xfs: don't use BMBT btree split workers for IO completion
[platform/kernel/linux-starfive.git] / fs / xfs / libxfs / xfs_btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30
31 /*
32  * Btree magic numbers.
33  */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35         { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36           XFS_FIBT_MAGIC, 0 },
37         { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38           XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39           XFS_REFC_CRC_MAGIC }
40 };
41
42 uint32_t
43 xfs_btree_magic(
44         int                     crc,
45         xfs_btnum_t             btnum)
46 {
47         uint32_t                magic = xfs_magics[crc][btnum];
48
49         /* Ensure we asked for crc for crc-only magics. */
50         ASSERT(magic != 0);
51         return magic;
52 }
53
54 /*
55  * These sibling pointer checks are optimised for null sibling pointers. This
56  * happens a lot, and we don't need to byte swap at runtime if the sibling
57  * pointer is NULL.
58  *
59  * These are explicitly marked at inline because the cost of calling them as
60  * functions instead of inlining them is about 36 bytes extra code per call site
61  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62  * two sibling check functions reduces the compiled code size by over 300
63  * bytes.
64  */
65 static inline xfs_failaddr_t
66 xfs_btree_check_lblock_siblings(
67         struct xfs_mount        *mp,
68         struct xfs_btree_cur    *cur,
69         int                     level,
70         xfs_fsblock_t           fsb,
71         __be64                  dsibling)
72 {
73         xfs_fsblock_t           sibling;
74
75         if (dsibling == cpu_to_be64(NULLFSBLOCK))
76                 return NULL;
77
78         sibling = be64_to_cpu(dsibling);
79         if (sibling == fsb)
80                 return __this_address;
81         if (level >= 0) {
82                 if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83                         return __this_address;
84         } else {
85                 if (!xfs_verify_fsbno(mp, sibling))
86                         return __this_address;
87         }
88
89         return NULL;
90 }
91
92 static inline xfs_failaddr_t
93 xfs_btree_check_sblock_siblings(
94         struct xfs_perag        *pag,
95         struct xfs_btree_cur    *cur,
96         int                     level,
97         xfs_agblock_t           agbno,
98         __be32                  dsibling)
99 {
100         xfs_agblock_t           sibling;
101
102         if (dsibling == cpu_to_be32(NULLAGBLOCK))
103                 return NULL;
104
105         sibling = be32_to_cpu(dsibling);
106         if (sibling == agbno)
107                 return __this_address;
108         if (level >= 0) {
109                 if (!xfs_btree_check_sptr(cur, sibling, level + 1))
110                         return __this_address;
111         } else {
112                 if (!xfs_verify_agbno(pag, sibling))
113                         return __this_address;
114         }
115         return NULL;
116 }
117
118 /*
119  * Check a long btree block header.  Return the address of the failing check,
120  * or NULL if everything is ok.
121  */
122 xfs_failaddr_t
123 __xfs_btree_check_lblock(
124         struct xfs_btree_cur    *cur,
125         struct xfs_btree_block  *block,
126         int                     level,
127         struct xfs_buf          *bp)
128 {
129         struct xfs_mount        *mp = cur->bc_mp;
130         xfs_btnum_t             btnum = cur->bc_btnum;
131         int                     crc = xfs_has_crc(mp);
132         xfs_failaddr_t          fa;
133         xfs_fsblock_t           fsb = NULLFSBLOCK;
134
135         if (crc) {
136                 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
137                         return __this_address;
138                 if (block->bb_u.l.bb_blkno !=
139                     cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
140                         return __this_address;
141                 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
142                         return __this_address;
143         }
144
145         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
146                 return __this_address;
147         if (be16_to_cpu(block->bb_level) != level)
148                 return __this_address;
149         if (be16_to_cpu(block->bb_numrecs) >
150             cur->bc_ops->get_maxrecs(cur, level))
151                 return __this_address;
152
153         if (bp)
154                 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
155
156         fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
157                         block->bb_u.l.bb_leftsib);
158         if (!fa)
159                 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
160                                 block->bb_u.l.bb_rightsib);
161         return fa;
162 }
163
164 /* Check a long btree block header. */
165 static int
166 xfs_btree_check_lblock(
167         struct xfs_btree_cur    *cur,
168         struct xfs_btree_block  *block,
169         int                     level,
170         struct xfs_buf          *bp)
171 {
172         struct xfs_mount        *mp = cur->bc_mp;
173         xfs_failaddr_t          fa;
174
175         fa = __xfs_btree_check_lblock(cur, block, level, bp);
176         if (XFS_IS_CORRUPT(mp, fa != NULL) ||
177             XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
178                 if (bp)
179                         trace_xfs_btree_corrupt(bp, _RET_IP_);
180                 return -EFSCORRUPTED;
181         }
182         return 0;
183 }
184
185 /*
186  * Check a short btree block header.  Return the address of the failing check,
187  * or NULL if everything is ok.
188  */
189 xfs_failaddr_t
190 __xfs_btree_check_sblock(
191         struct xfs_btree_cur    *cur,
192         struct xfs_btree_block  *block,
193         int                     level,
194         struct xfs_buf          *bp)
195 {
196         struct xfs_mount        *mp = cur->bc_mp;
197         struct xfs_perag        *pag = cur->bc_ag.pag;
198         xfs_btnum_t             btnum = cur->bc_btnum;
199         int                     crc = xfs_has_crc(mp);
200         xfs_failaddr_t          fa;
201         xfs_agblock_t           agbno = NULLAGBLOCK;
202
203         if (crc) {
204                 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
205                         return __this_address;
206                 if (block->bb_u.s.bb_blkno !=
207                     cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
208                         return __this_address;
209         }
210
211         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
212                 return __this_address;
213         if (be16_to_cpu(block->bb_level) != level)
214                 return __this_address;
215         if (be16_to_cpu(block->bb_numrecs) >
216             cur->bc_ops->get_maxrecs(cur, level))
217                 return __this_address;
218
219         if (bp)
220                 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
221
222         fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
223                         block->bb_u.s.bb_leftsib);
224         if (!fa)
225                 fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
226                                 block->bb_u.s.bb_rightsib);
227         return fa;
228 }
229
230 /* Check a short btree block header. */
231 STATIC int
232 xfs_btree_check_sblock(
233         struct xfs_btree_cur    *cur,
234         struct xfs_btree_block  *block,
235         int                     level,
236         struct xfs_buf          *bp)
237 {
238         struct xfs_mount        *mp = cur->bc_mp;
239         xfs_failaddr_t          fa;
240
241         fa = __xfs_btree_check_sblock(cur, block, level, bp);
242         if (XFS_IS_CORRUPT(mp, fa != NULL) ||
243             XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
244                 if (bp)
245                         trace_xfs_btree_corrupt(bp, _RET_IP_);
246                 return -EFSCORRUPTED;
247         }
248         return 0;
249 }
250
251 /*
252  * Debug routine: check that block header is ok.
253  */
254 int
255 xfs_btree_check_block(
256         struct xfs_btree_cur    *cur,   /* btree cursor */
257         struct xfs_btree_block  *block, /* generic btree block pointer */
258         int                     level,  /* level of the btree block */
259         struct xfs_buf          *bp)    /* buffer containing block, if any */
260 {
261         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
262                 return xfs_btree_check_lblock(cur, block, level, bp);
263         else
264                 return xfs_btree_check_sblock(cur, block, level, bp);
265 }
266
267 /* Check that this long pointer is valid and points within the fs. */
268 bool
269 xfs_btree_check_lptr(
270         struct xfs_btree_cur    *cur,
271         xfs_fsblock_t           fsbno,
272         int                     level)
273 {
274         if (level <= 0)
275                 return false;
276         return xfs_verify_fsbno(cur->bc_mp, fsbno);
277 }
278
279 /* Check that this short pointer is valid and points within the AG. */
280 bool
281 xfs_btree_check_sptr(
282         struct xfs_btree_cur    *cur,
283         xfs_agblock_t           agbno,
284         int                     level)
285 {
286         if (level <= 0)
287                 return false;
288         return xfs_verify_agbno(cur->bc_ag.pag, agbno);
289 }
290
291 /*
292  * Check that a given (indexed) btree pointer at a certain level of a
293  * btree is valid and doesn't point past where it should.
294  */
295 static int
296 xfs_btree_check_ptr(
297         struct xfs_btree_cur            *cur,
298         const union xfs_btree_ptr       *ptr,
299         int                             index,
300         int                             level)
301 {
302         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
303                 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
304                                 level))
305                         return 0;
306                 xfs_err(cur->bc_mp,
307 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
308                                 cur->bc_ino.ip->i_ino,
309                                 cur->bc_ino.whichfork, cur->bc_btnum,
310                                 level, index);
311         } else {
312                 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
313                                 level))
314                         return 0;
315                 xfs_err(cur->bc_mp,
316 "AG %u: Corrupt btree %d pointer at level %d index %d.",
317                                 cur->bc_ag.pag->pag_agno, cur->bc_btnum,
318                                 level, index);
319         }
320
321         return -EFSCORRUPTED;
322 }
323
324 #ifdef DEBUG
325 # define xfs_btree_debug_check_ptr      xfs_btree_check_ptr
326 #else
327 # define xfs_btree_debug_check_ptr(...) (0)
328 #endif
329
330 /*
331  * Calculate CRC on the whole btree block and stuff it into the
332  * long-form btree header.
333  *
334  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
335  * it into the buffer so recovery knows what the last modification was that made
336  * it to disk.
337  */
338 void
339 xfs_btree_lblock_calc_crc(
340         struct xfs_buf          *bp)
341 {
342         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
343         struct xfs_buf_log_item *bip = bp->b_log_item;
344
345         if (!xfs_has_crc(bp->b_mount))
346                 return;
347         if (bip)
348                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
349         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
350 }
351
352 bool
353 xfs_btree_lblock_verify_crc(
354         struct xfs_buf          *bp)
355 {
356         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
357         struct xfs_mount        *mp = bp->b_mount;
358
359         if (xfs_has_crc(mp)) {
360                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
361                         return false;
362                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
363         }
364
365         return true;
366 }
367
368 /*
369  * Calculate CRC on the whole btree block and stuff it into the
370  * short-form btree header.
371  *
372  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
373  * it into the buffer so recovery knows what the last modification was that made
374  * it to disk.
375  */
376 void
377 xfs_btree_sblock_calc_crc(
378         struct xfs_buf          *bp)
379 {
380         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
381         struct xfs_buf_log_item *bip = bp->b_log_item;
382
383         if (!xfs_has_crc(bp->b_mount))
384                 return;
385         if (bip)
386                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
387         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
388 }
389
390 bool
391 xfs_btree_sblock_verify_crc(
392         struct xfs_buf          *bp)
393 {
394         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
395         struct xfs_mount        *mp = bp->b_mount;
396
397         if (xfs_has_crc(mp)) {
398                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
399                         return false;
400                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
401         }
402
403         return true;
404 }
405
406 static int
407 xfs_btree_free_block(
408         struct xfs_btree_cur    *cur,
409         struct xfs_buf          *bp)
410 {
411         int                     error;
412
413         error = cur->bc_ops->free_block(cur, bp);
414         if (!error) {
415                 xfs_trans_binval(cur->bc_tp, bp);
416                 XFS_BTREE_STATS_INC(cur, free);
417         }
418         return error;
419 }
420
421 /*
422  * Delete the btree cursor.
423  */
424 void
425 xfs_btree_del_cursor(
426         struct xfs_btree_cur    *cur,           /* btree cursor */
427         int                     error)          /* del because of error */
428 {
429         int                     i;              /* btree level */
430
431         /*
432          * Clear the buffer pointers and release the buffers. If we're doing
433          * this because of an error, inspect all of the entries in the bc_bufs
434          * array for buffers to be unlocked. This is because some of the btree
435          * code works from level n down to 0, and if we get an error along the
436          * way we won't have initialized all the entries down to 0.
437          */
438         for (i = 0; i < cur->bc_nlevels; i++) {
439                 if (cur->bc_levels[i].bp)
440                         xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
441                 else if (!error)
442                         break;
443         }
444
445         /*
446          * If we are doing a BMBT update, the number of unaccounted blocks
447          * allocated during this cursor life time should be zero. If it's not
448          * zero, then we should be shut down or on our way to shutdown due to
449          * cancelling a dirty transaction on error.
450          */
451         ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
452                xfs_is_shutdown(cur->bc_mp) || error != 0);
453         if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
454                 kmem_free(cur->bc_ops);
455         if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
456                 xfs_perag_put(cur->bc_ag.pag);
457         kmem_cache_free(cur->bc_cache, cur);
458 }
459
460 /*
461  * Duplicate the btree cursor.
462  * Allocate a new one, copy the record, re-get the buffers.
463  */
464 int                                     /* error */
465 xfs_btree_dup_cursor(
466         struct xfs_btree_cur *cur,              /* input cursor */
467         struct xfs_btree_cur **ncur)            /* output cursor */
468 {
469         struct xfs_buf  *bp;            /* btree block's buffer pointer */
470         int             error;          /* error return value */
471         int             i;              /* level number of btree block */
472         xfs_mount_t     *mp;            /* mount structure for filesystem */
473         struct xfs_btree_cur *new;              /* new cursor value */
474         xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
475
476         tp = cur->bc_tp;
477         mp = cur->bc_mp;
478
479         /*
480          * Allocate a new cursor like the old one.
481          */
482         new = cur->bc_ops->dup_cursor(cur);
483
484         /*
485          * Copy the record currently in the cursor.
486          */
487         new->bc_rec = cur->bc_rec;
488
489         /*
490          * For each level current, re-get the buffer and copy the ptr value.
491          */
492         for (i = 0; i < new->bc_nlevels; i++) {
493                 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
494                 new->bc_levels[i].ra = cur->bc_levels[i].ra;
495                 bp = cur->bc_levels[i].bp;
496                 if (bp) {
497                         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
498                                                    xfs_buf_daddr(bp), mp->m_bsize,
499                                                    0, &bp,
500                                                    cur->bc_ops->buf_ops);
501                         if (error) {
502                                 xfs_btree_del_cursor(new, error);
503                                 *ncur = NULL;
504                                 return error;
505                         }
506                 }
507                 new->bc_levels[i].bp = bp;
508         }
509         *ncur = new;
510         return 0;
511 }
512
513 /*
514  * XFS btree block layout and addressing:
515  *
516  * There are two types of blocks in the btree: leaf and non-leaf blocks.
