1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/backing-dev.h>
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trace.h"
16 #include "xfs_log_recover.h"
17 #include "xfs_trans.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
23 static struct kmem_cache *xfs_buf_cache;
30 * b_sema (caller holds)
34 * b_sema (caller holds)
43 * xfs_buftarg_drain_rele
45 * b_lock (trylock due to inversion)
49 * b_lock (trylock due to inversion)
52 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
58 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp->b_addr && bp->b_page_count > 1;
79 return (bp->b_page_count * PAGE_SIZE);
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
99 if (bp->b_flags & XBF_NO_IOACCT)
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 spin_lock(&bp->b_lock);
104 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 percpu_counter_inc(&bp->b_target->bt_io_count);
108 spin_unlock(&bp->b_lock);
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
116 __xfs_buf_ioacct_dec(
119 lockdep_assert_held(&bp->b_lock);
121 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 percpu_counter_dec(&bp->b_target->bt_io_count);
131 spin_lock(&bp->b_lock);
132 __xfs_buf_ioacct_dec(bp);
133 spin_unlock(&bp->b_lock);
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
142 * This prevents build-up of stale buffers on the LRU.
148 ASSERT(xfs_buf_islocked(bp));
150 bp->b_flags |= XBF_STALE;
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
157 bp->b_flags &= ~_XBF_DELWRI_Q;
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
165 spin_lock(&bp->b_lock);
166 __xfs_buf_ioacct_dec(bp);
168 atomic_set(&bp->b_lru_ref, 0);
169 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 atomic_dec(&bp->b_hold);
173 ASSERT(atomic_read(&bp->b_hold) >= 1);
174 spin_unlock(&bp->b_lock);
182 ASSERT(bp->b_maps == NULL);
183 bp->b_map_count = map_count;
185 if (map_count == 1) {
186 bp->b_maps = &bp->__b_map;
190 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
198 * Frees b_pages if it was allocated.
204 if (bp->b_maps != &bp->__b_map) {
205 kmem_free(bp->b_maps);
212 struct xfs_buftarg *target,
213 struct xfs_buf_map *map,
215 xfs_buf_flags_t flags,
216 struct xfs_buf **bpp)
223 bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
229 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
231 atomic_set(&bp->b_hold, 1);
232 atomic_set(&bp->b_lru_ref, 1);
233 init_completion(&bp->b_iowait);
234 INIT_LIST_HEAD(&bp->b_lru);
235 INIT_LIST_HEAD(&bp->b_list);
236 INIT_LIST_HEAD(&bp->b_li_list);
237 sema_init(&bp->b_sema, 0); /* held, no waiters */
238 spin_lock_init(&bp->b_lock);
239 bp->b_target = target;
240 bp->b_mount = target->bt_mount;
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
248 error = xfs_buf_get_maps(bp, nmaps);
250 kmem_cache_free(xfs_buf_cache, bp);
254 bp->b_rhash_key = map[0].bm_bn;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
262 atomic_set(&bp->b_pin_count, 0);
263 init_waitqueue_head(&bp->b_waiters);
265 XFS_STATS_INC(bp->b_mount, xb_create);
266 trace_xfs_buf_init(bp, _RET_IP_);
278 ASSERT(bp->b_flags & _XBF_PAGES);
280 if (xfs_buf_is_vmapped(bp))
281 vm_unmap_ram(bp->b_addr, bp->b_page_count);
283 for (i = 0; i < bp->b_page_count; i++) {
285 __free_page(bp->b_pages[i]);
287 if (current->reclaim_state)
288 current->reclaim_state->reclaimed_slab += bp->b_page_count;
290 if (bp->b_pages != bp->b_page_array)
291 kmem_free(bp->b_pages);
293 bp->b_flags &= ~_XBF_PAGES;
300 trace_xfs_buf_free(bp, _RET_IP_);
302 ASSERT(list_empty(&bp->b_lru));
304 if (bp->b_flags & _XBF_PAGES)
305 xfs_buf_free_pages(bp);
306 else if (bp->b_flags & _XBF_KMEM)
307 kmem_free(bp->b_addr);
309 xfs_buf_free_maps(bp);
310 kmem_cache_free(xfs_buf_cache, bp);
316 xfs_buf_flags_t flags)
318 xfs_km_flags_t kmflag_mask = KM_NOFS;
319 size_t size = BBTOB(bp->b_length);
321 /* Assure zeroed buffer for non-read cases. */
322 if (!(flags & XBF_READ))
323 kmflag_mask |= KM_ZERO;
325 bp->b_addr = kmem_alloc(size, kmflag_mask);
329 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
330 ((unsigned long)bp->b_addr & PAGE_MASK)) {
331 /* b_addr spans two pages - use alloc_page instead */
332 kmem_free(bp->b_addr);
336 bp->b_offset = offset_in_page(bp->b_addr);
337 bp->b_pages = bp->b_page_array;
338 bp->b_pages[0] = kmem_to_page(bp->b_addr);
339 bp->b_page_count = 1;
340 bp->b_flags |= _XBF_KMEM;
347 xfs_buf_flags_t flags)
349 gfp_t gfp_mask = __GFP_NOWARN;
352 if (flags & XBF_READ_AHEAD)
353 gfp_mask |= __GFP_NORETRY;
355 gfp_mask |= GFP_NOFS;
357 /* Make sure that we have a page list */
358 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
359 if (bp->b_page_count <= XB_PAGES) {
360 bp->b_pages = bp->b_page_array;
362 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
367 bp->b_flags |= _XBF_PAGES;
369 /* Assure zeroed buffer for non-read cases. */
370 if (!(flags & XBF_READ))
371 gfp_mask |= __GFP_ZERO;
374 * Bulk filling of pages can take multiple calls. Not filling the entire
375 * array is not an allocation failure, so don't back off if we get at
376 * least one extra page.
