1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_trans.h"
25 static struct kmem_cache *xfs_inobt_cur_cache;
28 xfs_inobt_get_minrecs(
29 struct xfs_btree_cur *cur,
32 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
35 STATIC struct xfs_btree_cur *
37 struct xfs_btree_cur *cur)
39 return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
40 cur->bc_ag.agbp, cur->bc_btnum);
45 struct xfs_btree_cur *cur,
46 const union xfs_btree_ptr *nptr,
47 int inc) /* level change */
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agi *agi = agbp->b_addr;
52 agi->agi_root = nptr->s;
53 be32_add_cpu(&agi->agi_level, inc);
54 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
59 struct xfs_btree_cur *cur,
60 const union xfs_btree_ptr *nptr,
61 int inc) /* level change */
63 struct xfs_buf *agbp = cur->bc_ag.agbp;
64 struct xfs_agi *agi = agbp->b_addr;
66 agi->agi_free_root = nptr->s;
67 be32_add_cpu(&agi->agi_free_level, inc);
68 xfs_ialloc_log_agi(cur->bc_tp, agbp,
69 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
72 /* Update the inode btree block counter for this btree. */
74 xfs_inobt_mod_blockcount(
75 struct xfs_btree_cur *cur,
78 struct xfs_buf *agbp = cur->bc_ag.agbp;
79 struct xfs_agi *agi = agbp->b_addr;
81 if (!xfs_has_inobtcounts(cur->bc_mp))
84 if (cur->bc_btnum == XFS_BTNUM_FINO)
85 be32_add_cpu(&agi->agi_fblocks, howmuch);
86 else if (cur->bc_btnum == XFS_BTNUM_INO)
87 be32_add_cpu(&agi->agi_iblocks, howmuch);
88 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
92 __xfs_inobt_alloc_block(
93 struct xfs_btree_cur *cur,
94 const union xfs_btree_ptr *start,
95 union xfs_btree_ptr *new,
97 enum xfs_ag_resv_type resv)
99 xfs_alloc_arg_t args; /* block allocation args */
100 int error; /* error return value */
101 xfs_agblock_t sbno = be32_to_cpu(start->s);
103 memset(&args, 0, sizeof(args));
104 args.tp = cur->bc_tp;
105 args.mp = cur->bc_mp;
106 args.pag = cur->bc_ag.pag;
107 args.oinfo = XFS_RMAP_OINFO_INOBT;
113 error = xfs_alloc_vextent_near_bno(&args,
114 XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
118 if (args.fsbno == NULLFSBLOCK) {
122 ASSERT(args.len == 1);
124 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
126 xfs_inobt_mod_blockcount(cur, 1);
131 xfs_inobt_alloc_block(
132 struct xfs_btree_cur *cur,
133 const union xfs_btree_ptr *start,
134 union xfs_btree_ptr *new,
137 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
141 xfs_finobt_alloc_block(
142 struct xfs_btree_cur *cur,
143 const union xfs_btree_ptr *start,
144 union xfs_btree_ptr *new,
147 if (cur->bc_mp->m_finobt_nores)
148 return xfs_inobt_alloc_block(cur, start, new, stat);
149 return __xfs_inobt_alloc_block(cur, start, new, stat,
150 XFS_AG_RESV_METADATA);
154 __xfs_inobt_free_block(
155 struct xfs_btree_cur *cur,
157 enum xfs_ag_resv_type resv)
161 xfs_inobt_mod_blockcount(cur, -1);
162 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
163 return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
164 &XFS_RMAP_OINFO_INOBT, resv);
168 xfs_inobt_free_block(
169 struct xfs_btree_cur *cur,
172 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
176 xfs_finobt_free_block(
177 struct xfs_btree_cur *cur,
180 if (cur->bc_mp->m_finobt_nores)
181 return xfs_inobt_free_block(cur, bp);
182 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
