2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
38 #include "xfs_icache.h"
40 #include "xfs_iomap.h"
42 #include <linux/dcache.h>
43 #include <linux/falloc.h>
44 #include <linux/pagevec.h>
45 #include <linux/backing-dev.h>
47 static const struct vm_operations_struct xfs_file_vm_ops;
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
58 if (type & XFS_IOLOCK_EXCL)
59 inode_lock(VFS_I(ip));
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 inode_unlock(VFS_I(ip));
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 inode_unlock(VFS_I(ip));
84 * Clear the specified ranges to zero through either the pagecache or DAX.
85 * Holes and unwritten extents will be left as-is as they already are zeroed.
94 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
98 xfs_update_prealloc_flags(
100 enum xfs_prealloc_flags flags)
102 struct xfs_trans *tp;
105 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
110 xfs_ilock(ip, XFS_ILOCK_EXCL);
111 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
113 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
114 VFS_I(ip)->i_mode &= ~S_ISUID;
115 if (VFS_I(ip)->i_mode & S_IXGRP)
116 VFS_I(ip)->i_mode &= ~S_ISGID;
117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
120 if (flags & XFS_PREALLOC_SET)
121 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
122 if (flags & XFS_PREALLOC_CLEAR)
123 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
125 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
126 if (flags & XFS_PREALLOC_SYNC)
127 xfs_trans_set_sync(tp);
128 return xfs_trans_commit(tp);
132 * Fsync operations on directories are much simpler than on regular files,
133 * as there is no file data to flush, and thus also no need for explicit
134 * cache flush operations, and there are no non-transaction metadata updates
135 * on directories either.
144 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
145 struct xfs_mount *mp = ip->i_mount;
148 trace_xfs_dir_fsync(ip);
150 xfs_ilock(ip, XFS_ILOCK_SHARED);
151 if (xfs_ipincount(ip))
152 lsn = ip->i_itemp->ili_last_lsn;
153 xfs_iunlock(ip, XFS_ILOCK_SHARED);
157 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
167 struct inode *inode = file->f_mapping->host;
168 struct xfs_inode *ip = XFS_I(inode);
169 struct xfs_mount *mp = ip->i_mount;
174 trace_xfs_file_fsync(ip);
176 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
180 if (XFS_FORCED_SHUTDOWN(mp))
183 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 * If we have an RT and/or log subvolume we need to make sure
188 * to flush the write cache the device used for file data
189 * first. This is to ensure newly written file data make
190 * it to disk before logging the new inode size in case of
191 * an extending write.
193 if (XFS_IS_REALTIME_INODE(ip))
194 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
195 else if (mp->m_logdev_targp != mp->m_ddev_targp)
196 xfs_blkdev_issue_flush(mp->m_ddev_targp);
200 * All metadata updates are logged, which means that we just have to
201 * flush the log up to the latest LSN that touched the inode. If we have
202 * concurrent fsync/fdatasync() calls, we need them to all block on the
203 * log force before we clear the ili_fsync_fields field. This ensures
204 * that we don't get a racing sync operation that does not wait for the
205 * metadata to hit the journal before returning. If we race with
206 * clearing the ili_fsync_fields, then all that will happen is the log
207 * force will do nothing as the lsn will already be on disk. We can't
208 * race with setting ili_fsync_fields because that is done under
209 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
210 * until after the ili_fsync_fields is cleared.
212 xfs_ilock(ip, XFS_ILOCK_SHARED);
213 if (xfs_ipincount(ip)) {
215 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
216 lsn = ip->i_itemp->ili_last_lsn;
220 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
221 ip->i_itemp->ili_fsync_fields = 0;
223 xfs_iunlock(ip, XFS_ILOCK_SHARED);
226 * If we only have a single device, and the log force about was
227 * a no-op we might have to flush the data device cache here.
