1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
26 struct kmem_cache *xfs_buf_item_cache;
28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
30 return container_of(lip, struct xfs_buf_log_item, bli_item);
33 /* Is this log iovec plausibly large enough to contain the buffer log format? */
35 xfs_buf_log_check_iovec(
36 struct xfs_log_iovec *iovec)
38 struct xfs_buf_log_format *blfp = iovec->i_addr;
42 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
45 item_end = (char *)iovec->i_addr + iovec->i_len;
46 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
47 return bmp_end <= item_end;
51 xfs_buf_log_format_size(
52 struct xfs_buf_log_format *blfp)
54 return offsetof(struct xfs_buf_log_format, blf_data_map) +
55 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
59 xfs_buf_item_straddle(
67 first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT));
68 last = xfs_buf_offset(bp,
69 offset + ((first_bit + nbits) << XFS_BLF_SHIFT));
71 if (last - first != nbits * XFS_BLF_CHUNK)
77 * Return the number of log iovecs and space needed to log the given buf log
80 * It calculates this as 1 iovec for the buf log format structure and 1 for each
81 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
85 xfs_buf_item_size_segment(
86 struct xfs_buf_log_item *bip,
87 struct xfs_buf_log_format *blfp,
92 struct xfs_buf *bp = bip->bli_buf;
98 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
103 *nbytes += xfs_buf_log_format_size(blfp);
106 nbits = xfs_contig_bits(blfp->blf_data_map,
107 blfp->blf_map_size, first_bit);
111 * Straddling a page is rare because we don't log contiguous
112 * chunks of unmapped buffers anywhere.
115 xfs_buf_item_straddle(bp, offset, first_bit, nbits))
119 *nbytes += nbits * XFS_BLF_CHUNK;
122 * This takes the bit number to start looking from and
123 * returns the next set bit from there. It returns -1
124 * if there are no more bits set or the start bit is
125 * beyond the end of the bitmap.
127 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
128 (uint)first_bit + nbits + 1);
129 } while (first_bit != -1);
134 /* Count the first bit we jumped out of the above loop from */
136 *nbytes += XFS_BLF_CHUNK;
137 last_bit = first_bit;
138 while (last_bit != -1) {
140 * This takes the bit number to start looking from and
141 * returns the next set bit from there. It returns -1
142 * if there are no more bits set or the start bit is
143 * beyond the end of the bitmap.
145 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
148 * If we run out of bits, leave the loop,
149 * else if we find a new set of bits bump the number of vecs,
150 * else keep scanning the current set of bits.
152 if (next_bit == -1) {
154 } else if (next_bit != last_bit + 1 ||
155 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
157 first_bit = next_bit;
164 *nbytes += XFS_BLF_CHUNK;
169 * Return the number of log iovecs and space needed to log the given buf log
172 * Discontiguous buffers need a format structure per region that is being
173 * logged. This makes the changes in the buffer appear to log recovery as though
174 * they came from separate buffers, just like would occur if multiple buffers
175 * were used instead of a single discontiguous buffer. This enables
176 * discontiguous buffers to be in-memory constructs, completely transparent to
177 * what ends up on disk.
179 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
180 * format structures. If the item has previously been logged and has dirty
181 * regions, we do not relog them in stale buffers. This has the effect of
182 * reducing the size of the relogged item by the amount of dirty data tracked
183 * by the log item. This can result in the committing transaction reducing the
184 * amount of space being consumed by the CIL.
188 struct xfs_log_item *lip,
192 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
193 struct xfs_buf *bp = bip->bli_buf;
198 ASSERT(atomic_read(&bip->bli_refcount) > 0);
199 if (bip->bli_flags & XFS_BLI_STALE) {
201 * The buffer is stale, so all we need to log is the buf log
202 * format structure with the cancel flag in it as we are never
203 * going to replay the changes tracked in the log item.