186 xfs_inobt_get_maxrecs(
187 struct xfs_btree_cur *cur,
190 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
194 xfs_inobt_init_key_from_rec(
195 union xfs_btree_key *key,
196 const union xfs_btree_rec *rec)
198 key->inobt.ir_startino = rec->inobt.ir_startino;
202 xfs_inobt_init_high_key_from_rec(
203 union xfs_btree_key *key,
204 const union xfs_btree_rec *rec)
208 x = be32_to_cpu(rec->inobt.ir_startino);
209 x += XFS_INODES_PER_CHUNK - 1;
210 key->inobt.ir_startino = cpu_to_be32(x);
214 xfs_inobt_init_rec_from_cur(
215 struct xfs_btree_cur *cur,
216 union xfs_btree_rec *rec)
218 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
219 if (xfs_has_sparseinodes(cur->bc_mp)) {
220 rec->inobt.ir_u.sp.ir_holemask =
221 cpu_to_be16(cur->bc_rec.i.ir_holemask);
222 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
223 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
225 /* ir_holemask/ir_count not supported on-disk */
226 rec->inobt.ir_u.f.ir_freecount =
227 cpu_to_be32(cur->bc_rec.i.ir_freecount);
229 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
233 * initial value of ptr for lookup
236 xfs_inobt_init_ptr_from_cur(
237 struct xfs_btree_cur *cur,
238 union xfs_btree_ptr *ptr)
240 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
242 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
244 ptr->s = agi->agi_root;
248 xfs_finobt_init_ptr_from_cur(
249 struct xfs_btree_cur *cur,
250 union xfs_btree_ptr *ptr)
252 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
254 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
255 ptr->s = agi->agi_free_root;
260 struct xfs_btree_cur *cur,
261 const union xfs_btree_key *key)
263 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
264 cur->bc_rec.i.ir_startino;
268 xfs_inobt_diff_two_keys(
269 struct xfs_btree_cur *cur,
270 const union xfs_btree_key *k1,
271 const union xfs_btree_key *k2,
272 const union xfs_btree_key *mask)
274 ASSERT(!mask || mask->inobt.ir_startino);
276 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
277 be32_to_cpu(k2->inobt.ir_startino);
280 static xfs_failaddr_t
284 struct xfs_mount *mp = bp->b_mount;
285 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
289 if (!xfs_verify_magic(bp, block->bb_magic))
290 return __this_address;
293 * During growfs operations, we can't verify the exact owner as the
294 * perag is not fully initialised and hence not attached to the buffer.
296 * Similarly, during log recovery we will have a perag structure
297 * attached, but the agi information will not yet have been initialised
298 * from the on disk AGI. We don't currently use any of this information,
299 * but beware of the landmine (i.e. need to check
300 * xfs_perag_initialised_agi(pag)) if we ever do.
302 if (xfs_has_crc(mp)) {
303 fa = xfs_btree_sblock_v5hdr_verify(bp);
308 /* level verification */
309 level = be16_to_cpu(block->bb_level);
310 if (level >= M_IGEO(mp)->inobt_maxlevels)
311 return __this_address;
313 return xfs_btree_sblock_verify(bp,
314 M_IGEO(mp)->inobt_mxr[level != 0]);
318 xfs_inobt_read_verify(
323 if (!xfs_btree_sblock_verify_crc(bp))
324 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
326 fa = xfs_inobt_verify(bp);
328 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
332 trace_xfs_btree_corrupt(bp, _RET_IP_);