228 * This can only happen for fdatasync/O_DSYNC if we were overwriting
229 * an already allocated file and thus do not have any metadata to
232 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
233 mp->m_logdev_targp == mp->m_ddev_targp &&
234 !XFS_IS_REALTIME_INODE(ip) &&
236 xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 xfs_file_dio_aio_read(
246 struct address_space *mapping = iocb->ki_filp->f_mapping;
247 struct inode *inode = mapping->host;
248 struct xfs_inode *ip = XFS_I(inode);
249 loff_t isize = i_size_read(inode);
250 size_t count = iov_iter_count(to);
251 struct iov_iter data;
252 struct xfs_buftarg *target;
255 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
258 return 0; /* skip atime */
260 if (XFS_IS_REALTIME_INODE(ip))
261 target = ip->i_mount->m_rtdev_targp;
263 target = ip->i_mount->m_ddev_targp;
265 /* DIO must be aligned to device logical sector size */
266 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
267 if (iocb->ki_pos == isize)
273 * Locking is a bit tricky here. If we take an exclusive lock for direct
274 * IO, we effectively serialise all new concurrent read IO to this file
275 * and block it behind IO that is currently in progress because IO in
276 * progress holds the IO lock shared. We only need to hold the lock
277 * exclusive to blow away the page cache, so only take lock exclusively
278 * if the page cache needs invalidation. This allows the normal direct
279 * IO case of no page cache pages to proceeed concurrently without
282 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
283 if (mapping->nrpages) {
284 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
285 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
288 * The generic dio code only flushes the range of the particular
289 * I/O. Because we take an exclusive lock here, this whole
290 * sequence is considerably more expensive for us. This has a
291 * noticeable performance impact for any file with cached pages,
292 * even when outside of the range of the particular I/O.
294 * Hence, amortize the cost of the lock against a full file
295 * flush and reduce the chances of repeated iolock cycles going
298 if (mapping->nrpages) {
299 ret = filemap_write_and_wait(mapping);
301 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
306 * Invalidate whole pages. This can return an error if
307 * we fail to invalidate a page, but this should never
308 * happen on XFS. Warn if it does fail.
310 ret = invalidate_inode_pages2(mapping);
314 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
318 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
319 xfs_get_blocks_direct, NULL, NULL, 0);
322 iov_iter_advance(to, ret);
324 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
326 file_accessed(iocb->ki_filp);
330 static noinline ssize_t
335 struct address_space *mapping = iocb->ki_filp->f_mapping;
336 struct inode *inode = mapping->host;
337 struct xfs_inode *ip = XFS_I(inode);
338 struct iov_iter data = *to;
339 size_t count = iov_iter_count(to);
342 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
345 return 0; /* skip atime */
347 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
348 ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct, NULL, 0);
351 iov_iter_advance(to, ret);
353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
355 file_accessed(iocb->ki_filp);
360 xfs_file_buffered_aio_read(
364 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
367 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
369 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
370 ret = generic_file_read_iter(iocb, to);
371 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
381 struct inode *inode = file_inode(iocb->ki_filp);
382 struct xfs_mount *mp = XFS_I(inode)->i_mount;
385 XFS_STATS_INC(mp, xs_read_calls);
387 if (XFS_FORCED_SHUTDOWN(mp))
391 ret = xfs_file_dax_read(iocb, to);
392 else if (iocb->ki_flags & IOCB_DIRECT)
393 ret = xfs_file_dio_aio_read(iocb, to);
395 ret = xfs_file_buffered_aio_read(iocb, to);
398 XFS_STATS_ADD(mp, xs_read_bytes, ret);
403 * Zero any on disk space between the current EOF and the new, larger EOF.
405 * This handles the normal case of zeroing the remainder of the last block in
406 * the file and the unusual case of zeroing blocks out beyond the size of the
407 * file. This second case only happens with fixed size extents and when the
408 * system crashes before the inode size was updated but after blocks were
411 * Expects the iolock to be held exclusive, and will take the ilock internally.
413 int /* error (positive) */
415 struct xfs_inode *ip,
416 xfs_off_t offset, /* starting I/O offset */
417 xfs_fsize_t isize, /* current inode size */
420 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
421 ASSERT(offset > isize);
423 trace_xfs_zero_eof(ip, isize, offset - isize);
424 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
428 * Common pre-write limit and setup checks.
430 * Called with the iolocked held either shared and exclusive according to
431 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
432 * if called for a direct write beyond i_size.
435 xfs_file_aio_write_checks(
437 struct iov_iter *from,
440 struct file *file = iocb->ki_filp;
441 struct inode *inode = file->f_mapping->host;
442 struct xfs_inode *ip = XFS_I(inode);
444 size_t count = iov_iter_count(from);
445 bool drained_dio = false;
448 error = generic_write_checks(iocb, from);
452 error = xfs_break_layouts(inode, iolock, true);
456 /* For changing security info in file_remove_privs() we need i_mutex */
457 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
458 xfs_rw_iunlock(ip, *iolock);
459 *iolock = XFS_IOLOCK_EXCL;
460 xfs_rw_ilock(ip, *iolock);
464 * If the offset is beyond the size of the file, we need to zero any
465 * blocks that fall between the existing EOF and the start of this
466 * write. If zeroing is needed and we are currently holding the
467 * iolock shared, we need to update it to exclusive which implies
468 * having to redo all checks before.