381 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
383 if (filled == bp->b_page_count) {
384 XFS_STATS_INC(bp->b_mount, xb_page_found);
391 if (flags & XBF_READ_AHEAD) {
392 xfs_buf_free_pages(bp);
396 XFS_STATS_INC(bp->b_mount, xb_page_retries);
397 memalloc_retry_wait(gfp_mask);
403 * Map buffer into kernel address-space if necessary.
410 ASSERT(bp->b_flags & _XBF_PAGES);
411 if (bp->b_page_count == 1) {
412 /* A single page buffer is always mappable */
413 bp->b_addr = page_address(bp->b_pages[0]);
414 } else if (flags & XBF_UNMAPPED) {
421 * vm_map_ram() will allocate auxiliary structures (e.g.
422 * pagetables) with GFP_KERNEL, yet we are likely to be under
423 * GFP_NOFS context here. Hence we need to tell memory reclaim
424 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
425 * memory reclaim re-entering the filesystem here and
426 * potentially deadlocking.
428 nofs_flag = memalloc_nofs_save();
430 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
435 } while (retried++ <= 1);
436 memalloc_nofs_restore(nofs_flag);
446 * Finding and Reading Buffers
450 struct rhashtable_compare_arg *arg,
453 const struct xfs_buf_map *map = arg->key;
454 const struct xfs_buf *bp = obj;
457 * The key hashing in the lookup path depends on the key being the
458 * first element of the compare_arg, make sure to assert this.
460 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
462 if (bp->b_rhash_key != map->bm_bn)
465 if (unlikely(bp->b_length != map->bm_len)) {
467 * found a block number match. If the range doesn't
468 * match, the only way this is allowed is if the buffer
469 * in the cache is stale and the transaction that made
470 * it stale has not yet committed. i.e. we are
471 * reallocating a busy extent. Skip this buffer and
472 * continue searching for an exact match.
474 ASSERT(bp->b_flags & XBF_STALE);
480 static const struct rhashtable_params xfs_buf_hash_params = {
481 .min_size = 32, /* empty AGs have minimal footprint */
483 .key_len = sizeof(xfs_daddr_t),
484 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
485 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
486 .automatic_shrinking = true,
487 .obj_cmpfn = _xfs_buf_obj_cmp,
492 struct xfs_perag *pag)
494 spin_lock_init(&pag->pag_buf_lock);
495 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
499 xfs_buf_hash_destroy(
500 struct xfs_perag *pag)
502 rhashtable_destroy(&pag->pag_buf_hash);
506 * Look up a buffer in the buffer cache and return it referenced and locked
509 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
512 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
513 * -EAGAIN if we fail to lock it.
516 * -EFSCORRUPTED if have been supplied with an invalid address
517 * -EAGAIN on trylock failure
518 * -ENOENT if we fail to find a match and @new_bp was NULL
520 * - @new_bp if we inserted it into the cache
521 * - the buffer we found and locked.
525 struct xfs_buftarg *btp,
526 struct xfs_buf_map *map,
528 xfs_buf_flags_t flags,
529 struct xfs_buf *new_bp,
530 struct xfs_buf **found_bp)
532 struct xfs_perag *pag;
534 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
540 for (i = 0; i < nmaps; i++)
541 cmap.bm_len += map[i].bm_len;
543 /* Check for IOs smaller than the sector size / not sector aligned */
544 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
545 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
548 * Corrupted block numbers can get through to here, unfortunately, so we
549 * have to check that the buffer falls within the filesystem bounds.
551 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
552 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
553 xfs_alert(btp->bt_mount,
554 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
555 __func__, cmap.bm_bn, eofs);
557 return -EFSCORRUPTED;
560 pag = xfs_perag_get(btp->bt_mount,
561 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
563 spin_lock(&pag->pag_buf_lock);
564 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
565 xfs_buf_hash_params);
567 atomic_inc(&bp->b_hold);
573 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
574 spin_unlock(&pag->pag_buf_lock);
579 /* the buffer keeps the perag reference until it is freed */
581 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
582 xfs_buf_hash_params);
583 spin_unlock(&pag->pag_buf_lock);
588 spin_unlock(&pag->pag_buf_lock);
591 if (!xfs_buf_trylock(bp)) {
592 if (flags & XBF_TRYLOCK) {
594 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
598 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
602 * if the buffer is stale, clear all the external state associated with
603 * it. We need to keep flags such as how we allocated the buffer memory
606 if (bp->b_flags & XBF_STALE) {
607 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
608 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
612 trace_xfs_buf_find(bp, flags, _RET_IP_);
613 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
620 struct xfs_buftarg *target,
623 xfs_buf_flags_t flags)
627 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
629 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
636 * Assembles a buffer covering the specified range. The code is optimised for
637 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638 * more hits than misses.
642 struct xfs_buftarg *target,
643 struct xfs_buf_map *map,
645 xfs_buf_flags_t flags,
646 struct xfs_buf **bpp)
649 struct xfs_buf *new_bp;
653 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
656 if (error != -ENOENT)
659 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
664 * For buffers that fit entirely within a single page, first attempt to
665 * allocate the memory from the heap to minimise memory usage. If we
666 * can't get heap memory for these small buffers, we fall back to using
667 * the page allocator.
669 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
670 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
671 error = xfs_buf_alloc_pages(new_bp, flags);
676 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
681 xfs_buf_free(new_bp);
685 error = _xfs_buf_map_pages(bp, flags);
686 if (unlikely(error)) {
687 xfs_warn_ratelimited(target->bt_mount,
688 "%s: failed to map %u pages", __func__,
696 * Clear b_error if this is a lookup from a caller that doesn't expect
697 * valid data to be found in the buffer.