336 xfs_inobt_write_verify(
341 fa = xfs_inobt_verify(bp);
343 trace_xfs_btree_corrupt(bp, _RET_IP_);
344 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
347 xfs_btree_sblock_calc_crc(bp);
351 const struct xfs_buf_ops xfs_inobt_buf_ops = {
353 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
354 .verify_read = xfs_inobt_read_verify,
355 .verify_write = xfs_inobt_write_verify,
356 .verify_struct = xfs_inobt_verify,
359 const struct xfs_buf_ops xfs_finobt_buf_ops = {
360 .name = "xfs_finobt",
361 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
362 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
363 .verify_read = xfs_inobt_read_verify,
364 .verify_write = xfs_inobt_write_verify,
365 .verify_struct = xfs_inobt_verify,
369 xfs_inobt_keys_inorder(
370 struct xfs_btree_cur *cur,
371 const union xfs_btree_key *k1,
372 const union xfs_btree_key *k2)
374 return be32_to_cpu(k1->inobt.ir_startino) <
375 be32_to_cpu(k2->inobt.ir_startino);
379 xfs_inobt_recs_inorder(
380 struct xfs_btree_cur *cur,
381 const union xfs_btree_rec *r1,
382 const union xfs_btree_rec *r2)
384 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
385 be32_to_cpu(r2->inobt.ir_startino);
388 STATIC enum xbtree_key_contig
389 xfs_inobt_keys_contiguous(
390 struct xfs_btree_cur *cur,
391 const union xfs_btree_key *key1,
392 const union xfs_btree_key *key2,
393 const union xfs_btree_key *mask)
395 ASSERT(!mask || mask->inobt.ir_startino);
397 return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
398 be32_to_cpu(key2->inobt.ir_startino));
401 static const struct xfs_btree_ops xfs_inobt_ops = {
402 .rec_len = sizeof(xfs_inobt_rec_t),
403 .key_len = sizeof(xfs_inobt_key_t),
405 .dup_cursor = xfs_inobt_dup_cursor,
406 .set_root = xfs_inobt_set_root,
407 .alloc_block = xfs_inobt_alloc_block,
408 .free_block = xfs_inobt_free_block,
409 .get_minrecs = xfs_inobt_get_minrecs,
410 .get_maxrecs = xfs_inobt_get_maxrecs,
411 .init_key_from_rec = xfs_inobt_init_key_from_rec,
412 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
413 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
414 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
415 .key_diff = xfs_inobt_key_diff,
416 .buf_ops = &xfs_inobt_buf_ops,
417 .diff_two_keys = xfs_inobt_diff_two_keys,
418 .keys_inorder = xfs_inobt_keys_inorder,
419 .recs_inorder = xfs_inobt_recs_inorder,
420 .keys_contiguous = xfs_inobt_keys_contiguous,
423 static const struct xfs_btree_ops xfs_finobt_ops = {
424 .rec_len = sizeof(xfs_inobt_rec_t),
425 .key_len = sizeof(xfs_inobt_key_t),
427 .dup_cursor = xfs_inobt_dup_cursor,
428 .set_root = xfs_finobt_set_root,
429 .alloc_block = xfs_finobt_alloc_block,
430 .free_block = xfs_finobt_free_block,
431 .get_minrecs = xfs_inobt_get_minrecs,
432 .get_maxrecs = xfs_inobt_get_maxrecs,
433 .init_key_from_rec = xfs_inobt_init_key_from_rec,
434 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
435 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
436 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
437 .key_diff = xfs_inobt_key_diff,
438 .buf_ops = &xfs_finobt_buf_ops,
439 .diff_two_keys = xfs_inobt_diff_two_keys,
440 .keys_inorder = xfs_inobt_keys_inorder,
441 .recs_inorder = xfs_inobt_recs_inorder,
442 .keys_contiguous = xfs_inobt_keys_contiguous,
446 * Initialize a new inode btree cursor.