470 * We need to serialise against EOF updates that occur in IO
471 * completions here. We want to make sure that nobody is changing the
472 * size while we do this check until we have placed an IO barrier (i.e.
473 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
474 * The spinlock effectively forms a memory barrier once we have the
475 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
476 * and hence be able to correctly determine if we need to run zeroing.
478 spin_lock(&ip->i_flags_lock);
479 if (iocb->ki_pos > i_size_read(inode)) {
482 spin_unlock(&ip->i_flags_lock);
484 if (*iolock == XFS_IOLOCK_SHARED) {
485 xfs_rw_iunlock(ip, *iolock);
486 *iolock = XFS_IOLOCK_EXCL;
487 xfs_rw_ilock(ip, *iolock);
488 iov_iter_reexpand(from, count);
491 * We now have an IO submission barrier in place, but
492 * AIO can do EOF updates during IO completion and hence
493 * we now need to wait for all of them to drain. Non-AIO
494 * DIO will have drained before we are given the
495 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
498 inode_dio_wait(inode);
502 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
506 spin_unlock(&ip->i_flags_lock);
509 * Updating the timestamps will grab the ilock again from
510 * xfs_fs_dirty_inode, so we have to call it after dropping the
511 * lock above. Eventually we should look into a way to avoid
512 * the pointless lock roundtrip.
514 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
515 error = file_update_time(file);
521 * If we're writing the file then make sure to clear the setuid and
522 * setgid bits if the process is not being run by root. This keeps
523 * people from modifying setuid and setgid binaries.
525 if (!IS_NOSEC(inode))
526 return file_remove_privs(file);
531 * xfs_file_dio_aio_write - handle direct IO writes
533 * Lock the inode appropriately to prepare for and issue a direct IO write.
534 * By separating it from the buffered write path we remove all the tricky to
535 * follow locking changes and looping.
537 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
538 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
539 * pages are flushed out.
541 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
542 * allowing them to be done in parallel with reads and other direct IO writes.
543 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
544 * needs to do sub-block zeroing and that requires serialisation against other
545 * direct IOs to the same block. In this case we need to serialise the
546 * submission of the unaligned IOs so that we don't get racing block zeroing in
547 * the dio layer. To avoid the problem with aio, we also need to wait for
548 * outstanding IOs to complete so that unwritten extent conversion is completed
549 * before we try to map the overlapping block. This is currently implemented by
550 * hitting it with a big hammer (i.e. inode_dio_wait()).
552 * Returns with locks held indicated by @iolock and errors indicated by
553 * negative return values.
556 xfs_file_dio_aio_write(
558 struct iov_iter *from)
560 struct file *file = iocb->ki_filp;
561 struct address_space *mapping = file->f_mapping;
562 struct inode *inode = mapping->host;
563 struct xfs_inode *ip = XFS_I(inode);
564 struct xfs_mount *mp = ip->i_mount;
566 int unaligned_io = 0;
568 size_t count = iov_iter_count(from);
570 struct iov_iter data;
571 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
572 mp->m_rtdev_targp : mp->m_ddev_targp;
574 /* DIO must be aligned to device logical sector size */
575 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
578 /* "unaligned" here means not aligned to a filesystem block */
579 if ((iocb->ki_pos & mp->m_blockmask) ||
580 ((iocb->ki_pos + count) & mp->m_blockmask))
584 * We don't need to take an exclusive lock unless there page cache needs
585 * to be invalidated or unaligned IO is being executed. We don't need to
586 * consider the EOF extension case here because
587 * xfs_file_aio_write_checks() will relock the inode as necessary for
588 * EOF zeroing cases and fill out the new inode size as appropriate.
590 if (unaligned_io || mapping->nrpages)
591 iolock = XFS_IOLOCK_EXCL;
593 iolock = XFS_IOLOCK_SHARED;
594 xfs_rw_ilock(ip, iolock);
597 * Recheck if there are cached pages that need invalidate after we got
598 * the iolock to protect against other threads adding new pages while
599 * we were waiting for the iolock.
