1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2012 Red Hat, Inc.
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_btree.h"
19 #include "xfs_trans.h"
20 #include "xfs_extfree_item.h"
21 #include "xfs_alloc.h"
23 #include "xfs_bmap_util.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_rtalloc.h"
26 #include "xfs_error.h"
27 #include "xfs_quota.h"
28 #include "xfs_trans_space.h"
29 #include "xfs_trace.h"
30 #include "xfs_icache.h"
32 #include "xfs_rmap_btree.h"
33 #include "xfs_iomap.h"
34 #include "xfs_reflink.h"
35 #include "xfs_refcount.h"
37 /* Kernel only BMAP related definitions and functions */
40 * Convert the given file system block to a disk block. We have to treat it
41 * differently based on whether the file is a real time file or not, because the
45 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
47 return (XFS_IS_REALTIME_INODE(ip) ? \
48 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
49 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
53 * Routine to zero an extent on disk allocated to the specific inode.
55 * The VFS functions take a linearised filesystem block offset, so we have to
56 * convert the sparse xfs fsb to the right format first.
57 * VFS types are real funky, too.
62 xfs_fsblock_t start_fsb,
65 struct xfs_mount *mp = ip->i_mount;
66 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
67 sector_t block = XFS_BB_TO_FSBT(mp, sector);
69 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
70 block << (mp->m_super->s_blocksize_bits - 9),
71 count_fsb << (mp->m_super->s_blocksize_bits - 9),
78 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
80 int error; /* error return value */
81 xfs_mount_t *mp; /* mount point structure */
82 xfs_extlen_t prod = 0; /* product factor for allocators */
83 xfs_extlen_t mod = 0; /* product factor for allocators */
84 xfs_extlen_t ralen = 0; /* realtime allocation length */
85 xfs_extlen_t align; /* minimum allocation alignment */
89 align = xfs_get_extsz_hint(ap->ip);
90 prod = align / mp->m_sb.sb_rextsize;
91 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
93 ap->conv, &ap->offset, &ap->length);
97 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
100 * If the offset & length are not perfectly aligned
101 * then kill prod, it will just get us in trouble.
103 div_u64_rem(ap->offset, align, &mod);
104 if (mod || ap->length % align)
107 * Set ralen to be the actual requested length in rtextents.
109 ralen = ap->length / mp->m_sb.sb_rextsize;
111 * If the old value was close enough to MAXEXTLEN that
112 * we rounded up to it, cut it back so it's valid again.
113 * Note that if it's a really large request (bigger than
114 * MAXEXTLEN), we don't hear about that number, and can't
115 * adjust the starting point to match it.
117 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
118 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
121 * Lock out modifications to both the RT bitmap and summary inodes
123 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
124 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
125 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
126 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
129 * If it's an allocation to an empty file at offset 0,
130 * pick an extent that will space things out in the rt area.
132 if (ap->eof && ap->offset == 0) {
133 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
135 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
138 ap->blkno = rtx * mp->m_sb.sb_rextsize;
143 xfs_bmap_adjacent(ap);
146 * Realtime allocation, done through xfs_rtallocate_extent.
148 do_div(ap->blkno, mp->m_sb.sb_rextsize);
151 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
152 &ralen, ap->wasdel, prod, &rtb);
157 if (ap->blkno != NULLFSBLOCK) {
158 ap->blkno *= mp->m_sb.sb_rextsize;
159 ralen *= mp->m_sb.sb_rextsize;
161 ap->ip->i_d.di_nblocks += ralen;
162 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
164 ap->ip->i_delayed_blks -= ralen;
166 * Adjust the disk quota also. This was reserved
169 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
170 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
171 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
173 /* Zero the extent if we were asked to do so */
174 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
175 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
184 #endif /* CONFIG_XFS_RT */
187 * Check if the endoff is outside the last extent. If so the caller will grow
188 * the allocation to a stripe unit boundary. All offsets are considered outside
189 * the end of file for an empty fork, so 1 is returned in *eof in that case.
193 struct xfs_inode *ip,
194 xfs_fileoff_t endoff,
198 struct xfs_bmbt_irec rec;
201 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
205 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
210 * Extent tree block counting routines.
214 * Count leaf blocks given a range of extent records. Delayed allocation
215 * extents are not counted towards the totals.
218 xfs_bmap_count_leaves(
219 struct xfs_ifork *ifp,
220 xfs_filblks_t *count)
222 struct xfs_iext_cursor icur;
223 struct xfs_bmbt_irec got;
224 xfs_extnum_t numrecs = 0;
226 for_each_xfs_iext(ifp, &icur, &got) {
227 if (!isnullstartblock(got.br_startblock)) {
228 *count += got.br_blockcount;
237 * Count leaf blocks given a range of extent records originally
241 xfs_bmap_disk_count_leaves(
242 struct xfs_mount *mp,
243 struct xfs_btree_block *block,
245 xfs_filblks_t *count)
250 for (b = 1; b <= numrecs; b++) {
251 frp = XFS_BMBT_REC_ADDR(mp, block, b);
252 *count += xfs_bmbt_disk_get_blockcount(frp);
257 * Recursively walks each level of a btree
258 * to count total fsblocks in use.