448 static struct xfs_btree_cur *
449 xfs_inobt_init_common(
450 struct xfs_perag *pag,
451 struct xfs_trans *tp, /* transaction pointer */
452 xfs_btnum_t btnum) /* ialloc or free ino btree */
454 struct xfs_mount *mp = pag->pag_mount;
455 struct xfs_btree_cur *cur;
457 cur = xfs_btree_alloc_cursor(mp, tp, btnum,
458 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
459 if (btnum == XFS_BTNUM_INO) {
460 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
461 cur->bc_ops = &xfs_inobt_ops;
463 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
464 cur->bc_ops = &xfs_finobt_ops;
468 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
470 cur->bc_ag.pag = xfs_perag_hold(pag);
474 /* Create an inode btree cursor. */
475 struct xfs_btree_cur *
476 xfs_inobt_init_cursor(
477 struct xfs_perag *pag,
478 struct xfs_trans *tp,
479 struct xfs_buf *agbp,
482 struct xfs_btree_cur *cur;
483 struct xfs_agi *agi = agbp->b_addr;
485 cur = xfs_inobt_init_common(pag, tp, btnum);
486 if (btnum == XFS_BTNUM_INO)
487 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
489 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
490 cur->bc_ag.agbp = agbp;
494 /* Create an inode btree cursor with a fake root for staging. */
495 struct xfs_btree_cur *
496 xfs_inobt_stage_cursor(
497 struct xfs_perag *pag,
498 struct xbtree_afakeroot *afake,
501 struct xfs_btree_cur *cur;
503 cur = xfs_inobt_init_common(pag, NULL, btnum);
504 xfs_btree_stage_afakeroot(cur, afake);
509 * Install a new inobt btree root. Caller is responsible for invalidating
510 * and freeing the old btree blocks.
513 xfs_inobt_commit_staged_btree(
514 struct xfs_btree_cur *cur,
515 struct xfs_trans *tp,
516 struct xfs_buf *agbp)
518 struct xfs_agi *agi = agbp->b_addr;
519 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
522 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
524 if (cur->bc_btnum == XFS_BTNUM_INO) {
525 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
526 agi->agi_root = cpu_to_be32(afake->af_root);
527 agi->agi_level = cpu_to_be32(afake->af_levels);
528 if (xfs_has_inobtcounts(cur->bc_mp)) {
529 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
530 fields |= XFS_AGI_IBLOCKS;
532 xfs_ialloc_log_agi(tp, agbp, fields);
533 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
535 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
536 agi->agi_free_root = cpu_to_be32(afake->af_root);
537 agi->agi_free_level = cpu_to_be32(afake->af_levels);
538 if (xfs_has_inobtcounts(cur->bc_mp)) {
539 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
540 fields |= XFS_AGI_IBLOCKS;
542 xfs_ialloc_log_agi(tp, agbp, fields);
543 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
547 /* Calculate number of records in an inode btree block. */
548 static inline unsigned int
549 xfs_inobt_block_maxrecs(
550 unsigned int blocklen,
554 return blocklen / sizeof(xfs_inobt_rec_t);
555 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
559 * Calculate number of records in an inobt btree block.
563 struct xfs_mount *mp,
567 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
568 return xfs_inobt_block_maxrecs(blocklen, leaf);
572 * Maximum number of inode btree records per AG. Pretend that we can fill an
573 * entire AG completely full of inodes except for the AG headers.
575 #define XFS_MAX_INODE_RECORDS \
576 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
579 /* Compute the max possible height for the inode btree. */
580 static inline unsigned int
581 xfs_inobt_maxlevels_ondisk(void)
583 unsigned int minrecs[2];
584 unsigned int blocklen;
586 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
587 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
589 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
590 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
592 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
595 /* Compute the max possible height for the free inode btree. */
596 static inline unsigned int
597 xfs_finobt_maxlevels_ondisk(void)
599 unsigned int minrecs[2];
600 unsigned int blocklen;
602 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
604 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
605 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
607 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
610 /* Compute the max possible height for either inode btree. */
612 xfs_iallocbt_maxlevels_ondisk(void)
614 return max(xfs_inobt_maxlevels_ondisk(),
615 xfs_finobt_maxlevels_ondisk());
619 * Convert the inode record holemask to an inode allocation bitmap. The inode
620 * allocation bitmap is inode granularity and specifies whether an inode is
621 * physically allocated on disk (not whether the inode is considered allocated
622 * or free by the fs).
624 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
627 xfs_inobt_irec_to_allocmask(
628 const struct xfs_inobt_rec_incore *rec)
636 * The holemask has 16-bits for a 64 inode record. Therefore each
637 * holemask bit represents multiple inodes. Create a mask of bits to set
638 * in the allocmask for each holemask bit.
