2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_trace.h"
33 #include "xfs_bmap_util.h"
34 #include <linux/aio.h>
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
46 struct buffer_head *bh, *head;
48 *delalloc = *unwritten = 0;
50 bh = head = page_buffers(page);
52 if (buffer_unwritten(bh))
54 else if (buffer_delay(bh))
56 } while ((bh = bh->b_this_page) != head);
59 STATIC struct block_device *
60 xfs_find_bdev_for_inode(
63 struct xfs_inode *ip = XFS_I(inode);
64 struct xfs_mount *mp = ip->i_mount;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return mp->m_rtdev_targp->bt_bdev;
69 return mp->m_ddev_targp->bt_bdev;
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
82 struct buffer_head *bh, *next;
84 for (bh = ioend->io_buffer_head; bh; bh = next) {
86 bh->b_end_io(bh, !ioend->io_error);
89 mempool_free(ioend, xfs_ioend_pool);
93 * Fast and loose check if this write could update the on-disk inode size.
95 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
97 return ioend->io_offset + ioend->io_size >
98 XFS_I(ioend->io_inode)->i_d.di_size;
102 xfs_setfilesize_trans_alloc(
103 struct xfs_ioend *ioend)
105 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
106 struct xfs_trans *tp;
109 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
113 xfs_trans_cancel(tp, 0);
117 ioend->io_append_trans = tp;
120 * We may pass freeze protection with a transaction. So tell lockdep
123 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
126 * We hand off the transaction to the completion thread now, so
127 * clear the flag here.
129 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
134 * Update on-disk file size now that data has been written to disk.
138 struct xfs_ioend *ioend)
140 struct xfs_inode *ip = XFS_I(ioend->io_inode);
141 struct xfs_trans *tp = ioend->io_append_trans;
145 * The transaction may have been allocated in the I/O submission thread,
146 * thus we need to mark ourselves as beeing in a transaction manually.
147 * Similarly for freeze protection.
149 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
150 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
153 xfs_ilock(ip, XFS_ILOCK_EXCL);
154 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
156 xfs_iunlock(ip, XFS_ILOCK_EXCL);
157 xfs_trans_cancel(tp, 0);
161 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
163 ip->i_d.di_size = isize;
164 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
165 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
167 return xfs_trans_commit(tp, 0);
171 * Schedule IO completion handling on the final put of an ioend.
173 * If there is no work to do we might as well call it a day and free the
178 struct xfs_ioend *ioend)
180 if (atomic_dec_and_test(&ioend->io_remaining)) {
181 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
183 if (ioend->io_type == XFS_IO_UNWRITTEN)
184 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
185 else if (ioend->io_append_trans ||
186 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
187 queue_work(mp->m_data_workqueue, &ioend->io_work);
189 xfs_destroy_ioend(ioend);
194 * IO write completion.
198 struct work_struct *work)
200 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
201 struct xfs_inode *ip = XFS_I(ioend->io_inode);
204 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
205 ioend->io_error = -EIO;
212 * For unwritten extents we need to issue transactions to convert a
213 * range to normal written extens after the data I/O has finished.
215 if (ioend->io_type == XFS_IO_UNWRITTEN) {
216 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
218 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
220 * For direct I/O we do not know if we need to allocate blocks
221 * or not so we can't preallocate an append transaction as that
222 * results in nested reservations and log space deadlocks. Hence
223 * allocate the transaction here. While this is sub-optimal and
224 * can block IO completion for some time, we're stuck with doing
225 * it this way until we can pass the ioend to the direct IO
226 * allocation callbacks and avoid nesting that way.
228 error = xfs_setfilesize_trans_alloc(ioend);
231 error = xfs_setfilesize(ioend);
232 } else if (ioend->io_append_trans) {
233 error = xfs_setfilesize(ioend);
235 ASSERT(!xfs_ioend_is_append(ioend));
240 ioend->io_error = -error;
241 xfs_destroy_ioend(ioend);
245 * Call IO completion handling in caller context on the final put of an ioend.
248 xfs_finish_ioend_sync(
249 struct xfs_ioend *ioend)
251 if (atomic_dec_and_test(&ioend->io_remaining))
252 xfs_end_io(&ioend->io_work);
256 * Allocate and initialise an IO completion structure.
257 * We need to track unwritten extent write completion here initially.
258 * We'll need to extend this for updating the ondisk inode size later
268 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
271 * Set the count to 1 initially, which will prevent an I/O
272 * completion callback from happening before we have started
273 * all the I/O from calling the completion routine too early.
