2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
38 #include "xfs_icache.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 #include <linux/mman.h>
49 static const struct vm_operations_struct xfs_file_vm_ops;
52 * Clear the specified ranges to zero through either the pagecache or DAX.
53 * Holes and unwritten extents will be left as-is as they already are zeroed.
62 return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
66 xfs_update_prealloc_flags(
68 enum xfs_prealloc_flags flags)
73 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
78 xfs_ilock(ip, XFS_ILOCK_EXCL);
79 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
81 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
82 VFS_I(ip)->i_mode &= ~S_ISUID;
83 if (VFS_I(ip)->i_mode & S_IXGRP)
84 VFS_I(ip)->i_mode &= ~S_ISGID;
85 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
88 if (flags & XFS_PREALLOC_SET)
89 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
90 if (flags & XFS_PREALLOC_CLEAR)
91 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
93 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
94 if (flags & XFS_PREALLOC_SYNC)
95 xfs_trans_set_sync(tp);
96 return xfs_trans_commit(tp);
100 * Fsync operations on directories are much simpler than on regular files,
101 * as there is no file data to flush, and thus also no need for explicit
102 * cache flush operations, and there are no non-transaction metadata updates
103 * on directories either.
112 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
113 struct xfs_mount *mp = ip->i_mount;
116 trace_xfs_dir_fsync(ip);
118 xfs_ilock(ip, XFS_ILOCK_SHARED);
119 if (xfs_ipincount(ip))
120 lsn = ip->i_itemp->ili_last_lsn;
121 xfs_iunlock(ip, XFS_ILOCK_SHARED);
125 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
135 struct inode *inode = file->f_mapping->host;
136 struct xfs_inode *ip = XFS_I(inode);
137 struct xfs_mount *mp = ip->i_mount;
142 trace_xfs_file_fsync(ip);
144 error = file_write_and_wait_range(file, start, end);
148 if (XFS_FORCED_SHUTDOWN(mp))
151 xfs_iflags_clear(ip, XFS_ITRUNCATED);
154 * If we have an RT and/or log subvolume we need to make sure to flush
155 * the write cache the device used for file data first. This is to
156 * ensure newly written file data make it to disk before logging the new
157 * inode size in case of an extending write.
159 if (XFS_IS_REALTIME_INODE(ip))
160 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
161 else if (mp->m_logdev_targp != mp->m_ddev_targp)
162 xfs_blkdev_issue_flush(mp->m_ddev_targp);
165 * All metadata updates are logged, which means that we just have to
166 * flush the log up to the latest LSN that touched the inode. If we have
167 * concurrent fsync/fdatasync() calls, we need them to all block on the
168 * log force before we clear the ili_fsync_fields field. This ensures
169 * that we don't get a racing sync operation that does not wait for the
170 * metadata to hit the journal before returning. If we race with
171 * clearing the ili_fsync_fields, then all that will happen is the log
172 * force will do nothing as the lsn will already be on disk. We can't
173 * race with setting ili_fsync_fields because that is done under
174 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
175 * until after the ili_fsync_fields is cleared.
177 xfs_ilock(ip, XFS_ILOCK_SHARED);
178 if (xfs_ipincount(ip)) {
180 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
181 lsn = ip->i_itemp->ili_last_lsn;
185 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
186 ip->i_itemp->ili_fsync_fields = 0;
188 xfs_iunlock(ip, XFS_ILOCK_SHARED);
191 * If we only have a single device, and the log force about was
192 * a no-op we might have to flush the data device cache here.
