2 * Copyright (c) 2014 Red Hat, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_trans.h"
30 #include "xfs_alloc.h"
31 #include "xfs_btree.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_error.h"
37 #include "xfs_extent_busy.h"
42 * This is a per-ag tree used to track the owner(s) of a given extent. With
43 * reflink it is possible for there to be multiple owners, which is a departure
44 * from classic XFS. Owner records for data extents are inserted when the
45 * extent is mapped and removed when an extent is unmapped. Owner records for
46 * all other block types (i.e. metadata) are inserted when an extent is
47 * allocated and removed when an extent is freed. There can only be one owner
48 * of a metadata extent, usually an inode or some other metadata structure like
51 * The rmap btree is part of the free space management, so blocks for the tree
52 * are sourced from the agfl. Hence we need transaction reservation support for
53 * this tree so that the freelist is always large enough. This also impacts on
54 * the minimum space we need to leave free in the AG.
56 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
57 * but it is the only way to enforce unique keys when a block can be owned by
58 * multiple files at any offset. There's no need to order/search by extent
59 * size for online updating/management of the tree. It is intended that most
60 * reverse lookups will be to find the owner(s) of a particular block, or to
61 * try to recover tree and file data from corrupt primary metadata.
64 static struct xfs_btree_cur *
65 xfs_rmapbt_dup_cursor(
66 struct xfs_btree_cur *cur)
68 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
69 cur->bc_private.a.agbp, cur->bc_private.a.agno);
74 struct xfs_btree_cur *cur,
75 union xfs_btree_ptr *ptr,
78 struct xfs_buf *agbp = cur->bc_private.a.agbp;
79 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
80 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
81 int btnum = cur->bc_btnum;
82 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
86 agf->agf_roots[btnum] = ptr->s;
87 be32_add_cpu(&agf->agf_levels[btnum], inc);
88 pag->pagf_levels[btnum] += inc;
91 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
95 xfs_rmapbt_alloc_block(
96 struct xfs_btree_cur *cur,
97 union xfs_btree_ptr *start,
98 union xfs_btree_ptr *new,
101 struct xfs_buf *agbp = cur->bc_private.a.agbp;
102 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
106 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
108 /* Allocate the new block from the freelist. If we can't, give up. */
109 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
112 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
116 trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
118 if (bno == NULLAGBLOCK) {
119 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
124 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
127 xfs_trans_agbtree_delta(cur->bc_tp, 1);
128 new->s = cpu_to_be32(bno);
129 be32_add_cpu(&agf->agf_rmap_blocks, 1);
130 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
132 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
138 xfs_rmapbt_free_block(
139 struct xfs_btree_cur *cur,
142 struct xfs_buf *agbp = cur->bc_private.a.agbp;
143 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
147 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
148 trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
150 be32_add_cpu(&agf->agf_rmap_blocks, -1);
151 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
152 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
156 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
157 XFS_EXTENT_BUSY_SKIP_DISCARD);
158 xfs_trans_agbtree_delta(cur->bc_tp, -1);
164 xfs_rmapbt_get_minrecs(
165 struct xfs_btree_cur *cur,
168 return cur->bc_mp->m_rmap_mnr[level != 0];
172 xfs_rmapbt_get_maxrecs(
173 struct xfs_btree_cur *cur,
176 return cur->bc_mp->m_rmap_mxr[level != 0];
180 xfs_rmapbt_init_key_from_rec(
181 union xfs_btree_key *key,
182 union xfs_btree_rec *rec)
184 key->rmap.rm_startblock = rec->rmap.rm_startblock;
185 key->rmap.rm_owner = rec->rmap.rm_owner;
186 key->rmap.rm_offset = rec->rmap.rm_offset;
190 * The high key for a reverse mapping record can be computed by shifting
191 * the startblock and offset to the highest value that would still map
192 * to that record. In practice this means that we add blockcount-1 to
193 * the startblock for all records, and if the record is for a data/attr
194 * fork mapping, we add blockcount-1 to the offset too.
197 xfs_rmapbt_init_high_key_from_rec(
198 union xfs_btree_key *key,
199 union xfs_btree_rec *rec)
204 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
206 key->rmap.rm_startblock = rec->rmap.rm_startblock;
207 be32_add_cpu(&key->rmap.rm_startblock, adj);
208 key->rmap.rm_owner = rec->rmap.rm_owner;
209 key->rmap.rm_offset = rec->rmap.rm_offset;
210 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
211 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
213 off = be64_to_cpu(key->rmap.rm_offset);
214 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
215 key->rmap.rm_offset = cpu_to_be64(off);
219 xfs_rmapbt_init_rec_from_cur(
220 struct xfs_btree_cur *cur,
221 union xfs_btree_rec *rec)
223 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
224 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
225 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
226 rec->rmap.rm_offset = cpu_to_be64(
227 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
231 xfs_rmapbt_init_ptr_from_cur(
232 struct xfs_btree_cur *cur,
233 union xfs_btree_ptr *ptr)
235 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
237 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
238 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
240 ptr->s = agf->agf_roots[cur->bc_btnum];
245 struct xfs_btree_cur *cur,
246 union xfs_btree_key *key)
248 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
249 struct xfs_rmap_key *kp = &key->rmap;
253 d = (__int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
257 x = be64_to_cpu(kp->rm_owner);
264 x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
274 xfs_rmapbt_diff_two_keys(
275 struct xfs_btree_cur *cur,
276 union xfs_btree_key *k1,
277 union xfs_btree_key *k2)
279 struct xfs_rmap_key *kp1 = &k1->rmap;
280 struct xfs_rmap_key *kp2 = &k2->rmap;
284 d = (__int64_t)be32_to_cpu(kp1->rm_startblock) -
285 be32_to_cpu(kp2->rm_startblock);
289 x = be64_to_cpu(kp1->rm_owner);
290 y = be64_to_cpu(kp2->rm_owner);
296 x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
297 y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
309 struct xfs_mount *mp = bp->b_target->bt_mount;
310 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
311 struct xfs_perag *pag = bp->b_pag;
315 * magic number and level verification
317 * During growfs operations, we can't verify the exact level or owner as
318 * the perag is not fully initialised and hence not attached to the
319 * buffer. In this case, check against the maximum tree depth.
