur, /* btree cursor */
65 xfs_agino_t ino, /* starting inode of chunk */
66 xfs_lookup_t dir, /* <=, >=, == */
67 int *stat) /* success/failure */
69 cur->bc_rec.i.ir_startino = ino;
70 cur->bc_rec.i.ir_freecount = 0;
71 cur->bc_rec.i.ir_free = 0;
72 return xfs_btree_lookup(cur, dir, stat);
76 * Update the record referred to by cur to the value given.
77 * This either works (return 0) or gets an EFSCORRUPTED error.
79 STATIC int /* error */
81 struct xfs_btree_cur *cur, /* btree cursor */
82 xfs_inobt_rec_incore_t *irec) /* btree record */
84 union xfs_btree_rec rec;
86 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
87 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
88 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
89 return xfs_btree_update(cur, &rec);
93 * Get the data from the pointed-to record.
97 struct xfs_btree_cur *cur, /* btree cursor */
98 xfs_inobt_rec_incore_t *irec, /* btree record */
99 int *stat) /* output: success/failure */
101 union xfs_btree_rec *rec;
104 error = xfs_btree_get_rec(cur, &rec, stat);
105 if (!error && *stat == 1) {
106 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
107 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
108 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
114 * Verify that the number of free inodes in the AGI is correct.
118 xfs_check_agi_freecount(
119 struct xfs_btree_cur *cur,
122 if (cur->bc_nlevels == 1) {
123 xfs_inobt_rec_incore_t rec;
128 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
133 error = xfs_inobt_get_rec(cur, &rec, &i);
138 freecount += rec.ir_freecount;
139 error = xfs_btree_increment(cur, 0, &i);
145 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
146 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
151 #define xfs_check_agi_freecount(cur, agi) 0
155 * Initialise a new set of inodes. When called without a transaction context
156 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
157 * than logging them (which in a transaction context puts them into the AIL
158 * for writeback rather than the xfsbufd queue).
161 xfs_ialloc_inode_init(
162 struct xfs_mount *mp,
163 struct xfs_trans *tp,
164 struct list_head *buffer_list,
167 xfs_agblock_t length,
170 struct xfs_buf *fbuf;
171 struct xfs_dinode *free;
172 int blks_per_cluster, nbufs, ninodes;
179 * Loop over the new block(s), filling in the inodes.
180 * For small block sizes, manipulate the inodes in buffers
181 * which are multiples of the blocks size.
183 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
184 blks_per_cluster = 1;
186 ninodes = mp->m_sb.sb_inopblock;
188 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
189 mp->m_sb.sb_blocksize;
190 nbufs = length / blks_per_cluster;
191 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
195 * Figure out what version number to use in the inodes we create. If
196 * the superblock version has caught up to the one that supports the new
197 * inode format, then use the new inode version. Otherwise use the old
198 * version so that old kernels will continue to be able to use the file
201 * For v3 inodes, we also need to write the inode number into the inode,
202 * so calculate the first inode number of the chunk here as
203 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
204 * across multiple filesystem blocks (such as a cluster) and so cannot
205 * be used in the cluster buffer loop below.
207 * Further, because we are writing the inode directly into the buffer
208 * and calculating a CRC on the entire inode, we have ot log the entire
209 * inode so that the entire range the CRC covers is present in the log.
210 * That means for v3 inode we log the entire buffer rather than just the
213 if (xfs_sb_version_hascrc(&mp->m_sb)) {
215 ino = XFS_AGINO_TO_INO(mp, agno,
216 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
219 * log the initialisation that is about to take place as an
220 * logical operation. This means the transaction does not
221 * need to log the physical changes to the inode buffers as log
222 * recovery will know what initialisation is actually needed.
223 * Hence we only need to log the buffers as "ordered" buffers so
224 * they track in the AIL as if they were physically logged.
227 xfs_icreate_log(tp, agno, agbno, XFS_IALLOC_INODES(mp),
228 mp->m_sb.sb_inodesize, length, gen);
229 } else if (xfs_sb_version_hasnlink(&mp->m_sb))
234 for (j = 0; j < nbufs; j++) {
238 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
239 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
240 mp->m_bsize * blks_per_cluster,
245 /* Initialize the inode buffers and log them appropriately. */
246 fbuf->b_ops = &xfs_inode_buf_ops;
247 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
248 for (i = 0; i < ninodes; i++) {
249 int ioffset = i << mp->m_sb.sb_inodelog;
250 uint isize = xfs_dinode_size(version);
252 free = xfs_make_iptr(mp, fbuf, i);
253 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
254 free->di_version = version;
255 free->di_gen = cpu_to_be32(gen);
256 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
259 free->di_ino = cpu_to_be64(ino);
261 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
262 xfs_dinode_calc_crc(mp, free);
264 /* just log the inode core */
265 xfs_trans_log_buf(tp, fbuf, ioffset,
266 ioffset + isize - 1);
272 * Mark the buffer as an inode allocation buffer so it
273 * sticks in AIL at the point of this allocation
274 * transaction. This ensures the they are on disk before
275 * the tail of the log can be moved past this
276 * transaction (i.e. by preventing relogging from moving
277 * it forward in the log).