275 atomic_set(&ioend->io_remaining, 1);
276 ioend->io_isdirect = 0;
278 ioend->io_list = NULL;
279 ioend->io_type = type;
280 ioend->io_inode = inode;
281 ioend->io_buffer_head = NULL;
282 ioend->io_buffer_tail = NULL;
283 ioend->io_offset = 0;
285 ioend->io_append_trans = NULL;
287 INIT_WORK(&ioend->io_work, xfs_end_io);
295 struct xfs_bmbt_irec *imap,
299 struct xfs_inode *ip = XFS_I(inode);
300 struct xfs_mount *mp = ip->i_mount;
301 ssize_t count = 1 << inode->i_blkbits;
302 xfs_fileoff_t offset_fsb, end_fsb;
304 int bmapi_flags = XFS_BMAPI_ENTIRE;
307 if (XFS_FORCED_SHUTDOWN(mp))
308 return -XFS_ERROR(EIO);
310 if (type == XFS_IO_UNWRITTEN)
311 bmapi_flags |= XFS_BMAPI_IGSTATE;
313 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
315 return -XFS_ERROR(EAGAIN);
316 xfs_ilock(ip, XFS_ILOCK_SHARED);
319 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
320 (ip->i_df.if_flags & XFS_IFEXTENTS));
321 ASSERT(offset <= mp->m_super->s_maxbytes);
323 if (offset + count > mp->m_super->s_maxbytes)
324 count = mp->m_super->s_maxbytes - offset;
325 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
326 offset_fsb = XFS_B_TO_FSBT(mp, offset);
327 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
328 imap, &nimaps, bmapi_flags);
329 xfs_iunlock(ip, XFS_ILOCK_SHARED);
332 return -XFS_ERROR(error);
334 if (type == XFS_IO_DELALLOC &&
335 (!nimaps || isnullstartblock(imap->br_startblock))) {
336 error = xfs_iomap_write_allocate(ip, offset, count, imap);
338 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
339 return -XFS_ERROR(error);
343 if (type == XFS_IO_UNWRITTEN) {
345 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
346 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
350 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
357 struct xfs_bmbt_irec *imap,
360 offset >>= inode->i_blkbits;
362 return offset >= imap->br_startoff &&
363 offset < imap->br_startoff + imap->br_blockcount;
367 * BIO completion handler for buffered IO.
374 xfs_ioend_t *ioend = bio->bi_private;
376 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
377 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
379 /* Toss bio and pass work off to an xfsdatad thread */
380 bio->bi_private = NULL;
381 bio->bi_end_io = NULL;
384 xfs_finish_ioend(ioend);
388 xfs_submit_ioend_bio(
389 struct writeback_control *wbc,
393 atomic_inc(&ioend->io_remaining);
394 bio->bi_private = ioend;
395 bio->bi_end_io = xfs_end_bio;
396 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
401 struct buffer_head *bh)
403 int nvecs = bio_get_nr_vecs(bh->b_bdev);
404 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
406 ASSERT(bio->bi_private == NULL);
407 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
408 bio->bi_bdev = bh->b_bdev;
413 xfs_start_buffer_writeback(
414 struct buffer_head *bh)
416 ASSERT(buffer_mapped(bh));
417 ASSERT(buffer_locked(bh));
418 ASSERT(!buffer_delay(bh));
419 ASSERT(!buffer_unwritten(bh));
421 mark_buffer_async_write(bh);
422 set_buffer_uptodate(bh);
423 clear_buffer_dirty(bh);
427 xfs_start_page_writeback(
432 ASSERT(PageLocked(page));
433 ASSERT(!PageWriteback(page));
435 clear_page_dirty_for_io(page);
436 set_page_writeback(page);
438 /* If no buffers on the page are to be written, finish it here */
440 end_page_writeback(page);
443 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
449 * Submit all of the bios for all of the ioends we have saved up, covering the
450 * initial writepage page and also any probed pages.
452 * Because we may have multiple ioends spanning a page, we need to start
453 * writeback on all the buffers before we submit them for I/O. If we mark the
454 * buffers as we got, then we can end up with a page that only has buffers
455 * marked async write and I/O complete on can occur before we mark the other
456 * buffers async write.
458 * The end result of this is that we trip a bug in end_page_writeback() because
459 * we call it twice for the one page as the code in end_buffer_async_write()
460 * assumes that all buffers on the page are started at the same time.