601 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
602 xfs_rw_iunlock(ip, iolock);
603 iolock = XFS_IOLOCK_EXCL;
604 xfs_rw_ilock(ip, iolock);
607 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
610 count = iov_iter_count(from);
611 end = iocb->ki_pos + count - 1;
614 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
616 if (mapping->nrpages) {
617 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
621 * Invalidate whole pages. This can return an error if we fail
622 * to invalidate a page, but this should never happen on XFS.
623 * Warn if it does fail.
625 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
631 * If we are doing unaligned IO, wait for all other IO to drain,
632 * otherwise demote the lock if we had to flush cached pages
635 inode_dio_wait(inode);
636 else if (iolock == XFS_IOLOCK_EXCL) {
637 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
638 iolock = XFS_IOLOCK_SHARED;
641 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
644 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
645 xfs_get_blocks_direct, xfs_end_io_direct_write,
646 NULL, DIO_ASYNC_EXTEND);
648 /* see generic_file_direct_write() for why this is necessary */
649 if (mapping->nrpages) {
650 invalidate_inode_pages2_range(mapping,
651 iocb->ki_pos >> PAGE_SHIFT,
657 iov_iter_advance(from, ret);
660 xfs_rw_iunlock(ip, iolock);
663 * No fallback to buffered IO on errors for XFS, direct IO will either
664 * complete fully or fail.
666 ASSERT(ret < 0 || ret == count);
670 static noinline ssize_t
673 struct iov_iter *from)
675 struct address_space *mapping = iocb->ki_filp->f_mapping;
676 struct inode *inode = mapping->host;
677 struct xfs_inode *ip = XFS_I(inode);
678 struct xfs_mount *mp = ip->i_mount;
680 int unaligned_io = 0;
682 struct iov_iter data;
684 /* "unaligned" here means not aligned to a filesystem block */
685 if ((iocb->ki_pos & mp->m_blockmask) ||
686 ((iocb->ki_pos + iov_iter_count(from)) & mp->m_blockmask)) {
688 iolock = XFS_IOLOCK_EXCL;
689 } else if (mapping->nrpages) {
690 iolock = XFS_IOLOCK_EXCL;
692 iolock = XFS_IOLOCK_SHARED;
694 xfs_rw_ilock(ip, iolock);
696 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
701 * Yes, even DAX files can have page cache attached to them: A zeroed
702 * page is inserted into the pagecache when we have to serve a write
703 * fault on a hole. It should never be dirtied and can simply be
704 * dropped from the pagecache once we get real data for the page.
706 * XXX: This is racy against mmap, and there's nothing we can do about
707 * it. dax_do_io() should really do this invalidation internally as
708 * it will know if we've allocated over a holei for this specific IO and
709 * if so it needs to update the mapping tree and invalidate existing
710 * PTEs over the newly allocated range. Remove this invalidation when
711 * dax_do_io() is fixed up.
713 if (mapping->nrpages) {
714 loff_t end = iocb->ki_pos + iov_iter_count(from) - 1;
716 ret = invalidate_inode_pages2_range(mapping,
717 iocb->ki_pos >> PAGE_SHIFT,
722 if (iolock == XFS_IOLOCK_EXCL && !unaligned_io) {
723 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
724 iolock = XFS_IOLOCK_SHARED;
727 trace_xfs_file_dax_write(ip, iov_iter_count(from), iocb->ki_pos);
730 ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
731 xfs_end_io_direct_write, 0);
734 iov_iter_advance(from, ret);
737 xfs_rw_iunlock(ip, iolock);
742 xfs_file_buffered_aio_write(
744 struct iov_iter *from)
746 struct file *file = iocb->ki_filp;
747 struct address_space *mapping = file->f_mapping;
748 struct inode *inode = mapping->host;
749 struct xfs_inode *ip = XFS_I(inode);
752 int iolock = XFS_IOLOCK_EXCL;
754 xfs_rw_ilock(ip, iolock);
756 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
760 /* We can write back this queue in page reclaim */
761 current->backing_dev_info = inode_to_bdi(inode);
764 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
765 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
766 if (likely(ret >= 0))
770 * If we hit a space limit, try to free up some lingering preallocated
771 * space before returning an error. In the case of ENOSPC, first try to
772 * write back all dirty inodes to free up some of the excess reserved
773 * metadata space. This reduces the chances that the eofblocks scan
774 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
775 * also behaves as a filter to prevent too many eofblocks scans from
776 * running at the same time.