279 xfs_trans_inode_alloc_buf(tp, fbuf);
282 * Mark the buffer as ordered so that they are
283 * not physically logged in the transaction but
284 * still tracked in the AIL as part of the
285 * transaction and pin the log appropriately.
287 xfs_trans_ordered_buf(tp, fbuf);
288 xfs_trans_log_buf(tp, fbuf, 0,
289 BBTOB(fbuf->b_length) - 1);
292 fbuf->b_flags |= XBF_DONE;
293 xfs_buf_delwri_queue(fbuf, buffer_list);
301 * Allocate new inodes in the allocation group specified by agbp.
302 * Return 0 for success, else error code.
304 STATIC int /* error code or 0 */
306 xfs_trans_t *tp, /* transaction pointer */
307 xfs_buf_t *agbp, /* alloc group buffer */
310 xfs_agi_t *agi; /* allocation group header */
311 xfs_alloc_arg_t args; /* allocation argument structure */
312 xfs_btree_cur_t *cur; /* inode btree cursor */
316 xfs_agino_t newino; /* new first inode's number */
317 xfs_agino_t newlen; /* new number of inodes */
318 xfs_agino_t thisino; /* current inode number, for loop */
319 int isaligned = 0; /* inode allocation at stripe unit */
321 struct xfs_perag *pag;
323 memset(&args, 0, sizeof(args));
325 args.mp = tp->t_mountp;
328 * Locking will ensure that we don't have two callers in here
331 newlen = XFS_IALLOC_INODES(args.mp);
332 if (args.mp->m_maxicount &&
333 args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount)
334 return XFS_ERROR(ENOSPC);
335 args.minlen = args.maxlen = XFS_IALLOC_BLOCKS(args.mp);
337 * First try to allocate inodes contiguous with the last-allocated
338 * chunk of inodes. If the filesystem is striped, this will fill
339 * an entire stripe unit with inodes.
341 agi = XFS_BUF_TO_AGI(agbp);
342 newino = be32_to_cpu(agi->agi_newino);
343 agno = be32_to_cpu(agi->agi_seqno);
344 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
345 XFS_IALLOC_BLOCKS(args.mp);
346 if (likely(newino != NULLAGINO &&
347 (args.agbno < be32_to_cpu(agi->agi_length)))) {
348 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
349 args.type = XFS_ALLOCTYPE_THIS_BNO;
353 * We need to take into account alignment here to ensure that
354 * we don't modify the free list if we fail to have an exact
355 * block. If we don't have an exact match, and every oher
356 * attempt allocation attempt fails, we'll end up cancelling
357 * a dirty transaction and shutting down.
359 * For an exact allocation, alignment must be 1,
360 * however we need to take cluster alignment into account when
361 * fixing up the freelist. Use the minalignslop field to
362 * indicate that extra blocks might be required for alignment,
363 * but not to use them in the actual exact allocation.
366 args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1;
368 /* Allow space for the inode btree to split. */
369 args.minleft = args.mp->m_in_maxlevels - 1;
370 if ((error = xfs_alloc_vextent(&args)))
373 args.fsbno = NULLFSBLOCK;
375 if (unlikely(args.fsbno == NULLFSBLOCK)) {
377 * Set the alignment for the allocation.
378 * If stripe alignment is turned on then align at stripe unit
380 * If the cluster size is smaller than a filesystem block
381 * then we're doing I/O for inodes in filesystem block size
382 * pieces, so don't need alignment anyway.
385 if (args.mp->m_sinoalign) {
386 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
387 args.alignment = args.mp->m_dalign;
390 args.alignment = xfs_ialloc_cluster_alignment(&args);
392 * Need to figure out where to allocate the inode blocks.
393 * Ideally they should be spaced out through the a.g.
394 * For now, just allocate blocks up front.
396 args.agbno = be32_to_cpu(agi->agi_root);
397 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
399 * Allocate a fixed-size extent of inodes.
401 args.type = XFS_ALLOCTYPE_NEAR_BNO;
404 * Allow space for the inode btree to split.