517  *
518  * The leaf record start with a header then followed by records containing
519  * the values.  A non-leaf block also starts with the same header, and
520  * then first contains lookup keys followed by an equal number of pointers
521  * to the btree blocks at the previous level.
522  *
523  *              +--------+-------+-------+-------+-------+-------+-------+
524  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
525  *              +--------+-------+-------+-------+-------+-------+-------+
526  *
527  *              +--------+-------+-------+-------+-------+-------+-------+
528  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
529  *              +--------+-------+-------+-------+-------+-------+-------+
530  *
531  * The header is called struct xfs_btree_block for reasons better left unknown
532  * and comes in different versions for short (32bit) and long (64bit) block
533  * pointers.  The record and key structures are defined by the btree instances
534  * and opaque to the btree core.  The block pointers are simple disk endian
535  * integers, available in a short (32bit) and long (64bit) variant.
536  *
537  * The helpers below calculate the offset of a given record, key or pointer
538  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
539  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
540  * inside the btree block is done using indices starting at one, not zero!
541  *
542  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
543  * overlapping intervals.  In such a tree, records are still sorted lowest to
544  * highest and indexed by the smallest key value that refers to the record.
545  * However, nodes are different: each pointer has two associated keys -- one
546  * indexing the lowest key available in the block(s) below (the same behavior
547  * as the key in a regular btree) and another indexing the highest key
548  * available in the block(s) below.  Because records are /not/ sorted by the
549  * highest key, all leaf block updates require us to compute the highest key
550  * that matches any record in the leaf and to recursively update the high keys
551  * in the nodes going further up in the tree, if necessary.  Nodes look like
552  * this:
553  *
554  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
555  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
556  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
557  *
558  * To perform an interval query on an overlapped tree, perform the usual
559  * depth-first search and use the low and high keys to decide if we can skip
560  * that particular node.  If a leaf node is reached, return the records that
561  * intersect the interval.  Note that an interval query may return numerous
562  * entries.  For a non-overlapped tree, simply search for the record associated
563  * with the lowest key and iterate forward until a non-matching record is
564  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
565  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
566  * more detail.
567  *
568  * Why do we care about overlapping intervals?  Let's say you have a bunch of
569  * reverse mapping records on a reflink filesystem:
570  *
571  * 1: +- file A startblock B offset C length D -----------+
572  * 2:      +- file E startblock F offset G length H --------------+
573  * 3:      +- file I startblock F offset J length K --+
574  * 4:                                                        +- file L... --+
575  *
576  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
577  * we'd simply increment the length of record 1.  But how do we find the record
578  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
579  * record 3 because the keys are ordered first by startblock.  An interval
580  * query would return records 1 and 2 because they both overlap (B+D-1), and
581  * from that we can pick out record 1 as the appropriate left neighbor.
582  *
583  * In the non-overlapped case you can do a LE lookup and decrement the cursor
584  * because a record's interval must end before the next record.
585  */
586
587 /*
588  * Return size of the btree block header for this btree instance.
589  */
590 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
591 {
592         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
593                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
594                         return XFS_BTREE_LBLOCK_CRC_LEN;
595                 return XFS_BTREE_LBLOCK_LEN;
596         }
597         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
598                 return XFS_BTREE_SBLOCK_CRC_LEN;
599         return XFS_BTREE_SBLOCK_LEN;
600 }
601
602 /*
603  * Return size of btree block pointers for this btree instance.
604  */
605 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
606 {
607         return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
608                 sizeof(__be64) : sizeof(__be32);
609 }
610
611 /*
612  * Calculate offset of the n-th record in a btree block.
613  */
614 STATIC size_t
615 xfs_btree_rec_offset(
616         struct xfs_btree_cur    *cur,
617         int                     n)
618 {
619         return xfs_btree_block_len(cur) +
620                 (n - 1) * cur->bc_ops->rec_len;
621 }
622
623 /*
624  * Calculate offset of the n-th key in a btree block.
625  */
626 STATIC size_t
627 xfs_btree_key_offset(
628         struct xfs_btree_cur    *cur,
629         int                     n)
630 {
631         return xfs_btree_block_len(cur) +
632                 (n - 1) * cur->bc_ops->key_len;
633 }
634
635 /*
636  * Calculate offset of the n-th high key in a btree block.
637  */
638 STATIC size_t
639 xfs_btree_high_key_offset(
640         struct xfs_btree_cur    *cur,
641         int                     n)
642 {
643         return xfs_btree_block_len(cur) +
644                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
645 }
646
647 /*
648  * Calculate offset of the n-th block pointer in a btree block.
649  */
650 STATIC size_t
651 xfs_btree_ptr_offset(
652         struct xfs_btree_cur    *cur,
653         int                     n,
654         int                     level)
655 {
656         return xfs_btree_block_len(cur) +
657                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
658                 (n - 1) * xfs_btree_ptr_len(cur);
659 }
660
661 /*
662  * Return a pointer to the n-th record in the btree block.
663  */
664 union xfs_btree_rec *
665 xfs_btree_rec_addr(
666         struct xfs_btree_cur    *cur,
667         int                     n,
668         struct xfs_btree_block  *block)
669 {
670         return (union xfs_btree_rec *)
671                 ((char *)block + xfs_btree_rec_offset(cur, n));
672 }
673
674 /*
675  * Return a pointer to the n-th key in the btree block.
676  */
677 union xfs_btree_key *
678 xfs_btree_key_addr(
679         struct xfs_btree_cur    *cur,
680         int                     n,
681         struct xfs_btree_block  *block)
682 {
683         return (union xfs_btree_key *)
684                 ((char *)block + xfs_btree_key_offset(cur, n));
685 }
686
687 /*
688  * Return a pointer to the n-th high key in the btree block.
689  */
690 union xfs_btree_key *
691 xfs_btree_high_key_addr(
692         struct xfs_btree_cur    *cur,
693         int                     n,
694         struct xfs_btree_block  *block)
695 {
696         return (union xfs_btree_key *)
697                 ((char *)block + xfs_btree_high_key_offset(cur, n));
698 }
699
700 /*
701  * Return a pointer to the n-th block pointer in the btree block.
702  */
703 union xfs_btree_ptr *
704 xfs_btree_ptr_addr(
705         struct xfs_btree_cur    *cur,
706         int                     n,
707         struct xfs_btree_block  *block)
708 {
709         int                     level = xfs_btree_get_level(block);
710
711         ASSERT(block->bb_level != 0);
712
713         return (union xfs_btree_ptr *)
714                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
715 }
716
717 struct xfs_ifork *
718 xfs_btree_ifork_ptr(
719         struct xfs_btree_cur    *cur)
720 {
721         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
722
723         if (cur->bc_flags & XFS_BTREE_STAGING)
724                 return cur->bc_ino.ifake->if_fork;
725         return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
726 }
727
728 /*
729  * Get the root block which is stored in the inode.
730  *
731  * For now this btree implementation assumes the btree root is always
732  * stored in the if_broot field of an inode fork.
733  */
734 STATIC struct xfs_btree_block *
735 xfs_btree_get_iroot(
736         struct xfs_btree_cur    *cur)
737 {
738         struct xfs_ifork        *ifp = xfs_btree_ifork_ptr(cur);
739
740         return (struct xfs_btree_block *)ifp->if_broot;
741 }
742
743 /*
744  * Retrieve the block pointer from the cursor at the given level.
745  * This may be an inode btree root or from a buffer.
746  */
747 struct xfs_btree_block *                /* generic btree block pointer */
748 xfs_btree_get_block(
749         struct xfs_btree_cur    *cur,   /* btree cursor */
750         int                     level,  /* level in btree */
751         struct xfs_buf          **bpp)  /* buffer containing the block */
752 {
753         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
754             (level == cur->bc_nlevels - 1)) {
755                 *bpp = NULL;
756                 return xfs_btree_get_iroot(cur);
757         }
758
759         *bpp = cur->bc_levels[level].bp;
760         return XFS_BUF_TO_BLOCK(*bpp);
761 }
762
763 /*
764  * Change the cursor to point to the first record at the given level.
765  * Other levels are unaffected.
766  */
767 STATIC int                              /* success=1, failure=0 */
768 xfs_btree_firstrec(
769         struct xfs_btree_cur    *cur,   /* btree cursor */
770         int                     level)  /* level to change */
771 {
772         struct xfs_btree_block  *block; /* generic btree block pointer */
773         struct xfs_buf          *bp;    /* buffer containing block */
774
775         /*
776          * Get the block pointer for this level.
777          */
778         block = xfs_btree_get_block(cur, level, &bp);
779         if (xfs_btree_check_block(cur, block, level, bp))
780                 return 0;
781         /*
782          * It's empty, there is no such record.
783          */
784         if (!block->bb_numrecs)
785                 return 0;
786         /*
787          * Set the ptr value to 1, that's the first record/key.
788          */
789         cur->bc_levels[level].ptr = 1;
790         return 1;
791 }
792
793 /*
794  * Change the cursor to point to the last record in the current block
795  * at the given level.  Other levels are unaffected.
796  */
797 STATIC int                              /* success=1, failure=0 */
798 xfs_btree_lastrec(
799         struct xfs_btree_cur    *cur,   /* btree cursor */
800         int                     level)  /* level to change */
801 {
802         struct xfs_btree_block  *block; /* generic btree block pointer */
803         struct xfs_buf          *bp;    /* buffer containing block */
804
805         /*
806          * Get the block pointer for this level.
807          */
808         block = xfs_btree_get_block(cur, level, &bp);
809         if (xfs_btree_check_block(cur, block, level, bp))
810                 return 0;
811         /*
812          * It's empty, there is no such record.
813          */
814         if (!block->bb_numrecs)
815                 return 0;
816         /*
817          * Set the ptr value to numrecs, that's the last record/key.
818          */
819         cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
820         return 1;
821 }
822
823 /*
824  * Compute first and last byte offsets for the fields given.
825  * Interprets the offsets table, which contains struct field offsets.
826  */
827 void
828 xfs_btree_offsets(
829         uint32_t        fields,         /* bitmask of fields */
830         const short     *offsets,       /* table of field offsets */
831         int             nbits,          /* number of bits to inspect */
832         int             *first,         /* output: first byte offset */
833         int             *last)          /* output: last byte offset */
834 {
835         int             i;              /* current bit number */
836         uint32_t        imask;          /* mask for current bit number */
837
838         ASSERT(fields != 0);
839         /*
840          * Find the lowest bit, so the first byte offset.
841          */
842         for (i = 0, imask = 1u; ; i++, imask <<= 1) {
843                 if (imask & fields) {
844                         *first = offsets[i];
845                         break;
846                 }
847         }
848         /*
849          * Find the highest bit, so the last byte offset.
850          */
851         for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
852                 if (imask & fields) {
853                         *last = offsets[i + 1] - 1;
854                         break;
855                 }
856         }
857 }
858
859 /*
860  * Get a buffer for the block, return it read in.
861  * Long-form addressing.
862  */
863 int
864 xfs_btree_read_bufl(
865         struct xfs_mount        *mp,            /* file system mount point */
866         struct xfs_trans        *tp,            /* transaction pointer */
867         xfs_fsblock_t           fsbno,          /* file system block number */
868         struct xfs_buf          **bpp,          /* buffer for fsbno */
869         int                     refval,         /* ref count value for buffer */
870         const struct xfs_buf_ops *ops)
871 {
872         struct xfs_buf          *bp;            /* return value */
873         xfs_daddr_t             d;              /* real disk block address */
874         int                     error;
875
876         if (!xfs_verify_fsbno(mp, fsbno))
877                 return -EFSCORRUPTED;
878         d = XFS_FSB_TO_DADDR(mp, fsbno);
879         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
880                                    mp->m_bsize, 0, &bp, ops);
881         if (error)
882                 return error;
883         if (bp)
884                 xfs_buf_set_ref(bp, refval);
885         *bpp = bp;
886         return 0;
887 }
888
889 /*
890  * Read-ahead the block, don't wait for it, don't return a buffer.
891  * Long-form addressing.
892  */
893 /* ARGSUSED */
894 void
895 xfs_btree_reada_bufl(
896         struct xfs_mount        *mp,            /* file system mount point */
897         xfs_fsblock_t           fsbno,          /* file system block number */
898         xfs_extlen_t            count,          /* count of filesystem blocks */
899         const struct xfs_buf_ops *ops)
900 {
901         xfs_daddr_t             d;
902
903         ASSERT(fsbno != NULLFSBLOCK);
904         d = XFS_FSB_TO_DADDR(mp, fsbno);
905         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
906 }
907
908 /*
909  * Read-ahead the block, don't wait for it, don't return a buffer.
910  * Short-form addressing.
911  */
912 /* ARGSUSED */
913 void
914 xfs_btree_reada_bufs(
915         struct xfs_mount        *mp,            /* file system mount point */
916         xfs_agnumber_t          agno,           /* allocation group number */
917         xfs_agblock_t           agbno,          /* allocation group block number */
918         xfs_extlen_t            count,          /* count of filesystem blocks */
919         const struct xfs_buf_ops *ops)
920 {
921         xfs_daddr_t             d;
922
923         ASSERT(agno != NULLAGNUMBER);
924         ASSERT(agbno != NULLAGBLOCK);
925         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
926         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
927 }
928
929 STATIC int
930 xfs_btree_readahead_lblock(
931         struct xfs_btree_cur    *cur,
932         int                     lr,
933         struct xfs_btree_block  *block)
934 {
935         int                     rval = 0;
936         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
937         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
938
939         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
940                 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
941                                      cur->bc_ops->buf_ops);
942                 rval++;
943         }
944
945         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
946                 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
947                                      cur->bc_ops->buf_ops);
948                 rval++;
949         }
950
951         return rval;
952 }
953
954 STATIC int
955 xfs_btree_readahead_sblock(
956         struct xfs_btree_cur    *cur,
957         int                     lr,
958         struct xfs_btree_block *block)
959 {
960         int                     rval = 0;
961         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
962         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
963
964
965         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
966                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
967                                      left, 1, cur->bc_ops->buf_ops);
968                 rval++;
969         }
970
971         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
972                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
973                                      right, 1, cur->bc_ops->buf_ops);
974                 rval++;
975         }
976
977         return rval;
978 }
979
980 /*
981  * Read-ahead btree blocks, at the given level.
982  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
983  */
984 STATIC int
985 xfs_btree_readahead(
986         struct xfs_btree_cur    *cur,           /* btree cursor */
987         int                     lev,            /* level in btree */
988         int                     lr)             /* left/right bits */
989 {
990         struct xfs_btree_block  *block;
991
992         /*
993          * No readahead needed if we are at the root level and the
994          * btree root is stored in the inode.