778 if (ret == -EDQUOT && !enospc) {
779 enospc = xfs_inode_free_quota_eofblocks(ip);
782 } else if (ret == -ENOSPC && !enospc) {
783 struct xfs_eofblocks eofb = {0};
786 xfs_flush_inodes(ip->i_mount);
787 eofb.eof_scan_owner = ip->i_ino; /* for locking */
788 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
789 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
793 current->backing_dev_info = NULL;
795 xfs_rw_iunlock(ip, iolock);
802 struct iov_iter *from)
804 struct file *file = iocb->ki_filp;
805 struct address_space *mapping = file->f_mapping;
806 struct inode *inode = mapping->host;
807 struct xfs_inode *ip = XFS_I(inode);
809 size_t ocount = iov_iter_count(from);
811 XFS_STATS_INC(ip->i_mount, xs_write_calls);
816 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
820 ret = xfs_file_dax_write(iocb, from);
821 else if (iocb->ki_flags & IOCB_DIRECT)
822 ret = xfs_file_dio_aio_write(iocb, from);
824 ret = xfs_file_buffered_aio_write(iocb, from);
827 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
829 /* Handle various SYNC-type writes */
830 ret = generic_write_sync(iocb, ret);
835 #define XFS_FALLOC_FL_SUPPORTED \
836 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
837 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
838 FALLOC_FL_INSERT_RANGE)
847 struct inode *inode = file_inode(file);
848 struct xfs_inode *ip = XFS_I(inode);
850 enum xfs_prealloc_flags flags = 0;
851 uint iolock = XFS_IOLOCK_EXCL;
853 bool do_file_insert = 0;
855 if (!S_ISREG(inode->i_mode))
857 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
860 xfs_ilock(ip, iolock);
861 error = xfs_break_layouts(inode, &iolock, false);
865 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
866 iolock |= XFS_MMAPLOCK_EXCL;
868 if (mode & FALLOC_FL_PUNCH_HOLE) {
869 error = xfs_free_file_space(ip, offset, len);
872 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
873 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
875 if (offset & blksize_mask || len & blksize_mask) {
881 * There is no need to overlap collapse range with EOF,
882 * in which case it is effectively a truncate operation
884 if (offset + len >= i_size_read(inode)) {
889 new_size = i_size_read(inode) - len;
891 error = xfs_collapse_file_space(ip, offset, len);
894 } else if (mode & FALLOC_FL_INSERT_RANGE) {
895 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
897 new_size = i_size_read(inode) + len;
898 if (offset & blksize_mask || len & blksize_mask) {
903 /* check the new inode size does not wrap through zero */
904 if (new_size > inode->i_sb->s_maxbytes) {
909 /* Offset should be less than i_size */
910 if (offset >= i_size_read(inode)) {
916 flags |= XFS_PREALLOC_SET;
918 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
919 offset + len > i_size_read(inode)) {
920 new_size = offset + len;
921 error = inode_newsize_ok(inode, new_size);
926 if (mode & FALLOC_FL_ZERO_RANGE)
927 error = xfs_zero_file_space(ip, offset, len);
929 error = xfs_alloc_file_space(ip, offset, len,
935 if (file->f_flags & O_DSYNC)
936 flags |= XFS_PREALLOC_SYNC;
938 error = xfs_update_prealloc_flags(ip, flags);
942 /* Change file size if needed */
946 iattr.ia_valid = ATTR_SIZE;
947 iattr.ia_size = new_size;
948 error = xfs_setattr_size(ip, &iattr);
954 * Perform hole insertion now that the file size has been
955 * updated so that if we crash during the operation we don't
956 * leave shifted extents past EOF and hence losing access to
957 * the data that is contained within them.
960 error = xfs_insert_file_space(ip, offset, len);
963 xfs_iunlock(ip, iolock);
973 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
975 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
985 struct xfs_inode *ip = XFS_I(inode);
989 error = xfs_file_open(inode, file);
994 * If there are any blocks, read-ahead block 0 as we're almost
995 * certain to have the next operation be a read there.
997 mode = xfs_ilock_data_map_shared(ip);
998 if (ip->i_d.di_nextents > 0)
999 xfs_dir3_data_readahead(ip, 0, -1);
1000 xfs_iunlock(ip, mode);
1006 struct inode *inode,
1009 return xfs_release(XFS_I(inode));
1015 struct dir_context *ctx)
1017 struct inode *inode = file_inode(file);
1018 xfs_inode_t *ip = XFS_I(inode);
1022 * The Linux API doesn't pass down the total size of the buffer
1023 * we read into down to the filesystem. With the filldir concept
1024 * it's not needed for correct information, but the XFS dir2 leaf
1025 * code wants an estimate of the buffer size to calculate it's
1026 * readahead window and size the buffers used for mapping to
1029 * Try to give it an estimate that's good enough, maybe at some
1030 * point we can change the ->readdir prototype to include the
1031 * buffer size. For now we use the current glibc buffer size.