406 args.minleft = args.mp->m_in_maxlevels - 1;
407 if ((error = xfs_alloc_vextent(&args)))
412 * If stripe alignment is turned on, then try again with cluster
415 if (isaligned && args.fsbno == NULLFSBLOCK) {
416 args.type = XFS_ALLOCTYPE_NEAR_BNO;
417 args.agbno = be32_to_cpu(agi->agi_root);
418 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
419 args.alignment = xfs_ialloc_cluster_alignment(&args);
420 if ((error = xfs_alloc_vextent(&args)))
424 if (args.fsbno == NULLFSBLOCK) {
428 ASSERT(args.len == args.minlen);
431 * Stamp and write the inode buffers.
433 * Seed the new inode cluster with a random generation number. This
434 * prevents short-term reuse of generation numbers if a chunk is
435 * freed and then immediately reallocated. We use random numbers
436 * rather than a linear progression to prevent the next generation
437 * number from being easily guessable.
439 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
440 args.len, prandom_u32());
445 * Convert the results.
447 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
448 be32_add_cpu(&agi->agi_count, newlen);
449 be32_add_cpu(&agi->agi_freecount, newlen);
450 pag = xfs_perag_get(args.mp, agno);
451 pag->pagi_freecount += newlen;
453 agi->agi_newino = cpu_to_be32(newino);
456 * Insert records describing the new inode chunk into the btree.
458 cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno);
459 for (thisino = newino;
460 thisino < newino + newlen;
461 thisino += XFS_INODES_PER_CHUNK) {
462 cur->bc_rec.i.ir_startino = thisino;
463 cur->bc_rec.i.ir_freecount = XFS_INODES_PER_CHUNK;
464 cur->bc_rec.i.ir_free = XFS_INOBT_ALL_FREE;
465 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, &i);
467 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
471 error = xfs_btree_insert(cur, &i);
473 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
478 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
480 * Log allocation group header fields
482 xfs_ialloc_log_agi(tp, agbp,
483 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
485 * Modify/log superblock values for inode count and inode free count.
487 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
488 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
493 STATIC xfs_agnumber_t
499 spin_lock(&mp->m_agirotor_lock);
500 agno = mp->m_agirotor;
501 if (++mp->m_agirotor >= mp->m_maxagi)
503 spin_unlock(&mp->m_agirotor_lock);
509 * Select an allocation group to look for a free inode in, based on the parent
510 * inode and the mode. Return the allocation group buffer.
512 STATIC xfs_agnumber_t
513 xfs_ialloc_ag_select(
514 xfs_trans_t *tp, /* transaction pointer */
515 xfs_ino_t parent, /* parent directory inode number */
516 umode_t mode, /* bits set to indicate file type */
517 int okalloc) /* ok to allocate more space */
519 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
520 xfs_agnumber_t agno; /* current ag number */
521 int flags; /* alloc buffer locking flags */
522 xfs_extlen_t ineed; /* blocks needed for inode allocation */
523 xfs_extlen_t longest = 0; /* longest extent available */
524 xfs_mount_t *mp; /* mount point structure */
525 int needspace; /* file mode implies space allocated */
526 xfs_perag_t *pag; /* per allocation group data */
527 xfs_agnumber_t pagno; /* parent (starting) ag number */
531 * Files of these types need at least one block if length > 0
532 * (and they won't fit in the inode, but that's hard to figure out).
534 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
536 agcount = mp->m_maxagi;
538 pagno = xfs_ialloc_next_ag(mp);
540 pagno = XFS_INO_TO_AGNO(mp, parent);
541 if (pagno >= agcount)
545 ASSERT(pagno < agcount);
548 * Loop through allocation groups, looking for one with a little
549 * free space in it. Note we don't look for free inodes, exactly.
550 * Instead, we include whether there is a need to allocate inodes
551 * to mean that blocks must be allocated for them,
552 * if none are currently free.
555 flags = XFS_ALLOC_FLAG_TRYLOCK;
557 pag = xfs_perag_get(mp, agno);
558 if (!pag->pagi_inodeok) {
559 xfs_ialloc_next_ag(mp);
563 if (!pag->pagi_init) {
564 error = xfs_ialloc_pagi_init(mp, tp, agno);
569 if (pag->pagi_freecount) {
577 if (!pag->pagf_init) {
578 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
584 * Is there enough free space for the file plus a block of
585 * inodes? (if we need to allocate some)?