193 * This can only happen for fdatasync/O_DSYNC if we were overwriting
194 * an already allocated file and thus do not have any metadata to
197 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
198 mp->m_logdev_targp == mp->m_ddev_targp)
199 xfs_blkdev_issue_flush(mp->m_ddev_targp);
205 xfs_file_dio_aio_read(
209 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
210 size_t count = iov_iter_count(to);
213 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
216 return 0; /* skip atime */
218 file_accessed(iocb->ki_filp);
220 xfs_ilock(ip, XFS_IOLOCK_SHARED);
221 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
222 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
227 static noinline ssize_t
232 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
233 size_t count = iov_iter_count(to);
236 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
239 return 0; /* skip atime */
241 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
242 if (iocb->ki_flags & IOCB_NOWAIT)
244 xfs_ilock(ip, XFS_IOLOCK_SHARED);
246 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
247 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
249 file_accessed(iocb->ki_filp);
254 xfs_file_buffered_aio_read(
258 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
261 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
263 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
264 if (iocb->ki_flags & IOCB_NOWAIT)
266 xfs_ilock(ip, XFS_IOLOCK_SHARED);
268 ret = generic_file_read_iter(iocb, to);
269 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
279 struct inode *inode = file_inode(iocb->ki_filp);
280 struct xfs_mount *mp = XFS_I(inode)->i_mount;
283 XFS_STATS_INC(mp, xs_read_calls);
285 if (XFS_FORCED_SHUTDOWN(mp))
289 ret = xfs_file_dax_read(iocb, to);
290 else if (iocb->ki_flags & IOCB_DIRECT)
291 ret = xfs_file_dio_aio_read(iocb, to);
293 ret = xfs_file_buffered_aio_read(iocb, to);
296 XFS_STATS_ADD(mp, xs_read_bytes, ret);
301 * Zero any on disk space between the current EOF and the new, larger EOF.
303 * This handles the normal case of zeroing the remainder of the last block in
304 * the file and the unusual case of zeroing blocks out beyond the size of the
305 * file. This second case only happens with fixed size extents and when the
306 * system crashes before the inode size was updated but after blocks were
309 * Expects the iolock to be held exclusive, and will take the ilock internally.
311 int /* error (positive) */
313 struct xfs_inode *ip,
314 xfs_off_t offset, /* starting I/O offset */
315 xfs_fsize_t isize, /* current inode size */
318 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
319 ASSERT(offset > isize);
321 trace_xfs_zero_eof(ip, isize, offset - isize);
322 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
326 * Common pre-write limit and setup checks.
328 * Called with the iolocked held either shared and exclusive according to
329 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
330 * if called for a direct write beyond i_size.
333 xfs_file_aio_write_checks(
335 struct iov_iter *from,
338 struct file *file = iocb->ki_filp;
339 struct inode *inode = file->f_mapping->host;
340 struct xfs_inode *ip = XFS_I(inode);
342 size_t count = iov_iter_count(from);
343 bool drained_dio = false;
346 error = generic_write_checks(iocb, from);
350 error = xfs_break_layouts(inode, iolock);
355 * For changing security info in file_remove_privs() we need i_rwsem
358 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
359 xfs_iunlock(ip, *iolock);
360 *iolock = XFS_IOLOCK_EXCL;
361 xfs_ilock(ip, *iolock);
365 * If the offset is beyond the size of the file, we need to zero any
366 * blocks that fall between the existing EOF and the start of this
367 * write. If zeroing is needed and we are currently holding the
368 * iolock shared, we need to update it to exclusive which implies
369 * having to redo all checks before.
371 * We need to serialise against EOF updates that occur in IO
372 * completions here. We want to make sure that nobody is changing the
373 * size while we do this check until we have placed an IO barrier (i.e.
374 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
375 * The spinlock effectively forms a memory barrier once we have the
376 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
377 * and hence be able to correctly determine if we need to run zeroing.
379 spin_lock(&ip->i_flags_lock);
380 if (iocb->ki_pos > i_size_read(inode)) {
381 spin_unlock(&ip->i_flags_lock);
383 if (*iolock == XFS_IOLOCK_SHARED) {
384 xfs_iunlock(ip, *iolock);
385 *iolock = XFS_IOLOCK_EXCL;
386 xfs_ilock(ip, *iolock);
387 iov_iter_reexpand(from, count);
390 * We now have an IO submission barrier in place, but
391 * AIO can do EOF updates during IO completion and hence
392 * we now need to wait for all of them to drain. Non-AIO
393 * DIO will have drained before we are given the
394 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
397 inode_dio_wait(inode);
401 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL);
405 spin_unlock(&ip->i_flags_lock);
408 * Updating the timestamps will grab the ilock again from
409 * xfs_fs_dirty_inode, so we have to call it after dropping the
410 * lock above. Eventually we should look into a way to avoid
411 * the pointless lock roundtrip.