462 * The fix is two passes across the ioend list - one to start writeback on the
463 * buffer_heads, and then submit them for I/O on the second pass.
465 * If @fail is non-zero, it means that we have a situation where some part of
466 * the submission process has failed after we have marked paged for writeback
467 * and unlocked them. In this situation, we need to fail the ioend chain rather
468 * than submit it to IO. This typically only happens on a filesystem shutdown.
472 struct writeback_control *wbc,
476 xfs_ioend_t *head = ioend;
478 struct buffer_head *bh;
480 sector_t lastblock = 0;
482 /* Pass 1 - start writeback */
484 next = ioend->io_list;
485 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
486 xfs_start_buffer_writeback(bh);
487 } while ((ioend = next) != NULL);
489 /* Pass 2 - submit I/O */
492 next = ioend->io_list;
496 * If we are failing the IO now, just mark the ioend with an
497 * error and finish it. This will run IO completion immediately
498 * as there is only one reference to the ioend at this point in
502 ioend->io_error = -fail;
503 xfs_finish_ioend(ioend);
507 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
511 bio = xfs_alloc_ioend_bio(bh);
512 } else if (bh->b_blocknr != lastblock + 1) {
513 xfs_submit_ioend_bio(wbc, ioend, bio);
517 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
518 xfs_submit_ioend_bio(wbc, ioend, bio);
522 lastblock = bh->b_blocknr;
525 xfs_submit_ioend_bio(wbc, ioend, bio);
526 xfs_finish_ioend(ioend);
527 } while ((ioend = next) != NULL);
531 * Cancel submission of all buffer_heads so far in this endio.
532 * Toss the endio too. Only ever called for the initial page
533 * in a writepage request, so only ever one page.
540 struct buffer_head *bh, *next_bh;
543 next = ioend->io_list;
544 bh = ioend->io_buffer_head;
546 next_bh = bh->b_private;
547 clear_buffer_async_write(bh);
549 } while ((bh = next_bh) != NULL);
551 mempool_free(ioend, xfs_ioend_pool);
552 } while ((ioend = next) != NULL);
556 * Test to see if we've been building up a completion structure for
557 * earlier buffers -- if so, we try to append to this ioend if we
558 * can, otherwise we finish off any current ioend and start another.
559 * Return true if we've finished the given ioend.
564 struct buffer_head *bh,
567 xfs_ioend_t **result,
570 xfs_ioend_t *ioend = *result;
572 if (!ioend || need_ioend || type != ioend->io_type) {
573 xfs_ioend_t *previous = *result;
575 ioend = xfs_alloc_ioend(inode, type);
576 ioend->io_offset = offset;
577 ioend->io_buffer_head = bh;
578 ioend->io_buffer_tail = bh;
580 previous->io_list = ioend;
583 ioend->io_buffer_tail->b_private = bh;
584 ioend->io_buffer_tail = bh;
587 bh->b_private = NULL;
588 ioend->io_size += bh->b_size;
594 struct buffer_head *bh,
595 struct xfs_bmbt_irec *imap,
599 struct xfs_mount *m = XFS_I(inode)->i_mount;
600 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
601 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
603 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
604 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
606 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
607 ((offset - iomap_offset) >> inode->i_blkbits);
609 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
612 set_buffer_mapped(bh);
618 struct buffer_head *bh,
619 struct xfs_bmbt_irec *imap,
622 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
623 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
625 xfs_map_buffer(inode, bh, imap, offset);
626 set_buffer_mapped(bh);
627 clear_buffer_delay(bh);
628 clear_buffer_unwritten(bh);
632 * Test if a given page is suitable for writing as part of an unwritten
633 * or delayed allocate extent.
640 if (PageWriteback(page))
643 if (page->mapping && page_has_buffers(page)) {
644 struct buffer_head *bh, *head;
647 bh = head = page_buffers(page);
649 if (buffer_unwritten(bh))
650 acceptable += (type == XFS_IO_UNWRITTEN);
651 else if (buffer_delay(bh))
652 acceptable += (type == XFS_IO_DELALLOC);
653 else if (buffer_dirty(bh) && buffer_mapped(bh))
654 acceptable += (type == XFS_IO_OVERWRITE);
657 } while ((bh = bh->b_this_page) != head);
667 * Allocate & map buffers for page given the extent map. Write it out.
668 * except for the original page of a writepage, this is called on
669 * delalloc/unwritten pages only, for the original page it is possible
670 * that the page has no mapping at all.