262 struct xfs_mount *mp,
263 struct xfs_trans *tp,
264 struct xfs_ifork *ifp,
265 xfs_fsblock_t blockno,
267 xfs_extnum_t *nextents,
268 xfs_filblks_t *count)
271 struct xfs_buf *bp, *nbp;
274 xfs_fsblock_t bno = blockno;
275 xfs_fsblock_t nextbno;
276 struct xfs_btree_block *block, *nextblock;
279 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
284 block = XFS_BUF_TO_BLOCK(bp);
287 /* Not at node above leaves, count this level of nodes */
288 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
289 while (nextbno != NULLFSBLOCK) {
290 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
296 nextblock = XFS_BUF_TO_BLOCK(nbp);
297 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
298 xfs_trans_brelse(tp, nbp);
301 /* Dive to the next level */
302 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
303 bno = be64_to_cpu(*pp);
304 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents,
307 xfs_trans_brelse(tp, bp);
308 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
309 XFS_ERRLEVEL_LOW, mp);
310 return -EFSCORRUPTED;
312 xfs_trans_brelse(tp, bp);
314 /* count all level 1 nodes and their leaves */
316 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
317 numrecs = be16_to_cpu(block->bb_numrecs);
318 (*nextents) += numrecs;
319 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
320 xfs_trans_brelse(tp, bp);
321 if (nextbno == NULLFSBLOCK)
324 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
330 block = XFS_BUF_TO_BLOCK(bp);
337 * Count fsblocks of the given fork. Delayed allocation extents are
338 * not counted towards the totals.
341 xfs_bmap_count_blocks(
342 struct xfs_trans *tp,
343 struct xfs_inode *ip,
345 xfs_extnum_t *nextents,
346 xfs_filblks_t *count)
348 struct xfs_mount *mp; /* file system mount structure */
349 __be64 *pp; /* pointer to block address */
350 struct xfs_btree_block *block; /* current btree block */
351 struct xfs_ifork *ifp; /* fork structure */
352 xfs_fsblock_t bno; /* block # of "block" */
353 int level; /* btree level, for checking */
360 ifp = XFS_IFORK_PTR(ip, whichfork);
364 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
365 case XFS_DINODE_FMT_EXTENTS:
366 *nextents = xfs_bmap_count_leaves(ifp, count);
368 case XFS_DINODE_FMT_BTREE:
369 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
370 error = xfs_iread_extents(tp, ip, whichfork);
376 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
378 block = ifp->if_broot;
379 level = be16_to_cpu(block->bb_level);
381 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
382 bno = be64_to_cpu(*pp);
383 ASSERT(bno != NULLFSBLOCK);
384 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
385 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
387 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level,
390 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)",
391 XFS_ERRLEVEL_LOW, mp);
392 return -EFSCORRUPTED;
401 xfs_getbmap_report_one(
402 struct xfs_inode *ip,
403 struct getbmapx *bmv,
404 struct kgetbmap *out,
406 struct xfs_bmbt_irec *got)
408 struct kgetbmap *p = out + bmv->bmv_entries;
409 bool shared = false, trimmed = false;
412 error = xfs_reflink_trim_around_shared(ip, got, &shared, &trimmed);
416 if (isnullstartblock(got->br_startblock) ||
417 got->br_startblock == DELAYSTARTBLOCK) {
419 * Delalloc extents that start beyond EOF can occur due to
420 * speculative EOF allocation when the delalloc extent is larger
421 * than the largest freespace extent at conversion time. These
422 * extents cannot be converted by data writeback, so can exist
423 * here even if we are not supposed to be finding delalloc
426 if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip)))
427 ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0);
429 p->bmv_oflags |= BMV_OF_DELALLOC;
432 p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock);
435 if (got->br_state == XFS_EXT_UNWRITTEN &&
436 (bmv->bmv_iflags & BMV_IF_PREALLOC))
437 p->bmv_oflags |= BMV_OF_PREALLOC;
440 p->bmv_oflags |= BMV_OF_SHARED;
442 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff);
443 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount);
445 bmv->bmv_offset = p->bmv_offset + p->bmv_length;
446 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
452 xfs_getbmap_report_hole(
453 struct xfs_inode *ip,
454 struct getbmapx *bmv,
455 struct kgetbmap *out,
460 struct kgetbmap *p = out + bmv->bmv_entries;
462 if (bmv->bmv_iflags & BMV_IF_NO_HOLES)
466 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno);
467 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno);
469 bmv->bmv_offset = p->bmv_offset + p->bmv_length;
470 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
476 struct getbmapx *bmv)
478 return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1;
482 xfs_getbmap_next_rec(
483 struct xfs_bmbt_irec *rec,
484 xfs_fileoff_t total_end)
486 xfs_fileoff_t end = rec->br_startoff + rec->br_blockcount;
488 if (end == total_end)
491 rec->br_startoff += rec->br_blockcount;
492 if (!isnullstartblock(rec->br_startblock) &&
493 rec->br_startblock != DELAYSTARTBLOCK)
494 rec->br_startblock += rec->br_blockcount;
495 rec->br_blockcount = total_end - end;
500 * Get inode's extents as described in bmv, and format for output.
501 * Calls formatter to fill the user's buffer until all extents
502 * are mapped, until the passed-in bmv->bmv_count slots have
503 * been filled, or until the formatter short-circuits the loop,
504 * if it is tracking filled-in extents on its own.