413 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
414 error = file_update_time(file);
420 * If we're writing the file then make sure to clear the setuid and
421 * setgid bits if the process is not being run by root. This keeps
422 * people from modifying setuid and setgid binaries.
424 if (!IS_NOSEC(inode))
425 return file_remove_privs(file);
430 xfs_dio_write_end_io(
435 struct inode *inode = file_inode(iocb->ki_filp);
436 struct xfs_inode *ip = XFS_I(inode);
437 loff_t offset = iocb->ki_pos;
440 trace_xfs_end_io_direct_write(ip, offset, size);
442 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
448 if (flags & IOMAP_DIO_COW) {
449 error = xfs_reflink_end_cow(ip, offset, size);
455 * Unwritten conversion updates the in-core isize after extent
456 * conversion but before updating the on-disk size. Updating isize any
457 * earlier allows a racing dio read to find unwritten extents before
458 * they are converted.
460 if (flags & IOMAP_DIO_UNWRITTEN)
461 return xfs_iomap_write_unwritten(ip, offset, size, true);
464 * We need to update the in-core inode size here so that we don't end up
465 * with the on-disk inode size being outside the in-core inode size. We
466 * have no other method of updating EOF for AIO, so always do it here
469 * We need to lock the test/set EOF update as we can be racing with
470 * other IO completions here to update the EOF. Failing to serialise
471 * here can result in EOF moving backwards and Bad Things Happen when
474 spin_lock(&ip->i_flags_lock);
475 if (offset + size > i_size_read(inode)) {
476 i_size_write(inode, offset + size);
477 spin_unlock(&ip->i_flags_lock);
478 error = xfs_setfilesize(ip, offset, size);
480 spin_unlock(&ip->i_flags_lock);
487 * xfs_file_dio_aio_write - handle direct IO writes
489 * Lock the inode appropriately to prepare for and issue a direct IO write.
490 * By separating it from the buffered write path we remove all the tricky to
491 * follow locking changes and looping.
493 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
494 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
495 * pages are flushed out.
497 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
498 * allowing them to be done in parallel with reads and other direct IO writes.
499 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
500 * needs to do sub-block zeroing and that requires serialisation against other
501 * direct IOs to the same block. In this case we need to serialise the
502 * submission of the unaligned IOs so that we don't get racing block zeroing in
503 * the dio layer. To avoid the problem with aio, we also need to wait for
504 * outstanding IOs to complete so that unwritten extent conversion is completed
505 * before we try to map the overlapping block. This is currently implemented by
506 * hitting it with a big hammer (i.e. inode_dio_wait()).
508 * Returns with locks held indicated by @iolock and errors indicated by
509 * negative return values.
512 xfs_file_dio_aio_write(
514 struct iov_iter *from)
516 struct file *file = iocb->ki_filp;
517 struct address_space *mapping = file->f_mapping;
518 struct inode *inode = mapping->host;
519 struct xfs_inode *ip = XFS_I(inode);
520 struct xfs_mount *mp = ip->i_mount;
522 int unaligned_io = 0;
524 size_t count = iov_iter_count(from);
525 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
526 mp->m_rtdev_targp : mp->m_ddev_targp;
528 /* DIO must be aligned to device logical sector size */
529 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
533 * Don't take the exclusive iolock here unless the I/O is unaligned to
534 * the file system block size. We don't need to consider the EOF
535 * extension case here because xfs_file_aio_write_checks() will relock
536 * the inode as necessary for EOF zeroing cases and fill out the new
537 * inode size as appropriate.
539 if ((iocb->ki_pos & mp->m_blockmask) ||
540 ((iocb->ki_pos + count) & mp->m_blockmask)) {
544 * We can't properly handle unaligned direct I/O to reflink
545 * files yet, as we can't unshare a partial block.
547 if (xfs_is_reflink_inode(ip)) {
548 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
551 iolock = XFS_IOLOCK_EXCL;
553 iolock = XFS_IOLOCK_SHARED;
556 if (!xfs_ilock_nowait(ip, iolock)) {
557 if (iocb->ki_flags & IOCB_NOWAIT)
559 xfs_ilock(ip, iolock);
562 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
565 count = iov_iter_count(from);
568 * If we are doing unaligned IO, wait for all other IO to drain,
569 * otherwise demote the lock if we had to take the exclusive lock
570 * for other reasons in xfs_file_aio_write_checks.