699 if (!(flags & XBF_READ))
700 xfs_buf_ioerror(bp, 0);
702 XFS_STATS_INC(target->bt_mount, xb_get);
703 trace_xfs_buf_get(bp, flags, _RET_IP_);
707 xfs_buf_free(new_bp);
714 xfs_buf_flags_t flags)
716 ASSERT(!(flags & XBF_WRITE));
717 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
719 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
720 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
722 return xfs_buf_submit(bp);
726 * Reverify a buffer found in cache without an attached ->b_ops.
728 * If the caller passed an ops structure and the buffer doesn't have ops
729 * assigned, set the ops and use it to verify the contents. If verification
730 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
731 * already in XBF_DONE state on entry.
733 * Under normal operations, every in-core buffer is verified on read I/O
734 * completion. There are two scenarios that can lead to in-core buffers without
735 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
736 * filesystem, though these buffers are purged at the end of recovery. The
737 * other is online repair, which intentionally reads with a NULL buffer ops to
738 * run several verifiers across an in-core buffer in order to establish buffer
739 * type. If repair can't establish that, the buffer will be left in memory
740 * with NULL buffer ops.
745 const struct xfs_buf_ops *ops)
747 ASSERT(bp->b_flags & XBF_DONE);
748 ASSERT(bp->b_error == 0);
750 if (!ops || bp->b_ops)
754 bp->b_ops->verify_read(bp);
756 bp->b_flags &= ~XBF_DONE;
762 struct xfs_buftarg *target,
763 struct xfs_buf_map *map,
765 xfs_buf_flags_t flags,
766 struct xfs_buf **bpp,
767 const struct xfs_buf_ops *ops,
776 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
780 trace_xfs_buf_read(bp, flags, _RET_IP_);
782 if (!(bp->b_flags & XBF_DONE)) {
783 /* Initiate the buffer read and wait. */
784 XFS_STATS_INC(target->bt_mount, xb_get_read);
786 error = _xfs_buf_read(bp, flags);
788 /* Readahead iodone already dropped the buffer, so exit. */
789 if (flags & XBF_ASYNC)
792 /* Buffer already read; all we need to do is check it. */
793 error = xfs_buf_reverify(bp, ops);
795 /* Readahead already finished; drop the buffer and exit. */
796 if (flags & XBF_ASYNC) {
801 /* We do not want read in the flags */
802 bp->b_flags &= ~XBF_READ;
803 ASSERT(bp->b_ops != NULL || ops == NULL);
807 * If we've had a read error, then the contents of the buffer are
808 * invalid and should not be used. To ensure that a followup read tries
809 * to pull the buffer from disk again, we clear the XBF_DONE flag and
810 * mark the buffer stale. This ensures that anyone who has a current
811 * reference to the buffer will interpret it's contents correctly and
812 * future cache lookups will also treat it as an empty, uninitialised
816 if (!xfs_is_shutdown(target->bt_mount))
817 xfs_buf_ioerror_alert(bp, fa);
819 bp->b_flags &= ~XBF_DONE;
823 /* bad CRC means corrupted metadata */
824 if (error == -EFSBADCRC)
825 error = -EFSCORRUPTED;
834 * If we are not low on memory then do the readahead in a deadlock
838 xfs_buf_readahead_map(
839 struct xfs_buftarg *target,
840 struct xfs_buf_map *map,
842 const struct xfs_buf_ops *ops)
846 if (bdi_read_congested(target->bt_bdev->bd_disk->bdi))
849 xfs_buf_read_map(target, map, nmaps,
850 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
855 * Read an uncached buffer from disk. Allocates and returns a locked
856 * buffer containing the disk contents or nothing. Uncached buffers always have
857 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
858 * is cached or uncached during fault diagnosis.
861 xfs_buf_read_uncached(
862 struct xfs_buftarg *target,
866 struct xfs_buf **bpp,
867 const struct xfs_buf_ops *ops)
874 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
878 /* set up the buffer for a read IO */
879 ASSERT(bp->b_map_count == 1);
880 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
881 bp->b_maps[0].bm_bn = daddr;
882 bp->b_flags |= XBF_READ;
897 xfs_buf_get_uncached(
898 struct xfs_buftarg *target,
901 struct xfs_buf **bpp)
905 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
909 /* flags might contain irrelevant bits, pass only what we care about */
910 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
914 error = xfs_buf_alloc_pages(bp, flags);
918 error = _xfs_buf_map_pages(bp, 0);
919 if (unlikely(error)) {
920 xfs_warn(target->bt_mount,
921 "%s: failed to map pages", __func__);
925 trace_xfs_buf_get_uncached(bp, _RET_IP_);
935 * Increment reference count on buffer, to hold the buffer concurrently
936 * with another thread which may release (free) the buffer asynchronously.
937 * Must hold the buffer already to call this function.
943 trace_xfs_buf_hold(bp, _RET_IP_);
944 atomic_inc(&bp->b_hold);
948 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
949 * placed on LRU or freed (depending on b_lru_ref).
955 struct xfs_perag *pag = bp->b_pag;
957 bool freebuf = false;
959 trace_xfs_buf_rele(bp, _RET_IP_);
962 ASSERT(list_empty(&bp->b_lru));
963 if (atomic_dec_and_test(&bp->b_hold)) {
964 xfs_buf_ioacct_dec(bp);
970 ASSERT(atomic_read(&bp->b_hold) > 0);
973 * We grab the b_lock here first to serialise racing xfs_buf_rele()
974 * calls. The pag_buf_lock being taken on the last reference only
975 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
976 * to last reference we drop here is not serialised against the last
977 * reference until we take bp->b_lock. Hence if we don't grab b_lock
978 * first, the last "release" reference can win the race to the lock and
979 * free the buffer before the second-to-last reference is processed,
980 * leading to a use-after-free scenario.