508 struct xfs_inode *ip,
509 struct getbmapx *bmv, /* user bmap structure */
510 struct kgetbmap *out)
512 struct xfs_mount *mp = ip->i_mount;
513 int iflags = bmv->bmv_iflags;
514 int whichfork, lock, error = 0;
515 int64_t bmv_end, max_len;
516 xfs_fileoff_t bno, first_bno;
517 struct xfs_ifork *ifp;
518 struct xfs_bmbt_irec got, rec;
520 struct xfs_iext_cursor icur;
522 if (bmv->bmv_iflags & ~BMV_IF_VALID)
525 /* Only allow CoW fork queries if we're debugging. */
526 if (iflags & BMV_IF_COWFORK)
529 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
532 if (bmv->bmv_length < -1)
534 bmv->bmv_entries = 0;
535 if (bmv->bmv_length == 0)
538 if (iflags & BMV_IF_ATTRFORK)
539 whichfork = XFS_ATTR_FORK;
540 else if (iflags & BMV_IF_COWFORK)
541 whichfork = XFS_COW_FORK;
543 whichfork = XFS_DATA_FORK;
544 ifp = XFS_IFORK_PTR(ip, whichfork);
546 xfs_ilock(ip, XFS_IOLOCK_SHARED);
549 if (!XFS_IFORK_Q(ip))
550 goto out_unlock_iolock;
553 lock = xfs_ilock_attr_map_shared(ip);
556 /* No CoW fork? Just return */
558 goto out_unlock_iolock;
560 if (xfs_get_cowextsz_hint(ip))
561 max_len = mp->m_super->s_maxbytes;
563 max_len = XFS_ISIZE(ip);
565 lock = XFS_ILOCK_SHARED;
569 if (!(iflags & BMV_IF_DELALLOC) &&
570 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
571 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
573 goto out_unlock_iolock;
576 * Even after flushing the inode, there can still be
577 * delalloc blocks on the inode beyond EOF due to
578 * speculative preallocation. These are not removed
579 * until the release function is called or the inode
580 * is inactivated. Hence we cannot assert here that
581 * ip->i_delayed_blks == 0.
585 if (xfs_get_extsz_hint(ip) ||
587 (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)))
588 max_len = mp->m_super->s_maxbytes;
590 max_len = XFS_ISIZE(ip);
592 lock = xfs_ilock_data_map_shared(ip);
596 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
597 case XFS_DINODE_FMT_EXTENTS:
598 case XFS_DINODE_FMT_BTREE:
600 case XFS_DINODE_FMT_LOCAL:
601 /* Local format inode forks report no extents. */
602 goto out_unlock_ilock;
605 goto out_unlock_ilock;
608 if (bmv->bmv_length == -1) {
609 max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len));
610 bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset);
613 bmv_end = bmv->bmv_offset + bmv->bmv_length;
615 first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset);
616 len = XFS_BB_TO_FSB(mp, bmv->bmv_length);
618 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
619 error = xfs_iread_extents(NULL, ip, whichfork);
621 goto out_unlock_ilock;
624 if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) {
626 * Report a whole-file hole if the delalloc flag is set to
627 * stay compatible with the old implementation.
629 if (iflags & BMV_IF_DELALLOC)
630 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
631 XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
632 goto out_unlock_ilock;
635 while (!xfs_getbmap_full(bmv)) {
636 xfs_trim_extent(&got, first_bno, len);
639 * Report an entry for a hole if this extent doesn't directly
640 * follow the previous one.
642 if (got.br_startoff > bno) {
643 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
645 if (xfs_getbmap_full(bmv))
650 * In order to report shared extents accurately, we report each
651 * distinct shared / unshared part of a single bmbt record with
652 * an individual getbmapx record.
654 bno = got.br_startoff + got.br_blockcount;
657 error = xfs_getbmap_report_one(ip, bmv, out, bmv_end,
659 if (error || xfs_getbmap_full(bmv))
660 goto out_unlock_ilock;
661 } while (xfs_getbmap_next_rec(&rec, bno));
663 if (!xfs_iext_next_extent(ifp, &icur, &got)) {
664 xfs_fileoff_t end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
666 out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST;
668 if (whichfork != XFS_ATTR_FORK && bno < end &&
669 !xfs_getbmap_full(bmv)) {
670 xfs_getbmap_report_hole(ip, bmv, out, bmv_end,
676 if (bno >= first_bno + len)
681 xfs_iunlock(ip, lock);
683 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
688 * Dead simple method of punching delalyed allocation blocks from a range in
689 * the inode. This will always punch out both the start and end blocks, even
690 * if the ranges only partially overlap them, so it is up to the caller to
691 * ensure that partial blocks are not passed in.
694 xfs_bmap_punch_delalloc_range(
695 struct xfs_inode *ip,
696 xfs_fileoff_t start_fsb,
697 xfs_fileoff_t length)
699 struct xfs_ifork *ifp = &ip->i_df;
700 xfs_fileoff_t end_fsb = start_fsb + length;
701 struct xfs_bmbt_irec got, del;
702 struct xfs_iext_cursor icur;
705 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
707 xfs_ilock(ip, XFS_ILOCK_EXCL);
708 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
711 while (got.br_startoff + got.br_blockcount > start_fsb) {
713 xfs_trim_extent(&del, start_fsb, length);
716 * A delete can push the cursor forward. Step back to the
717 * previous extent on non-delalloc or extents outside the
720 if (!del.br_blockcount ||
721 !isnullstartblock(del.br_startblock)) {
722 if (!xfs_iext_prev_extent(ifp, &icur, &got))
727 error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur,
729 if (error || !xfs_iext_get_extent(ifp, &icur, &got))
734 xfs_iunlock(ip, XFS_ILOCK_EXCL);
739 * Test whether it is appropriate to check an inode for and free post EOF
740 * blocks. The 'force' parameter determines whether we should also consider
741 * regular files that are marked preallocated or append-only.
744 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
746 /* prealloc/delalloc exists only on regular files */
747 if (!S_ISREG(VFS_I(ip)->i_mode))
751 * Zero sized files with no cached pages and delalloc blocks will not
752 * have speculative prealloc/delalloc blocks to remove.