587 ineed = XFS_IALLOC_BLOCKS(mp);
588 longest = pag->pagf_longest;
590 longest = pag->pagf_flcount > 0;
592 if (pag->pagf_freeblks >= needspace + ineed &&
600 * No point in iterating over the rest, if we're shutting
603 if (XFS_FORCED_SHUTDOWN(mp))
617 * Try to retrieve the next record to the left/right from the current one.
621 struct xfs_btree_cur *cur,
622 xfs_inobt_rec_incore_t *rec,
630 error = xfs_btree_decrement(cur, 0, &i);
632 error = xfs_btree_increment(cur, 0, &i);
638 error = xfs_inobt_get_rec(cur, rec, &i);
641 XFS_WANT_CORRUPTED_RETURN(i == 1);
649 struct xfs_btree_cur *cur,
651 xfs_inobt_rec_incore_t *rec,
657 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
662 error = xfs_inobt_get_rec(cur, rec, &i);
665 XFS_WANT_CORRUPTED_RETURN(i == 1);
674 * The caller selected an AG for us, and made sure that free inodes are
679 struct xfs_trans *tp,
680 struct xfs_buf *agbp,
684 struct xfs_mount *mp = tp->t_mountp;
685 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
686 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
687 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
688 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
689 struct xfs_perag *pag;
690 struct xfs_btree_cur *cur, *tcur;
691 struct xfs_inobt_rec_incore rec, trec;
697 pag = xfs_perag_get(mp, agno);
699 ASSERT(pag->pagi_init);
700 ASSERT(pag->pagi_inodeok);
701 ASSERT(pag->pagi_freecount > 0);
704 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
706 * If pagino is 0 (this is the root inode allocation) use newino.
707 * This must work because we've just allocated some.
710 pagino = be32_to_cpu(agi->agi_newino);
712 error = xfs_check_agi_freecount(cur, agi);
717 * If in the same AG as the parent, try to get near the parent.
720 int doneleft; /* done, to the left */
721 int doneright; /* done, to the right */
722 int searchdistance = 10;
724 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
727 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
729 error = xfs_inobt_get_rec(cur, &rec, &j);
732 XFS_WANT_CORRUPTED_GOTO(j == 1, error0);
734 if (rec.ir_freecount > 0) {
736 * Found a free inode in the same chunk
737 * as the parent, done.
744 * In the same AG as parent, but parent's chunk is full.
747 /* duplicate the cursor, search left & right simultaneously */
748 error = xfs_btree_dup_cursor(cur, &tcur);
753 * Skip to last blocks looked up if same parent inode.
755 if (pagino != NULLAGINO &&
756 pag->pagl_pagino == pagino &&
757 pag->pagl_leftrec != NULLAGINO &&
758 pag->pagl_rightrec != NULLAGINO) {
759 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
764 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
769 /* search left with tcur, back up 1 record */
770 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
774 /* search right with cur, go forward 1 record. */
775 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
781 * Loop until we find an inode chunk with a free inode.
783 while (!doneleft || !doneright) {
784 int useleft; /* using left inode chunk this time */
786 if (!--searchdistance) {
788 * Not in range - save last search
789 * location and allocate a new inode
791 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
792 pag->pagl_leftrec = trec.ir_startino;
793 pag->pagl_rightrec = rec.ir_startino;
794 pag->pagl_pagino = pagino;
798 /* figure out the closer block if both are valid. */
799 if (!doneleft && !doneright) {
801 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
802 rec.ir_startino - pagino;
807 /* free inodes to the left? */
808 if (useleft && trec.ir_freecount) {
810 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
813 pag->pagl_leftrec = trec.ir_startino;
814 pag->pagl_rightrec = rec.ir_startino;
815 pag->pagl_pagino = pagino;
819 /* free inodes to the right? */
820 if (!useleft && rec.ir_freecount) {
821 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
823 pag->pagl_leftrec = trec.ir_startino;
824 pag->pagl_rightrec = rec.ir_startino;
825 pag->pagl_pagino = pagino;
829 /* get next record to check */
831 error = xfs_ialloc_next_rec(tcur, &trec,
834 error = xfs_ialloc_next_rec(cur, &rec,
842 * We've reached the end of the btree. because
843 * we are only searching a small chunk of the
844 * btree each search, there is obviously free
845 * inodes closer to the parent inode than we
846 * are now. restart the search again.
848 pag->pagl_pagino = NULLAGINO;
849 pag->pagl_leftrec = NULLAGINO;
850 pag->pagl_rightrec = NULLAGINO;
851 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
852 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
857 * In a different AG from the parent.
858 * See if the most recently allocated block has any free.
861 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
862 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
868 error = xfs_inobt_get_rec(cur, &rec, &j);
872 if (j == 1 && rec.ir_freecount > 0) {
874 * The last chunk allocated in the group
875 * still has a free inode.