1033 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1035 return xfs_readdir(ip, ctx, bufsize);
1039 * This type is designed to indicate the type of offset we would like
1040 * to search from page cache for xfs_seek_hole_data().
1048 * Lookup the desired type of offset from the given page.
1050 * On success, return true and the offset argument will point to the
1051 * start of the region that was found. Otherwise this function will
1052 * return false and keep the offset argument unchanged.
1055 xfs_lookup_buffer_offset(
1060 loff_t lastoff = page_offset(page);
1062 struct buffer_head *bh, *head;
1064 bh = head = page_buffers(page);
1067 * Unwritten extents that have data in the page
1068 * cache covering them can be identified by the
1069 * BH_Unwritten state flag. Pages with multiple
1070 * buffers might have a mix of holes, data and
1071 * unwritten extents - any buffer with valid
1072 * data in it should have BH_Uptodate flag set
1075 if (buffer_unwritten(bh) ||
1076 buffer_uptodate(bh)) {
1077 if (type == DATA_OFF)
1080 if (type == HOLE_OFF)
1088 lastoff += bh->b_size;
1089 } while ((bh = bh->b_this_page) != head);
1095 * This routine is called to find out and return a data or hole offset
1096 * from the page cache for unwritten extents according to the desired
1097 * type for xfs_seek_hole_data().
1099 * The argument offset is used to tell where we start to search from the
1100 * page cache. Map is used to figure out the end points of the range to
1103 * Return true if the desired type of offset was found, and the argument
1104 * offset is filled with that address. Otherwise, return false and keep
1108 xfs_find_get_desired_pgoff(
1109 struct inode *inode,
1110 struct xfs_bmbt_irec *map,
1114 struct xfs_inode *ip = XFS_I(inode);
1115 struct xfs_mount *mp = ip->i_mount;
1116 struct pagevec pvec;
1120 loff_t startoff = *offset;
1121 loff_t lastoff = startoff;
1124 pagevec_init(&pvec, 0);
1126 index = startoff >> PAGE_SHIFT;
1127 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1128 end = endoff >> PAGE_SHIFT;
1134 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1135 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1138 * No page mapped into given range. If we are searching holes
1139 * and if this is the first time we got into the loop, it means
1140 * that the given offset is landed in a hole, return it.
1142 * If we have already stepped through some block buffers to find
1143 * holes but they all contains data. In this case, the last
1144 * offset is already updated and pointed to the end of the last
1145 * mapped page, if it does not reach the endpoint to search,
1146 * that means there should be a hole between them.
1148 if (nr_pages == 0) {
1149 /* Data search found nothing */
1150 if (type == DATA_OFF)
1153 ASSERT(type == HOLE_OFF);
1154 if (lastoff == startoff || lastoff < endoff) {
1162 * At lease we found one page. If this is the first time we
1163 * step into the loop, and if the first page index offset is
1164 * greater than the given search offset, a hole was found.
1166 if (type == HOLE_OFF && lastoff == startoff &&
1167 lastoff < page_offset(pvec.pages[0])) {
1172 for (i = 0; i < nr_pages; i++) {
1173 struct page *page = pvec.pages[i];
1177 * At this point, the page may be truncated or
1178 * invalidated (changing page->mapping to NULL),
1179 * or even swizzled back from swapper_space to tmpfs
1180 * file mapping. However, page->index will not change
1181 * because we have a reference on the page.
1183 * Searching done if the page index is out of range.
1184 * If the current offset is not reaches the end of
1185 * the specified search range, there should be a hole
1188 if (page->index > end) {
1189 if (type == HOLE_OFF && lastoff < endoff) {
1198 * Page truncated or invalidated(page->mapping == NULL).
1199 * We can freely skip it and proceed to check the next
1202 if (unlikely(page->mapping != inode->i_mapping)) {
1207 if (!page_has_buffers(page)) {
1212 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1215 * The found offset may be less than the start
1216 * point to search if this is the first time to
1219 *offset = max_t(loff_t, startoff, b_offset);
1225 * We either searching data but nothing was found, or
1226 * searching hole but found a data buffer. In either
1227 * case, probably the next page contains the desired
1228 * things, update the last offset to it so.