754 if (VFS_I(ip)->i_size == 0 &&
755 VFS_I(ip)->i_mapping->nrpages == 0 &&
756 ip->i_delayed_blks == 0)
759 /* If we haven't read in the extent list, then don't do it now. */
760 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
764 * Do not free real preallocated or append-only files unless the file
765 * has delalloc blocks and we are forced to remove them.
767 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
768 if (!force || ip->i_delayed_blks == 0)
775 * This is called to free any blocks beyond eof. The caller must hold
776 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
777 * reference to the inode.
781 struct xfs_inode *ip)
783 struct xfs_trans *tp;
785 xfs_fileoff_t end_fsb;
786 xfs_fileoff_t last_fsb;
787 xfs_filblks_t map_len;
789 struct xfs_bmbt_irec imap;
790 struct xfs_mount *mp = ip->i_mount;
793 * Figure out if there are any blocks beyond the end
794 * of the file. If not, then there is nothing to do.
796 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
797 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
798 if (last_fsb <= end_fsb)
800 map_len = last_fsb - end_fsb;
803 xfs_ilock(ip, XFS_ILOCK_SHARED);
804 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
805 xfs_iunlock(ip, XFS_ILOCK_SHARED);
808 * If there are blocks after the end of file, truncate the file to its
809 * current size to free them up.
811 if (!error && (nimaps != 0) &&
812 (imap.br_startblock != HOLESTARTBLOCK ||
813 ip->i_delayed_blks)) {
815 * Attach the dquots to the inode up front.
817 error = xfs_qm_dqattach(ip);
821 /* wait on dio to ensure i_size has settled */
822 inode_dio_wait(VFS_I(ip));
824 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
827 ASSERT(XFS_FORCED_SHUTDOWN(mp));
831 xfs_ilock(ip, XFS_ILOCK_EXCL);
832 xfs_trans_ijoin(tp, ip, 0);
835 * Do not update the on-disk file size. If we update the
836 * on-disk file size and then the system crashes before the
837 * contents of the file are flushed to disk then the files
838 * may be full of holes (ie NULL files bug).
840 error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK,
841 XFS_ISIZE(ip), XFS_BMAPI_NODISCARD);
844 * If we get an error at this point we simply don't
845 * bother truncating the file.
847 xfs_trans_cancel(tp);
849 error = xfs_trans_commit(tp);
851 xfs_inode_clear_eofblocks_tag(ip);
854 xfs_iunlock(ip, XFS_ILOCK_EXCL);
860 xfs_alloc_file_space(
861 struct xfs_inode *ip,
866 xfs_mount_t *mp = ip->i_mount;
868 xfs_filblks_t allocated_fsb;
869 xfs_filblks_t allocatesize_fsb;
870 xfs_extlen_t extsz, temp;
871 xfs_fileoff_t startoffset_fsb;
876 xfs_bmbt_irec_t imaps[1], *imapp;
877 uint qblocks, resblks, resrtextents;
880 trace_xfs_alloc_file_space(ip);
882 if (XFS_FORCED_SHUTDOWN(mp))
885 error = xfs_qm_dqattach(ip);
892 rt = XFS_IS_REALTIME_INODE(ip);
893 extsz = xfs_get_extsz_hint(ip);
898 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
899 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
902 * Allocate file space until done or until there is an error
904 while (allocatesize_fsb && !error) {
908 * Determine space reservations for data/realtime.
910 if (unlikely(extsz)) {
914 e = startoffset_fsb + allocatesize_fsb;
915 div_u64_rem(startoffset_fsb, extsz, &temp);
918 div_u64_rem(e, extsz, &temp);
923 e = allocatesize_fsb;
927 * The transaction reservation is limited to a 32-bit block
928 * count, hence we need to limit the number of blocks we are
929 * trying to reserve to avoid an overflow. We can't allocate
930 * more than @nimaps extents, and an extent is limited on disk
931 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
933 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
935 resrtextents = qblocks = resblks;
936 resrtextents /= mp->m_sb.sb_rextsize;
937 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
938 quota_flag = XFS_QMOPT_RES_RTBLKS;
941 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
942 quota_flag = XFS_QMOPT_RES_REGBLKS;
946 * Allocate and setup the transaction.
948 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
949 resrtextents, 0, &tp);
952 * Check for running out of space
956 * Free the transaction structure.