995          */
996         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
997             (lev == cur->bc_nlevels - 1))
998                 return 0;
999
1000         if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001                 return 0;
1002
1003         cur->bc_levels[lev].ra |= lr;
1004         block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005
1006         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007                 return xfs_btree_readahead_lblock(cur, lr, block);
1008         return xfs_btree_readahead_sblock(cur, lr, block);
1009 }
1010
1011 STATIC int
1012 xfs_btree_ptr_to_daddr(
1013         struct xfs_btree_cur            *cur,
1014         const union xfs_btree_ptr       *ptr,
1015         xfs_daddr_t                     *daddr)
1016 {
1017         xfs_fsblock_t           fsbno;
1018         xfs_agblock_t           agbno;
1019         int                     error;
1020
1021         error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022         if (error)
1023                 return error;
1024
1025         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026                 fsbno = be64_to_cpu(ptr->l);
1027                 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028         } else {
1029                 agbno = be32_to_cpu(ptr->s);
1030                 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031                                 agbno);
1032         }
1033
1034         return 0;
1035 }
1036
1037 /*
1038  * Readahead @count btree blocks at the given @ptr location.
1039  *
1040  * We don't need to care about long or short form btrees here as we have a
1041  * method of converting the ptr directly to a daddr available to us.
1042  */
1043 STATIC void
1044 xfs_btree_readahead_ptr(
1045         struct xfs_btree_cur    *cur,
1046         union xfs_btree_ptr     *ptr,
1047         xfs_extlen_t            count)
1048 {
1049         xfs_daddr_t             daddr;
1050
1051         if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052                 return;
1053         xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054                           cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1055 }
1056
1057 /*
1058  * Set the buffer for level "lev" in the cursor to bp, releasing
1059  * any previous buffer.
1060  */
1061 STATIC void
1062 xfs_btree_setbuf(
1063         struct xfs_btree_cur    *cur,   /* btree cursor */
1064         int                     lev,    /* level in btree */
1065         struct xfs_buf          *bp)    /* new buffer to set */
1066 {
1067         struct xfs_btree_block  *b;     /* btree block */
1068
1069         if (cur->bc_levels[lev].bp)
1070                 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071         cur->bc_levels[lev].bp = bp;
1072         cur->bc_levels[lev].ra = 0;
1073
1074         b = XFS_BUF_TO_BLOCK(bp);
1075         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077                         cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079                         cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080         } else {
1081                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082                         cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084                         cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085         }
1086 }
1087
1088 bool
1089 xfs_btree_ptr_is_null(
1090         struct xfs_btree_cur            *cur,
1091         const union xfs_btree_ptr       *ptr)
1092 {
1093         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095         else
1096                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097 }
1098
1099 void
1100 xfs_btree_set_ptr_null(
1101         struct xfs_btree_cur    *cur,
1102         union xfs_btree_ptr     *ptr)
1103 {
1104         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1106         else
1107                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1108 }
1109
1110 /*
1111  * Get/set/init sibling pointers
1112  */
1113 void
1114 xfs_btree_get_sibling(
1115         struct xfs_btree_cur    *cur,
1116         struct xfs_btree_block  *block,
1117         union xfs_btree_ptr     *ptr,
1118         int                     lr)
1119 {
1120         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121
1122         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123                 if (lr == XFS_BB_RIGHTSIB)
1124                         ptr->l = block->bb_u.l.bb_rightsib;
1125                 else
1126                         ptr->l = block->bb_u.l.bb_leftsib;
1127         } else {
1128                 if (lr == XFS_BB_RIGHTSIB)
1129                         ptr->s = block->bb_u.s.bb_rightsib;
1130                 else
1131                         ptr->s = block->bb_u.s.bb_leftsib;
1132         }
1133 }
1134
1135 void
1136 xfs_btree_set_sibling(
1137         struct xfs_btree_cur            *cur,
1138         struct xfs_btree_block          *block,
1139         const union xfs_btree_ptr       *ptr,
1140         int                             lr)
1141 {
1142         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143
1144         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145                 if (lr == XFS_BB_RIGHTSIB)
1146                         block->bb_u.l.bb_rightsib = ptr->l;
1147                 else
1148                         block->bb_u.l.bb_leftsib = ptr->l;
1149         } else {
1150                 if (lr == XFS_BB_RIGHTSIB)
1151                         block->bb_u.s.bb_rightsib = ptr->s;
1152                 else
1153                         block->bb_u.s.bb_leftsib = ptr->s;
1154         }
1155 }
1156
1157 void
1158 xfs_btree_init_block_int(
1159         struct xfs_mount        *mp,
1160         struct xfs_btree_block  *buf,
1161         xfs_daddr_t             blkno,
1162         xfs_btnum_t             btnum,
1163         __u16                   level,
1164         __u16                   numrecs,
1165         __u64                   owner,
1166         unsigned int            flags)
1167 {
1168         int                     crc = xfs_has_crc(mp);
1169         __u32                   magic = xfs_btree_magic(crc, btnum);
1170
1171         buf->bb_magic = cpu_to_be32(magic);
1172         buf->bb_level = cpu_to_be16(level);
1173         buf->bb_numrecs = cpu_to_be16(numrecs);
1174
1175         if (flags & XFS_BTREE_LONG_PTRS) {
1176                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178                 if (crc) {
1179                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182                         buf->bb_u.l.bb_pad = 0;
1183                         buf->bb_u.l.bb_lsn = 0;
1184                 }
1185         } else {
1186                 /* owner is a 32 bit value on short blocks */
1187                 __u32 __owner = (__u32)owner;
1188
1189                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191                 if (crc) {
1192                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193                         buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1194                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195                         buf->bb_u.s.bb_lsn = 0;
1196                 }
1197         }
1198 }
1199
1200 void
1201 xfs_btree_init_block(
1202         struct xfs_mount *mp,
1203         struct xfs_buf  *bp,
1204         xfs_btnum_t     btnum,
1205         __u16           level,
1206         __u16           numrecs,
1207         __u64           owner)
1208 {
1209         xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210                                  btnum, level, numrecs, owner, 0);
1211 }
1212
1213 void
1214 xfs_btree_init_block_cur(
1215         struct xfs_btree_cur    *cur,
1216         struct xfs_buf          *bp,
1217         int                     level,
1218         int                     numrecs)
1219 {
1220         __u64                   owner;
1221
1222         /*
1223          * we can pull the owner from the cursor right now as the different
1224          * owners align directly with the pointer size of the btree. This may
1225          * change in future, but is safe for current users of the generic btree
1226          * code.
1227          */
1228         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229                 owner = cur->bc_ino.ip->i_ino;
1230         else
1231                 owner = cur->bc_ag.pag->pag_agno;
1232
1233         xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234                                 xfs_buf_daddr(bp), cur->bc_btnum, level,
1235                                 numrecs, owner, cur->bc_flags);
1236 }
1237
1238 /*
1239  * Return true if ptr is the last record in the btree and
1240  * we need to track updates to this record.  The decision
1241  * will be further refined in the update_lastrec method.
1242  */
1243 STATIC int
1244 xfs_btree_is_lastrec(
1245         struct xfs_btree_cur    *cur,
1246         struct xfs_btree_block  *block,
1247         int                     level)
1248 {
1249         union xfs_btree_ptr     ptr;
1250
1251         if (level > 0)
1252                 return 0;
1253         if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254                 return 0;
1255
1256         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257         if (!xfs_btree_ptr_is_null(cur, &ptr))
1258                 return 0;
1259         return 1;
1260 }
1261
1262 STATIC void
1263 xfs_btree_buf_to_ptr(
1264         struct xfs_btree_cur    *cur,
1265         struct xfs_buf          *bp,
1266         union xfs_btree_ptr     *ptr)
1267 {
1268         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270                                         xfs_buf_daddr(bp)));
1271         else {
1272                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273                                         xfs_buf_daddr(bp)));
1274         }
1275 }
1276
1277 STATIC void
1278 xfs_btree_set_refs(
1279         struct xfs_btree_cur    *cur,
1280         struct xfs_buf          *bp)
1281 {
1282         switch (cur->bc_btnum) {
1283         case XFS_BTNUM_BNO:
1284         case XFS_BTNUM_CNT:
1285                 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286                 break;
1287         case XFS_BTNUM_INO:
1288         case XFS_BTNUM_FINO:
1289                 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290                 break;
1291         case XFS_BTNUM_BMAP:
1292                 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293                 break;
1294         case XFS_BTNUM_RMAP:
1295                 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296                 break;
1297         case XFS_BTNUM_REFC:
1298                 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299                 break;
1300         default:
1301                 ASSERT(0);
1302         }
1303 }
1304
1305 int
1306 xfs_btree_get_buf_block(
1307         struct xfs_btree_cur            *cur,
1308         const union xfs_btree_ptr       *ptr,
1309         struct xfs_btree_block          **block,
1310         struct xfs_buf                  **bpp)
1311 {
1312         struct xfs_mount        *mp = cur->bc_mp;
1313         xfs_daddr_t             d;
1314         int                     error;
1315
1316         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317         if (error)
1318                 return error;
1319         error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320                         0, bpp);
1321         if (error)
1322                 return error;
1323
1324         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1325         *block = XFS_BUF_TO_BLOCK(*bpp);
1326         return 0;
1327 }
1328
1329 /*
1330  * Read in the buffer at the given ptr and return the buffer and
1331  * the block pointer within the buffer.
1332  */
1333 STATIC int
1334 xfs_btree_read_buf_block(
1335         struct xfs_btree_cur            *cur,
1336         const union xfs_btree_ptr       *ptr,
1337         int                             flags,
1338         struct xfs_btree_block          **block,
1339         struct xfs_buf                  **bpp)
1340 {
1341         struct xfs_mount        *mp = cur->bc_mp;
1342         xfs_daddr_t             d;
1343         int                     error;
1344
1345         /* need to sort out how callers deal with failures first */
1346         ASSERT(!(flags & XBF_TRYLOCK));
1347
1348         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349         if (error)
1350                 return error;
1351         error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352                                    mp->m_bsize, flags, bpp,
1353                                    cur->bc_ops->buf_ops);
1354         if (error)
1355                 return error;
1356
1357         xfs_btree_set_refs(cur, *bpp);
1358         *block = XFS_BUF_TO_BLOCK(*bpp);
1359         return 0;
1360 }
1361
1362 /*
1363  * Copy keys from one btree block to another.
1364  */
1365 void
1366 xfs_btree_copy_keys(
1367         struct xfs_btree_cur            *cur,
1368         union xfs_btree_key             *dst_key,
1369         const union xfs_btree_key       *src_key,
1370         int                             numkeys)
1371 {
1372         ASSERT(numkeys >= 0);
1373         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374 }
1375
1376 /*
1377  * Copy records from one btree block to another.
1378  */
1379 STATIC void
1380 xfs_btree_copy_recs(
1381         struct xfs_btree_cur    *cur,
1382         union xfs_btree_rec     *dst_rec,
1383         union xfs_btree_rec     *src_rec,
1384         int                     numrecs)
1385 {
1386         ASSERT(numrecs >= 0);
1387         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388 }
1389
1390 /*
1391  * Copy block pointers from one btree block to another.
1392  */
1393 void
1394 xfs_btree_copy_ptrs(
1395         struct xfs_btree_cur    *cur,
1396         union xfs_btree_ptr     *dst_ptr,
1397         const union xfs_btree_ptr *src_ptr,
1398         int                     numptrs)
1399 {
1400         ASSERT(numptrs >= 0);
1401         memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402 }
1403
1404 /*
1405  * Shift keys one index left/right inside a single btree block.
1406  */
1407 STATIC void
1408 xfs_btree_shift_keys(
1409         struct xfs_btree_cur    *cur,
1410         union xfs_btree_key     *key,
1411         int                     dir,
1412         int                     numkeys)
1413 {
1414         char                    *dst_key;
1415
1416         ASSERT(numkeys >= 0);
1417         ASSERT(dir == 1 || dir == -1);
1418
1419         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421 }
1422
1423 /*
1424  * Shift records one index left/right inside a single btree block.
1425  */
1426 STATIC void
1427 xfs_btree_shift_recs(
1428         struct xfs_btree_cur    *cur,
1429         union xfs_btree_rec     *rec,
1430         int                     dir,
1431         int                     numrecs)
1432 {
1433         char                    *dst_rec;
1434
1435         ASSERT(numrecs >= 0);
1436         ASSERT(dir == 1 || dir == -1);
1437
1438         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440 }
1441
1442 /*
1443  * Shift block pointers one index left/right inside a single btree block.
1444  */
1445 STATIC void
1446 xfs_btree_shift_ptrs(
1447         struct xfs_btree_cur    *cur,
1448         union xfs_btree_ptr     *ptr,
1449         int                     dir,
1450         int                     numptrs)
1451 {
1452         char                    *dst_ptr;
1453
1454         ASSERT(numptrs >= 0);
1455         ASSERT(dir == 1 || dir == -1);
1456
1457         dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458         memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459 }
1460
1461 /*
1462  * Log key values from the btree block.
1463  */
1464 STATIC void
1465 xfs_btree_log_keys(
1466         struct xfs_btree_cur    *cur,
1467         struct xfs_buf          *bp,
1468         int                     first,
1469         int                     last)
1470 {
1471
1472         if (bp) {
1473                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474                 xfs_trans_log_buf(cur->bc_tp, bp,
1475                                   xfs_btree_key_offset(cur, first),
1476                                   xfs_btree_key_offset(cur, last + 1) - 1);
1477         } else {
1478                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479                                 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480         }
1481 }
1482
1483 /*
1484  * Log record values from the btree block.
1485  */
1486 void
1487 xfs_btree_log_recs(
1488         struct xfs_btree_cur    *cur,
1489         struct xfs_buf          *bp,
1490         int                     first,
1491         int                     last)
1492 {
1493
1494         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495         xfs_trans_log_buf(cur->bc_tp, bp,
1496                           xfs_btree_rec_offset(cur, first),
1497                           xfs_btree_rec_offset(cur, last + 1) - 1);
1498
1499 }
1500
1501 /*
1502  * Log block pointer fields from a btree block (nonleaf).