677 struct xfs_bmbt_irec *imap,
678 xfs_ioend_t **ioendp,
679 struct writeback_control *wbc)
681 struct buffer_head *bh, *head;
682 xfs_off_t end_offset;
683 unsigned long p_offset;
686 int count = 0, done = 0, uptodate = 1;
687 xfs_off_t offset = page_offset(page);
689 if (page->index != tindex)
691 if (!trylock_page(page))
693 if (PageWriteback(page))
694 goto fail_unlock_page;
695 if (page->mapping != inode->i_mapping)
696 goto fail_unlock_page;
697 if (!xfs_check_page_type(page, (*ioendp)->io_type))
698 goto fail_unlock_page;
701 * page_dirty is initially a count of buffers on the page before
702 * EOF and is decremented as we move each into a cleanable state.
706 * End offset is the highest offset that this page should represent.
707 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
708 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
709 * hence give us the correct page_dirty count. On any other page,
710 * it will be zero and in that case we need page_dirty to be the
711 * count of buffers on the page.
713 end_offset = min_t(unsigned long long,
714 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
718 * If the current map does not span the entire page we are about to try
719 * to write, then give up. The only way we can write a page that spans
720 * multiple mappings in a single writeback iteration is via the
721 * xfs_vm_writepage() function. Data integrity writeback requires the
722 * entire page to be written in a single attempt, otherwise the part of
723 * the page we don't write here doesn't get written as part of the data
726 * For normal writeback, we also don't attempt to write partial pages
727 * here as it simply means that write_cache_pages() will see it under
728 * writeback and ignore the page until some point in the future, at
729 * which time this will be the only page in the file that needs
730 * writeback. Hence for more optimal IO patterns, we should always
731 * avoid partial page writeback due to multiple mappings on a page here.
733 if (!xfs_imap_valid(inode, imap, end_offset))
734 goto fail_unlock_page;
736 len = 1 << inode->i_blkbits;
737 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
739 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
740 page_dirty = p_offset / len;
742 bh = head = page_buffers(page);
744 if (offset >= end_offset)
746 if (!buffer_uptodate(bh))
748 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
753 if (buffer_unwritten(bh) || buffer_delay(bh) ||
755 if (buffer_unwritten(bh))
756 type = XFS_IO_UNWRITTEN;
757 else if (buffer_delay(bh))
758 type = XFS_IO_DELALLOC;
760 type = XFS_IO_OVERWRITE;
762 if (!xfs_imap_valid(inode, imap, offset)) {
768 if (type != XFS_IO_OVERWRITE)
769 xfs_map_at_offset(inode, bh, imap, offset);
770 xfs_add_to_ioend(inode, bh, offset, type,
778 } while (offset += len, (bh = bh->b_this_page) != head);
780 if (uptodate && bh == head)
781 SetPageUptodate(page);
784 if (--wbc->nr_to_write <= 0 &&
785 wbc->sync_mode == WB_SYNC_NONE)
788 xfs_start_page_writeback(page, !page_dirty, count);
798 * Convert & write out a cluster of pages in the same extent as defined
799 * by mp and following the start page.
805 struct xfs_bmbt_irec *imap,
806 xfs_ioend_t **ioendp,
807 struct writeback_control *wbc,
813 pagevec_init(&pvec, 0);
814 while (!done && tindex <= tlast) {
815 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
817 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
820 for (i = 0; i < pagevec_count(&pvec); i++) {
821 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
827 pagevec_release(&pvec);
833 xfs_vm_invalidatepage(
838 trace_xfs_invalidatepage(page->mapping->host, page, offset,
840 block_invalidatepage(page, offset, length);
844 * If the page has delalloc buffers on it, we need to punch them out before we
845 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
846 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
847 * is done on that same region - the delalloc extent is returned when none is
848 * supposed to be there.
850 * We prevent this by truncating away the delalloc regions on the page before
851 * invalidating it. Because they are delalloc, we can do this without needing a
852 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
853 * truncation without a transaction as there is no space left for block
854 * reservation (typically why we see a ENOSPC in writeback).
856 * This is not a performance critical path, so for now just do the punching a
857 * buffer head at a time.