982 spin_lock(&bp->b_lock);
983 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
986 * Drop the in-flight state if the buffer is already on the LRU
987 * and it holds the only reference. This is racy because we
988 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
989 * ensures the decrement occurs only once per-buf.
991 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
992 __xfs_buf_ioacct_dec(bp);
996 /* the last reference has been dropped ... */
997 __xfs_buf_ioacct_dec(bp);
998 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1000 * If the buffer is added to the LRU take a new reference to the
1001 * buffer for the LRU and clear the (now stale) dispose list
1004 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1005 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1006 atomic_inc(&bp->b_hold);
1008 spin_unlock(&pag->pag_buf_lock);
1011 * most of the time buffers will already be removed from the
1012 * LRU, so optimise that case by checking for the
1013 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1014 * was on was the disposal list
1016 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1017 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1019 ASSERT(list_empty(&bp->b_lru));
1022 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1023 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1024 xfs_buf_hash_params);
1025 spin_unlock(&pag->pag_buf_lock);
1031 spin_unlock(&bp->b_lock);
1039 * Lock a buffer object, if it is not already locked.
1041 * If we come across a stale, pinned, locked buffer, we know that we are
1042 * being asked to lock a buffer that has been reallocated. Because it is
1043 * pinned, we know that the log has not been pushed to disk and hence it
1044 * will still be locked. Rather than continuing to have trylock attempts
1045 * fail until someone else pushes the log, push it ourselves before
1046 * returning. This means that the xfsaild will not get stuck trying
1047 * to push on stale inode buffers.
1055 locked = down_trylock(&bp->b_sema) == 0;
1057 trace_xfs_buf_trylock(bp, _RET_IP_);
1059 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1064 * Lock a buffer object.
1066 * If we come across a stale, pinned, locked buffer, we know that we
1067 * are being asked to lock a buffer that has been reallocated. Because
1068 * it is pinned, we know that the log has not been pushed to disk and
1069 * hence it will still be locked. Rather than sleeping until someone
1070 * else pushes the log, push it ourselves before trying to get the lock.
1076 trace_xfs_buf_lock(bp, _RET_IP_);
1078 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1079 xfs_log_force(bp->b_mount, 0);
1082 trace_xfs_buf_lock_done(bp, _RET_IP_);
1089 ASSERT(xfs_buf_islocked(bp));
1092 trace_xfs_buf_unlock(bp, _RET_IP_);
1099 DECLARE_WAITQUEUE (wait, current);
1101 if (atomic_read(&bp->b_pin_count) == 0)
1104 add_wait_queue(&bp->b_waiters, &wait);
1106 set_current_state(TASK_UNINTERRUPTIBLE);
1107 if (atomic_read(&bp->b_pin_count) == 0)
1111 remove_wait_queue(&bp->b_waiters, &wait);
1112 set_current_state(TASK_RUNNING);
1116 xfs_buf_ioerror_alert_ratelimited(
1119 static unsigned long lasttime;
1120 static struct xfs_buftarg *lasttarg;
1122 if (bp->b_target != lasttarg ||
1123 time_after(jiffies, (lasttime + 5*HZ))) {
1125 xfs_buf_ioerror_alert(bp, __this_address);
1127 lasttarg = bp->b_target;
1131 * Account for this latest trip around the retry handler, and decide if
1132 * we've failed enough times to constitute a permanent failure.
1135 xfs_buf_ioerror_permanent(
1137 struct xfs_error_cfg *cfg)
1139 struct xfs_mount *mp = bp->b_mount;
1141 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1142 ++bp->b_retries > cfg->max_retries)
1144 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1145 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1148 /* At unmount we may treat errors differently */
1149 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1156 * On a sync write or shutdown we just want to stale the buffer and let the
1157 * caller handle the error in bp->b_error appropriately.
1159 * If the write was asynchronous then no one will be looking for the error. If
1160 * this is the first failure of this type, clear the error state and write the
1161 * buffer out again. This means we always retry an async write failure at least
1162 * once, but we also need to set the buffer up to behave correctly now for
1163 * repeated failures.
1165 * If we get repeated async write failures, then we take action according to the
1166 * error configuration we have been set up to use.
1168 * Returns true if this function took care of error handling and the caller must
1169 * not touch the buffer again. Return false if the caller should proceed with
1170 * normal I/O completion handling.
1173 xfs_buf_ioend_handle_error(
1176 struct xfs_mount *mp = bp->b_mount;
1177 struct xfs_error_cfg *cfg;
1180 * If we've already decided to shutdown the filesystem because of I/O
1181 * errors, there's no point in giving this a retry.
1183 if (xfs_is_shutdown(mp))
1186 xfs_buf_ioerror_alert_ratelimited(bp);
1189 * We're not going to bother about retrying this during recovery.
1192 if (bp->b_flags & _XBF_LOGRECOVERY) {
1193 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1198 * Synchronous writes will have callers process the error.
1200 if (!(bp->b_flags & XBF_ASYNC))
1203 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1205 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1206 if (bp->b_last_error != bp->b_error ||
1207 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1208 bp->b_last_error = bp->b_error;
1209 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1210 !bp->b_first_retry_time)
1211 bp->b_first_retry_time = jiffies;
1216 * Permanent error - we need to trigger a shutdown if we haven't already
1217 * to indicate that inconsistency will result from this action.