1230 lastoff = page_offset(page) + PAGE_SIZE;
1235 * The number of returned pages less than our desired, search
1236 * done. In this case, nothing was found for searching data,
1237 * but we found a hole behind the last offset.
1239 if (nr_pages < want) {
1240 if (type == HOLE_OFF) {
1247 index = pvec.pages[i - 1]->index + 1;
1248 pagevec_release(&pvec);
1249 } while (index <= end);
1252 pagevec_release(&pvec);
1257 * caller must lock inode with xfs_ilock_data_map_shared,
1258 * can we craft an appropriate ASSERT?
1260 * end is because the VFS-level lseek interface is defined such that any
1261 * offset past i_size shall return -ENXIO, but we use this for quota code
1262 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1265 __xfs_seek_hole_data(
1266 struct inode *inode,
1271 struct xfs_inode *ip = XFS_I(inode);
1272 struct xfs_mount *mp = ip->i_mount;
1273 loff_t uninitialized_var(offset);
1274 xfs_fileoff_t fsbno;
1275 xfs_filblks_t lastbno;
1284 * Try to read extents from the first block indicated
1285 * by fsbno to the end block of the file.
1287 fsbno = XFS_B_TO_FSBT(mp, start);
1288 lastbno = XFS_B_TO_FSB(mp, end);
1291 struct xfs_bmbt_irec map[2];
1295 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1300 /* No extents at given offset, must be beyond EOF */
1306 for (i = 0; i < nmap; i++) {
1307 offset = max_t(loff_t, start,
1308 XFS_FSB_TO_B(mp, map[i].br_startoff));
1310 /* Landed in the hole we wanted? */
1311 if (whence == SEEK_HOLE &&
1312 map[i].br_startblock == HOLESTARTBLOCK)
1315 /* Landed in the data extent we wanted? */
1316 if (whence == SEEK_DATA &&
1317 (map[i].br_startblock == DELAYSTARTBLOCK ||
1318 (map[i].br_state == XFS_EXT_NORM &&
1319 !isnullstartblock(map[i].br_startblock))))
1323 * Landed in an unwritten extent, try to search
1324 * for hole or data from page cache.
1326 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1327 if (xfs_find_get_desired_pgoff(inode, &map[i],
1328 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1335 * We only received one extent out of the two requested. This
1336 * means we've hit EOF and didn't find what we are looking for.
1340 * If we were looking for a hole, set offset to
1341 * the end of the file (i.e., there is an implicit
1342 * hole at the end of any file).
1344 if (whence == SEEK_HOLE) {
1349 * If we were looking for data, it's nowhere to be found
1351 ASSERT(whence == SEEK_DATA);
1359 * Nothing was found, proceed to the next round of search
1360 * if the next reading offset is not at or beyond EOF.
1362 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1363 start = XFS_FSB_TO_B(mp, fsbno);
1365 if (whence == SEEK_HOLE) {
1369 ASSERT(whence == SEEK_DATA);
1377 * If at this point we have found the hole we wanted, the returned
1378 * offset may be bigger than the file size as it may be aligned to
1379 * page boundary for unwritten extents. We need to deal with this
1380 * situation in particular.
1382 if (whence == SEEK_HOLE)
1383 offset = min_t(loff_t, offset, end);
1397 struct inode *inode = file->f_mapping->host;
1398 struct xfs_inode *ip = XFS_I(inode);
1399 struct xfs_mount *mp = ip->i_mount;
1404 if (XFS_FORCED_SHUTDOWN(mp))
1407 lock = xfs_ilock_data_map_shared(ip);
1409 end = i_size_read(inode);
1410 offset = __xfs_seek_hole_data(inode, start, end, whence);
1416 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1419 xfs_iunlock(ip, lock);
1436 return generic_file_llseek(file, offset, whence);
1439 return xfs_seek_hole_data(file, offset, whence);
1446 * Locking for serialisation of IO during page faults. This results in a lock
1450 * sb_start_pagefault(vfs, freeze)
1451 * i_mmaplock (XFS - truncate serialisation)
1453 * i_lock (XFS - extent map serialisation)
1457 * mmap()d file has taken write protection fault and is being made writable. We
1458 * can set the page state up correctly for a writable page, which means we can
1459 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1463 xfs_filemap_page_mkwrite(
1464 struct vm_area_struct *vma,
1465 struct vm_fault *vmf)
1467 struct inode *inode = file_inode(vma->vm_file);
1470 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1472 sb_start_pagefault(inode->i_sb);
1473 file_update_time(vma->vm_file);
1474 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1476 if (IS_DAX(inode)) {
1477 ret = dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1479 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1480 ret = block_page_mkwrite_return(ret);
1483 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1484 sb_end_pagefault(inode->i_sb);
1491 struct vm_area_struct *vma,
1492 struct vm_fault *vmf)
1494 struct inode *inode = file_inode(vma->vm_file);
1497 trace_xfs_filemap_fault(XFS_I(inode));
1499 /* DAX can shortcut the normal fault path on write faults! */
1500 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1501 return xfs_filemap_page_mkwrite(vma, vmf);
1503 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1504 if (IS_DAX(inode)) {
1506 * we do not want to trigger unwritten extent conversion on read
1507 * faults - that is unnecessary overhead and would also require
1508 * changes to xfs_get_blocks_direct() to map unwritten extent
1509 * ioend for conversion on read-only mappings.