958 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
961 xfs_ilock(ip, XFS_ILOCK_EXCL);
962 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
967 xfs_trans_ijoin(tp, ip, 0);
969 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
970 allocatesize_fsb, alloc_type, resblks,
976 * Complete the transaction
978 error = xfs_trans_commit(tp);
979 xfs_iunlock(ip, XFS_ILOCK_EXCL);
983 allocated_fsb = imapp->br_blockcount;
990 startoffset_fsb += allocated_fsb;
991 allocatesize_fsb -= allocated_fsb;
996 error0: /* unlock inode, unreserve quota blocks, cancel trans */
997 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
999 error1: /* Just cancel transaction */
1000 xfs_trans_cancel(tp);
1001 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1007 struct xfs_inode *ip,
1008 xfs_fileoff_t startoffset_fsb,
1009 xfs_filblks_t len_fsb,
1012 struct xfs_mount *mp = ip->i_mount;
1013 struct xfs_trans *tp;
1014 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1017 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1019 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1023 xfs_ilock(ip, XFS_ILOCK_EXCL);
1024 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1025 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1027 goto out_trans_cancel;
1029 xfs_trans_ijoin(tp, ip, 0);
1031 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done);
1033 goto out_trans_cancel;
1035 error = xfs_trans_commit(tp);
1037 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1041 xfs_trans_cancel(tp);
1046 xfs_adjust_extent_unmap_boundaries(
1047 struct xfs_inode *ip,
1048 xfs_fileoff_t *startoffset_fsb,
1049 xfs_fileoff_t *endoffset_fsb)
1051 struct xfs_mount *mp = ip->i_mount;
1052 struct xfs_bmbt_irec imap;
1054 xfs_extlen_t mod = 0;
1057 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1061 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1062 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1063 div_u64_rem(imap.br_startblock, mp->m_sb.sb_rextsize, &mod);
1065 *startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1069 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1073 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1074 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1076 if (mod && mod != mp->m_sb.sb_rextsize)
1077 *endoffset_fsb -= mod;
1084 xfs_flush_unmap_range(
1085 struct xfs_inode *ip,
1089 struct xfs_mount *mp = ip->i_mount;
1090 struct inode *inode = VFS_I(ip);
1091 xfs_off_t rounding, start, end;
1094 /* wait for the completion of any pending DIOs */
1095 inode_dio_wait(inode);
1097 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1098 start = round_down(offset, rounding);
1099 end = round_up(offset + len, rounding) - 1;
1101 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1104 truncate_pagecache_range(inode, start, end);
1109 xfs_free_file_space(
1110 struct xfs_inode *ip,
1114 struct xfs_mount *mp = ip->i_mount;
1115 xfs_fileoff_t startoffset_fsb;
1116 xfs_fileoff_t endoffset_fsb;
1117 int done = 0, error;
1119 trace_xfs_free_file_space(ip);
1121 error = xfs_qm_dqattach(ip);
1125 if (len <= 0) /* if nothing being freed */
1128 error = xfs_flush_unmap_range(ip, offset, len);
1132 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1133 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1136 * Need to zero the stuff we're not freeing, on disk. If it's a RT file
1137 * and we can't use unwritten extents then we actually need to ensure
1138 * to zero the whole extent, otherwise we just need to take of block
1139 * boundaries, and xfs_bunmapi will handle the rest.
1141 if (XFS_IS_REALTIME_INODE(ip) &&
1142 !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1143 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1149 if (endoffset_fsb > startoffset_fsb) {
1151 error = xfs_unmap_extent(ip, startoffset_fsb,
1152 endoffset_fsb - startoffset_fsb, &done);
1159 * Now that we've unmap all full blocks we'll have to zero out any
1160 * partial block at the beginning and/or end. iomap_zero_range is smart
1161 * enough to skip any holes, including those we just created, but we
1162 * must take care not to zero beyond EOF and enlarge i_size.
1164 if (offset >= XFS_ISIZE(ip))
1166 if (offset + len > XFS_ISIZE(ip))
1167 len = XFS_ISIZE(ip) - offset;
1168 error = iomap_zero_range(VFS_I(ip), offset, len, NULL, &xfs_iomap_ops);
1173 * If we zeroed right up to EOF and EOF straddles a page boundary we
1174 * must make sure that the post-EOF area is also zeroed because the
1175 * page could be mmap'd and iomap_zero_range doesn't do that for us.
1176 * Writeback of the eof page will do this, albeit clumsily.
1178 if (offset + len >= XFS_ISIZE(ip) && ((offset + len) & PAGE_MASK)) {
1179 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1180 (offset + len) & ~PAGE_MASK, LLONG_MAX);
1187 * Preallocate and zero a range of a file. This mechanism has the allocation
1188 * semantics of fallocate and in addition converts data in the range to zeroes.
1191 xfs_zero_file_space(
1192 struct xfs_inode *ip,
1196 struct xfs_mount *mp = ip->i_mount;
1200 trace_xfs_zero_file_space(ip);
1202 blksize = 1 << mp->m_sb.sb_blocklog;
1205 * Punch a hole and prealloc the range. We use hole punch rather than
1206 * unwritten extent conversion for two reasons:
1208 * 1.) Hole punch handles partial block zeroing for us.
1210 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1211 * by virtue of the hole punch.
1213 error = xfs_free_file_space(ip, offset, len);
1217 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1218 round_up(offset + len, blksize) -
1219 round_down(offset, blksize),
1220 XFS_BMAPI_PREALLOC);
1228 struct xfs_inode *ip,
1234 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1235 * into the accessible region of the file.
1237 if (xfs_can_free_eofblocks(ip, true)) {
1238 error = xfs_free_eofblocks(ip);
1244 * Writeback and invalidate cache for the remainder of the file as we're
1245 * about to shift down every extent from offset to EOF.
1247 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, offset, -1);
1250 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1251 offset >> PAGE_SHIFT, -1);
1256 * Clean out anything hanging around in the cow fork now that
1257 * we've flushed all the dirty data out to disk to avoid having
1258 * CoW extents at the wrong offsets.
1260 if (xfs_inode_has_cow_data(ip)) {
1261 error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
1271 * xfs_collapse_file_space()
1272 * This routine frees disk space and shift extent for the given file.
1273 * The first thing we do is to free data blocks in the specified range
1274 * by calling xfs_free_file_space(). It would also sync dirty data
1275 * and invalidate page cache over the region on which collapse range
1276 * is working. And Shift extent records to the left to cover a hole.