205 trace_xfs_buf_item_size_stale(bip);
206 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
207 *nvecs += bip->bli_format_count;
208 for (i = 0; i < bip->bli_format_count; i++) {
209 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
214 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
216 if (bip->bli_flags & XFS_BLI_ORDERED) {
218 * The buffer has been logged just to order it. It is not being
219 * included in the transaction commit, so no vectors are used at
222 trace_xfs_buf_item_size_ordered(bip);
223 *nvecs = XFS_LOG_VEC_ORDERED;
228 * The vector count is based on the number of buffer vectors we have
229 * dirty bits in. This will only be greater than one when we have a
230 * compound buffer with more than one segment dirty. Hence for compound
231 * buffers we need to track which segment the dirty bits correspond to,
232 * and when we move from one segment to the next increment the vector
233 * count for the extra buf log format structure that will need to be
237 for (i = 0; i < bip->bli_format_count; i++) {
238 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
240 offset += BBTOB(bp->b_maps[i].bm_len);
244 * Round up the buffer size required to minimise the number of memory
245 * allocations that need to be done as this item grows when relogged by
246 * repeated modifications.
248 *nbytes = round_up(bytes, 512);
249 trace_xfs_buf_item_size(bip);
253 xfs_buf_item_copy_iovec(
254 struct xfs_log_vec *lv,
255 struct xfs_log_iovec **vecp,
261 offset += first_bit * XFS_BLF_CHUNK;
262 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
263 xfs_buf_offset(bp, offset),
264 nbits * XFS_BLF_CHUNK);
268 xfs_buf_item_format_segment(
269 struct xfs_buf_log_item *bip,
270 struct xfs_log_vec *lv,
271 struct xfs_log_iovec **vecp,
273 struct xfs_buf_log_format *blfp)
275 struct xfs_buf *bp = bip->bli_buf;
282 /* copy the flags across from the base format item */
283 blfp->blf_flags = bip->__bli_format.blf_flags;
286 * Base size is the actual size of the ondisk structure - it reflects
287 * the actual size of the dirty bitmap rather than the size of the in
290 base_size = xfs_buf_log_format_size(blfp);
292 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
293 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
295 * If the map is not be dirty in the transaction, mark
296 * the size as zero and do not advance the vector pointer.
301 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
304 if (bip->bli_flags & XFS_BLI_STALE) {
306 * The buffer is stale, so all we need to log
307 * is the buf log format structure with the
310 trace_xfs_buf_item_format_stale(bip);
311 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
317 * Fill in an iovec for each set of contiguous chunks.
320 ASSERT(first_bit >= 0);
321 nbits = xfs_contig_bits(blfp->blf_data_map,
322 blfp->blf_map_size, first_bit);
326 * Straddling a page is rare because we don't log contiguous
327 * chunks of unmapped buffers anywhere.
330 xfs_buf_item_straddle(bp, offset, first_bit, nbits))
333 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
338 * This takes the bit number to start looking from and
339 * returns the next set bit from there. It returns -1
340 * if there are no more bits set or the start bit is
341 * beyond the end of the bitmap.
343 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
344 (uint)first_bit + nbits + 1);
345 } while (first_bit != -1);
350 ASSERT(bp->b_addr == NULL);
351 last_bit = first_bit;
355 * This takes the bit number to start looking from and
356 * returns the next set bit from there. It returns -1
357 * if there are no more bits set or the start bit is
358 * beyond the end of the bitmap.
360 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
363 * If we run out of bits fill in the last iovec and get out of
364 * the loop. Else if we start a new set of bits then fill in
365 * the iovec for the series we were looking at and start
366 * counting the bits in the new one. Else we're still in the
367 * same set of bits so just keep counting and scanning.