1503  */
1504 STATIC void
1505 xfs_btree_log_ptrs(
1506         struct xfs_btree_cur    *cur,   /* btree cursor */
1507         struct xfs_buf          *bp,    /* buffer containing btree block */
1508         int                     first,  /* index of first pointer to log */
1509         int                     last)   /* index of last pointer to log */
1510 {
1511
1512         if (bp) {
1513                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1514                 int                     level = xfs_btree_get_level(block);
1515
1516                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517                 xfs_trans_log_buf(cur->bc_tp, bp,
1518                                 xfs_btree_ptr_offset(cur, first, level),
1519                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520         } else {
1521                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522                         xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523         }
1524
1525 }
1526
1527 /*
1528  * Log fields from a btree block header.
1529  */
1530 void
1531 xfs_btree_log_block(
1532         struct xfs_btree_cur    *cur,   /* btree cursor */
1533         struct xfs_buf          *bp,    /* buffer containing btree block */
1534         uint32_t                fields) /* mask of fields: XFS_BB_... */
1535 {
1536         int                     first;  /* first byte offset logged */
1537         int                     last;   /* last byte offset logged */
1538         static const short      soffsets[] = {  /* table of offsets (short) */
1539                 offsetof(struct xfs_btree_block, bb_magic),
1540                 offsetof(struct xfs_btree_block, bb_level),
1541                 offsetof(struct xfs_btree_block, bb_numrecs),
1542                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549                 XFS_BTREE_SBLOCK_CRC_LEN
1550         };
1551         static const short      loffsets[] = {  /* table of offsets (long) */
1552                 offsetof(struct xfs_btree_block, bb_magic),
1553                 offsetof(struct xfs_btree_block, bb_level),
1554                 offsetof(struct xfs_btree_block, bb_numrecs),
1555                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563                 XFS_BTREE_LBLOCK_CRC_LEN
1564         };
1565
1566         if (bp) {
1567                 int nbits;
1568
1569                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570                         /*
1571                          * We don't log the CRC when updating a btree
1572                          * block but instead recreate it during log
1573                          * recovery.  As the log buffers have checksums
1574                          * of their own this is safe and avoids logging a crc
1575                          * update in a lot of places.
1576                          */
1577                         if (fields == XFS_BB_ALL_BITS)
1578                                 fields = XFS_BB_ALL_BITS_CRC;
1579                         nbits = XFS_BB_NUM_BITS_CRC;
1580                 } else {
1581                         nbits = XFS_BB_NUM_BITS;
1582                 }
1583                 xfs_btree_offsets(fields,
1584                                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585                                         loffsets : soffsets,
1586                                   nbits, &first, &last);
1587                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589         } else {
1590                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591                         xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592         }
1593 }
1594
1595 /*
1596  * Increment cursor by one record at the level.
1597  * For nonzero levels the leaf-ward information is untouched.
1598  */
1599 int                                             /* error */
1600 xfs_btree_increment(
1601         struct xfs_btree_cur    *cur,
1602         int                     level,
1603         int                     *stat)          /* success/failure */
1604 {
1605         struct xfs_btree_block  *block;
1606         union xfs_btree_ptr     ptr;
1607         struct xfs_buf          *bp;
1608         int                     error;          /* error return value */
1609         int                     lev;
1610
1611         ASSERT(level < cur->bc_nlevels);
1612
1613         /* Read-ahead to the right at this level. */
1614         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615
1616         /* Get a pointer to the btree block. */
1617         block = xfs_btree_get_block(cur, level, &bp);
1618
1619 #ifdef DEBUG
1620         error = xfs_btree_check_block(cur, block, level, bp);
1621         if (error)
1622                 goto error0;
1623 #endif
1624
1625         /* We're done if we remain in the block after the increment. */
1626         if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627                 goto out1;
1628
1629         /* Fail if we just went off the right edge of the tree. */
1630         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631         if (xfs_btree_ptr_is_null(cur, &ptr))
1632                 goto out0;
1633
1634         XFS_BTREE_STATS_INC(cur, increment);
1635
1636         /*
1637          * March up the tree incrementing pointers.
1638          * Stop when we don't go off the right edge of a block.
1639          */
1640         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641                 block = xfs_btree_get_block(cur, lev, &bp);
1642
1643 #ifdef DEBUG
1644                 error = xfs_btree_check_block(cur, block, lev, bp);
1645                 if (error)
1646                         goto error0;
1647 #endif
1648
1649                 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650                         break;
1651
1652                 /* Read-ahead the right block for the next loop. */
1653                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654         }
1655
1656         /*
1657          * If we went off the root then we are either seriously
1658          * confused or have the tree root in an inode.
1659          */
1660         if (lev == cur->bc_nlevels) {
1661                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662                         goto out0;
1663                 ASSERT(0);
1664                 error = -EFSCORRUPTED;
1665                 goto error0;
1666         }
1667         ASSERT(lev < cur->bc_nlevels);
1668
1669         /*
1670          * Now walk back down the tree, fixing up the cursor's buffer
1671          * pointers and key numbers.
1672          */
1673         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674                 union xfs_btree_ptr     *ptrp;
1675
1676                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677                 --lev;
1678                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679                 if (error)
1680                         goto error0;
1681
1682                 xfs_btree_setbuf(cur, lev, bp);
1683                 cur->bc_levels[lev].ptr = 1;
1684         }
1685 out1:
1686         *stat = 1;
1687         return 0;
1688
1689 out0:
1690         *stat = 0;
1691         return 0;
1692
1693 error0:
1694         return error;
1695 }
1696
1697 /*
1698  * Decrement cursor by one record at the level.
1699  * For nonzero levels the leaf-ward information is untouched.
1700  */
1701 int                                             /* error */
1702 xfs_btree_decrement(
1703         struct xfs_btree_cur    *cur,
1704         int                     level,
1705         int                     *stat)          /* success/failure */
1706 {
1707         struct xfs_btree_block  *block;
1708         struct xfs_buf          *bp;
1709         int                     error;          /* error return value */
1710         int                     lev;
1711         union xfs_btree_ptr     ptr;
1712
1713         ASSERT(level < cur->bc_nlevels);
1714
1715         /* Read-ahead to the left at this level. */
1716         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717
1718         /* We're done if we remain in the block after the decrement. */
1719         if (--cur->bc_levels[level].ptr > 0)
1720                 goto out1;
1721
1722         /* Get a pointer to the btree block. */
1723         block = xfs_btree_get_block(cur, level, &bp);
1724
1725 #ifdef DEBUG
1726         error = xfs_btree_check_block(cur, block, level, bp);
1727         if (error)
1728                 goto error0;
1729 #endif
1730
1731         /* Fail if we just went off the left edge of the tree. */
1732         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733         if (xfs_btree_ptr_is_null(cur, &ptr))
1734                 goto out0;
1735
1736         XFS_BTREE_STATS_INC(cur, decrement);
1737
1738         /*
1739          * March up the tree decrementing pointers.
1740          * Stop when we don't go off the left edge of a block.
1741          */
1742         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743                 if (--cur->bc_levels[lev].ptr > 0)
1744                         break;
1745                 /* Read-ahead the left block for the next loop. */
1746                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747         }
1748
1749         /*
1750          * If we went off the root then we are seriously confused.
1751          * or the root of the tree is in an inode.
1752          */
1753         if (lev == cur->bc_nlevels) {
1754                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755                         goto out0;
1756                 ASSERT(0);
1757                 error = -EFSCORRUPTED;
1758                 goto error0;
1759         }
1760         ASSERT(lev < cur->bc_nlevels);
1761
1762         /*
1763          * Now walk back down the tree, fixing up the cursor's buffer
1764          * pointers and key numbers.
1765          */
1766         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767                 union xfs_btree_ptr     *ptrp;
1768
1769                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770                 --lev;
1771                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772                 if (error)
1773                         goto error0;
1774                 xfs_btree_setbuf(cur, lev, bp);
1775                 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776         }
1777 out1:
1778         *stat = 1;
1779         return 0;
1780
1781 out0:
1782         *stat = 0;
1783         return 0;
1784
1785 error0:
1786         return error;
1787 }
1788
1789 int
1790 xfs_btree_lookup_get_block(
1791         struct xfs_btree_cur            *cur,   /* btree cursor */
1792         int                             level,  /* level in the btree */
1793         const union xfs_btree_ptr       *pp,    /* ptr to btree block */
1794         struct xfs_btree_block          **blkp) /* return btree block */
1795 {
1796         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1797         xfs_daddr_t             daddr;
1798         int                     error = 0;
1799
1800         /* special case the root block if in an inode */
1801         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802             (level == cur->bc_nlevels - 1)) {
1803                 *blkp = xfs_btree_get_iroot(cur);
1804                 return 0;
1805         }
1806
1807         /*
1808          * If the old buffer at this level for the disk address we are
1809          * looking for re-use it.
1810          *
1811          * Otherwise throw it away and get a new one.
1812          */
1813         bp = cur->bc_levels[level].bp;
1814         error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815         if (error)
1816                 return error;
1817         if (bp && xfs_buf_daddr(bp) == daddr) {
1818                 *blkp = XFS_BUF_TO_BLOCK(bp);
1819                 return 0;
1820         }
1821
1822         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823         if (error)
1824                 return error;
1825
1826         /* Check the inode owner since the verifiers don't. */
1827         if (xfs_has_crc(cur->bc_mp) &&
1828             !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829             (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830             be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831                         cur->bc_ino.ip->i_ino)
1832                 goto out_bad;
1833
1834         /* Did we get the level we were looking for? */
1835         if (be16_to_cpu((*blkp)->bb_level) != level)
1836                 goto out_bad;
1837
1838         /* Check that internal nodes have at least one record. */
1839         if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840                 goto out_bad;
1841
1842         xfs_btree_setbuf(cur, level, bp);
1843         return 0;
1844
1845 out_bad:
1846         *blkp = NULL;
1847         xfs_buf_mark_corrupt(bp);
1848         xfs_trans_brelse(cur->bc_tp, bp);
1849         return -EFSCORRUPTED;
1850 }
1851
1852 /*
1853  * Get current search key.  For level 0 we don't actually have a key
1854  * structure so we make one up from the record.  For all other levels
1855  * we just return the right key.
1856  */
1857 STATIC union xfs_btree_key *
1858 xfs_lookup_get_search_key(
1859         struct xfs_btree_cur    *cur,
1860         int                     level,
1861         int                     keyno,
1862         struct xfs_btree_block  *block,
1863         union xfs_btree_key     *kp)
1864 {
1865         if (level == 0) {
1866                 cur->bc_ops->init_key_from_rec(kp,
1867                                 xfs_btree_rec_addr(cur, keyno, block));
1868                 return kp;
1869         }
1870
1871         return xfs_btree_key_addr(cur, keyno, block);
1872 }
1873
1874 /*
1875  * Lookup the record.  The cursor is made to point to it, based on dir.
1876  * stat is set to 0 if can't find any such record, 1 for success.
1877  */
1878 int                                     /* error */
1879 xfs_btree_lookup(
1880         struct xfs_btree_cur    *cur,   /* btree cursor */
1881         xfs_lookup_t            dir,    /* <=, ==, or >= */
1882         int                     *stat)  /* success/failure */
1883 {
1884         struct xfs_btree_block  *block; /* current btree block */
1885         int64_t                 diff;   /* difference for the current key */
1886         int                     error;  /* error return value */
1887         int                     keyno;  /* current key number */
1888         int                     level;  /* level in the btree */
1889         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1890         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1891
1892         XFS_BTREE_STATS_INC(cur, lookup);
1893
1894         /* No such thing as a zero-level tree. */
1895         if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1896                 return -EFSCORRUPTED;
1897
1898         block = NULL;
1899         keyno = 0;
1900
1901         /* initialise start pointer from cursor */
1902         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903         pp = &ptr;
1904
1905         /*
1906          * Iterate over each level in the btree, starting at the root.
1907          * For each level above the leaves, find the key we need, based
1908          * on the lookup record, then follow the corresponding block
1909          * pointer down to the next level.
1910          */
1911         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912                 /* Get the block we need to do the lookup on. */
1913                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914                 if (error)
1915                         goto error0;
1916
1917                 if (diff == 0) {
1918                         /*
1919                          * If we already had a key match at a higher level, we
1920                          * know we need to use the first entry in this block.
1921                          */
1922                         keyno = 1;
1923                 } else {
1924                         /* Otherwise search this block. Do a binary search. */
1925
1926                         int     high;   /* high entry number */
1927                         int     low;    /* low entry number */
1928
1929                         /* Set low and high entry numbers, 1-based. */
1930                         low = 1;
1931                         high = xfs_btree_get_numrecs(block);
1932                         if (!high) {
1933                                 /* Block is empty, must be an empty leaf. */
1934                                 if (level != 0 || cur->bc_nlevels != 1) {
1935                                         XFS_CORRUPTION_ERROR(__func__,
1936                                                         XFS_ERRLEVEL_LOW,
1937                                                         cur->bc_mp, block,
1938                                                         sizeof(*block));
1939                                         return -EFSCORRUPTED;
1940                                 }
1941
1942                                 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943                                 *stat = 0;
1944                                 return 0;
1945                         }
1946
1947                         /* Binary search the block. */
1948                         while (low <= high) {
1949                                 union xfs_btree_key     key;
1950                                 union xfs_btree_key     *kp;
1951
1952                                 XFS_BTREE_STATS_INC(cur, compare);
1953
1954                                 /* keyno is average of low and high. */
1955                                 keyno = (low + high) >> 1;
1956
1957                                 /* Get current search key */
1958                                 kp = xfs_lookup_get_search_key(cur, level,
1959                                                 keyno, block, &key);
1960
1961                                 /*
1962                                  * Compute difference to get next direction:
1963                                  *  - less than, move right
1964                                  *  - greater than, move left
1965                                  *  - equal, we're done
1966                                  */
1967                                 diff = cur->bc_ops->key_diff(cur, kp);
1968                                 if (diff < 0)
1969                                         low = keyno + 1;
1970                                 else if (diff > 0)
1971                                         high = keyno - 1;
1972                                 else
1973                                         break;
1974                         }
1975                 }
1976
1977                 /*
1978                  * If there are more levels, set up for the next level
1979                  * by getting the block number and filling in the cursor.
1980                  */
1981                 if (level > 0) {
1982                         /*
1983                          * If we moved left, need the previous key number,
1984                          * unless there isn't one.