860 xfs_aops_discard_page(
863 struct inode *inode = page->mapping->host;
864 struct xfs_inode *ip = XFS_I(inode);
865 struct buffer_head *bh, *head;
866 loff_t offset = page_offset(page);
868 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
871 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
874 xfs_alert(ip->i_mount,
875 "page discard on page %p, inode 0x%llx, offset %llu.",
876 page, ip->i_ino, offset);
878 xfs_ilock(ip, XFS_ILOCK_EXCL);
879 bh = head = page_buffers(page);
882 xfs_fileoff_t start_fsb;
884 if (!buffer_delay(bh))
887 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
888 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
890 /* something screwed, just bail */
891 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
892 xfs_alert(ip->i_mount,
893 "page discard unable to remove delalloc mapping.");
898 offset += 1 << inode->i_blkbits;
900 } while ((bh = bh->b_this_page) != head);
902 xfs_iunlock(ip, XFS_ILOCK_EXCL);
904 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
909 * Write out a dirty page.
911 * For delalloc space on the page we need to allocate space and flush it.
912 * For unwritten space on the page we need to start the conversion to
913 * regular allocated space.
914 * For any other dirty buffer heads on the page we should flush them.
919 struct writeback_control *wbc)
921 struct inode *inode = page->mapping->host;
922 struct buffer_head *bh, *head;
923 struct xfs_bmbt_irec imap;
924 xfs_ioend_t *ioend = NULL, *iohead = NULL;
927 __uint64_t end_offset;
928 pgoff_t end_index, last_index;
930 int err, imap_valid = 0, uptodate = 1;
934 trace_xfs_writepage(inode, page, 0, 0);
936 ASSERT(page_has_buffers(page));
939 * Refuse to write the page out if we are called from reclaim context.
941 * This avoids stack overflows when called from deeply used stacks in
942 * random callers for direct reclaim or memcg reclaim. We explicitly
943 * allow reclaim from kswapd as the stack usage there is relatively low.
945 * This should never happen except in the case of a VM regression so
948 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
953 * Given that we do not allow direct reclaim to call us, we should
954 * never be called while in a filesystem transaction.
956 if (WARN_ON(current->flags & PF_FSTRANS))
959 /* Is this page beyond the end of the file? */
960 offset = i_size_read(inode);
961 end_index = offset >> PAGE_CACHE_SHIFT;
962 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
963 if (page->index >= end_index) {
964 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
967 * Skip the page if it is fully outside i_size, e.g. due to a
968 * truncate operation that is in progress. We must redirty the
969 * page so that reclaim stops reclaiming it. Otherwise
970 * xfs_vm_releasepage() is called on it and gets confused.
972 if (page->index >= end_index + 1 || offset_into_page == 0)
976 * The page straddles i_size. It must be zeroed out on each
977 * and every writepage invocation because it may be mmapped.
978 * "A file is mapped in multiples of the page size. For a file
979 * that is not a multiple of the page size, the remaining
980 * memory is zeroed when mapped, and writes to that region are
981 * not written out to the file."
983 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
986 end_offset = min_t(unsigned long long,
987 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
989 len = 1 << inode->i_blkbits;
991 bh = head = page_buffers(page);
992 offset = page_offset(page);
993 type = XFS_IO_OVERWRITE;
995 if (wbc->sync_mode == WB_SYNC_NONE)
1001 if (offset >= end_offset)
1003 if (!buffer_uptodate(bh))
1007 * set_page_dirty dirties all buffers in a page, independent
1008 * of their state. The dirty state however is entirely
1009 * meaningless for holes (!mapped && uptodate), so skip
1010 * buffers covering holes here.
1012 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1017 if (buffer_unwritten(bh)) {
1018 if (type != XFS_IO_UNWRITTEN) {
1019 type = XFS_IO_UNWRITTEN;
1022 } else if (buffer_delay(bh)) {
1023 if (type != XFS_IO_DELALLOC) {
1024 type = XFS_IO_DELALLOC;
1027 } else if (buffer_uptodate(bh)) {
1028 if (type != XFS_IO_OVERWRITE) {
1029 type = XFS_IO_OVERWRITE;
1033 if (PageUptodate(page))
1034 ASSERT(buffer_mapped(bh));
1036 * This buffer is not uptodate and will not be
1037 * written to disk. Ensure that we will put any
1038 * subsequent writeable buffers into a new
1046 imap_valid = xfs_imap_valid(inode, &imap, offset);
1049 * If we didn't have a valid mapping then we need to
1050 * put the new mapping into a separate ioend structure.