1219 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1220 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1224 /* Still considered a transient error. Caller will schedule retries. */
1225 if (bp->b_flags & _XBF_INODES)
1226 xfs_buf_inode_io_fail(bp);
1227 else if (bp->b_flags & _XBF_DQUOTS)
1228 xfs_buf_dquot_io_fail(bp);
1230 ASSERT(list_empty(&bp->b_li_list));
1231 xfs_buf_ioerror(bp, 0);
1236 xfs_buf_ioerror(bp, 0);
1237 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1242 bp->b_flags |= XBF_DONE;
1243 bp->b_flags &= ~XBF_WRITE;
1244 trace_xfs_buf_error_relse(bp, _RET_IP_);
1252 trace_xfs_buf_iodone(bp, _RET_IP_);
1255 * Pull in IO completion errors now. We are guaranteed to be running
1256 * single threaded, so we don't need the lock to read b_io_error.
1258 if (!bp->b_error && bp->b_io_error)
1259 xfs_buf_ioerror(bp, bp->b_io_error);
1261 if (bp->b_flags & XBF_READ) {
1262 if (!bp->b_error && bp->b_ops)
1263 bp->b_ops->verify_read(bp);
1265 bp->b_flags |= XBF_DONE;
1268 bp->b_flags &= ~XBF_WRITE_FAIL;
1269 bp->b_flags |= XBF_DONE;
1272 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1275 /* clear the retry state */
1276 bp->b_last_error = 0;
1278 bp->b_first_retry_time = 0;
1281 * Note that for things like remote attribute buffers, there may
1282 * not be a buffer log item here, so processing the buffer log
1283 * item must remain optional.
1286 xfs_buf_item_done(bp);
1288 if (bp->b_flags & _XBF_INODES)
1289 xfs_buf_inode_iodone(bp);
1290 else if (bp->b_flags & _XBF_DQUOTS)
1291 xfs_buf_dquot_iodone(bp);
1295 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1298 if (bp->b_flags & XBF_ASYNC)
1301 complete(&bp->b_iowait);
1306 struct work_struct *work)
1308 struct xfs_buf *bp =
1309 container_of(work, struct xfs_buf, b_ioend_work);
1315 xfs_buf_ioend_async(
1318 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1319 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1326 xfs_failaddr_t failaddr)
1328 ASSERT(error <= 0 && error >= -1000);
1329 bp->b_error = error;
1330 trace_xfs_buf_ioerror(bp, error, failaddr);
1334 xfs_buf_ioerror_alert(
1336 xfs_failaddr_t func)
1338 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1339 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1340 func, (uint64_t)xfs_buf_daddr(bp),
1341 bp->b_length, -bp->b_error);
1345 * To simulate an I/O failure, the buffer must be locked and held with at least
1346 * three references. The LRU reference is dropped by the stale call. The buf
1347 * item reference is dropped via ioend processing. The third reference is owned
1348 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1354 bp->b_flags &= ~XBF_DONE;
1356 xfs_buf_ioerror(bp, -EIO);
1366 ASSERT(xfs_buf_islocked(bp));
1368 bp->b_flags |= XBF_WRITE;
1369 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1372 error = xfs_buf_submit(bp);
1374 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1382 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1384 if (!bio->bi_status &&
1385 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1386 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1387 bio->bi_status = BLK_STS_IOERR;
1390 * don't overwrite existing errors - otherwise we can lose errors on
1391 * buffers that require multiple bios to complete.
1393 if (bio->bi_status) {
1394 int error = blk_status_to_errno(bio->bi_status);
1396 cmpxchg(&bp->b_io_error, 0, error);
1399 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1400 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1402 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1403 xfs_buf_ioend_async(bp);
1408 xfs_buf_ioapply_map(
1416 unsigned int total_nr_pages = bp->b_page_count;
1419 sector_t sector = bp->b_maps[map].bm_bn;
1423 /* skip the pages in the buffer before the start offset */
1425 offset = *buf_offset;
1426 while (offset >= PAGE_SIZE) {
1428 offset -= PAGE_SIZE;
1432 * Limit the IO size to the length of the current vector, and update the
1433 * remaining IO count for the next time around.
1435 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1437 *buf_offset += size;
1440 atomic_inc(&bp->b_io_remaining);
1441 nr_pages = bio_max_segs(total_nr_pages);
1443 bio = bio_alloc(GFP_NOIO, nr_pages);
1444 bio_set_dev(bio, bp->b_target->bt_bdev);
1445 bio->bi_iter.bi_sector = sector;
1446 bio->bi_end_io = xfs_buf_bio_end_io;
1447 bio->bi_private = bp;
1450 for (; size && nr_pages; nr_pages--, page_index++) {
1451 int rbytes, nbytes = PAGE_SIZE - offset;
1456 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1458 if (rbytes < nbytes)
1462 sector += BTOBB(nbytes);
1467 if (likely(bio->bi_iter.bi_size)) {
1468 if (xfs_buf_is_vmapped(bp)) {
1469 flush_kernel_vmap_range(bp->b_addr,
1470 xfs_buf_vmap_len(bp));
1477 * This is guaranteed not to be the last io reference count
1478 * because the caller (xfs_buf_submit) holds a count itself.
1480 atomic_dec(&bp->b_io_remaining);
1481 xfs_buf_ioerror(bp, -EIO);
1491 struct blk_plug plug;
1498 * Make sure we capture only current IO errors rather than stale errors
1499 * left over from previous use of the buffer (e.g. failed readahead).
1503 if (bp->b_flags & XBF_WRITE) {
1507 * Run the write verifier callback function if it exists. If
1508 * this function fails it will mark the buffer with an error and
1509 * the IO should not be dispatched.
1512 bp->b_ops->verify_write(bp);
1514 xfs_force_shutdown(bp->b_mount,
1515 SHUTDOWN_CORRUPT_INCORE);
1518 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1519 struct xfs_mount *mp = bp->b_mount;
1522 * non-crc filesystems don't attach verifiers during
1523 * log recovery, so don't warn for such filesystems.