883 * None left in the last group, search the whole AG
885 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
888 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
891 error = xfs_inobt_get_rec(cur, &rec, &i);
894 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
895 if (rec.ir_freecount > 0)
897 error = xfs_btree_increment(cur, 0, &i);
900 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
904 offset = xfs_lowbit64(rec.ir_free);
906 ASSERT(offset < XFS_INODES_PER_CHUNK);
907 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
908 XFS_INODES_PER_CHUNK) == 0);
909 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
910 rec.ir_free &= ~XFS_INOBT_MASK(offset);
912 error = xfs_inobt_update(cur, &rec);
915 be32_add_cpu(&agi->agi_freecount, -1);
916 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
917 pag->pagi_freecount--;
919 error = xfs_check_agi_freecount(cur, agi);
923 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
924 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
929 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
931 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
937 * Allocate an inode on disk.
939 * Mode is used to tell whether the new inode will need space, and whether it
942 * This function is designed to be called twice if it has to do an allocation
943 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
944 * If an inode is available without having to performn an allocation, an inode
945 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
946 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
947 * The caller should then commit the current transaction, allocate a
948 * new transaction, and call xfs_dialloc() again, passing in the previous value
949 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
950 * buffer is locked across the two calls, the second call is guaranteed to have
951 * a free inode available.
953 * Once we successfully pick an inode its number is returned and the on-disk
954 * data structures are updated. The inode itself is not read in, since doing so
955 * would break ordering constraints with xfs_reclaim.
959 struct xfs_trans *tp,
963 struct xfs_buf **IO_agbp,
966 struct xfs_mount *mp = tp->t_mountp;
967 struct xfs_buf *agbp;
972 xfs_agnumber_t start_agno;
973 struct xfs_perag *pag;
977 * If the caller passes in a pointer to the AGI buffer,
978 * continue where we left off before. In this case, we
979 * know that the allocation group has free inodes.
986 * We do not have an agbp, so select an initial allocation
987 * group for inode allocation.
989 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
990 if (start_agno == NULLAGNUMBER) {
996 * If we have already hit the ceiling of inode blocks then clear
997 * okalloc so we scan all available agi structures for a free
1000 if (mp->m_maxicount &&
1001 mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) {
1007 * Loop until we find an allocation group that either has free inodes
1008 * or in which we can allocate some inodes. Iterate through the
1009 * allocation groups upward, wrapping at the end.
1013 pag = xfs_perag_get(mp, agno);
1014 if (!pag->pagi_inodeok) {
1015 xfs_ialloc_next_ag(mp);
1019 if (!pag->pagi_init) {
1020 error = xfs_ialloc_pagi_init(mp, tp, agno);
1026 * Do a first racy fast path check if this AG is usable.
1028 if (!pag->pagi_freecount && !okalloc)
1032 * Then read in the AGI buffer and recheck with the AGI buffer
1035 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1039 if (pag->pagi_freecount) {
1045 goto nextag_relse_buffer;
1048 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1050 xfs_trans_brelse(tp, agbp);
1052 if (error != ENOSPC)
1062 * We successfully allocated some inodes, return
1063 * the current context to the caller so that it
1064 * can commit the current transaction and call
1065 * us again where we left off.
1067 ASSERT(pag->pagi_freecount > 0);
1075 nextag_relse_buffer:
1076 xfs_trans_brelse(tp, agbp);
1079 if (++agno == mp->m_sb.sb_agcount)
1081 if (agno == start_agno) {
1083 return noroom ? ENOSPC : 0;
1089 return xfs_dialloc_ag(tp, agbp, parent, inop);
1092 return XFS_ERROR(error);
1096 * Free disk inode. Carefully avoids touching the incore inode, all
1097 * manipulations incore are the caller's responsibility.
1098 * The on-disk inode is not changed by this operation, only the
1099 * btree (free inode mask) is changed.
1103 xfs_trans_t *tp, /* transaction pointer */
1104 xfs_ino_t inode, /* inode to be freed */
1105 xfs_bmap_free_t *flist, /* extents to free */
1106 int *delete, /* set if inode cluster was deleted */
1107 xfs_ino_t *first_ino) /* first inode in deleted cluster */
1110 xfs_agblock_t agbno; /* block number containing inode */
1111 xfs_buf_t *agbp; /* buffer containing allocation group header */
1112 xfs_agino_t agino; /* inode number relative to allocation group */
1113 xfs_agnumber_t agno; /* allocation group number */
1114 xfs_agi_t *agi; /* allocation group header */
1115 xfs_btree_cur_t *cur; /* inode btree cursor */
1116 int error; /* error return value */
1117 int i; /* result code */
1118 int ilen; /* inodes in an inode cluster */
1119 xfs_mount_t *mp; /* mount structure for filesystem */
1120 int off; /* offset of inode in inode chunk */
1121 xfs_inobt_rec_incore_t rec; /* btree record */
1122 struct xfs_perag *pag;
1127 * Break up inode number into its components.