1985                          */
1986                         if (diff > 0 && --keyno < 1)
1987                                 keyno = 1;
1988                         pp = xfs_btree_ptr_addr(cur, keyno, block);
1989
1990                         error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991                         if (error)
1992                                 goto error0;
1993
1994                         cur->bc_levels[level].ptr = keyno;
1995                 }
1996         }
1997
1998         /* Done with the search. See if we need to adjust the results. */
1999         if (dir != XFS_LOOKUP_LE && diff < 0) {
2000                 keyno++;
2001                 /*
2002                  * If ge search and we went off the end of the block, but it's
2003                  * not the last block, we're in the wrong block.
2004                  */
2005                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006                 if (dir == XFS_LOOKUP_GE &&
2007                     keyno > xfs_btree_get_numrecs(block) &&
2008                     !xfs_btree_ptr_is_null(cur, &ptr)) {
2009                         int     i;
2010
2011                         cur->bc_levels[0].ptr = keyno;
2012                         error = xfs_btree_increment(cur, 0, &i);
2013                         if (error)
2014                                 goto error0;
2015                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2016                                 return -EFSCORRUPTED;
2017                         *stat = 1;
2018                         return 0;
2019                 }
2020         } else if (dir == XFS_LOOKUP_LE && diff > 0)
2021                 keyno--;
2022         cur->bc_levels[0].ptr = keyno;
2023
2024         /* Return if we succeeded or not. */
2025         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026                 *stat = 0;
2027         else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028                 *stat = 1;
2029         else
2030                 *stat = 0;
2031         return 0;
2032
2033 error0:
2034         return error;
2035 }
2036
2037 /* Find the high key storage area from a regular key. */
2038 union xfs_btree_key *
2039 xfs_btree_high_key_from_key(
2040         struct xfs_btree_cur    *cur,
2041         union xfs_btree_key     *key)
2042 {
2043         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044         return (union xfs_btree_key *)((char *)key +
2045                         (cur->bc_ops->key_len / 2));
2046 }
2047
2048 /* Determine the low (and high if overlapped) keys of a leaf block */
2049 STATIC void
2050 xfs_btree_get_leaf_keys(
2051         struct xfs_btree_cur    *cur,
2052         struct xfs_btree_block  *block,
2053         union xfs_btree_key     *key)
2054 {
2055         union xfs_btree_key     max_hkey;
2056         union xfs_btree_key     hkey;
2057         union xfs_btree_rec     *rec;
2058         union xfs_btree_key     *high;
2059         int                     n;
2060
2061         rec = xfs_btree_rec_addr(cur, 1, block);
2062         cur->bc_ops->init_key_from_rec(key, rec);
2063
2064         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065
2066                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068                         rec = xfs_btree_rec_addr(cur, n, block);
2069                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070                         if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2071                                         > 0)
2072                                 max_hkey = hkey;
2073                 }
2074
2075                 high = xfs_btree_high_key_from_key(cur, key);
2076                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2077         }
2078 }
2079
2080 /* Determine the low (and high if overlapped) keys of a node block */
2081 STATIC void
2082 xfs_btree_get_node_keys(
2083         struct xfs_btree_cur    *cur,
2084         struct xfs_btree_block  *block,
2085         union xfs_btree_key     *key)
2086 {
2087         union xfs_btree_key     *hkey;
2088         union xfs_btree_key     *max_hkey;
2089         union xfs_btree_key     *high;
2090         int                     n;
2091
2092         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2093                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2094                                 cur->bc_ops->key_len / 2);
2095
2096                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2097                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2098                         hkey = xfs_btree_high_key_addr(cur, n, block);
2099                         if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2100                                 max_hkey = hkey;
2101                 }
2102
2103                 high = xfs_btree_high_key_from_key(cur, key);
2104                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2105         } else {
2106                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2107                                 cur->bc_ops->key_len);
2108         }
2109 }
2110
2111 /* Derive the keys for any btree block. */
2112 void
2113 xfs_btree_get_keys(
2114         struct xfs_btree_cur    *cur,
2115         struct xfs_btree_block  *block,
2116         union xfs_btree_key     *key)
2117 {
2118         if (be16_to_cpu(block->bb_level) == 0)
2119                 xfs_btree_get_leaf_keys(cur, block, key);
2120         else
2121                 xfs_btree_get_node_keys(cur, block, key);
2122 }
2123
2124 /*
2125  * Decide if we need to update the parent keys of a btree block.  For
2126  * a standard btree this is only necessary if we're updating the first
2127  * record/key.  For an overlapping btree, we must always update the
2128  * keys because the highest key can be in any of the records or keys
2129  * in the block.
2130  */
2131 static inline bool
2132 xfs_btree_needs_key_update(
2133         struct xfs_btree_cur    *cur,
2134         int                     ptr)
2135 {
2136         return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2137 }
2138
2139 /*
2140  * Update the low and high parent keys of the given level, progressing
2141  * towards the root.  If force_all is false, stop if the keys for a given
2142  * level do not need updating.
2143  */
2144 STATIC int
2145 __xfs_btree_updkeys(
2146         struct xfs_btree_cur    *cur,
2147         int                     level,
2148         struct xfs_btree_block  *block,
2149         struct xfs_buf          *bp0,
2150         bool                    force_all)
2151 {
2152         union xfs_btree_key     key;    /* keys from current level */
2153         union xfs_btree_key     *lkey;  /* keys from the next level up */
2154         union xfs_btree_key     *hkey;
2155         union xfs_btree_key     *nlkey; /* keys from the next level up */
2156         union xfs_btree_key     *nhkey;
2157         struct xfs_buf          *bp;
2158         int                     ptr;
2159
2160         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2161
2162         /* Exit if there aren't any parent levels to update. */
2163         if (level + 1 >= cur->bc_nlevels)
2164                 return 0;
2165
2166         trace_xfs_btree_updkeys(cur, level, bp0);
2167
2168         lkey = &key;
2169         hkey = xfs_btree_high_key_from_key(cur, lkey);
2170         xfs_btree_get_keys(cur, block, lkey);
2171         for (level++; level < cur->bc_nlevels; level++) {
2172 #ifdef DEBUG
2173                 int             error;
2174 #endif
2175                 block = xfs_btree_get_block(cur, level, &bp);
2176                 trace_xfs_btree_updkeys(cur, level, bp);
2177 #ifdef DEBUG
2178                 error = xfs_btree_check_block(cur, block, level, bp);
2179                 if (error)
2180                         return error;
2181 #endif
2182                 ptr = cur->bc_levels[level].ptr;
2183                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2184                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2185                 if (!force_all &&
2186                     !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2187                       cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2188                         break;
2189                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2190                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2191                 if (level + 1 >= cur->bc_nlevels)
2192                         break;
2193                 xfs_btree_get_node_keys(cur, block, lkey);
2194         }
2195
2196         return 0;
2197 }
2198
2199 /* Update all the keys from some level in cursor back to the root. */
2200 STATIC int
2201 xfs_btree_updkeys_force(
2202         struct xfs_btree_cur    *cur,
2203         int                     level)
2204 {
2205         struct xfs_buf          *bp;
2206         struct xfs_btree_block  *block;
2207
2208         block = xfs_btree_get_block(cur, level, &bp);
2209         return __xfs_btree_updkeys(cur, level, block, bp, true);
2210 }
2211
2212 /*
2213  * Update the parent keys of the given level, progressing towards the root.
2214  */
2215 STATIC int
2216 xfs_btree_update_keys(
2217         struct xfs_btree_cur    *cur,
2218         int                     level)
2219 {
2220         struct xfs_btree_block  *block;
2221         struct xfs_buf          *bp;
2222         union xfs_btree_key     *kp;
2223         union xfs_btree_key     key;
2224         int                     ptr;
2225
2226         ASSERT(level >= 0);
2227
2228         block = xfs_btree_get_block(cur, level, &bp);
2229         if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2230                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2231
2232         /*
2233          * Go up the tree from this level toward the root.
2234          * At each level, update the key value to the value input.
2235          * Stop when we reach a level where the cursor isn't pointing
2236          * at the first entry in the block.
2237          */
2238         xfs_btree_get_keys(cur, block, &key);
2239         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2240 #ifdef DEBUG
2241                 int             error;
2242 #endif
2243                 block = xfs_btree_get_block(cur, level, &bp);
2244 #ifdef DEBUG
2245                 error = xfs_btree_check_block(cur, block, level, bp);
2246                 if (error)
2247                         return error;
2248 #endif
2249                 ptr = cur->bc_levels[level].ptr;
2250                 kp = xfs_btree_key_addr(cur, ptr, block);
2251                 xfs_btree_copy_keys(cur, kp, &key, 1);
2252                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2253         }
2254
2255         return 0;
2256 }
2257
2258 /*
2259  * Update the record referred to by cur to the value in the
2260  * given record. This either works (return 0) or gets an
2261  * EFSCORRUPTED error.
2262  */
2263 int
2264 xfs_btree_update(
2265         struct xfs_btree_cur    *cur,
2266         union xfs_btree_rec     *rec)
2267 {
2268         struct xfs_btree_block  *block;
2269         struct xfs_buf          *bp;
2270         int                     error;
2271         int                     ptr;
2272         union xfs_btree_rec     *rp;
2273
2274         /* Pick up the current block. */
2275         block = xfs_btree_get_block(cur, 0, &bp);
2276
2277 #ifdef DEBUG
2278         error = xfs_btree_check_block(cur, block, 0, bp);
2279         if (error)
2280                 goto error0;
2281 #endif
2282         /* Get the address of the rec to be updated. */
2283         ptr = cur->bc_levels[0].ptr;
2284         rp = xfs_btree_rec_addr(cur, ptr, block);
2285
2286         /* Fill in the new contents and log them. */
2287         xfs_btree_copy_recs(cur, rp, rec, 1);
2288         xfs_btree_log_recs(cur, bp, ptr, ptr);
2289
2290         /*
2291          * If we are tracking the last record in the tree and
2292          * we are at the far right edge of the tree, update it.
2293          */
2294         if (xfs_btree_is_lastrec(cur, block, 0)) {
2295                 cur->bc_ops->update_lastrec(cur, block, rec,
2296                                             ptr, LASTREC_UPDATE);
2297         }
2298
2299         /* Pass new key value up to our parent. */
2300         if (xfs_btree_needs_key_update(cur, ptr)) {
2301                 error = xfs_btree_update_keys(cur, 0);
2302                 if (error)
2303                         goto error0;
2304         }
2305
2306         return 0;
2307
2308 error0:
2309         return error;
2310 }
2311
2312 /*
2313  * Move 1 record left from cur/level if possible.
2314  * Update cur to reflect the new path.
2315  */
2316 STATIC int                                      /* error */
2317 xfs_btree_lshift(
2318         struct xfs_btree_cur    *cur,
2319         int                     level,
2320         int                     *stat)          /* success/failure */
2321 {
2322         struct xfs_buf          *lbp;           /* left buffer pointer */
2323         struct xfs_btree_block  *left;          /* left btree block */
2324         int                     lrecs;          /* left record count */
2325         struct xfs_buf          *rbp;           /* right buffer pointer */
2326         struct xfs_btree_block  *right;         /* right btree block */
2327         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2328         int                     rrecs;          /* right record count */
2329         union xfs_btree_ptr     lptr;           /* left btree pointer */
2330         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2331         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2332         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2333         int                     error;          /* error return value */
2334         int                     i;
2335
2336         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2337             level == cur->bc_nlevels - 1)
2338                 goto out0;
2339
2340         /* Set up variables for this block as "right". */
2341         right = xfs_btree_get_block(cur, level, &rbp);
2342
2343 #ifdef DEBUG
2344         error = xfs_btree_check_block(cur, right, level, rbp);
2345         if (error)
2346                 goto error0;
2347 #endif
2348
2349         /* If we've got no left sibling then we can't shift an entry left. */
2350         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2351         if (xfs_btree_ptr_is_null(cur, &lptr))
2352                 goto out0;
2353
2354         /*
2355          * If the cursor entry is the one that would be moved, don't
2356          * do it... it's too complicated.
2357          */
2358         if (cur->bc_levels[level].ptr <= 1)
2359                 goto out0;
2360
2361         /* Set up the left neighbor as "left". */
2362         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2363         if (error)
2364                 goto error0;
2365
2366         /* If it's full, it can't take another entry. */
2367         lrecs = xfs_btree_get_numrecs(left);
2368         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2369                 goto out0;
2370
2371         rrecs = xfs_btree_get_numrecs(right);
2372
2373         /*
2374          * We add one entry to the left side and remove one for the right side.
2375          * Account for it here, the changes will be updated on disk and logged
2376          * later.
2377          */
2378         lrecs++;
2379         rrecs--;
2380
2381         XFS_BTREE_STATS_INC(cur, lshift);
2382         XFS_BTREE_STATS_ADD(cur, moves, 1);
2383
2384         /*
2385          * If non-leaf, copy a key and a ptr to the left block.
2386          * Log the changes to the left block.
2387          */
2388         if (level > 0) {
2389                 /* It's a non-leaf.  Move keys and pointers. */
2390                 union xfs_btree_key     *lkp;   /* left btree key */
2391                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2392
2393                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2394                 rkp = xfs_btree_key_addr(cur, 1, right);
2395
2396                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2397                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2398
2399                 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2400                 if (error)
2401                         goto error0;
2402
2403                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2404                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2405
2406                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2407                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2408
2409                 ASSERT(cur->bc_ops->keys_inorder(cur,
2410                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2411         } else {
2412                 /* It's a leaf.  Move records.  */
2413                 union xfs_btree_rec     *lrp;   /* left record pointer */
2414
2415                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2416                 rrp = xfs_btree_rec_addr(cur, 1, right);
2417
2418                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2419                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2420
2421                 ASSERT(cur->bc_ops->recs_inorder(cur,
2422                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2423         }
2424
2425         xfs_btree_set_numrecs(left, lrecs);
2426         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2427
2428         xfs_btree_set_numrecs(right, rrecs);
2429         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2430
2431         /*
2432          * Slide the contents of right down one entry.
2433          */
2434         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2435         if (level > 0) {
2436                 /* It's a nonleaf. operate on keys and ptrs */
2437                 for (i = 0; i < rrecs; i++) {
2438                         error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2439                         if (error)
2440                                 goto error0;
2441                 }
2442
2443                 xfs_btree_shift_keys(cur,
2444                                 xfs_btree_key_addr(cur, 2, right),
2445                                 -1, rrecs);
2446                 xfs_btree_shift_ptrs(cur,
2447                                 xfs_btree_ptr_addr(cur, 2, right),
2448                                 -1, rrecs);
2449
2450                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2451                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2452         } else {
2453                 /* It's a leaf. operate on records */
2454                 xfs_btree_shift_recs(cur,
2455                         xfs_btree_rec_addr(cur, 2, right),
2456                         -1, rrecs);
2457                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2458         }
2459
2460         /*
2461          * Using a temporary cursor, update the parent key values of the
2462          * block on the left.