1051 * This ensures non-contiguous extents always have
1052 * separate ioends, which is particularly important
1053 * for unwritten extent conversion at I/O completion
1057 err = xfs_map_blocks(inode, offset, &imap, type,
1061 imap_valid = xfs_imap_valid(inode, &imap, offset);
1065 if (type != XFS_IO_OVERWRITE)
1066 xfs_map_at_offset(inode, bh, &imap, offset);
1067 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1075 } while (offset += len, ((bh = bh->b_this_page) != head));
1077 if (uptodate && bh == head)
1078 SetPageUptodate(page);
1080 xfs_start_page_writeback(page, 1, count);
1082 /* if there is no IO to be submitted for this page, we are done */
1089 * Any errors from this point onwards need tobe reported through the IO
1090 * completion path as we have marked the initial page as under writeback
1094 xfs_off_t end_index;
1096 end_index = imap.br_startoff + imap.br_blockcount;
1099 end_index <<= inode->i_blkbits;
1102 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1104 /* check against file size */
1105 if (end_index > last_index)
1106 end_index = last_index;
1108 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1114 * Reserve log space if we might write beyond the on-disk inode size.
1117 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1118 err = xfs_setfilesize_trans_alloc(ioend);
1120 xfs_submit_ioend(wbc, iohead, err);
1126 xfs_cancel_ioend(iohead);
1131 xfs_aops_discard_page(page);
1132 ClearPageUptodate(page);
1137 redirty_page_for_writepage(wbc, page);
1144 struct address_space *mapping,
1145 struct writeback_control *wbc)
1147 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1148 return generic_writepages(mapping, wbc);
1152 * Called to move a page into cleanable state - and from there
1153 * to be released. The page should already be clean. We always
1154 * have buffer heads in this call.
1156 * Returns 1 if the page is ok to release, 0 otherwise.
1163 int delalloc, unwritten;
1165 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1167 xfs_count_page_state(page, &delalloc, &unwritten);
1169 if (WARN_ON(delalloc))
1171 if (WARN_ON(unwritten))
1174 return try_to_free_buffers(page);
1179 struct inode *inode,
1181 struct buffer_head *bh_result,
1185 struct xfs_inode *ip = XFS_I(inode);
1186 struct xfs_mount *mp = ip->i_mount;
1187 xfs_fileoff_t offset_fsb, end_fsb;
1190 struct xfs_bmbt_irec imap;
1196 if (XFS_FORCED_SHUTDOWN(mp))
1197 return -XFS_ERROR(EIO);
1199 offset = (xfs_off_t)iblock << inode->i_blkbits;
1200 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1201 size = bh_result->b_size;
1203 if (!create && direct && offset >= i_size_read(inode))
1207 * Direct I/O is usually done on preallocated files, so try getting
1208 * a block mapping without an exclusive lock first. For buffered
1209 * writes we already have the exclusive iolock anyway, so avoiding
1210 * a lock roundtrip here by taking the ilock exclusive from the
1211 * beginning is a useful micro optimization.
1213 if (create && !direct) {
1214 lockmode = XFS_ILOCK_EXCL;
1215 xfs_ilock(ip, lockmode);
1217 lockmode = xfs_ilock_map_shared(ip);
1220 ASSERT(offset <= mp->m_super->s_maxbytes);
1221 if (offset + size > mp->m_super->s_maxbytes)
1222 size = mp->m_super->s_maxbytes - offset;
1223 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1224 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1226 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1227 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1233 (imap.br_startblock == HOLESTARTBLOCK ||
1234 imap.br_startblock == DELAYSTARTBLOCK))) {
1235 if (direct || xfs_get_extsz_hint(ip)) {
1237 * Drop the ilock in preparation for starting the block
1238 * allocation transaction. It will be retaken
1239 * exclusively inside xfs_iomap_write_direct for the
1240 * actual allocation.
1242 xfs_iunlock(ip, lockmode);
1243 error = xfs_iomap_write_direct(ip, offset, size,
1250 * Delalloc reservations do not require a transaction,
1251 * we can go on without dropping the lock here. If we
1252 * are allocating a new delalloc block, make sure that
1253 * we set the new flag so that we mark the buffer new so
1254 * that we know that it is newly allocated if the write
1257 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1259 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1263 xfs_iunlock(ip, lockmode);
1266 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1267 } else if (nimaps) {
1268 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1269 xfs_iunlock(ip, lockmode);
1271 trace_xfs_get_blocks_notfound(ip, offset, size);
1275 if (imap.br_startblock != HOLESTARTBLOCK &&
1276 imap.br_startblock != DELAYSTARTBLOCK) {
1278 * For unwritten extents do not report a disk address on
1279 * the read case (treat as if we're reading into a hole).