1129 agno = XFS_INO_TO_AGNO(mp, inode);
1130 if (agno >= mp->m_sb.sb_agcount) {
1131 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1132 __func__, agno, mp->m_sb.sb_agcount);
1134 return XFS_ERROR(EINVAL);
1136 agino = XFS_INO_TO_AGINO(mp, inode);
1137 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
1138 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1139 __func__, (unsigned long long)inode,
1140 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1142 return XFS_ERROR(EINVAL);
1144 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1145 if (agbno >= mp->m_sb.sb_agblocks) {
1146 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1147 __func__, agbno, mp->m_sb.sb_agblocks);
1149 return XFS_ERROR(EINVAL);
1152 * Get the allocation group header.
1154 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1156 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1160 agi = XFS_BUF_TO_AGI(agbp);
1161 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1162 ASSERT(agbno < be32_to_cpu(agi->agi_length));
1164 * Initialize the cursor.
1166 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
1168 error = xfs_check_agi_freecount(cur, agi);
1173 * Look for the entry describing this inode.
1175 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1176 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1180 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1181 error = xfs_inobt_get_rec(cur, &rec, &i);
1183 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1187 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1189 * Get the offset in the inode chunk.
1191 off = agino - rec.ir_startino;
1192 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1193 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1195 * Mark the inode free & increment the count.
1197 rec.ir_free |= XFS_INOBT_MASK(off);
1201 * When an inode cluster is free, it becomes eligible for removal
1203 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1204 (rec.ir_freecount == XFS_IALLOC_INODES(mp))) {
1207 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1210 * Remove the inode cluster from the AGI B+Tree, adjust the
1211 * AGI and Superblock inode counts, and mark the disk space
1212 * to be freed when the transaction is committed.
1214 ilen = XFS_IALLOC_INODES(mp);
1215 be32_add_cpu(&agi->agi_count, -ilen);
1216 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1217 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1218 pag = xfs_perag_get(mp, agno);
1219 pag->pagi_freecount -= ilen - 1;
1221 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1222 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1224 if ((error = xfs_btree_delete(cur, &i))) {
1225 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1230 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp,
1231 agno, XFS_INO_TO_AGBNO(mp,rec.ir_startino)),
1232 XFS_IALLOC_BLOCKS(mp), flist, mp);
1236 error = xfs_inobt_update(cur, &rec);
1238 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1244 * Change the inode free counts and log the ag/sb changes.
1246 be32_add_cpu(&agi->agi_freecount, 1);
1247 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1248 pag = xfs_perag_get(mp, agno);
1249 pag->pagi_freecount++;
1251 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1254 error = xfs_check_agi_freecount(cur, agi);
1258 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1262 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1268 struct xfs_mount *mp,
1269 struct xfs_trans *tp,
1270 xfs_agnumber_t agno,
1272 xfs_agblock_t agbno,
1273 xfs_agblock_t *chunk_agbno,
1274 xfs_agblock_t *offset_agbno,
1277 struct xfs_inobt_rec_incore rec;
1278 struct xfs_btree_cur *cur;
1279 struct xfs_buf *agbp;
1283 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1286 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1287 __func__, error, agno);
1292 * Lookup the inode record for the given agino. If the record cannot be
1293 * found, then it's an invalid inode number and we should abort. Once
1294 * we have a record, we need to ensure it contains the inode number
1295 * we are looking up.
1297 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
1298 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
1301 error = xfs_inobt_get_rec(cur, &rec, &i);
1302 if (!error && i == 0)
1306 xfs_trans_brelse(tp, agbp);
1307 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1311 /* check that the returned record contains the required inode */
1312 if (rec.ir_startino > agino ||
1313 rec.ir_startino + XFS_IALLOC_INODES(mp) <= agino)
1316 /* for untrusted inodes check it is allocated first */
1317 if ((flags & XFS_IGET_UNTRUSTED) &&
1318 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
1321 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1322 *offset_agbno = agbno - *chunk_agbno;
1327 * Return the location of the inode in imap, for mapping it into a buffer.