1525 if (xfs_has_crc(mp)) {
1527 "%s: no buf ops on daddr 0x%llx len %d",
1528 __func__, xfs_buf_daddr(bp),
1530 xfs_hex_dump(bp->b_addr,
1531 XFS_CORRUPTION_DUMP_LEN);
1537 if (bp->b_flags & XBF_READ_AHEAD)
1541 /* we only use the buffer cache for meta-data */
1545 * Walk all the vectors issuing IO on them. Set up the initial offset
1546 * into the buffer and the desired IO size before we start -
1547 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1550 offset = bp->b_offset;
1551 size = BBTOB(bp->b_length);
1552 blk_start_plug(&plug);
1553 for (i = 0; i < bp->b_map_count; i++) {
1554 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1558 break; /* all done */
1560 blk_finish_plug(&plug);
1564 * Wait for I/O completion of a sync buffer and return the I/O error code.
1570 ASSERT(!(bp->b_flags & XBF_ASYNC));
1572 trace_xfs_buf_iowait(bp, _RET_IP_);
1573 wait_for_completion(&bp->b_iowait);
1574 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1580 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1581 * the buffer lock ownership and the current reference to the IO. It is not
1582 * safe to reference the buffer after a call to this function unless the caller
1583 * holds an additional reference itself.
1592 trace_xfs_buf_submit(bp, _RET_IP_);
1594 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1596 /* on shutdown we stale and complete the buffer immediately */
1597 if (xfs_is_shutdown(bp->b_mount)) {
1598 xfs_buf_ioend_fail(bp);
1603 * Grab a reference so the buffer does not go away underneath us. For
1604 * async buffers, I/O completion drops the callers reference, which
1605 * could occur before submission returns.
1609 if (bp->b_flags & XBF_WRITE)
1610 xfs_buf_wait_unpin(bp);
1612 /* clear the internal error state to avoid spurious errors */
1616 * Set the count to 1 initially, this will stop an I/O completion
1617 * callout which happens before we have started all the I/O from calling
1618 * xfs_buf_ioend too early.
1620 atomic_set(&bp->b_io_remaining, 1);
1621 if (bp->b_flags & XBF_ASYNC)
1622 xfs_buf_ioacct_inc(bp);
1623 _xfs_buf_ioapply(bp);
1626 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1627 * reference we took above. If we drop it to zero, run completion so
1628 * that we don't return to the caller with completion still pending.
1630 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1631 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1634 xfs_buf_ioend_async(bp);
1638 error = xfs_buf_iowait(bp);
1641 * Release the hold that keeps the buffer referenced for the entire
1642 * I/O. Note that if the buffer is async, it is not safe to reference
1643 * after this release.
1657 return bp->b_addr + offset;
1659 page = bp->b_pages[offset >> PAGE_SHIFT];
1660 return page_address(page) + (offset & (PAGE_SIZE-1));
1671 bend = boff + bsize;
1672 while (boff < bend) {
1674 int page_index, page_offset, csize;
1676 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1677 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1678 page = bp->b_pages[page_index];
1679 csize = min_t(size_t, PAGE_SIZE - page_offset,
1680 BBTOB(bp->b_length) - boff);
1682 ASSERT((csize + page_offset) <= PAGE_SIZE);
1684 memset(page_address(page) + page_offset, 0, csize);
1691 * Log a message about and stale a buffer that a caller has decided is corrupt.
1693 * This function should be called for the kinds of metadata corruption that
1694 * cannot be detect from a verifier, such as incorrect inter-block relationship
1695 * data. Do /not/ call this function from a verifier function.
1697 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1698 * be marked stale, but b_error will not be set. The caller is responsible for
1699 * releasing the buffer or fixing it.
1702 __xfs_buf_mark_corrupt(
1706 ASSERT(bp->b_flags & XBF_DONE);
1708 xfs_buf_corruption_error(bp, fa);
1713 * Handling of buffer targets (buftargs).
1717 * Wait for any bufs with callbacks that have been submitted but have not yet
1718 * returned. These buffers will have an elevated hold count, so wait on those
1719 * while freeing all the buffers only held by the LRU.
1721 static enum lru_status
1722 xfs_buftarg_drain_rele(
1723 struct list_head *item,
1724 struct list_lru_one *lru,
1725 spinlock_t *lru_lock,
1729 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1730 struct list_head *dispose = arg;
1732 if (atomic_read(&bp->b_hold) > 1) {
1733 /* need to wait, so skip it this pass */
1734 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1737 if (!spin_trylock(&bp->b_lock))
1741 * clear the LRU reference count so the buffer doesn't get
1742 * ignored in xfs_buf_rele().
1744 atomic_set(&bp->b_lru_ref, 0);
1745 bp->b_state |= XFS_BSTATE_DISPOSE;
1746 list_lru_isolate_move(lru, item, dispose);
1747 spin_unlock(&bp->b_lock);
1752 * Wait for outstanding I/O on the buftarg to complete.
1756 struct xfs_buftarg *btp)
1759 * First wait on the buftarg I/O count for all in-flight buffers to be
1760 * released. This is critical as new buffers do not make the LRU until
1761 * they are released.