369 if (next_bit == -1) {
370 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
374 } else if (next_bit != last_bit + 1 ||
375 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
376 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
379 first_bit = next_bit;
390 * This is called to fill in the vector of log iovecs for the
391 * given log buf item. It fills the first entry with a buf log
392 * format structure, and the rest point to contiguous chunks
397 struct xfs_log_item *lip,
398 struct xfs_log_vec *lv)
400 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
401 struct xfs_buf *bp = bip->bli_buf;
402 struct xfs_log_iovec *vecp = NULL;
406 ASSERT(atomic_read(&bip->bli_refcount) > 0);
407 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
408 (bip->bli_flags & XFS_BLI_STALE));
409 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
410 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
411 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
412 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
413 (bip->bli_flags & XFS_BLI_STALE));
417 * If it is an inode buffer, transfer the in-memory state to the
418 * format flags and clear the in-memory state.
420 * For buffer based inode allocation, we do not transfer
421 * this state if the inode buffer allocation has not yet been committed
422 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
423 * correct replay of the inode allocation.
425 * For icreate item based inode allocation, the buffers aren't written
426 * to the journal during allocation, and hence we should always tag the
427 * buffer as an inode buffer so that the correct unlinked list replay
428 * occurs during recovery.
430 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
431 if (xfs_has_v3inodes(lip->li_mountp) ||
432 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
433 xfs_log_item_in_current_chkpt(lip)))
434 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
435 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
438 for (i = 0; i < bip->bli_format_count; i++) {
439 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
440 &bip->bli_formats[i]);
441 offset += BBTOB(bp->b_maps[i].bm_len);
445 * Check to make sure everything is consistent.
447 trace_xfs_buf_item_format(bip);
451 * This is called to pin the buffer associated with the buf log item in memory
452 * so it cannot be written out.
454 * We also always take a reference to the buffer log item here so that the bli
455 * is held while the item is pinned in memory. This means that we can
456 * unconditionally drop the reference count a transaction holds when the
457 * transaction is completed.
461 struct xfs_log_item *lip)
463 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
465 ASSERT(atomic_read(&bip->bli_refcount) > 0);
466 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
467 (bip->bli_flags & XFS_BLI_ORDERED) ||
468 (bip->bli_flags & XFS_BLI_STALE));
470 trace_xfs_buf_item_pin(bip);
472 atomic_inc(&bip->bli_refcount);
473 atomic_inc(&bip->bli_buf->b_pin_count);
477 * This is called to unpin the buffer associated with the buf log item which
478 * was previously pinned with a call to xfs_buf_item_pin().
482 struct xfs_log_item *lip,
485 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
486 struct xfs_buf *bp = bip->bli_buf;
487 int stale = bip->bli_flags & XFS_BLI_STALE;
490 ASSERT(bp->b_log_item == bip);
491 ASSERT(atomic_read(&bip->bli_refcount) > 0);
493 trace_xfs_buf_item_unpin(bip);
496 * Drop the bli ref associated with the pin and grab the hold required
497 * for the I/O simulation failure in the abort case. We have to do this
498 * before the pin count drops because the AIL doesn't acquire a bli
499 * reference. Therefore if the refcount drops to zero, the bli could
500 * still be AIL resident and the buffer submitted for I/O (and freed on
501 * completion) at any point before we return. This can be removed once
502 * the AIL properly holds a reference on the bli.
504 freed = atomic_dec_and_test(&bip->bli_refcount);
505 if (freed && !stale && remove)
507 if (atomic_dec_and_test(&bp->b_pin_count))
508 wake_up_all(&bp->b_waiters);
510 /* nothing to do but drop the pin count if the bli is active */
515 ASSERT(bip->bli_flags & XFS_BLI_STALE);
516 ASSERT(xfs_buf_islocked(bp));
517 ASSERT(bp->b_flags & XBF_STALE);
518 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
519 ASSERT(list_empty(&lip->li_trans));
520 ASSERT(!bp->b_transp);
522 trace_xfs_buf_item_unpin_stale(bip);
525 * If we get called here because of an IO error, we may or may
526 * not have the item on the AIL. xfs_trans_ail_delete() will
527 * take care of that situation. xfs_trans_ail_delete() drops
530 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
531 xfs_buf_item_done(bp);
532 xfs_buf_inode_iodone(bp);
533 ASSERT(list_empty(&bp->b_li_list));
535 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
536 xfs_buf_item_relse(bp);
537 ASSERT(bp->b_log_item == NULL);
542 * The buffer must be locked and held by the caller to simulate
543 * an async I/O failure. We acquired the hold for this case
544 * before the buffer was unpinned.