573 /* If we are going to wait for other DIO to finish, bail */
574 if (iocb->ki_flags & IOCB_NOWAIT) {
575 if (atomic_read(&inode->i_dio_count))
578 inode_dio_wait(inode);
580 } else if (iolock == XFS_IOLOCK_EXCL) {
581 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
582 iolock = XFS_IOLOCK_SHARED;
585 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
586 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
588 xfs_iunlock(ip, iolock);
591 * No fallback to buffered IO on errors for XFS, direct IO will either
592 * complete fully or fail.
594 ASSERT(ret < 0 || ret == count);
598 static noinline ssize_t
601 struct iov_iter *from)
603 struct inode *inode = iocb->ki_filp->f_mapping->host;
604 struct xfs_inode *ip = XFS_I(inode);
605 int iolock = XFS_IOLOCK_EXCL;
606 ssize_t ret, error = 0;
610 if (!xfs_ilock_nowait(ip, iolock)) {
611 if (iocb->ki_flags & IOCB_NOWAIT)
613 xfs_ilock(ip, iolock);
616 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
621 count = iov_iter_count(from);
623 trace_xfs_file_dax_write(ip, count, pos);
624 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
625 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
626 i_size_write(inode, iocb->ki_pos);
627 error = xfs_setfilesize(ip, pos, ret);
630 xfs_iunlock(ip, iolock);
631 return error ? error : ret;
635 xfs_file_buffered_aio_write(
637 struct iov_iter *from)
639 struct file *file = iocb->ki_filp;
640 struct address_space *mapping = file->f_mapping;
641 struct inode *inode = mapping->host;
642 struct xfs_inode *ip = XFS_I(inode);
647 if (iocb->ki_flags & IOCB_NOWAIT)
651 iolock = XFS_IOLOCK_EXCL;
652 xfs_ilock(ip, iolock);
654 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
658 /* We can write back this queue in page reclaim */
659 current->backing_dev_info = inode_to_bdi(inode);
661 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
662 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
663 if (likely(ret >= 0))
667 * If we hit a space limit, try to free up some lingering preallocated
668 * space before returning an error. In the case of ENOSPC, first try to
669 * write back all dirty inodes to free up some of the excess reserved
670 * metadata space. This reduces the chances that the eofblocks scan
671 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
672 * also behaves as a filter to prevent too many eofblocks scans from
673 * running at the same time.
675 if (ret == -EDQUOT && !enospc) {
676 xfs_iunlock(ip, iolock);
677 enospc = xfs_inode_free_quota_eofblocks(ip);
680 enospc = xfs_inode_free_quota_cowblocks(ip);
684 } else if (ret == -ENOSPC && !enospc) {
685 struct xfs_eofblocks eofb = {0};
688 xfs_flush_inodes(ip->i_mount);
690 xfs_iunlock(ip, iolock);
691 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
692 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
693 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
697 current->backing_dev_info = NULL;
700 xfs_iunlock(ip, iolock);
707 struct iov_iter *from)
709 struct file *file = iocb->ki_filp;
710 struct address_space *mapping = file->f_mapping;
711 struct inode *inode = mapping->host;
712 struct xfs_inode *ip = XFS_I(inode);
714 size_t ocount = iov_iter_count(from);
716 XFS_STATS_INC(ip->i_mount, xs_write_calls);
721 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
725 ret = xfs_file_dax_write(iocb, from);
726 else if (iocb->ki_flags & IOCB_DIRECT) {
728 * Allow a directio write to fall back to a buffered
729 * write *only* in the case that we're doing a reflink
730 * CoW. In all other directio scenarios we do not
731 * allow an operation to fall back to buffered mode.