1763 * Next, flush the buffer workqueue to ensure all completion processing
1764 * has finished. Just waiting on buffer locks is not sufficient for
1765 * async IO as the reference count held over IO is not released until
1766 * after the buffer lock is dropped. Hence we need to ensure here that
1767 * all reference counts have been dropped before we start walking the
1770 while (percpu_counter_sum(&btp->bt_io_count))
1772 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1777 struct xfs_buftarg *btp)
1781 bool write_fail = false;
1783 xfs_buftarg_wait(btp);
1785 /* loop until there is nothing left on the lru list. */
1786 while (list_lru_count(&btp->bt_lru)) {
1787 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1788 &dispose, LONG_MAX);
1790 while (!list_empty(&dispose)) {
1792 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1793 list_del_init(&bp->b_lru);
1794 if (bp->b_flags & XBF_WRITE_FAIL) {
1796 xfs_buf_alert_ratelimited(bp,
1797 "XFS: Corruption Alert",
1798 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1799 (long long)xfs_buf_daddr(bp));
1808 * If one or more failed buffers were freed, that means dirty metadata
1809 * was thrown away. This should only ever happen after I/O completion
1810 * handling has elevated I/O error(s) to permanent failures and shuts
1814 ASSERT(xfs_is_shutdown(btp->bt_mount));
1815 xfs_alert(btp->bt_mount,
1816 "Please run xfs_repair to determine the extent of the problem.");
1820 static enum lru_status
1821 xfs_buftarg_isolate(
1822 struct list_head *item,
1823 struct list_lru_one *lru,
1824 spinlock_t *lru_lock,
1827 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1828 struct list_head *dispose = arg;
1831 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1832 * If we fail to get the lock, just skip it.
1834 if (!spin_trylock(&bp->b_lock))
1837 * Decrement the b_lru_ref count unless the value is already
1838 * zero. If the value is already zero, we need to reclaim the
1839 * buffer, otherwise it gets another trip through the LRU.
1841 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1842 spin_unlock(&bp->b_lock);
1846 bp->b_state |= XFS_BSTATE_DISPOSE;
1847 list_lru_isolate_move(lru, item, dispose);
1848 spin_unlock(&bp->b_lock);
1852 static unsigned long
1853 xfs_buftarg_shrink_scan(
1854 struct shrinker *shrink,
1855 struct shrink_control *sc)
1857 struct xfs_buftarg *btp = container_of(shrink,
1858 struct xfs_buftarg, bt_shrinker);
1860 unsigned long freed;
1862 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1863 xfs_buftarg_isolate, &dispose);
1865 while (!list_empty(&dispose)) {
1867 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1868 list_del_init(&bp->b_lru);
1875 static unsigned long
1876 xfs_buftarg_shrink_count(
1877 struct shrinker *shrink,
1878 struct shrink_control *sc)
1880 struct xfs_buftarg *btp = container_of(shrink,
1881 struct xfs_buftarg, bt_shrinker);
1882 return list_lru_shrink_count(&btp->bt_lru, sc);
1887 struct xfs_buftarg *btp)
1889 unregister_shrinker(&btp->bt_shrinker);
1890 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1891 percpu_counter_destroy(&btp->bt_io_count);
1892 list_lru_destroy(&btp->bt_lru);
1894 blkdev_issue_flush(btp->bt_bdev);
1895 fs_put_dax(btp->bt_daxdev);
1901 xfs_setsize_buftarg(
1903 unsigned int sectorsize)
1905 /* Set up metadata sector size info */
1906 btp->bt_meta_sectorsize = sectorsize;
1907 btp->bt_meta_sectormask = sectorsize - 1;
1909 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1910 xfs_warn(btp->bt_mount,
1911 "Cannot set_blocksize to %u on device %pg",
1912 sectorsize, btp->bt_bdev);
1916 /* Set up device logical sector size mask */
1917 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1918 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1924 * When allocating the initial buffer target we have not yet
1925 * read in the superblock, so don't know what sized sectors
1926 * are being used at this early stage. Play safe.
1929 xfs_setsize_buftarg_early(
1931 struct block_device *bdev)
1933 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1936 struct xfs_buftarg *
1938 struct xfs_mount *mp,
1939 struct block_device *bdev)
1943 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1946 btp->bt_dev = bdev->bd_dev;
1947 btp->bt_bdev = bdev;
1948 btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off);
1951 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1952 * per 30 seconds so as to not spam logs too much on repeated errors.
1954 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1955 DEFAULT_RATELIMIT_BURST);
1957 if (xfs_setsize_buftarg_early(btp, bdev))
1960 if (list_lru_init(&btp->bt_lru))
1963 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1966 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1967 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1968 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1969 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1970 if (register_shrinker(&btp->bt_shrinker))
1975 percpu_counter_destroy(&btp->bt_io_count);
1977 list_lru_destroy(&btp->bt_lru);
1984 * Cancel a delayed write list.
1986 * Remove each buffer from the list, clear the delwri queue flag and drop the
1987 * associated buffer reference.
1990 xfs_buf_delwri_cancel(
1991 struct list_head *list)
1995 while (!list_empty(list)) {
1996 bp = list_first_entry(list, struct xfs_buf, b_list);
1999 bp->b_flags &= ~_XBF_DELWRI_Q;
2000 list_del_init(&bp->b_list);
2006 * Add a buffer to the delayed write list.
2008 * This queues a buffer for writeout if it hasn't already been. Note that
2009 * neither this routine nor the buffer list submission functions perform
2010 * any internal synchronization. It is expected that the lists are thread-local
2013 * Returns true if we queued up the buffer, or false if it already had
2014 * been on the buffer list.
2017 xfs_buf_delwri_queue(
2019 struct list_head *list)
2021 ASSERT(xfs_buf_islocked(bp));
2022 ASSERT(!(bp->b_flags & XBF_READ));
2025 * If the buffer is already marked delwri it already is queued up
2026 * by someone else for imediate writeout. Just ignore it in that
2029 if (bp->b_flags & _XBF_DELWRI_Q) {
2030 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2034 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2037 * If a buffer gets written out synchronously or marked stale while it
2038 * is on a delwri list we lazily remove it. To do this, the other party
2039 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2040 * It remains referenced and on the list. In a rare corner case it
2041 * might get readded to a delwri list after the synchronous writeout, in
2042 * which case we need just need to re-add the flag here.