547 bp->b_flags |= XBF_ASYNC;
548 xfs_buf_ioend_fail(bp);
554 struct xfs_log_item *lip,
555 struct list_head *buffer_list)
557 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
558 struct xfs_buf *bp = bip->bli_buf;
559 uint rval = XFS_ITEM_SUCCESS;
561 if (xfs_buf_ispinned(bp))
562 return XFS_ITEM_PINNED;
563 if (!xfs_buf_trylock(bp)) {
565 * If we have just raced with a buffer being pinned and it has
566 * been marked stale, we could end up stalling until someone else
567 * issues a log force to unpin the stale buffer. Check for the
568 * race condition here so xfsaild recognizes the buffer is pinned
569 * and queues a log force to move it along.
571 if (xfs_buf_ispinned(bp))
572 return XFS_ITEM_PINNED;
573 return XFS_ITEM_LOCKED;
576 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
578 trace_xfs_buf_item_push(bip);
580 /* has a previous flush failed due to IO errors? */
581 if (bp->b_flags & XBF_WRITE_FAIL) {
582 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
583 "Failing async write on buffer block 0x%llx. Retrying async write.",
584 (long long)xfs_buf_daddr(bp));
587 if (!xfs_buf_delwri_queue(bp, buffer_list))
588 rval = XFS_ITEM_FLUSHING;
594 * Drop the buffer log item refcount and take appropriate action. This helper
595 * determines whether the bli must be freed or not, since a decrement to zero
596 * does not necessarily mean the bli is unused.
598 * Return true if the bli is freed, false otherwise.
602 struct xfs_buf_log_item *bip)
604 struct xfs_log_item *lip = &bip->bli_item;
608 /* drop the bli ref and return if it wasn't the last one */
609 if (!atomic_dec_and_test(&bip->bli_refcount))
613 * We dropped the last ref and must free the item if clean or aborted.
614 * If the bli is dirty and non-aborted, the buffer was clean in the
615 * transaction but still awaiting writeback from previous changes. In
616 * that case, the bli is freed on buffer writeback completion.
618 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
619 xfs_is_shutdown(lip->li_mountp);
620 dirty = bip->bli_flags & XFS_BLI_DIRTY;
621 if (dirty && !aborted)
625 * The bli is aborted or clean. An aborted item may be in the AIL
626 * regardless of dirty state. For example, consider an aborted
627 * transaction that invalidated a dirty bli and cleared the dirty
631 xfs_trans_ail_delete(lip, 0);
632 xfs_buf_item_relse(bip->bli_buf);
637 * Release the buffer associated with the buf log item. If there is no dirty
638 * logged data associated with the buffer recorded in the buf log item, then
639 * free the buf log item and remove the reference to it in the buffer.
641 * This call ignores the recursion count. It is only called when the buffer
642 * should REALLY be unlocked, regardless of the recursion count.
644 * We unconditionally drop the transaction's reference to the log item. If the
645 * item was logged, then another reference was taken when it was pinned, so we
646 * can safely drop the transaction reference now. This also allows us to avoid
647 * potential races with the unpin code freeing the bli by not referencing the
648 * bli after we've dropped the reference count.
650 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
651 * if necessary but do not unlock the buffer. This is for support of
652 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
656 xfs_buf_item_release(
657 struct xfs_log_item *lip)
659 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
660 struct xfs_buf *bp = bip->bli_buf;
662 bool hold = bip->bli_flags & XFS_BLI_HOLD;
663 bool stale = bip->bli_flags & XFS_BLI_STALE;
664 #if defined(DEBUG) || defined(XFS_WARN)
665 bool ordered = bip->bli_flags & XFS_BLI_ORDERED;
666 bool dirty = bip->bli_flags & XFS_BLI_DIRTY;
667 bool aborted = test_bit(XFS_LI_ABORTED,
671 trace_xfs_buf_item_release(bip);
674 * The bli dirty state should match whether the blf has logged segments
675 * except for ordered buffers, where only the bli should be dirty.