733 ret = xfs_file_dio_aio_write(iocb, from);
738 ret = xfs_file_buffered_aio_write(iocb, from);
742 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
744 /* Handle various SYNC-type writes */
745 ret = generic_write_sync(iocb, ret);
750 #define XFS_FALLOC_FL_SUPPORTED \
751 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
752 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
753 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
762 struct inode *inode = file_inode(file);
763 struct xfs_inode *ip = XFS_I(inode);
765 enum xfs_prealloc_flags flags = 0;
766 uint iolock = XFS_IOLOCK_EXCL;
768 bool do_file_insert = 0;
770 if (!S_ISREG(inode->i_mode))
772 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
775 xfs_ilock(ip, iolock);
776 error = xfs_break_layouts(inode, &iolock);
780 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
781 iolock |= XFS_MMAPLOCK_EXCL;
783 if (mode & FALLOC_FL_PUNCH_HOLE) {
784 error = xfs_free_file_space(ip, offset, len);
787 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
788 unsigned int blksize_mask = i_blocksize(inode) - 1;
790 if (offset & blksize_mask || len & blksize_mask) {
796 * There is no need to overlap collapse range with EOF,
797 * in which case it is effectively a truncate operation
799 if (offset + len >= i_size_read(inode)) {
804 new_size = i_size_read(inode) - len;
806 error = xfs_collapse_file_space(ip, offset, len);
809 } else if (mode & FALLOC_FL_INSERT_RANGE) {
810 unsigned int blksize_mask = i_blocksize(inode) - 1;
812 new_size = i_size_read(inode) + len;
813 if (offset & blksize_mask || len & blksize_mask) {
818 /* check the new inode size does not wrap through zero */
819 if (new_size > inode->i_sb->s_maxbytes) {
824 /* Offset should be less than i_size */
825 if (offset >= i_size_read(inode)) {
831 flags |= XFS_PREALLOC_SET;
833 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
834 offset + len > i_size_read(inode)) {
835 new_size = offset + len;
836 error = inode_newsize_ok(inode, new_size);
841 if (mode & FALLOC_FL_ZERO_RANGE)
842 error = xfs_zero_file_space(ip, offset, len);
844 if (mode & FALLOC_FL_UNSHARE_RANGE) {
845 error = xfs_reflink_unshare(ip, offset, len);
849 error = xfs_alloc_file_space(ip, offset, len,
856 if (file->f_flags & O_DSYNC)
857 flags |= XFS_PREALLOC_SYNC;
859 error = xfs_update_prealloc_flags(ip, flags);
863 /* Change file size if needed */
867 iattr.ia_valid = ATTR_SIZE;
868 iattr.ia_size = new_size;
869 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
875 * Perform hole insertion now that the file size has been
876 * updated so that if we crash during the operation we don't
877 * leave shifted extents past EOF and hence losing access to
878 * the data that is contained within them.
881 error = xfs_insert_file_space(ip, offset, len);
884 xfs_iunlock(ip, iolock);
889 xfs_file_clone_range(
890 struct file *file_in,
892 struct file *file_out,
896 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
901 xfs_file_dedupe_range(
902 struct file *src_file,
905 struct file *dst_file,
910 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
922 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
924 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
926 file->f_mode |= FMODE_NOWAIT;
935 struct xfs_inode *ip = XFS_I(inode);
939 error = xfs_file_open(inode, file);
944 * If there are any blocks, read-ahead block 0 as we're almost
945 * certain to have the next operation be a read there.
947 mode = xfs_ilock_data_map_shared(ip);
948 if (ip->i_d.di_nextents > 0)
949 error = xfs_dir3_data_readahead(ip, 0, -1);
950 xfs_iunlock(ip, mode);
959 return xfs_release(XFS_I(inode));
965 struct dir_context *ctx)
967 struct inode *inode = file_inode(file);
968 xfs_inode_t *ip = XFS_I(inode);
972 * The Linux API doesn't pass down the total size of the buffer
973 * we read into down to the filesystem. With the filldir concept
974 * it's not needed for correct information, but the XFS dir2 leaf
975 * code wants an estimate of the buffer size to calculate it's
976 * readahead window and size the buffers used for mapping to
979 * Try to give it an estimate that's good enough, maybe at some
980 * point we can change the ->readdir prototype to include the
981 * buffer size. For now we use the current glibc buffer size.