2044 bp->b_flags |= _XBF_DELWRI_Q;
2045 if (list_empty(&bp->b_list)) {
2046 atomic_inc(&bp->b_hold);
2047 list_add_tail(&bp->b_list, list);
2054 * Compare function is more complex than it needs to be because
2055 * the return value is only 32 bits and we are doing comparisons
2061 const struct list_head *a,
2062 const struct list_head *b)
2064 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2065 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2068 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2077 * Submit buffers for write. If wait_list is specified, the buffers are
2078 * submitted using sync I/O and placed on the wait list such that the caller can
2079 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2080 * at I/O completion time. In either case, buffers remain locked until I/O
2081 * completes and the buffer is released from the queue.
2084 xfs_buf_delwri_submit_buffers(
2085 struct list_head *buffer_list,
2086 struct list_head *wait_list)
2088 struct xfs_buf *bp, *n;
2090 struct blk_plug plug;
2092 list_sort(NULL, buffer_list, xfs_buf_cmp);
2094 blk_start_plug(&plug);
2095 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2097 if (xfs_buf_ispinned(bp)) {
2101 if (!xfs_buf_trylock(bp))
2108 * Someone else might have written the buffer synchronously or
2109 * marked it stale in the meantime. In that case only the
2110 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2111 * reference and remove it from the list here.
2113 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2114 list_del_init(&bp->b_list);
2119 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2122 * If we have a wait list, each buffer (and associated delwri
2123 * queue reference) transfers to it and is submitted
2124 * synchronously. Otherwise, drop the buffer from the delwri
2125 * queue and submit async.
2127 bp->b_flags &= ~_XBF_DELWRI_Q;
2128 bp->b_flags |= XBF_WRITE;
2130 bp->b_flags &= ~XBF_ASYNC;
2131 list_move_tail(&bp->b_list, wait_list);
2133 bp->b_flags |= XBF_ASYNC;
2134 list_del_init(&bp->b_list);
2136 __xfs_buf_submit(bp, false);
2138 blk_finish_plug(&plug);
2144 * Write out a buffer list asynchronously.
2146 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2147 * out and not wait for I/O completion on any of the buffers. This interface
2148 * is only safely useable for callers that can track I/O completion by higher
2149 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2152 * Note: this function will skip buffers it would block on, and in doing so
2153 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2154 * it is up to the caller to ensure that the buffer list is fully submitted or
2155 * cancelled appropriately when they are finished with the list. Failure to
2156 * cancel or resubmit the list until it is empty will result in leaked buffers
2160 xfs_buf_delwri_submit_nowait(
2161 struct list_head *buffer_list)
2163 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2167 * Write out a buffer list synchronously.
2169 * This will take the @buffer_list, write all buffers out and wait for I/O
2170 * completion on all of the buffers. @buffer_list is consumed by the function,
2171 * so callers must have some other way of tracking buffers if they require such
2175 xfs_buf_delwri_submit(
2176 struct list_head *buffer_list)
2178 LIST_HEAD (wait_list);
2179 int error = 0, error2;
2182 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2184 /* Wait for IO to complete. */
2185 while (!list_empty(&wait_list)) {
2186 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2188 list_del_init(&bp->b_list);
2191 * Wait on the locked buffer, check for errors and unlock and
2192 * release the delwri queue reference.
2194 error2 = xfs_buf_iowait(bp);
2204 * Push a single buffer on a delwri queue.
2206 * The purpose of this function is to submit a single buffer of a delwri queue
2207 * and return with the buffer still on the original queue. The waiting delwri
2208 * buffer submission infrastructure guarantees transfer of the delwri queue
2209 * buffer reference to a temporary wait list. We reuse this infrastructure to
2210 * transfer the buffer back to the original queue.
2212 * Note the buffer transitions from the queued state, to the submitted and wait
2213 * listed state and back to the queued state during this call. The buffer
2214 * locking and queue management logic between _delwri_pushbuf() and
2215 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2219 xfs_buf_delwri_pushbuf(
2221 struct list_head *buffer_list)
2223 LIST_HEAD (submit_list);
2226 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2228 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2231 * Isolate the buffer to a new local list so we can submit it for I/O
2232 * independently from the rest of the original list.
2235 list_move(&bp->b_list, &submit_list);
2239 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2240 * the buffer on the wait list with the original reference. Rather than
2241 * bounce the buffer from a local wait list back to the original list
2242 * after I/O completion, reuse the original list as the wait list.
2244 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2247 * The buffer is now locked, under I/O and wait listed on the original
2248 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2249 * return with the buffer unlocked and on the original queue.
2251 error = xfs_buf_iowait(bp);
2252 bp->b_flags |= _XBF_DELWRI_Q;
2261 xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2262 SLAB_HWCACHE_ALIGN |
2263 SLAB_RECLAIM_ACCOUNT |
2276 xfs_buf_terminate(void)
2278 kmem_cache_destroy(xfs_buf_cache);
2281 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2284 * Set the lru reference count to 0 based on the error injection tag.
2285 * This allows userspace to disrupt buffer caching for debug/testing
2288 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2291 atomic_set(&bp->b_lru_ref, lru_ref);
2295 * Verify an on-disk magic value against the magic value specified in the
2296 * verifier structure. The verifier magic is in disk byte order so the caller is
2297 * expected to pass the value directly from disk.
2304 struct xfs_mount *mp = bp->b_mount;
2307 idx = xfs_has_crc(mp);
2308 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2310 return dmagic == bp->b_ops->magic[idx];
2313 * Verify an on-disk magic value against the magic value specified in the
2314 * verifier structure. The verifier magic is in disk byte order so the caller is
2315 * expected to pass the value directly from disk.
2322 struct xfs_mount *mp = bp->b_mount;
2325 idx = xfs_has_crc(mp);
2326 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2328 return dmagic == bp->b_ops->magic16[idx];