1511 ret = dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1513 ret = filemap_fault(vma, vmf);
1514 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1520 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1521 * both read and write faults. Hence we need to handle both cases. There is no
1522 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1523 * handle both cases here. @flags carries the information on the type of fault
1527 xfs_filemap_pmd_fault(
1528 struct vm_area_struct *vma,
1533 struct inode *inode = file_inode(vma->vm_file);
1534 struct xfs_inode *ip = XFS_I(inode);
1538 return VM_FAULT_FALLBACK;
1540 trace_xfs_filemap_pmd_fault(ip);
1542 if (flags & FAULT_FLAG_WRITE) {
1543 sb_start_pagefault(inode->i_sb);
1544 file_update_time(vma->vm_file);
1547 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1548 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1549 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1551 if (flags & FAULT_FLAG_WRITE)
1552 sb_end_pagefault(inode->i_sb);
1558 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1559 * updates on write faults. In reality, it's need to serialise against
1560 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1561 * to ensure we serialise the fault barrier in place.
1564 xfs_filemap_pfn_mkwrite(
1565 struct vm_area_struct *vma,
1566 struct vm_fault *vmf)
1569 struct inode *inode = file_inode(vma->vm_file);
1570 struct xfs_inode *ip = XFS_I(inode);
1571 int ret = VM_FAULT_NOPAGE;
1574 trace_xfs_filemap_pfn_mkwrite(ip);
1576 sb_start_pagefault(inode->i_sb);
1577 file_update_time(vma->vm_file);
1579 /* check if the faulting page hasn't raced with truncate */
1580 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1581 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1582 if (vmf->pgoff >= size)
1583 ret = VM_FAULT_SIGBUS;
1584 else if (IS_DAX(inode))
1585 ret = dax_pfn_mkwrite(vma, vmf);
1586 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1587 sb_end_pagefault(inode->i_sb);
1592 static const struct vm_operations_struct xfs_file_vm_ops = {
1593 .fault = xfs_filemap_fault,
1594 .pmd_fault = xfs_filemap_pmd_fault,
1595 .map_pages = filemap_map_pages,
1596 .page_mkwrite = xfs_filemap_page_mkwrite,
1597 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1603 struct vm_area_struct *vma)
1605 file_accessed(filp);
1606 vma->vm_ops = &xfs_file_vm_ops;
1607 if (IS_DAX(file_inode(filp)))
1608 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1612 const struct file_operations xfs_file_operations = {
1613 .llseek = xfs_file_llseek,
1614 .read_iter = xfs_file_read_iter,
1615 .write_iter = xfs_file_write_iter,
1616 .splice_read = generic_file_splice_read,
1617 .splice_write = iter_file_splice_write,
1618 .unlocked_ioctl = xfs_file_ioctl,
1619 #ifdef CONFIG_COMPAT
1620 .compat_ioctl = xfs_file_compat_ioctl,
1622 .mmap = xfs_file_mmap,
1623 .open = xfs_file_open,
1624 .release = xfs_file_release,
1625 .fsync = xfs_file_fsync,
1626 .fallocate = xfs_file_fallocate,
1629 const struct file_operations xfs_dir_file_operations = {
1630 .open = xfs_dir_open,
1631 .read = generic_read_dir,
1632 .iterate_shared = xfs_file_readdir,
1633 .llseek = generic_file_llseek,
1634 .unlocked_ioctl = xfs_file_ioctl,
1635 #ifdef CONFIG_COMPAT
1636 .compat_ioctl = xfs_file_compat_ioctl,
1638 .fsync = xfs_dir_fsync,