677 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
678 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
679 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
682 * Clear the buffer's association with this transaction and
683 * per-transaction state from the bli, which has been copied above.
686 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
689 * Unref the item and unlock the buffer unless held or stale. Stale
690 * buffers remain locked until final unpin unless the bli is freed by
691 * the unref call. The latter implies shutdown because buffer
692 * invalidation dirties the bli and transaction.
694 released = xfs_buf_item_put(bip);
695 if (hold || (stale && !released))
697 ASSERT(!stale || aborted);
702 xfs_buf_item_committing(
703 struct xfs_log_item *lip,
706 return xfs_buf_item_release(lip);
710 * This is called to find out where the oldest active copy of the
711 * buf log item in the on disk log resides now that the last log
712 * write of it completed at the given lsn.
713 * We always re-log all the dirty data in a buffer, so usually the
714 * latest copy in the on disk log is the only one that matters. For
715 * those cases we simply return the given lsn.
717 * The one exception to this is for buffers full of newly allocated
718 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
719 * flag set, indicating that only the di_next_unlinked fields from the
720 * inodes in the buffers will be replayed during recovery. If the
721 * original newly allocated inode images have not yet been flushed
722 * when the buffer is so relogged, then we need to make sure that we
723 * keep the old images in the 'active' portion of the log. We do this
724 * by returning the original lsn of that transaction here rather than
728 xfs_buf_item_committed(
729 struct xfs_log_item *lip,
732 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
734 trace_xfs_buf_item_committed(bip);
736 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
741 static const struct xfs_item_ops xfs_buf_item_ops = {
742 .iop_size = xfs_buf_item_size,
743 .iop_format = xfs_buf_item_format,
744 .iop_pin = xfs_buf_item_pin,
745 .iop_unpin = xfs_buf_item_unpin,
746 .iop_release = xfs_buf_item_release,
747 .iop_committing = xfs_buf_item_committing,
748 .iop_committed = xfs_buf_item_committed,
749 .iop_push = xfs_buf_item_push,
753 xfs_buf_item_get_format(
754 struct xfs_buf_log_item *bip,
757 ASSERT(bip->bli_formats == NULL);
758 bip->bli_format_count = count;
761 bip->bli_formats = &bip->__bli_format;
765 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
770 xfs_buf_item_free_format(
771 struct xfs_buf_log_item *bip)
773 if (bip->bli_formats != &bip->__bli_format) {
774 kmem_free(bip->bli_formats);
775 bip->bli_formats = NULL;
780 * Allocate a new buf log item to go with the given buffer.
781 * Set the buffer's b_log_item field to point to the new
787 struct xfs_mount *mp)
789 struct xfs_buf_log_item *bip = bp->b_log_item;
795 * Check to see if there is already a buf log item for
796 * this buffer. If we do already have one, there is
797 * nothing to do here so return.
799 ASSERT(bp->b_mount == mp);
801 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
802 ASSERT(!bp->b_transp);
803 ASSERT(bip->bli_buf == bp);
807 bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL);
808 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
812 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
813 * can be divided into. Make sure not to truncate any pieces.
814 * map_size is the size of the bitmap needed to describe the
815 * chunks of the buffer.
817 * Discontiguous buffer support follows the layout of the underlying
818 * buffer. This makes the implementation as simple as possible.
820 xfs_buf_item_get_format(bip, bp->b_map_count);
822 for (i = 0; i < bip->bli_format_count; i++) {
823 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
825 map_size = DIV_ROUND_UP(chunks, NBWORD);
827 if (map_size > XFS_BLF_DATAMAP_SIZE) {
828 kmem_cache_free(xfs_buf_item_cache, bip);
830 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
832 BBTOB(bp->b_maps[i].bm_len));
833 return -EFSCORRUPTED;
836 bip->bli_formats[i].blf_type = XFS_LI_BUF;
837 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
838 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
839 bip->bli_formats[i].blf_map_size = map_size;
842 bp->b_log_item = bip;
849 * Mark bytes first through last inclusive as dirty in the buf
853 xfs_buf_item_log_segment(
868 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
869 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
872 * Convert byte offsets to bit numbers.