1283 xfs_collapse_file_space(
1284 struct xfs_inode *ip,
1288 struct xfs_mount *mp = ip->i_mount;
1289 struct xfs_trans *tp;
1291 xfs_fileoff_t next_fsb = XFS_B_TO_FSB(mp, offset + len);
1292 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len);
1293 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1296 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1297 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
1299 trace_xfs_collapse_file_space(ip);
1301 error = xfs_free_file_space(ip, offset, len);
1305 error = xfs_prepare_shift(ip, offset);
1309 while (!error && !done) {
1310 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0,
1315 xfs_ilock(ip, XFS_ILOCK_EXCL);
1316 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1317 ip->i_gdquot, ip->i_pdquot, resblks, 0,
1318 XFS_QMOPT_RES_REGBLKS);
1320 goto out_trans_cancel;
1321 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1323 error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb,
1326 goto out_trans_cancel;
1328 error = xfs_trans_commit(tp);
1334 xfs_trans_cancel(tp);
1339 * xfs_insert_file_space()
1340 * This routine create hole space by shifting extents for the given file.
1341 * The first thing we do is to sync dirty data and invalidate page cache
1342 * over the region on which insert range is working. And split an extent
1343 * to two extents at given offset by calling xfs_bmap_split_extent.
1344 * And shift all extent records which are laying between [offset,
1345 * last allocated extent] to the right to reserve hole range.
1351 xfs_insert_file_space(
1352 struct xfs_inode *ip,
1356 struct xfs_mount *mp = ip->i_mount;
1357 struct xfs_trans *tp;
1359 xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, offset);
1360 xfs_fileoff_t next_fsb = NULLFSBLOCK;
1361 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len);
1364 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1365 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
1367 trace_xfs_insert_file_space(ip);
1369 error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb);
1373 error = xfs_prepare_shift(ip, offset);
1378 * The extent shifting code works on extent granularity. So, if stop_fsb
1379 * is not the starting block of extent, we need to split the extent at
1382 error = xfs_bmap_split_extent(ip, stop_fsb);
1386 while (!error && !done) {
1387 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0,
1392 xfs_ilock(ip, XFS_ILOCK_EXCL);
1393 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1394 error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb,
1397 goto out_trans_cancel;
1399 error = xfs_trans_commit(tp);
1405 xfs_trans_cancel(tp);
1410 * We need to check that the format of the data fork in the temporary inode is
1411 * valid for the target inode before doing the swap. This is not a problem with
1412 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1413 * data fork depending on the space the attribute fork is taking so we can get
1414 * invalid formats on the target inode.
1416 * E.g. target has space for 7 extents in extent format, temp inode only has
1417 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1418 * btree, but when swapped it needs to be in extent format. Hence we can't just
1419 * blindly swap data forks on attr2 filesystems.
1421 * Note that we check the swap in both directions so that we don't end up with
1422 * a corrupt temporary inode, either.
1424 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1425 * inode will prevent this situation from occurring, so all we do here is
1426 * reject and log the attempt. basically we are putting the responsibility on
1427 * userspace to get this right.
1430 xfs_swap_extents_check_format(
1431 struct xfs_inode *ip, /* target inode */
1432 struct xfs_inode *tip) /* tmp inode */
1435 /* Should never get a local format */
1436 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1437 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1441 * if the target inode has less extents that then temporary inode then
1442 * why did userspace call us?
1444 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1448 * If we have to use the (expensive) rmap swap method, we can
1449 * handle any number of extents and any format.
1451 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
1455 * if the target inode is in extent form and the temp inode is in btree
1456 * form then we will end up with the target inode in the wrong format
1457 * as we already know there are less extents in the temp inode.
1459 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1460 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1463 /* Check temp in extent form to max in target */
1464 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1465 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1466 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1469 /* Check target in extent form to max in temp */
1470 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1471 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1472 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1476 * If we are in a btree format, check that the temp root block will fit
1477 * in the target and that it has enough extents to be in btree format
1480 * Note that we have to be careful to allow btree->extent conversions
1481 * (a common defrag case) which will occur when the temp inode is in
1484 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1485 if (XFS_IFORK_Q(ip) &&
1486 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1488 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1489 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1493 /* Reciprocal target->temp btree format checks */
1494 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1495 if (XFS_IFORK_Q(tip) &&
1496 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1498 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1499 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1507 xfs_swap_extent_flush(
1508 struct xfs_inode *ip)
1512 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1515 truncate_pagecache_range(VFS_I(ip), 0, -1);
1517 /* Verify O_DIRECT for ftmp */
1518 if (VFS_I(ip)->i_mapping->nrpages)
1524 * Move extents from one file to another, when rmap is enabled.
1527 xfs_swap_extent_rmap(
1528 struct xfs_trans **tpp,
1529 struct xfs_inode *ip,
1530 struct xfs_inode *tip)
1532 struct xfs_trans *tp = *tpp;
1533 struct xfs_bmbt_irec irec;
1534 struct xfs_bmbt_irec uirec;
1535 struct xfs_bmbt_irec tirec;
1536 xfs_fileoff_t offset_fsb;
1537 xfs_fileoff_t end_fsb;
1538 xfs_filblks_t count_fsb;
1543 uint64_t tip_flags2;
1546 * If the source file has shared blocks, we must flag the donor
1547 * file as having shared blocks so that we get the shared-block
1548 * rmap functions when we go to fix up the rmaps. The flags
1549 * will be switch for reals later.