2463          */
2464         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2465                 error = xfs_btree_dup_cursor(cur, &tcur);
2466                 if (error)
2467                         goto error0;
2468                 i = xfs_btree_firstrec(tcur, level);
2469                 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2470                         error = -EFSCORRUPTED;
2471                         goto error0;
2472                 }
2473
2474                 error = xfs_btree_decrement(tcur, level, &i);
2475                 if (error)
2476                         goto error1;
2477
2478                 /* Update the parent high keys of the left block, if needed. */
2479                 error = xfs_btree_update_keys(tcur, level);
2480                 if (error)
2481                         goto error1;
2482
2483                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2484         }
2485
2486         /* Update the parent keys of the right block. */
2487         error = xfs_btree_update_keys(cur, level);
2488         if (error)
2489                 goto error0;
2490
2491         /* Slide the cursor value left one. */
2492         cur->bc_levels[level].ptr--;
2493
2494         *stat = 1;
2495         return 0;
2496
2497 out0:
2498         *stat = 0;
2499         return 0;
2500
2501 error0:
2502         return error;
2503
2504 error1:
2505         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2506         return error;
2507 }
2508
2509 /*
2510  * Move 1 record right from cur/level if possible.
2511  * Update cur to reflect the new path.
2512  */
2513 STATIC int                                      /* error */
2514 xfs_btree_rshift(
2515         struct xfs_btree_cur    *cur,
2516         int                     level,
2517         int                     *stat)          /* success/failure */
2518 {
2519         struct xfs_buf          *lbp;           /* left buffer pointer */
2520         struct xfs_btree_block  *left;          /* left btree block */
2521         struct xfs_buf          *rbp;           /* right buffer pointer */
2522         struct xfs_btree_block  *right;         /* right btree block */
2523         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2524         union xfs_btree_ptr     rptr;           /* right block pointer */
2525         union xfs_btree_key     *rkp;           /* right btree key */
2526         int                     rrecs;          /* right record count */
2527         int                     lrecs;          /* left record count */
2528         int                     error;          /* error return value */
2529         int                     i;              /* loop counter */
2530
2531         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2532             (level == cur->bc_nlevels - 1))
2533                 goto out0;
2534
2535         /* Set up variables for this block as "left". */
2536         left = xfs_btree_get_block(cur, level, &lbp);
2537
2538 #ifdef DEBUG
2539         error = xfs_btree_check_block(cur, left, level, lbp);
2540         if (error)
2541                 goto error0;
2542 #endif
2543
2544         /* If we've got no right sibling then we can't shift an entry right. */
2545         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2546         if (xfs_btree_ptr_is_null(cur, &rptr))
2547                 goto out0;
2548
2549         /*
2550          * If the cursor entry is the one that would be moved, don't
2551          * do it... it's too complicated.
2552          */
2553         lrecs = xfs_btree_get_numrecs(left);
2554         if (cur->bc_levels[level].ptr >= lrecs)
2555                 goto out0;
2556
2557         /* Set up the right neighbor as "right". */
2558         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2559         if (error)
2560                 goto error0;
2561
2562         /* If it's full, it can't take another entry. */
2563         rrecs = xfs_btree_get_numrecs(right);
2564         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2565                 goto out0;
2566
2567         XFS_BTREE_STATS_INC(cur, rshift);
2568         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2569
2570         /*
2571          * Make a hole at the start of the right neighbor block, then
2572          * copy the last left block entry to the hole.
2573          */
2574         if (level > 0) {
2575                 /* It's a nonleaf. make a hole in the keys and ptrs */
2576                 union xfs_btree_key     *lkp;
2577                 union xfs_btree_ptr     *lpp;
2578                 union xfs_btree_ptr     *rpp;
2579
2580                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2581                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2582                 rkp = xfs_btree_key_addr(cur, 1, right);
2583                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2584
2585                 for (i = rrecs - 1; i >= 0; i--) {
2586                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2587                         if (error)
2588                                 goto error0;
2589                 }
2590
2591                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2592                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2593
2594                 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2595                 if (error)
2596                         goto error0;
2597
2598                 /* Now put the new data in, and log it. */
2599                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2600                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2601
2602                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2603                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2604
2605                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2606                         xfs_btree_key_addr(cur, 2, right)));
2607         } else {
2608                 /* It's a leaf. make a hole in the records */
2609                 union xfs_btree_rec     *lrp;
2610                 union xfs_btree_rec     *rrp;
2611
2612                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2613                 rrp = xfs_btree_rec_addr(cur, 1, right);
2614
2615                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2616
2617                 /* Now put the new data in, and log it. */
2618                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2619                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2620         }
2621
2622         /*
2623          * Decrement and log left's numrecs, bump and log right's numrecs.
2624          */
2625         xfs_btree_set_numrecs(left, --lrecs);
2626         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2627
2628         xfs_btree_set_numrecs(right, ++rrecs);
2629         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2630
2631         /*
2632          * Using a temporary cursor, update the parent key values of the
2633          * block on the right.
2634          */
2635         error = xfs_btree_dup_cursor(cur, &tcur);
2636         if (error)
2637                 goto error0;
2638         i = xfs_btree_lastrec(tcur, level);
2639         if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2640                 error = -EFSCORRUPTED;
2641                 goto error0;
2642         }
2643
2644         error = xfs_btree_increment(tcur, level, &i);
2645         if (error)
2646                 goto error1;
2647
2648         /* Update the parent high keys of the left block, if needed. */
2649         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2650                 error = xfs_btree_update_keys(cur, level);
2651                 if (error)
2652                         goto error1;
2653         }
2654
2655         /* Update the parent keys of the right block. */
2656         error = xfs_btree_update_keys(tcur, level);
2657         if (error)
2658                 goto error1;
2659
2660         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2661
2662         *stat = 1;
2663         return 0;
2664
2665 out0:
2666         *stat = 0;
2667         return 0;
2668
2669 error0:
2670         return error;
2671
2672 error1:
2673         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2674         return error;
2675 }
2676
2677 /*
2678  * Split cur/level block in half.
2679  * Return new block number and the key to its first
2680  * record (to be inserted into parent).
2681  */
2682 STATIC int                                      /* error */
2683 __xfs_btree_split(
2684         struct xfs_btree_cur    *cur,
2685         int                     level,
2686         union xfs_btree_ptr     *ptrp,
2687         union xfs_btree_key     *key,
2688         struct xfs_btree_cur    **curp,
2689         int                     *stat)          /* success/failure */
2690 {
2691         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2692         struct xfs_buf          *lbp;           /* left buffer pointer */
2693         struct xfs_btree_block  *left;          /* left btree block */
2694         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2695         struct xfs_buf          *rbp;           /* right buffer pointer */
2696         struct xfs_btree_block  *right;         /* right btree block */
2697         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2698         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2699         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2700         int                     lrecs;
2701         int                     rrecs;
2702         int                     src_index;
2703         int                     error;          /* error return value */
2704         int                     i;
2705
2706         XFS_BTREE_STATS_INC(cur, split);
2707
2708         /* Set up left block (current one). */
2709         left = xfs_btree_get_block(cur, level, &lbp);
2710
2711 #ifdef DEBUG
2712         error = xfs_btree_check_block(cur, left, level, lbp);
2713         if (error)
2714                 goto error0;
2715 #endif
2716
2717         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2718
2719         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2720         error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2721         if (error)
2722                 goto error0;
2723         if (*stat == 0)
2724                 goto out0;
2725         XFS_BTREE_STATS_INC(cur, alloc);
2726
2727         /* Set up the new block as "right". */
2728         error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2729         if (error)
2730                 goto error0;
2731
2732         /* Fill in the btree header for the new right block. */
2733         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2734
2735         /*
2736          * Split the entries between the old and the new block evenly.
2737          * Make sure that if there's an odd number of entries now, that
2738          * each new block will have the same number of entries.
2739          */
2740         lrecs = xfs_btree_get_numrecs(left);
2741         rrecs = lrecs / 2;
2742         if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2743                 rrecs++;
2744         src_index = (lrecs - rrecs + 1);
2745
2746         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2747
2748         /* Adjust numrecs for the later get_*_keys() calls. */
2749         lrecs -= rrecs;
2750         xfs_btree_set_numrecs(left, lrecs);
2751         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2752
2753         /*
2754          * Copy btree block entries from the left block over to the
2755          * new block, the right. Update the right block and log the
2756          * changes.
2757          */
2758         if (level > 0) {
2759                 /* It's a non-leaf.  Move keys and pointers. */
2760                 union xfs_btree_key     *lkp;   /* left btree key */
2761                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2762                 union xfs_btree_key     *rkp;   /* right btree key */
2763                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2764
2765                 lkp = xfs_btree_key_addr(cur, src_index, left);
2766                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2767                 rkp = xfs_btree_key_addr(cur, 1, right);
2768                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2769
2770                 for (i = src_index; i < rrecs; i++) {
2771                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2772                         if (error)
2773                                 goto error0;
2774                 }
2775
2776                 /* Copy the keys & pointers to the new block. */
2777                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2778                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2779
2780                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2781                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2782
2783                 /* Stash the keys of the new block for later insertion. */
2784                 xfs_btree_get_node_keys(cur, right, key);
2785         } else {
2786                 /* It's a leaf.  Move records.  */
2787                 union xfs_btree_rec     *lrp;   /* left record pointer */
2788                 union xfs_btree_rec     *rrp;   /* right record pointer */
2789
2790                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2791                 rrp = xfs_btree_rec_addr(cur, 1, right);
2792
2793                 /* Copy records to the new block. */
2794                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2795                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2796
2797                 /* Stash the keys of the new block for later insertion. */
2798                 xfs_btree_get_leaf_keys(cur, right, key);
2799         }
2800
2801         /*
2802          * Find the left block number by looking in the buffer.
2803          * Adjust sibling pointers.
2804          */
2805         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2806         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2807         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2808         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2809
2810         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2811         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2812
2813         /*
2814          * If there's a block to the new block's right, make that block
2815          * point back to right instead of to left.
2816          */
2817         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2818                 error = xfs_btree_read_buf_block(cur, &rrptr,
2819                                                         0, &rrblock, &rrbp);
2820                 if (error)
2821                         goto error0;
2822                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2823                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2824         }
2825
2826         /* Update the parent high keys of the left block, if needed. */
2827         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2828                 error = xfs_btree_update_keys(cur, level);
2829                 if (error)
2830                         goto error0;
2831         }
2832
2833         /*
2834          * If the cursor is really in the right block, move it there.
2835          * If it's just pointing past the last entry in left, then we'll
2836          * insert there, so don't change anything in that case.
2837          */
2838         if (cur->bc_levels[level].ptr > lrecs + 1) {
2839                 xfs_btree_setbuf(cur, level, rbp);
2840                 cur->bc_levels[level].ptr -= lrecs;
2841         }
2842         /*
2843          * If there are more levels, we'll need another cursor which refers
2844          * the right block, no matter where this cursor was.
2845          */
2846         if (level + 1 < cur->bc_nlevels) {
2847                 error = xfs_btree_dup_cursor(cur, curp);
2848                 if (error)
2849                         goto error0;
2850                 (*curp)->bc_levels[level + 1].ptr++;
2851         }
2852         *ptrp = rptr;
2853         *stat = 1;
2854         return 0;
2855 out0:
2856         *stat = 0;
2857         return 0;
2858
2859 error0:
2860         return error;
2861 }
2862
2863 #ifdef __KERNEL__
2864 struct xfs_btree_split_args {
2865         struct xfs_btree_cur    *cur;
2866         int                     level;
2867         union xfs_btree_ptr     *ptrp;
2868         union xfs_btree_key     *key;
2869         struct xfs_btree_cur    **curp;
2870         int                     *stat;          /* success/failure */
2871         int                     result;
2872         bool                    kswapd; /* allocation in kswapd context */
2873         struct completion       *done;
2874         struct work_struct      work;
2875 };
2876
2877 /*
2878  * Stack switching interfaces for allocation
2879  */
2880 static void
2881 xfs_btree_split_worker(
2882         struct work_struct      *work)
2883 {
2884         struct xfs_btree_split_args     *args = container_of(work,
2885                                                 struct xfs_btree_split_args, work);
2886         unsigned long           pflags;
2887         unsigned long           new_pflags = 0;
2888
2889         /*
2890          * we are in a transaction context here, but may also be doing work
2891          * in kswapd context, and hence we may need to inherit that state
2892          * temporarily to ensure that we don't block waiting for memory reclaim
2893          * in any way.
2894          */
2895         if (args->kswapd)
2896                 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2897
2898         current_set_flags_nested(&pflags, new_pflags);
2899         xfs_trans_set_context(args->cur->bc_tp);
2900
2901         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2902                                          args->key, args->curp, args->stat);
2903
2904         xfs_trans_clear_context(args->cur->bc_tp);
2905         current_restore_flags_nested(&pflags, new_pflags);
2906
2907         /*
2908          * Do not access args after complete() has run here. We don't own args
2909          * and the owner may run and free args before we return here.
2910          */
2911         complete(args->done);
2912
2913 }
2914
2915 /*
2916  * BMBT split requests often come in with little stack to work on so we push
2917  * them off to a worker thread so there is lots of stack to use. For the other
2918  * btree types, just call directly to avoid the context switch overhead here.
2919  *
2920  * Care must be taken here - the work queue rescuer thread introduces potential
2921  * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
2922  * AGFs to allocate blocks. A task being run by the rescuer could attempt to
2923  * lock an AGF that is already locked by a task queued to run by the rescuer,
2924  * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
2925  * release it until the current thread it is running gains the lock.
2926  *
2927  * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
2928  * already locked to allocate from. The only place that doesn't hold an AGF
2929  * locked is unwritten extent conversion at IO completion, but that has already
2930  * been offloaded to a worker thread and hence has no stack consumption issues
2931  * we have to worry about.