1331 xfs_mount_t *mp, /* file system mount structure */
1332 xfs_trans_t *tp, /* transaction pointer */
1333 xfs_ino_t ino, /* inode to locate */
1334 struct xfs_imap *imap, /* location map structure */
1335 uint flags) /* flags for inode btree lookup */
1337 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1338 xfs_agino_t agino; /* inode number within alloc group */
1339 xfs_agnumber_t agno; /* allocation group number */
1340 int blks_per_cluster; /* num blocks per inode cluster */
1341 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1342 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1343 int error; /* error code */
1344 int offset; /* index of inode in its buffer */
1345 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1347 ASSERT(ino != NULLFSINO);
1350 * Split up the inode number into its parts.
1352 agno = XFS_INO_TO_AGNO(mp, ino);
1353 agino = XFS_INO_TO_AGINO(mp, ino);
1354 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1355 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1356 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1359 * Don't output diagnostic information for untrusted inodes
1360 * as they can be invalid without implying corruption.
1362 if (flags & XFS_IGET_UNTRUSTED)
1363 return XFS_ERROR(EINVAL);
1364 if (agno >= mp->m_sb.sb_agcount) {
1366 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1367 __func__, agno, mp->m_sb.sb_agcount);
1369 if (agbno >= mp->m_sb.sb_agblocks) {
1371 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1372 __func__, (unsigned long long)agbno,
1373 (unsigned long)mp->m_sb.sb_agblocks);
1375 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1377 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1379 XFS_AGINO_TO_INO(mp, agno, agino));
1383 return XFS_ERROR(EINVAL);
1386 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_blocklog;
1389 * For bulkstat and handle lookups, we have an untrusted inode number
1390 * that we have to verify is valid. We cannot do this just by reading
1391 * the inode buffer as it may have been unlinked and removed leaving
1392 * inodes in stale state on disk. Hence we have to do a btree lookup
1393 * in all cases where an untrusted inode number is passed.
1395 if (flags & XFS_IGET_UNTRUSTED) {
1396 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1397 &chunk_agbno, &offset_agbno, flags);
1404 * If the inode cluster size is the same as the blocksize or
1405 * smaller we get to the buffer by simple arithmetics.
1407 if (XFS_INODE_CLUSTER_SIZE(mp) <= mp->m_sb.sb_blocksize) {
1408 offset = XFS_INO_TO_OFFSET(mp, ino);
1409 ASSERT(offset < mp->m_sb.sb_inopblock);
1411 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1412 imap->im_len = XFS_FSB_TO_BB(mp, 1);
1413 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1418 * If the inode chunks are aligned then use simple maths to
1419 * find the location. Otherwise we have to do a btree
1420 * lookup to find the location.
1422 if (mp->m_inoalign_mask) {
1423 offset_agbno = agbno & mp->m_inoalign_mask;
1424 chunk_agbno = agbno - offset_agbno;
1426 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1427 &chunk_agbno, &offset_agbno, flags);
1433 ASSERT(agbno >= chunk_agbno);
1434 cluster_agbno = chunk_agbno +
1435 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
1436 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1437 XFS_INO_TO_OFFSET(mp, ino);
1439 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1440 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1441 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1444 * If the inode number maps to a block outside the bounds
1445 * of the file system then return NULL rather than calling
1446 * read_buf and panicing when we get an error from the
1449 if ((imap->im_blkno + imap->im_len) >
1450 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
1452 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1453 __func__, (unsigned long long) imap->im_blkno,
1454 (unsigned long long) imap->im_len,
1455 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
1456 return XFS_ERROR(EINVAL);
1462 * Compute and fill in value of m_in_maxlevels.
1465 xfs_ialloc_compute_maxlevels(
1466 xfs_mount_t *mp) /* file system mount structure */
1474 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1475 XFS_INODES_PER_CHUNK_LOG;
1476 minleafrecs = mp->m_alloc_mnr[0];
1477 minnoderecs = mp->m_alloc_mnr[1];
1478 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1479 for (level = 1; maxblocks > 1; level++)
1480 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1481 mp->m_in_maxlevels = level;
1485 * Log specified fields for the ag hdr (inode section)
1489 xfs_trans_t *tp, /* transaction pointer */
1490 xfs_buf_t *bp, /* allocation group header buffer */
1491 int fields) /* bitmask of fields to log */
1493 int first; /* first byte number */
1494 int last; /* last byte number */
1495 static const short offsets[] = { /* field starting offsets */
1496 /* keep in sync with bit definitions */
1497 offsetof(xfs_agi_t, agi_magicnum),
1498 offsetof(xfs_agi_t, agi_versionnum),
1499 offsetof(xfs_agi_t, agi_seqno),
1500 offsetof(xfs_agi_t, agi_length),
1501 offsetof(xfs_agi_t, agi_count),
1502 offsetof(xfs_agi_t, agi_root),
1503 offsetof(xfs_agi_t, agi_level),
1504 offsetof(xfs_agi_t, agi_freecount),
1505 offsetof(xfs_agi_t, agi_newino),
1506 offsetof(xfs_agi_t, agi_dirino),
1507 offsetof(xfs_agi_t, agi_unlinked),
1511 xfs_agi_t *agi; /* allocation group header */
1513 agi = XFS_BUF_TO_AGI(bp);
1514 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1517 * Compute byte offsets for the first and last fields.