1551 tip_flags2 = tip->i_d.di_flags2;
1552 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
1553 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
1556 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1557 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1560 /* Read extent from the donor file */
1562 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1566 ASSERT(nimaps == 1);
1567 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1569 trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1570 ilen = tirec.br_blockcount;
1572 /* Unmap the old blocks in the source file. */
1573 while (tirec.br_blockcount) {
1574 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1575 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1577 /* Read extent from the source file */
1579 error = xfs_bmapi_read(ip, tirec.br_startoff,
1580 tirec.br_blockcount, &irec,
1584 ASSERT(nimaps == 1);
1585 ASSERT(tirec.br_startoff == irec.br_startoff);
1586 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1588 /* Trim the extent. */
1590 uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1591 tirec.br_blockcount,
1592 irec.br_blockcount);
1593 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1595 /* Remove the mapping from the donor file. */
1596 error = xfs_bmap_unmap_extent(tp, tip, &uirec);
1600 /* Remove the mapping from the source file. */
1601 error = xfs_bmap_unmap_extent(tp, ip, &irec);
1605 /* Map the donor file's blocks into the source file. */
1606 error = xfs_bmap_map_extent(tp, ip, &uirec);
1610 /* Map the source file's blocks into the donor file. */
1611 error = xfs_bmap_map_extent(tp, tip, &irec);
1615 error = xfs_defer_finish(tpp);
1620 tirec.br_startoff += rlen;
1621 if (tirec.br_startblock != HOLESTARTBLOCK &&
1622 tirec.br_startblock != DELAYSTARTBLOCK)
1623 tirec.br_startblock += rlen;
1624 tirec.br_blockcount -= rlen;
1632 tip->i_d.di_flags2 = tip_flags2;
1636 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1637 tip->i_d.di_flags2 = tip_flags2;
1641 /* Swap the extents of two files by swapping data forks. */
1643 xfs_swap_extent_forks(
1644 struct xfs_trans *tp,
1645 struct xfs_inode *ip,
1646 struct xfs_inode *tip,
1648 int *target_log_flags)
1650 xfs_filblks_t aforkblks = 0;
1651 xfs_filblks_t taforkblks = 0;
1657 * Count the number of extended attribute blocks
1659 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1660 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1661 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
1666 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1667 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1668 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
1675 * Btree format (v3) inodes have the inode number stamped in the bmbt
1676 * block headers. We can't start changing the bmbt blocks until the
1677 * inode owner change is logged so recovery does the right thing in the
1678 * event of a crash. Set the owner change log flags now and leave the
1679 * bmbt scan as the last step.
1681 if (ip->i_d.di_version == 3 &&
1682 ip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1683 (*target_log_flags) |= XFS_ILOG_DOWNER;
1684 if (tip->i_d.di_version == 3 &&
1685 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1686 (*src_log_flags) |= XFS_ILOG_DOWNER;
1689 * Swap the data forks of the inodes
1691 swap(ip->i_df, tip->i_df);
1694 * Fix the on-disk inode values
1696 tmp = (uint64_t)ip->i_d.di_nblocks;
1697 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1698 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1700 swap(ip->i_d.di_nextents, tip->i_d.di_nextents);
1701 swap(ip->i_d.di_format, tip->i_d.di_format);
1704 * The extents in the source inode could still contain speculative
1705 * preallocation beyond EOF (e.g. the file is open but not modified
1706 * while defrag is in progress). In that case, we need to copy over the
1707 * number of delalloc blocks the data fork in the source inode is
1708 * tracking beyond EOF so that when the fork is truncated away when the
1709 * temporary inode is unlinked we don't underrun the i_delayed_blks
1710 * counter on that inode.
1712 ASSERT(tip->i_delayed_blks == 0);
1713 tip->i_delayed_blks = ip->i_delayed_blks;
1714 ip->i_delayed_blks = 0;
1716 switch (ip->i_d.di_format) {
1717 case XFS_DINODE_FMT_EXTENTS:
1718 (*src_log_flags) |= XFS_ILOG_DEXT;
1720 case XFS_DINODE_FMT_BTREE:
1721 ASSERT(ip->i_d.di_version < 3 ||
1722 (*src_log_flags & XFS_ILOG_DOWNER));
1723 (*src_log_flags) |= XFS_ILOG_DBROOT;
1727 switch (tip->i_d.di_format) {
1728 case XFS_DINODE_FMT_EXTENTS:
1729 (*target_log_flags) |= XFS_ILOG_DEXT;
1731 case XFS_DINODE_FMT_BTREE:
1732 (*target_log_flags) |= XFS_ILOG_DBROOT;
1733 ASSERT(tip->i_d.di_version < 3 ||
1734 (*target_log_flags & XFS_ILOG_DOWNER));
1742 * Fix up the owners of the bmbt blocks to refer to the current inode. The
1743 * change owner scan attempts to order all modified buffers in the current
1744 * transaction. In the event of ordered buffer failure, the offending buffer is
1745 * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1746 * the transaction in this case to replenish the fallback log reservation and
1747 * restart the scan. This process repeats until the scan completes.
1750 xfs_swap_change_owner(
1751 struct xfs_trans **tpp,
1752 struct xfs_inode *ip,
1753 struct xfs_inode *tmpip)
1756 struct xfs_trans *tp = *tpp;
1759 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1761 /* success or fatal error */
1762 if (error != -EAGAIN)
1765 error = xfs_trans_roll(tpp);
1771 * Redirty both inodes so they can relog and keep the log tail
1774 xfs_trans_ijoin(tp, ip, 0);
1775 xfs_trans_ijoin(tp, tmpip, 0);
1776 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1777 xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1785 struct xfs_inode *ip, /* target inode */
1786 struct xfs_inode *tip, /* tmp inode */
1787 struct xfs_swapext *sxp)
1789 struct xfs_mount *mp = ip->i_mount;
1790 struct xfs_trans *tp;
1791 struct xfs_bstat *sbp = &sxp->sx_stat;
1792 int src_log_flags, target_log_flags;
1799 * Lock the inodes against other IO, page faults and truncate to
1800 * begin with. Then we can ensure the inodes are flushed and have no
1801 * page cache safely. Once we have done this we can take the ilocks and
1802 * do the rest of the checks.