874 first_bit = first >> XFS_BLF_SHIFT;
875 last_bit = last >> XFS_BLF_SHIFT;
878 * Calculate the total number of bits to be set.
880 bits_to_set = last_bit - first_bit + 1;
883 * Get a pointer to the first word in the bitmap
886 word_num = first_bit >> BIT_TO_WORD_SHIFT;
887 wordp = &map[word_num];
890 * Calculate the starting bit in the first word.
892 bit = first_bit & (uint)(NBWORD - 1);
895 * First set any bits in the first word of our range.
896 * If it starts at bit 0 of the word, it will be
897 * set below rather than here. That is what the variable
898 * bit tells us. The variable bits_set tracks the number
899 * of bits that have been set so far. End_bit is the number
900 * of the last bit to be set in this word plus one.
903 end_bit = min(bit + bits_to_set, (uint)NBWORD);
904 mask = ((1U << (end_bit - bit)) - 1) << bit;
907 bits_set = end_bit - bit;
913 * Now set bits a whole word at a time that are between
914 * first_bit and last_bit.
916 while ((bits_to_set - bits_set) >= NBWORD) {
923 * Finally, set any bits left to be set in one last partial word.
925 end_bit = bits_to_set - bits_set;
927 mask = (1U << end_bit) - 1;
933 * Mark bytes first through last inclusive as dirty in the buf
938 struct xfs_buf_log_item *bip,
945 struct xfs_buf *bp = bip->bli_buf;
948 * walk each buffer segment and mark them dirty appropriately.
951 for (i = 0; i < bip->bli_format_count; i++) {
954 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
956 /* skip to the map that includes the first byte to log */
958 start += BBTOB(bp->b_maps[i].bm_len);
963 * Trim the range to this segment and mark it in the bitmap.
964 * Note that we must convert buffer offsets to segment relative
965 * offsets (e.g., the first byte of each segment is byte 0 of
972 xfs_buf_item_log_segment(first - start, end - start,
973 &bip->bli_formats[i].blf_data_map[0]);
975 start += BBTOB(bp->b_maps[i].bm_len);
981 * Return true if the buffer has any ranges logged/dirtied by a transaction,
985 xfs_buf_item_dirty_format(
986 struct xfs_buf_log_item *bip)
990 for (i = 0; i < bip->bli_format_count; i++) {
991 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
992 bip->bli_formats[i].blf_map_size))
1001 struct xfs_buf_log_item *bip)
1003 xfs_buf_item_free_format(bip);
1004 kmem_free(bip->bli_item.li_lv_shadow);
1005 kmem_cache_free(xfs_buf_item_cache, bip);
1009 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
1015 struct xfs_buf_log_item *bip = bp->b_log_item;
1017 trace_xfs_buf_item_relse(bp, _RET_IP_);
1018 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
1020 bp->b_log_item = NULL;
1022 xfs_buf_item_free(bip);
1030 * If we are forcibly shutting down, this may well be off the AIL
1031 * already. That's because we simulate the log-committed callbacks to
1032 * unpin these buffers. Or we may never have put this item on AIL
1033 * because of the transaction was aborted forcibly.
1034 * xfs_trans_ail_delete() takes care of these.
1036 * Either way, AIL is useless if we're forcing a shutdown.
1038 * Note that log recovery writes might have buffer items that are not on
1039 * the AIL even when the file system is not shut down.
1041 xfs_trans_ail_delete(&bp->b_log_item->bli_item,
1042 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
1043 SHUTDOWN_CORRUPT_INCORE);
1044 xfs_buf_item_relse(bp);