640 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
643 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
644 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
645 * anything beyond the 16 holemask bits since this casts to a larger
648 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
651 * allocbitmap is the inverted holemask so every set bit represents
652 * allocated inodes. To expand from 16-bit holemask granularity to
653 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
654 * bitmap for every holemask bit.
656 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
657 while (nextbit != -1) {
658 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
660 bitmap |= (inodespbit <<
661 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
663 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
669 #if defined(DEBUG) || defined(XFS_WARN)
671 * Verify that an in-core inode record has a valid inode count.
674 xfs_inobt_rec_check_count(
675 struct xfs_mount *mp,
676 struct xfs_inobt_rec_incore *rec)
683 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
684 allocbmap = xfs_inobt_irec_to_allocmask(rec);
686 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
687 while (nextbit != -1) {
689 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
693 if (inocount != rec->ir_count)
694 return -EFSCORRUPTED;
702 struct xfs_perag *pag)
704 struct xfs_mount *mp = pag->pag_mount;
705 xfs_agblock_t agblocks = pag->block_count;
707 /* Bail out if we're uninitialized, which can happen in mkfs. */
708 if (M_IGEO(mp)->inobt_mxr[0] == 0)
712 * The log is permanently allocated, so the space it occupies will
713 * never be available for the kinds of things that would require btree
714 * expansion. We therefore can pretend the space isn't there.
716 if (xfs_ag_contains_log(mp, pag->pag_agno))
717 agblocks -= mp->m_sb.sb_logblocks;
719 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
720 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
721 XFS_INODES_PER_CHUNK);
724 /* Read AGI and create inobt cursor. */
727 struct xfs_perag *pag,
728 struct xfs_trans *tp,
730 struct xfs_btree_cur **curpp,
731 struct xfs_buf **agi_bpp)
733 struct xfs_btree_cur *cur;
736 ASSERT(*agi_bpp == NULL);
737 ASSERT(*curpp == NULL);
739 error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
743 cur = xfs_inobt_init_cursor(pag, tp, *agi_bpp, which);
749 xfs_inobt_count_blocks(
750 struct xfs_perag *pag,
751 struct xfs_trans *tp,
753 xfs_extlen_t *tree_blocks)
755 struct xfs_buf *agbp = NULL;
756 struct xfs_btree_cur *cur = NULL;
759 error = xfs_inobt_cur(pag, tp, btnum, &cur, &agbp);
763 error = xfs_btree_count_blocks(cur, tree_blocks);
764 xfs_btree_del_cursor(cur, error);
765 xfs_trans_brelse(tp, agbp);
770 /* Read finobt block count from AGI header. */
772 xfs_finobt_read_blocks(
773 struct xfs_perag *pag,
774 struct xfs_trans *tp,
775 xfs_extlen_t *tree_blocks)
777 struct xfs_buf *agbp;
781 error = xfs_ialloc_read_agi(pag, tp, &agbp);
786 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
787 xfs_trans_brelse(tp, agbp);
792 * Figure out how many blocks to reserve and how many are used by this btree.
795 xfs_finobt_calc_reserves(
796 struct xfs_perag *pag,
797 struct xfs_trans *tp,
801 xfs_extlen_t tree_len = 0;
804 if (!xfs_has_finobt(pag->pag_mount))
807 if (xfs_has_inobtcounts(pag->pag_mount))
808 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
810 error = xfs_inobt_count_blocks(pag, tp, XFS_BTNUM_FINO,
815 *ask += xfs_inobt_max_size(pag);
820 /* Calculate the inobt btree size for some records. */
822 xfs_iallocbt_calc_size(
823 struct xfs_mount *mp,
824 unsigned long long len)
826 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
830 xfs_inobt_init_cur_cache(void)
832 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
833 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
836 if (!xfs_inobt_cur_cache)
842 xfs_inobt_destroy_cur_cache(void)
844 kmem_cache_destroy(xfs_inobt_cur_cache);
845 xfs_inobt_cur_cache = NULL;