2932  */
2933 STATIC int                                      /* error */
2934 xfs_btree_split(
2935         struct xfs_btree_cur    *cur,
2936         int                     level,
2937         union xfs_btree_ptr     *ptrp,
2938         union xfs_btree_key     *key,
2939         struct xfs_btree_cur    **curp,
2940         int                     *stat)          /* success/failure */
2941 {
2942         struct xfs_btree_split_args     args;
2943         DECLARE_COMPLETION_ONSTACK(done);
2944
2945         if (cur->bc_btnum != XFS_BTNUM_BMAP ||
2946             cur->bc_tp->t_firstblock == NULLFSBLOCK)
2947                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2948
2949         args.cur = cur;
2950         args.level = level;
2951         args.ptrp = ptrp;
2952         args.key = key;
2953         args.curp = curp;
2954         args.stat = stat;
2955         args.done = &done;
2956         args.kswapd = current_is_kswapd();
2957         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2958         queue_work(xfs_alloc_wq, &args.work);
2959         wait_for_completion(&done);
2960         destroy_work_on_stack(&args.work);
2961         return args.result;
2962 }
2963 #else
2964 #define xfs_btree_split __xfs_btree_split
2965 #endif /* __KERNEL__ */
2966
2967
2968 /*
2969  * Copy the old inode root contents into a real block and make the
2970  * broot point to it.
2971  */
2972 int                                             /* error */
2973 xfs_btree_new_iroot(
2974         struct xfs_btree_cur    *cur,           /* btree cursor */
2975         int                     *logflags,      /* logging flags for inode */
2976         int                     *stat)          /* return status - 0 fail */
2977 {
2978         struct xfs_buf          *cbp;           /* buffer for cblock */
2979         struct xfs_btree_block  *block;         /* btree block */
2980         struct xfs_btree_block  *cblock;        /* child btree block */
2981         union xfs_btree_key     *ckp;           /* child key pointer */
2982         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2983         union xfs_btree_key     *kp;            /* pointer to btree key */
2984         union xfs_btree_ptr     *pp;            /* pointer to block addr */
2985         union xfs_btree_ptr     nptr;           /* new block addr */
2986         int                     level;          /* btree level */
2987         int                     error;          /* error return code */
2988         int                     i;              /* loop counter */
2989
2990         XFS_BTREE_STATS_INC(cur, newroot);
2991
2992         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2993
2994         level = cur->bc_nlevels - 1;
2995
2996         block = xfs_btree_get_iroot(cur);
2997         pp = xfs_btree_ptr_addr(cur, 1, block);
2998
2999         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3000         error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3001         if (error)
3002                 goto error0;
3003         if (*stat == 0)
3004                 return 0;
3005
3006         XFS_BTREE_STATS_INC(cur, alloc);
3007
3008         /* Copy the root into a real block. */
3009         error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3010         if (error)
3011                 goto error0;
3012
3013         /*
3014          * we can't just memcpy() the root in for CRC enabled btree blocks.
3015          * In that case have to also ensure the blkno remains correct
3016          */
3017         memcpy(cblock, block, xfs_btree_block_len(cur));
3018         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3019                 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3020                 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3021                         cblock->bb_u.l.bb_blkno = bno;
3022                 else
3023                         cblock->bb_u.s.bb_blkno = bno;
3024         }
3025
3026         be16_add_cpu(&block->bb_level, 1);
3027         xfs_btree_set_numrecs(block, 1);
3028         cur->bc_nlevels++;
3029         ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3030         cur->bc_levels[level + 1].ptr = 1;
3031
3032         kp = xfs_btree_key_addr(cur, 1, block);
3033         ckp = xfs_btree_key_addr(cur, 1, cblock);
3034         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3035
3036         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3037         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3038                 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3039                 if (error)
3040                         goto error0;
3041         }
3042
3043         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3044
3045         error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3046         if (error)
3047                 goto error0;
3048
3049         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3050
3051         xfs_iroot_realloc(cur->bc_ino.ip,
3052                           1 - xfs_btree_get_numrecs(cblock),
3053                           cur->bc_ino.whichfork);
3054
3055         xfs_btree_setbuf(cur, level, cbp);
3056
3057         /*
3058          * Do all this logging at the end so that
3059          * the root is at the right level.
3060          */
3061         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3062         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3063         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3064
3065         *logflags |=
3066                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3067         *stat = 1;
3068         return 0;
3069 error0:
3070         return error;
3071 }
3072
3073 /*
3074  * Allocate a new root block, fill it in.
3075  */
3076 STATIC int                              /* error */
3077 xfs_btree_new_root(
3078         struct xfs_btree_cur    *cur,   /* btree cursor */
3079         int                     *stat)  /* success/failure */
3080 {
3081         struct xfs_btree_block  *block; /* one half of the old root block */
3082         struct xfs_buf          *bp;    /* buffer containing block */
3083         int                     error;  /* error return value */
3084         struct xfs_buf          *lbp;   /* left buffer pointer */
3085         struct xfs_btree_block  *left;  /* left btree block */
3086         struct xfs_buf          *nbp;   /* new (root) buffer */
3087         struct xfs_btree_block  *new;   /* new (root) btree block */
3088         int                     nptr;   /* new value for key index, 1 or 2 */
3089         struct xfs_buf          *rbp;   /* right buffer pointer */
3090         struct xfs_btree_block  *right; /* right btree block */
3091         union xfs_btree_ptr     rptr;
3092         union xfs_btree_ptr     lptr;
3093
3094         XFS_BTREE_STATS_INC(cur, newroot);
3095
3096         /* initialise our start point from the cursor */
3097         cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3098
3099         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3100         error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3101         if (error)
3102                 goto error0;
3103         if (*stat == 0)
3104                 goto out0;
3105         XFS_BTREE_STATS_INC(cur, alloc);
3106
3107         /* Set up the new block. */
3108         error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3109         if (error)
3110                 goto error0;
3111
3112         /* Set the root in the holding structure  increasing the level by 1. */
3113         cur->bc_ops->set_root(cur, &lptr, 1);
3114
3115         /*
3116          * At the previous root level there are now two blocks: the old root,
3117          * and the new block generated when it was split.  We don't know which
3118          * one the cursor is pointing at, so we set up variables "left" and
3119          * "right" for each case.
3120          */
3121         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3122
3123 #ifdef DEBUG
3124         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3125         if (error)
3126                 goto error0;
3127 #endif
3128
3129         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3130         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3131                 /* Our block is left, pick up the right block. */
3132                 lbp = bp;
3133                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3134                 left = block;
3135                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3136                 if (error)
3137                         goto error0;
3138                 bp = rbp;
3139                 nptr = 1;
3140         } else {
3141                 /* Our block is right, pick up the left block. */
3142                 rbp = bp;
3143                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3144                 right = block;
3145                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3146                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3147                 if (error)
3148                         goto error0;
3149                 bp = lbp;
3150                 nptr = 2;
3151         }
3152
3153         /* Fill in the new block's btree header and log it. */
3154         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3155         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3156         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3157                         !xfs_btree_ptr_is_null(cur, &rptr));
3158
3159         /* Fill in the key data in the new root. */
3160         if (xfs_btree_get_level(left) > 0) {
3161                 /*
3162                  * Get the keys for the left block's keys and put them directly
3163                  * in the parent block.  Do the same for the right block.
3164                  */
3165                 xfs_btree_get_node_keys(cur, left,
3166                                 xfs_btree_key_addr(cur, 1, new));
3167                 xfs_btree_get_node_keys(cur, right,
3168                                 xfs_btree_key_addr(cur, 2, new));
3169         } else {
3170                 /*
3171                  * Get the keys for the left block's records and put them
3172                  * directly in the parent block.  Do the same for the right
3173                  * block.
3174                  */
3175                 xfs_btree_get_leaf_keys(cur, left,
3176                         xfs_btree_key_addr(cur, 1, new));
3177                 xfs_btree_get_leaf_keys(cur, right,
3178                         xfs_btree_key_addr(cur, 2, new));
3179         }
3180         xfs_btree_log_keys(cur, nbp, 1, 2);
3181
3182         /* Fill in the pointer data in the new root. */
3183         xfs_btree_copy_ptrs(cur,
3184                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3185         xfs_btree_copy_ptrs(cur,
3186                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3187         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3188
3189         /* Fix up the cursor. */
3190         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3191         cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3192         cur->bc_nlevels++;
3193         ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3194         *stat = 1;
3195         return 0;
3196 error0:
3197         return error;
3198 out0:
3199         *stat = 0;
3200         return 0;
3201 }
3202
3203 STATIC int
3204 xfs_btree_make_block_unfull(
3205         struct xfs_btree_cur    *cur,   /* btree cursor */
3206         int                     level,  /* btree level */
3207         int                     numrecs,/* # of recs in block */
3208         int                     *oindex,/* old tree index */
3209         int                     *index, /* new tree index */
3210         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3211         struct xfs_btree_cur    **ncur, /* new btree cursor */
3212         union xfs_btree_key     *key,   /* key of new block */
3213         int                     *stat)
3214 {
3215         int                     error = 0;
3216
3217         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3218             level == cur->bc_nlevels - 1) {
3219                 struct xfs_inode *ip = cur->bc_ino.ip;
3220
3221                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3222                         /* A root block that can be made bigger. */
3223                         xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3224                         *stat = 1;
3225                 } else {
3226                         /* A root block that needs replacing */
3227                         int     logflags = 0;
3228
3229                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3230                         if (error || *stat == 0)
3231                                 return error;
3232
3233                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3234                 }
3235
3236                 return 0;
3237         }
3238
3239         /* First, try shifting an entry to the right neighbor. */
3240         error = xfs_btree_rshift(cur, level, stat);
3241         if (error || *stat)
3242                 return error;
3243
3244         /* Next, try shifting an entry to the left neighbor. */
3245         error = xfs_btree_lshift(cur, level, stat);
3246         if (error)
3247                 return error;
3248
3249         if (*stat) {
3250                 *oindex = *index = cur->bc_levels[level].ptr;
3251                 return 0;
3252         }
3253
3254         /*
3255          * Next, try splitting the current block in half.
3256          *
3257          * If this works we have to re-set our variables because we
3258          * could be in a different block now.
3259          */
3260         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3261         if (error || *stat == 0)
3262                 return error;
3263
3264
3265         *index = cur->bc_levels[level].ptr;
3266         return 0;
3267 }
3268
3269 /*
3270  * Insert one record/level.  Return information to the caller
3271  * allowing the next level up to proceed if necessary.
3272  */
3273 STATIC int
3274 xfs_btree_insrec(
3275         struct xfs_btree_cur    *cur,   /* btree cursor */
3276         int                     level,  /* level to insert record at */
3277         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3278         union xfs_btree_rec     *rec,   /* record to insert */
3279         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3280         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3281         int                     *stat)  /* success/failure */
3282 {
3283         struct xfs_btree_block  *block; /* btree block */
3284         struct xfs_buf          *bp;    /* buffer for block */
3285         union xfs_btree_ptr     nptr;   /* new block ptr */
3286         struct xfs_btree_cur    *ncur = NULL;   /* new btree cursor */
3287         union xfs_btree_key     nkey;   /* new block key */
3288         union xfs_btree_key     *lkey;
3289         int                     optr;   /* old key/record index */
3290         int                     ptr;    /* key/record index */
3291         int                     numrecs;/* number of records */
3292         int                     error;  /* error return value */
3293         int                     i;
3294         xfs_daddr_t             old_bn;
3295
3296         ncur = NULL;
3297         lkey = &nkey;
3298
3299         /*
3300          * If we have an external root pointer, and we've made it to the
3301          * root level, allocate a new root block and we're done.
3302          */
3303         if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3304             (level >= cur->bc_nlevels)) {
3305                 error = xfs_btree_new_root(cur, stat);
3306                 xfs_btree_set_ptr_null(cur, ptrp);
3307
3308                 return error;
3309         }
3310
3311         /* If we're off the left edge, return failure. */
3312         ptr = cur->bc_levels[level].ptr;
3313         if (ptr == 0) {
3314                 *stat = 0;
3315                 return 0;
3316         }
3317
3318         optr = ptr;
3319
3320         XFS_BTREE_STATS_INC(cur, insrec);
3321
3322         /* Get pointers to the btree buffer and block. */
3323         block = xfs_btree_get_block(cur, level, &bp);
3324         old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3325         numrecs = xfs_btree_get_numrecs(block);
3326
3327 #ifdef DEBUG
3328         error = xfs_btree_check_block(cur, block, level, bp);
3329         if (error)
3330                 goto error0;
3331
3332         /* Check that the new entry is being inserted in the right place. */
3333         if (ptr <= numrecs) {
3334                 if (level == 0) {
3335                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3336                                 xfs_btree_rec_addr(cur, ptr, block)));
3337                 } else {
3338                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3339                                 xfs_btree_key_addr(cur, ptr, block)));
3340                 }
3341         }
3342 #endif
3343
3344         /*
3345          * If the block is full, we can't insert the new entry until we
3346          * make the block un-full.
3347          */
3348         xfs_btree_set_ptr_null(cur, &nptr);
3349         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3350                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3351                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3352                 if (error || *stat == 0)
3353                         goto error0;
3354         }
3355
3356         /*
3357          * The current block may have changed if the block was
3358          * previously full and we have just made space in it.
3359          */
3360         block = xfs_btree_get_block(cur, level, &bp);
3361         numrecs = xfs_btree_get_numrecs(block);
3362
3363 #ifdef DEBUG
3364         error = xfs_btree_check_block(cur, block, level, bp);
3365         if (error)
3366                 goto error0;
3367 #endif
3368
3369         /*
3370          * At this point we know there's room for our new entry in the block
3371          * we're pointing at.
3372          */
3373         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3374
3375         if (level > 0) {
3376                 /* It's a nonleaf. make a hole in the keys and ptrs */
3377                 union xfs_btree_key     *kp;
3378                 union xfs_btree_ptr     *pp;
3379
3380                 kp = xfs_btree_key_addr(cur, ptr, block);
3381                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3382
3383                 for (i = numrecs - ptr; i >= 0; i--) {
3384                         error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3385                         if (error)
3386                                 goto error0;
3387                 }
3388
3389                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3390                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3391
3392                 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3393                 if (error)
3394                         goto error0;
3395
3396                 /* Now put the new data in, bump numrecs and log it. */
3397                 xfs_btree_copy_keys(cur, kp, key, 1);
3398                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3399                 numrecs++;
3400                 xfs_btree_set_numrecs(block, numrecs);
3401                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3402                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3403 #ifdef DEBUG
3404                 if (ptr < numrecs) {
3405                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3406                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3407                 }
3408 #endif
3409         } else {
3410                 /* It's a leaf. make a hole in the records */
3411                 union xfs_btree_rec             *rp;
3412
3413                 rp = xfs_btree_rec_addr(cur, ptr, block);
3414
3415                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3416
3417                 /* Now put the new data in, bump numrecs and log it. */
3418                 xfs_btree_copy_recs(cur, rp, rec, 1);
3419                 xfs_btree_set_numrecs(block, ++numrecs);
3420                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3421 #ifdef DEBUG
3422                 if (ptr < numrecs) {
3423                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3424                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3425                 }
3426 #endif
3427         }
3428
3429         /* Log the new number of records in the btree header. */
3430         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3431
3432         /*
3433          * If we just inserted into a new tree block, we have to
3434          * recalculate nkey here because nkey is out of date.