1281 if (create || !ISUNWRITTEN(&imap))
1282 xfs_map_buffer(inode, bh_result, &imap, offset);
1283 if (create && ISUNWRITTEN(&imap)) {
1285 bh_result->b_private = inode;
1286 set_buffer_defer_completion(bh_result);
1288 set_buffer_unwritten(bh_result);
1293 * If this is a realtime file, data may be on a different device.
1294 * to that pointed to from the buffer_head b_bdev currently.
1296 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1299 * If we previously allocated a block out beyond eof and we are now
1300 * coming back to use it then we will need to flag it as new even if it
1301 * has a disk address.
1303 * With sub-block writes into unwritten extents we also need to mark
1304 * the buffer as new so that the unwritten parts of the buffer gets
1308 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1309 (offset >= i_size_read(inode)) ||
1310 (new || ISUNWRITTEN(&imap))))
1311 set_buffer_new(bh_result);
1313 if (imap.br_startblock == DELAYSTARTBLOCK) {
1316 set_buffer_uptodate(bh_result);
1317 set_buffer_mapped(bh_result);
1318 set_buffer_delay(bh_result);
1323 * If this is O_DIRECT or the mpage code calling tell them how large
1324 * the mapping is, so that we can avoid repeated get_blocks calls.
1326 if (direct || size > (1 << inode->i_blkbits)) {
1327 xfs_off_t mapping_size;
1329 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1330 mapping_size <<= inode->i_blkbits;
1332 ASSERT(mapping_size > 0);
1333 if (mapping_size > size)
1334 mapping_size = size;
1335 if (mapping_size > LONG_MAX)
1336 mapping_size = LONG_MAX;
1338 bh_result->b_size = mapping_size;
1344 xfs_iunlock(ip, lockmode);
1350 struct inode *inode,
1352 struct buffer_head *bh_result,
1355 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1359 xfs_get_blocks_direct(
1360 struct inode *inode,
1362 struct buffer_head *bh_result,
1365 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1369 * Complete a direct I/O write request.
1371 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1372 * need to issue a transaction to convert the range from unwritten to written
1373 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1374 * to do this and we are done. But in case this was a successful AIO
1375 * request this handler is called from interrupt context, from which we
1376 * can't start transactions. In that case offload the I/O completion to
1377 * the workqueues we also use for buffered I/O completion.
1380 xfs_end_io_direct_write(
1386 struct xfs_ioend *ioend = iocb->private;
1389 * While the generic direct I/O code updates the inode size, it does
1390 * so only after the end_io handler is called, which means our
1391 * end_io handler thinks the on-disk size is outside the in-core
1392 * size. To prevent this just update it a little bit earlier here.
1394 if (offset + size > i_size_read(ioend->io_inode))
1395 i_size_write(ioend->io_inode, offset + size);
1398 * blockdev_direct_IO can return an error even after the I/O
1399 * completion handler was called. Thus we need to protect
1400 * against double-freeing.
1402 iocb->private = NULL;
1404 ioend->io_offset = offset;
1405 ioend->io_size = size;
1406 if (private && size > 0)
1407 ioend->io_type = XFS_IO_UNWRITTEN;
1409 xfs_finish_ioend_sync(ioend);
1416 const struct iovec *iov,
1418 unsigned long nr_segs)
1420 struct inode *inode = iocb->ki_filp->f_mapping->host;
1421 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1422 struct xfs_ioend *ioend = NULL;
1426 size_t size = iov_length(iov, nr_segs);
1429 * We cannot preallocate a size update transaction here as we
1430 * don't know whether allocation is necessary or not. Hence we
1431 * can only tell IO completion that one is necessary if we are
1432 * not doing unwritten extent conversion.
1434 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1435 if (offset + size > XFS_I(inode)->i_d.di_size)
1436 ioend->io_isdirect = 1;
1438 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1440 xfs_get_blocks_direct,
1441 xfs_end_io_direct_write, NULL, 0);
1442 if (ret != -EIOCBQUEUED && iocb->private)
1443 goto out_destroy_ioend;
1445 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1447 xfs_get_blocks_direct,
1454 xfs_destroy_ioend(ioend);
1459 * Punch out the delalloc blocks we have already allocated.
1461 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1462 * as the page is still locked at this point.