321 * Similarly, during log recovery we will have a perag structure
322 * attached, but the agf information will not yet have been initialised
323 * from the on disk AGF. Again, we can only check against maximum limits
326 if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
329 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
331 if (!xfs_btree_sblock_v5hdr_verify(bp))
334 level = be16_to_cpu(block->bb_level);
335 if (pag && pag->pagf_init) {
336 if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
338 } else if (level >= mp->m_rmap_maxlevels)
341 return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
345 xfs_rmapbt_read_verify(
348 if (!xfs_btree_sblock_verify_crc(bp))
349 xfs_buf_ioerror(bp, -EFSBADCRC);
350 else if (!xfs_rmapbt_verify(bp))
351 xfs_buf_ioerror(bp, -EFSCORRUPTED);
354 trace_xfs_btree_corrupt(bp, _RET_IP_);
355 xfs_verifier_error(bp);
360 xfs_rmapbt_write_verify(
363 if (!xfs_rmapbt_verify(bp)) {
364 trace_xfs_btree_corrupt(bp, _RET_IP_);
365 xfs_buf_ioerror(bp, -EFSCORRUPTED);
366 xfs_verifier_error(bp);
369 xfs_btree_sblock_calc_crc(bp);
373 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
374 .name = "xfs_rmapbt",
375 .verify_read = xfs_rmapbt_read_verify,
376 .verify_write = xfs_rmapbt_write_verify,
379 #if defined(DEBUG) || defined(XFS_WARN)
381 xfs_rmapbt_keys_inorder(
382 struct xfs_btree_cur *cur,
383 union xfs_btree_key *k1,
384 union xfs_btree_key *k2)
391 x = be32_to_cpu(k1->rmap.rm_startblock);
392 y = be32_to_cpu(k2->rmap.rm_startblock);
397 a = be64_to_cpu(k1->rmap.rm_owner);
398 b = be64_to_cpu(k2->rmap.rm_owner);
403 a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
404 b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
411 xfs_rmapbt_recs_inorder(
412 struct xfs_btree_cur *cur,
413 union xfs_btree_rec *r1,
414 union xfs_btree_rec *r2)
421 x = be32_to_cpu(r1->rmap.rm_startblock);
422 y = be32_to_cpu(r2->rmap.rm_startblock);
427 a = be64_to_cpu(r1->rmap.rm_owner);
428 b = be64_to_cpu(r2->rmap.rm_owner);
433 a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
434 b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
441 static const struct xfs_btree_ops xfs_rmapbt_ops = {
442 .rec_len = sizeof(struct xfs_rmap_rec),
443 .key_len = 2 * sizeof(struct xfs_rmap_key),
445 .dup_cursor = xfs_rmapbt_dup_cursor,
446 .set_root = xfs_rmapbt_set_root,
447 .alloc_block = xfs_rmapbt_alloc_block,
448 .free_block = xfs_rmapbt_free_block,
449 .get_minrecs = xfs_rmapbt_get_minrecs,
450 .get_maxrecs = xfs_rmapbt_get_maxrecs,
451 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
452 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
453 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
454 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
455 .key_diff = xfs_rmapbt_key_diff,
456 .buf_ops = &xfs_rmapbt_buf_ops,
457 .diff_two_keys = xfs_rmapbt_diff_two_keys,
458 #if defined(DEBUG) || defined(XFS_WARN)
459 .keys_inorder = xfs_rmapbt_keys_inorder,
460 .recs_inorder = xfs_rmapbt_recs_inorder,
465 * Allocate a new allocation btree cursor.
467 struct xfs_btree_cur *
468 xfs_rmapbt_init_cursor(
469 struct xfs_mount *mp,
470 struct xfs_trans *tp,
471 struct xfs_buf *agbp,
474 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
475 struct xfs_btree_cur *cur;
477 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
480 /* Overlapping btree; 2 keys per pointer. */
481 cur->bc_btnum = XFS_BTNUM_RMAP;
482 cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
483 cur->bc_blocklog = mp->m_sb.sb_blocklog;
484 cur->bc_ops = &xfs_rmapbt_ops;
485 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
487 cur->bc_private.a.agbp = agbp;
488 cur->bc_private.a.agno = agno;
494 * Calculate number of records in an rmap btree block.
498 struct xfs_mount *mp,
502 blocklen -= XFS_RMAP_BLOCK_LEN;
505 return blocklen / sizeof(struct xfs_rmap_rec);
507 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
510 /* Compute the maximum height of an rmap btree. */
512 xfs_rmapbt_compute_maxlevels(
513 struct xfs_mount *mp)
515 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
516 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);