1804 lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1805 lock_flags = XFS_MMAPLOCK_EXCL;
1806 xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL);
1808 /* Verify that both files have the same format */
1809 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1814 /* Verify both files are either real-time or non-realtime */
1815 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1820 error = xfs_swap_extent_flush(ip);
1823 error = xfs_swap_extent_flush(tip);
1828 * Extent "swapping" with rmap requires a permanent reservation and
1829 * a block reservation because it's really just a remap operation
1830 * performed with log redo items!
1832 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
1833 int w = XFS_DATA_FORK;
1834 uint32_t ipnext = XFS_IFORK_NEXTENTS(ip, w);
1835 uint32_t tipnext = XFS_IFORK_NEXTENTS(tip, w);
1838 * Conceptually this shouldn't affect the shape of either bmbt,
1839 * but since we atomically move extents one by one, we reserve
1840 * enough space to rebuild both trees.
1842 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w);
1843 resblks += XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w);
1846 * Handle the corner case where either inode might straddle the
1847 * btree format boundary. If so, the inode could bounce between
1848 * btree <-> extent format on unmap -> remap cycles, freeing and
1849 * allocating a bmapbt block each time.
1851 if (ipnext == (XFS_IFORK_MAXEXT(ip, w) + 1))
1852 resblks += XFS_IFORK_MAXEXT(ip, w);
1853 if (tipnext == (XFS_IFORK_MAXEXT(tip, w) + 1))
1854 resblks += XFS_IFORK_MAXEXT(tip, w);
1856 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1861 * Lock and join the inodes to the tansaction so that transaction commit
1862 * or cancel will unlock the inodes from this point onwards.
1864 xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL);
1865 lock_flags |= XFS_ILOCK_EXCL;
1866 xfs_trans_ijoin(tp, ip, 0);
1867 xfs_trans_ijoin(tp, tip, 0);
1870 /* Verify all data are being swapped */
1871 if (sxp->sx_offset != 0 ||
1872 sxp->sx_length != ip->i_d.di_size ||
1873 sxp->sx_length != tip->i_d.di_size) {
1875 goto out_trans_cancel;
1878 trace_xfs_swap_extent_before(ip, 0);
1879 trace_xfs_swap_extent_before(tip, 1);
1881 /* check inode formats now that data is flushed */
1882 error = xfs_swap_extents_check_format(ip, tip);
1885 "%s: inode 0x%llx format is incompatible for exchanging.",
1886 __func__, ip->i_ino);
1887 goto out_trans_cancel;
1891 * Compare the current change & modify times with that
1892 * passed in. If they differ, we abort this swap.
1893 * This is the mechanism used to ensure the calling
1894 * process that the file was not changed out from
1897 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1898 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1899 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1900 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1902 goto out_trans_cancel;
1906 * Note the trickiness in setting the log flags - we set the owner log
1907 * flag on the opposite inode (i.e. the inode we are setting the new
1908 * owner to be) because once we swap the forks and log that, log
1909 * recovery is going to see the fork as owned by the swapped inode,
1910 * not the pre-swapped inodes.
1912 src_log_flags = XFS_ILOG_CORE;
1913 target_log_flags = XFS_ILOG_CORE;
1915 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
1916 error = xfs_swap_extent_rmap(&tp, ip, tip);
1918 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
1921 goto out_trans_cancel;
1923 /* Do we have to swap reflink flags? */
1924 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
1925 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
1926 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
1927 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1928 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
1929 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1930 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
1933 /* Swap the cow forks. */
1934 if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1935 ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS);
1936 ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS);
1938 swap(ip->i_cnextents, tip->i_cnextents);
1939 swap(ip->i_cowfp, tip->i_cowfp);
1941 if (ip->i_cowfp && ip->i_cowfp->if_bytes)
1942 xfs_inode_set_cowblocks_tag(ip);
1944 xfs_inode_clear_cowblocks_tag(ip);
1945 if (tip->i_cowfp && tip->i_cowfp->if_bytes)
1946 xfs_inode_set_cowblocks_tag(tip);
1948 xfs_inode_clear_cowblocks_tag(tip);
1951 xfs_trans_log_inode(tp, ip, src_log_flags);
1952 xfs_trans_log_inode(tp, tip, target_log_flags);
1955 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
1956 * have inode number owner values in the bmbt blocks that still refer to
1957 * the old inode. Scan each bmbt to fix up the owner values with the
1958 * inode number of the current inode.
1960 if (src_log_flags & XFS_ILOG_DOWNER) {
1961 error = xfs_swap_change_owner(&tp, ip, tip);
1963 goto out_trans_cancel;
1965 if (target_log_flags & XFS_ILOG_DOWNER) {
1966 error = xfs_swap_change_owner(&tp, tip, ip);
1968 goto out_trans_cancel;
1972 * If this is a synchronous mount, make sure that the
1973 * transaction goes to disk before returning to the user.
1975 if (mp->m_flags & XFS_MOUNT_WSYNC)
1976 xfs_trans_set_sync(tp);
1978 error = xfs_trans_commit(tp);
1980 trace_xfs_swap_extent_after(ip, 0);
1981 trace_xfs_swap_extent_after(tip, 1);
1984 xfs_iunlock(ip, lock_flags);
1985 xfs_iunlock(tip, lock_flags);
1986 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1990 xfs_trans_cancel(tp);