1465 xfs_vm_kill_delalloc_range(
1466 struct inode *inode,
1470 struct xfs_inode *ip = XFS_I(inode);
1471 xfs_fileoff_t start_fsb;
1472 xfs_fileoff_t end_fsb;
1475 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1476 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1477 if (end_fsb <= start_fsb)
1480 xfs_ilock(ip, XFS_ILOCK_EXCL);
1481 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1482 end_fsb - start_fsb);
1484 /* something screwed, just bail */
1485 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1486 xfs_alert(ip->i_mount,
1487 "xfs_vm_write_failed: unable to clean up ino %lld",
1491 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1495 xfs_vm_write_failed(
1496 struct inode *inode,
1501 loff_t block_offset;
1504 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1505 loff_t to = from + len;
1506 struct buffer_head *bh, *head;
1509 * The request pos offset might be 32 or 64 bit, this is all fine
1510 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1511 * platform, the high 32-bit will be masked off if we evaluate the
1512 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1513 * 0xfffff000 as an unsigned long, hence the result is incorrect
1514 * which could cause the following ASSERT failed in most cases.
1515 * In order to avoid this, we can evaluate the block_offset of the
1516 * start of the page by using shifts rather than masks the mismatch
1519 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1521 ASSERT(block_offset + from == pos);
1523 head = page_buffers(page);
1525 for (bh = head; bh != head || !block_start;
1526 bh = bh->b_this_page, block_start = block_end,
1527 block_offset += bh->b_size) {
1528 block_end = block_start + bh->b_size;
1530 /* skip buffers before the write */
1531 if (block_end <= from)
1534 /* if the buffer is after the write, we're done */
1535 if (block_start >= to)
1538 if (!buffer_delay(bh))
1541 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1544 xfs_vm_kill_delalloc_range(inode, block_offset,
1545 block_offset + bh->b_size);
1551 * This used to call block_write_begin(), but it unlocks and releases the page
1552 * on error, and we need that page to be able to punch stale delalloc blocks out
1553 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1554 * the appropriate point.
1559 struct address_space *mapping,
1563 struct page **pagep,
1566 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1570 ASSERT(len <= PAGE_CACHE_SIZE);
1572 page = grab_cache_page_write_begin(mapping, index,
1573 flags | AOP_FLAG_NOFS);
1577 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1578 if (unlikely(status)) {
1579 struct inode *inode = mapping->host;
1581 xfs_vm_write_failed(inode, page, pos, len);
1584 if (pos + len > i_size_read(inode))
1585 truncate_pagecache(inode, i_size_read(inode));
1587 page_cache_release(page);
1596 * On failure, we only need to kill delalloc blocks beyond EOF because they
1597 * will never be written. For blocks within EOF, generic_write_end() zeros them
1598 * so they are safe to leave alone and be written with all the other valid data.
1603 struct address_space *mapping,
1612 ASSERT(len <= PAGE_CACHE_SIZE);
1614 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1615 if (unlikely(ret < len)) {
1616 struct inode *inode = mapping->host;
1617 size_t isize = i_size_read(inode);
1618 loff_t to = pos + len;
1621 truncate_pagecache(inode, isize);
1622 xfs_vm_kill_delalloc_range(inode, isize, to);
1630 struct address_space *mapping,
1633 struct inode *inode = (struct inode *)mapping->host;
1634 struct xfs_inode *ip = XFS_I(inode);
1636 trace_xfs_vm_bmap(XFS_I(inode));
1637 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1638 filemap_write_and_wait(mapping);
1639 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1640 return generic_block_bmap(mapping, block, xfs_get_blocks);
1645 struct file *unused,
1648 return mpage_readpage(page, xfs_get_blocks);
1653 struct file *unused,
1654 struct address_space *mapping,
1655 struct list_head *pages,
1658 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1661 const struct address_space_operations xfs_address_space_operations = {
1662 .readpage = xfs_vm_readpage,
1663 .readpages = xfs_vm_readpages,
1664 .writepage = xfs_vm_writepage,
1665 .writepages = xfs_vm_writepages,
1666 .releasepage = xfs_vm_releasepage,
1667 .invalidatepage = xfs_vm_invalidatepage,
1668 .write_begin = xfs_vm_write_begin,
1669 .write_end = xfs_vm_write_end,
1670 .bmap = xfs_vm_bmap,
1671 .direct_IO = xfs_vm_direct_IO,
1672 .migratepage = buffer_migrate_page,
1673 .is_partially_uptodate = block_is_partially_uptodate,
1674 .error_remove_page = generic_error_remove_page,