983 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
985 return xfs_readdir(NULL, ip, ctx, bufsize);
994 struct inode *inode = file->f_mapping->host;
996 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1001 return generic_file_llseek(file, offset, whence);
1003 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1006 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1012 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1016 * Locking for serialisation of IO during page faults. This results in a lock
1020 * sb_start_pagefault(vfs, freeze)
1021 * i_mmaplock (XFS - truncate serialisation)
1023 * i_lock (XFS - extent map serialisation)
1026 __xfs_filemap_fault(
1027 struct vm_fault *vmf,
1028 enum page_entry_size pe_size,
1031 struct inode *inode = file_inode(vmf->vma->vm_file);
1032 struct xfs_inode *ip = XFS_I(inode);
1035 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1038 sb_start_pagefault(inode->i_sb);
1039 file_update_time(vmf->vma->vm_file);
1042 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1043 if (IS_DAX(inode)) {
1046 ret = dax_iomap_fault(vmf, pe_size, &pfn, &xfs_iomap_ops);
1047 if (ret & VM_FAULT_NEEDDSYNC)
1048 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1051 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1053 ret = filemap_fault(vmf);
1055 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1058 sb_end_pagefault(inode->i_sb);
1064 struct vm_fault *vmf)
1066 /* DAX can shortcut the normal fault path on write faults! */
1067 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1068 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1069 (vmf->flags & FAULT_FLAG_WRITE));
1073 xfs_filemap_huge_fault(
1074 struct vm_fault *vmf,
1075 enum page_entry_size pe_size)
1077 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1078 return VM_FAULT_FALLBACK;
1080 /* DAX can shortcut the normal fault path on write faults! */
1081 return __xfs_filemap_fault(vmf, pe_size,
1082 (vmf->flags & FAULT_FLAG_WRITE));
1086 xfs_filemap_page_mkwrite(
1087 struct vm_fault *vmf)
1089 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1093 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1094 * on write faults. In reality, it needs to serialise against truncate and
1095 * prepare memory for writing so handle is as standard write fault.
1098 xfs_filemap_pfn_mkwrite(
1099 struct vm_fault *vmf)
1102 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1105 static const struct vm_operations_struct xfs_file_vm_ops = {
1106 .fault = xfs_filemap_fault,
1107 .huge_fault = xfs_filemap_huge_fault,
1108 .map_pages = filemap_map_pages,
1109 .page_mkwrite = xfs_filemap_page_mkwrite,
1110 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1116 struct vm_area_struct *vma)
1119 * We don't support synchronous mappings for non-DAX files. At least
1120 * until someone comes with a sensible use case.
1122 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1125 file_accessed(filp);
1126 vma->vm_ops = &xfs_file_vm_ops;
1127 if (IS_DAX(file_inode(filp)))
1128 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1132 const struct file_operations xfs_file_operations = {
1133 .llseek = xfs_file_llseek,
1134 .read_iter = xfs_file_read_iter,
1135 .write_iter = xfs_file_write_iter,
1136 .splice_read = generic_file_splice_read,
1137 .splice_write = iter_file_splice_write,
1138 .unlocked_ioctl = xfs_file_ioctl,
1139 #ifdef CONFIG_COMPAT
1140 .compat_ioctl = xfs_file_compat_ioctl,
1142 .mmap = xfs_file_mmap,
1143 .mmap_supported_flags = MAP_SYNC,
1144 .open = xfs_file_open,
1145 .release = xfs_file_release,
1146 .fsync = xfs_file_fsync,
1147 .get_unmapped_area = thp_get_unmapped_area,
1148 .fallocate = xfs_file_fallocate,
1149 .clone_file_range = xfs_file_clone_range,
1150 .dedupe_file_range = xfs_file_dedupe_range,
1153 const struct file_operations xfs_dir_file_operations = {
1154 .open = xfs_dir_open,
1155 .read = generic_read_dir,
1156 .iterate_shared = xfs_file_readdir,
1157 .llseek = generic_file_llseek,
1158 .unlocked_ioctl = xfs_file_ioctl,
1159 #ifdef CONFIG_COMPAT
1160 .compat_ioctl = xfs_file_compat_ioctl,
1162 .fsync = xfs_dir_fsync,