1519 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS, &first, &last);
1521 * Log the allocation group inode header buffer.
1523 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
1524 xfs_trans_log_buf(tp, bp, first, last);
1529 xfs_check_agi_unlinked(
1530 struct xfs_agi *agi)
1534 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
1535 ASSERT(agi->agi_unlinked[i]);
1538 #define xfs_check_agi_unlinked(agi)
1545 struct xfs_mount *mp = bp->b_target->bt_mount;
1546 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
1548 if (xfs_sb_version_hascrc(&mp->m_sb) &&
1549 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
1552 * Validate the magic number of the agi block.
1554 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
1556 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
1560 * during growfs operations, the perag is not fully initialised,
1561 * so we can't use it for any useful checking. growfs ensures we can't
1562 * use it by using uncached buffers that don't have the perag attached
1563 * so we can detect and avoid this problem.
1565 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
1568 xfs_check_agi_unlinked(agi);
1573 xfs_agi_read_verify(
1576 struct xfs_mount *mp = bp->b_target->bt_mount;
1579 if (xfs_sb_version_hascrc(&mp->m_sb))
1580 agi_ok = xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
1581 offsetof(struct xfs_agi, agi_crc));
1582 agi_ok = agi_ok && xfs_agi_verify(bp);
1584 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IALLOC_READ_AGI,
1585 XFS_RANDOM_IALLOC_READ_AGI))) {
1586 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
1587 xfs_buf_ioerror(bp, EFSCORRUPTED);
1592 xfs_agi_write_verify(
1595 struct xfs_mount *mp = bp->b_target->bt_mount;
1596 struct xfs_buf_log_item *bip = bp->b_fspriv;
1598 if (!xfs_agi_verify(bp)) {
1599 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
1600 xfs_buf_ioerror(bp, EFSCORRUPTED);
1604 if (!xfs_sb_version_hascrc(&mp->m_sb))
1608 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
1609 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
1610 offsetof(struct xfs_agi, agi_crc));
1613 const struct xfs_buf_ops xfs_agi_buf_ops = {
1614 .verify_read = xfs_agi_read_verify,
1615 .verify_write = xfs_agi_write_verify,
1619 * Read in the allocation group header (inode allocation section)
1623 struct xfs_mount *mp, /* file system mount structure */
1624 struct xfs_trans *tp, /* transaction pointer */
1625 xfs_agnumber_t agno, /* allocation group number */
1626 struct xfs_buf **bpp) /* allocation group hdr buf */
1630 ASSERT(agno != NULLAGNUMBER);
1632 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1633 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1634 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1638 ASSERT(!xfs_buf_geterror(*bpp));
1639 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
1644 xfs_ialloc_read_agi(
1645 struct xfs_mount *mp, /* file system mount structure */
1646 struct xfs_trans *tp, /* transaction pointer */
1647 xfs_agnumber_t agno, /* allocation group number */
1648 struct xfs_buf **bpp) /* allocation group hdr buf */
1650 struct xfs_agi *agi; /* allocation group header */
1651 struct xfs_perag *pag; /* per allocation group data */
1654 error = xfs_read_agi(mp, tp, agno, bpp);
1658 agi = XFS_BUF_TO_AGI(*bpp);
1659 pag = xfs_perag_get(mp, agno);
1660 if (!pag->pagi_init) {
1661 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
1662 pag->pagi_count = be32_to_cpu(agi->agi_count);
1667 * It's possible for these to be out of sync if
1668 * we are in the middle of a forced shutdown.
1670 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
1671 XFS_FORCED_SHUTDOWN(mp));
1677 * Read in the agi to initialise the per-ag data in the mount structure
1680 xfs_ialloc_pagi_init(
1681 xfs_mount_t *mp, /* file system mount structure */
1682 xfs_trans_t *tp, /* transaction pointer */
1683 xfs_agnumber_t agno) /* allocation group number */
1685 xfs_buf_t *bp = NULL;
1688 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
1692 xfs_trans_brelse(tp, bp);