3435          *
3436          * Otherwise we're just updating an existing block (having shoved
3437          * some records into the new tree block), so use the regular key
3438          * update mechanism.
3439          */
3440         if (bp && xfs_buf_daddr(bp) != old_bn) {
3441                 xfs_btree_get_keys(cur, block, lkey);
3442         } else if (xfs_btree_needs_key_update(cur, optr)) {
3443                 error = xfs_btree_update_keys(cur, level);
3444                 if (error)
3445                         goto error0;
3446         }
3447
3448         /*
3449          * If we are tracking the last record in the tree and
3450          * we are at the far right edge of the tree, update it.
3451          */
3452         if (xfs_btree_is_lastrec(cur, block, level)) {
3453                 cur->bc_ops->update_lastrec(cur, block, rec,
3454                                             ptr, LASTREC_INSREC);
3455         }
3456
3457         /*
3458          * Return the new block number, if any.
3459          * If there is one, give back a record value and a cursor too.
3460          */
3461         *ptrp = nptr;
3462         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3463                 xfs_btree_copy_keys(cur, key, lkey, 1);
3464                 *curp = ncur;
3465         }
3466
3467         *stat = 1;
3468         return 0;
3469
3470 error0:
3471         if (ncur)
3472                 xfs_btree_del_cursor(ncur, error);
3473         return error;
3474 }
3475
3476 /*
3477  * Insert the record at the point referenced by cur.
3478  *
3479  * A multi-level split of the tree on insert will invalidate the original
3480  * cursor.  All callers of this function should assume that the cursor is
3481  * no longer valid and revalidate it.
3482  */
3483 int
3484 xfs_btree_insert(
3485         struct xfs_btree_cur    *cur,
3486         int                     *stat)
3487 {
3488         int                     error;  /* error return value */
3489         int                     i;      /* result value, 0 for failure */
3490         int                     level;  /* current level number in btree */
3491         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3492         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3493         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3494         union xfs_btree_key     bkey;   /* key of block to insert */
3495         union xfs_btree_key     *key;
3496         union xfs_btree_rec     rec;    /* record to insert */
3497
3498         level = 0;
3499         ncur = NULL;
3500         pcur = cur;
3501         key = &bkey;
3502
3503         xfs_btree_set_ptr_null(cur, &nptr);
3504
3505         /* Make a key out of the record data to be inserted, and save it. */
3506         cur->bc_ops->init_rec_from_cur(cur, &rec);
3507         cur->bc_ops->init_key_from_rec(key, &rec);
3508
3509         /*
3510          * Loop going up the tree, starting at the leaf level.
3511          * Stop when we don't get a split block, that must mean that
3512          * the insert is finished with this level.
3513          */
3514         do {
3515                 /*
3516                  * Insert nrec/nptr into this level of the tree.
3517                  * Note if we fail, nptr will be null.
3518                  */
3519                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3520                                 &ncur, &i);
3521                 if (error) {
3522                         if (pcur != cur)
3523                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3524                         goto error0;
3525                 }
3526
3527                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3528                         error = -EFSCORRUPTED;
3529                         goto error0;
3530                 }
3531                 level++;
3532
3533                 /*
3534                  * See if the cursor we just used is trash.
3535                  * Can't trash the caller's cursor, but otherwise we should
3536                  * if ncur is a new cursor or we're about to be done.
3537                  */
3538                 if (pcur != cur &&
3539                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3540                         /* Save the state from the cursor before we trash it */
3541                         if (cur->bc_ops->update_cursor)
3542                                 cur->bc_ops->update_cursor(pcur, cur);
3543                         cur->bc_nlevels = pcur->bc_nlevels;
3544                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3545                 }
3546                 /* If we got a new cursor, switch to it. */
3547                 if (ncur) {
3548                         pcur = ncur;
3549                         ncur = NULL;
3550                 }
3551         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3552
3553         *stat = i;
3554         return 0;
3555 error0:
3556         return error;
3557 }
3558
3559 /*
3560  * Try to merge a non-leaf block back into the inode root.
3561  *
3562  * Note: the killroot names comes from the fact that we're effectively
3563  * killing the old root block.  But because we can't just delete the
3564  * inode we have to copy the single block it was pointing to into the
3565  * inode.
3566  */
3567 STATIC int
3568 xfs_btree_kill_iroot(
3569         struct xfs_btree_cur    *cur)
3570 {
3571         int                     whichfork = cur->bc_ino.whichfork;
3572         struct xfs_inode        *ip = cur->bc_ino.ip;
3573         struct xfs_ifork        *ifp = xfs_ifork_ptr(ip, whichfork);
3574         struct xfs_btree_block  *block;
3575         struct xfs_btree_block  *cblock;
3576         union xfs_btree_key     *kp;
3577         union xfs_btree_key     *ckp;
3578         union xfs_btree_ptr     *pp;
3579         union xfs_btree_ptr     *cpp;
3580         struct xfs_buf          *cbp;
3581         int                     level;
3582         int                     index;
3583         int                     numrecs;
3584         int                     error;
3585 #ifdef DEBUG
3586         union xfs_btree_ptr     ptr;
3587 #endif
3588         int                     i;
3589
3590         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3591         ASSERT(cur->bc_nlevels > 1);
3592
3593         /*
3594          * Don't deal with the root block needs to be a leaf case.
3595          * We're just going to turn the thing back into extents anyway.
3596          */
3597         level = cur->bc_nlevels - 1;
3598         if (level == 1)
3599                 goto out0;
3600
3601         /*
3602          * Give up if the root has multiple children.
3603          */
3604         block = xfs_btree_get_iroot(cur);
3605         if (xfs_btree_get_numrecs(block) != 1)
3606                 goto out0;
3607
3608         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3609         numrecs = xfs_btree_get_numrecs(cblock);
3610
3611         /*
3612          * Only do this if the next level will fit.
3613          * Then the data must be copied up to the inode,
3614          * instead of freeing the root you free the next level.
3615          */
3616         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3617                 goto out0;
3618
3619         XFS_BTREE_STATS_INC(cur, killroot);
3620
3621 #ifdef DEBUG
3622         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3623         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3624         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3625         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3626 #endif
3627
3628         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3629         if (index) {
3630                 xfs_iroot_realloc(cur->bc_ino.ip, index,
3631                                   cur->bc_ino.whichfork);
3632                 block = ifp->if_broot;
3633         }
3634
3635         be16_add_cpu(&block->bb_numrecs, index);
3636         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3637
3638         kp = xfs_btree_key_addr(cur, 1, block);
3639         ckp = xfs_btree_key_addr(cur, 1, cblock);
3640         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3641
3642         pp = xfs_btree_ptr_addr(cur, 1, block);
3643         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3644
3645         for (i = 0; i < numrecs; i++) {
3646                 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3647                 if (error)
3648                         return error;
3649         }
3650
3651         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3652
3653         error = xfs_btree_free_block(cur, cbp);
3654         if (error)
3655                 return error;
3656
3657         cur->bc_levels[level - 1].bp = NULL;
3658         be16_add_cpu(&block->bb_level, -1);
3659         xfs_trans_log_inode(cur->bc_tp, ip,
3660                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3661         cur->bc_nlevels--;
3662 out0:
3663         return 0;
3664 }
3665
3666 /*
3667  * Kill the current root node, and replace it with it's only child node.
3668  */
3669 STATIC int
3670 xfs_btree_kill_root(
3671         struct xfs_btree_cur    *cur,
3672         struct xfs_buf          *bp,
3673         int                     level,
3674         union xfs_btree_ptr     *newroot)
3675 {
3676         int                     error;
3677
3678         XFS_BTREE_STATS_INC(cur, killroot);
3679
3680         /*
3681          * Update the root pointer, decreasing the level by 1 and then
3682          * free the old root.
3683          */
3684         cur->bc_ops->set_root(cur, newroot, -1);
3685
3686         error = xfs_btree_free_block(cur, bp);
3687         if (error)
3688                 return error;
3689
3690         cur->bc_levels[level].bp = NULL;
3691         cur->bc_levels[level].ra = 0;
3692         cur->bc_nlevels--;
3693
3694         return 0;
3695 }
3696
3697 STATIC int
3698 xfs_btree_dec_cursor(
3699         struct xfs_btree_cur    *cur,
3700         int                     level,
3701         int                     *stat)
3702 {
3703         int                     error;
3704         int                     i;
3705
3706         if (level > 0) {
3707                 error = xfs_btree_decrement(cur, level, &i);
3708                 if (error)
3709                         return error;
3710         }
3711
3712         *stat = 1;
3713         return 0;
3714 }
3715
3716 /*
3717  * Single level of the btree record deletion routine.
3718  * Delete record pointed to by cur/level.
3719  * Remove the record from its block then rebalance the tree.
3720  * Return 0 for error, 1 for done, 2 to go on to the next level.
3721  */
3722 STATIC int                                      /* error */
3723 xfs_btree_delrec(
3724         struct xfs_btree_cur    *cur,           /* btree cursor */
3725         int                     level,          /* level removing record from */
3726         int                     *stat)          /* fail/done/go-on */
3727 {
3728         struct xfs_btree_block  *block;         /* btree block */
3729         union xfs_btree_ptr     cptr;           /* current block ptr */
3730         struct xfs_buf          *bp;            /* buffer for block */
3731         int                     error;          /* error return value */
3732         int                     i;              /* loop counter */
3733         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3734         struct xfs_buf          *lbp;           /* left buffer pointer */
3735         struct xfs_btree_block  *left;          /* left btree block */
3736         int                     lrecs = 0;      /* left record count */
3737         int                     ptr;            /* key/record index */
3738         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3739         struct xfs_buf          *rbp;           /* right buffer pointer */
3740         struct xfs_btree_block  *right;         /* right btree block */
3741         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3742         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3743         int                     rrecs = 0;      /* right record count */
3744         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3745         int                     numrecs;        /* temporary numrec count */
3746
3747         tcur = NULL;
3748
3749         /* Get the index of the entry being deleted, check for nothing there. */
3750         ptr = cur->bc_levels[level].ptr;
3751         if (ptr == 0) {
3752                 *stat = 0;
3753                 return 0;
3754         }
3755
3756         /* Get the buffer & block containing the record or key/ptr. */
3757         block = xfs_btree_get_block(cur, level, &bp);
3758         numrecs = xfs_btree_get_numrecs(block);
3759
3760 #ifdef DEBUG
3761         error = xfs_btree_check_block(cur, block, level, bp);
3762         if (error)
3763                 goto error0;
3764 #endif
3765
3766         /* Fail if we're off the end of the block. */
3767         if (ptr > numrecs) {
3768                 *stat = 0;
3769                 return 0;
3770         }
3771
3772         XFS_BTREE_STATS_INC(cur, delrec);
3773         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3774
3775         /* Excise the entries being deleted. */
3776         if (level > 0) {
3777                 /* It's a nonleaf. operate on keys and ptrs */
3778                 union xfs_btree_key     *lkp;
3779                 union xfs_btree_ptr     *lpp;
3780
3781                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3782                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3783
3784                 for (i = 0; i < numrecs - ptr; i++) {
3785                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3786                         if (error)
3787                                 goto error0;
3788                 }
3789
3790                 if (ptr < numrecs) {
3791                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3792                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3793                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3794                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3795                 }
3796         } else {
3797                 /* It's a leaf. operate on records */
3798                 if (ptr < numrecs) {
3799                         xfs_btree_shift_recs(cur,
3800                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3801                                 -1, numrecs - ptr);
3802                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3803                 }
3804         }
3805
3806         /*
3807          * Decrement and log the number of entries in the block.
3808          */
3809         xfs_btree_set_numrecs(block, --numrecs);
3810         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3811
3812         /*
3813          * If we are tracking the last record in the tree and
3814          * we are at the far right edge of the tree, update it.
3815          */
3816         if (xfs_btree_is_lastrec(cur, block, level)) {
3817                 cur->bc_ops->update_lastrec(cur, block, NULL,
3818                                             ptr, LASTREC_DELREC);
3819         }
3820
3821         /*
3822          * We're at the root level.  First, shrink the root block in-memory.
3823          * Try to get rid of the next level down.  If we can't then there's
3824          * nothing left to do.
3825          */
3826         if (level == cur->bc_nlevels - 1) {
3827                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3828                         xfs_iroot_realloc(cur->bc_ino.ip, -1,
3829                                           cur->bc_ino.whichfork);
3830
3831                         error = xfs_btree_kill_iroot(cur);
3832                         if (error)
3833                                 goto error0;
3834
3835                         error = xfs_btree_dec_cursor(cur, level, stat);
3836                         if (error)
3837                                 goto error0;
3838                         *stat = 1;
3839                         return 0;
3840                 }
3841
3842                 /*
3843                  * If this is the root level, and there's only one entry left,
3844                  * and it's NOT the leaf level, then we can get rid of this
3845                  * level.
3846                  */
3847                 if (numrecs == 1 && level > 0) {
3848                         union xfs_btree_ptr     *pp;
3849                         /*
3850                          * pp is still set to the first pointer in the block.
3851                          * Make it the new root of the btree.
3852                          */
3853                         pp = xfs_btree_ptr_addr(cur, 1, block);
3854                         error = xfs_btree_kill_root(cur, bp, level, pp);
3855                         if (error)
3856                                 goto error0;
3857                 } else if (level > 0) {
3858                         error = xfs_btree_dec_cursor(cur, level, stat);
3859                         if (error)
3860                                 goto error0;
3861                 }
3862                 *stat = 1;
3863                 return 0;
3864         }
3865
3866         /*
3867          * If we deleted the leftmost entry in the block, update the
3868          * key values above us in the tree.
3869          */
3870         if (xfs_btree_needs_key_update(cur, ptr)) {
3871                 error = xfs_btree_update_keys(cur, level);
3872                 if (error)
3873                         goto error0;
3874         }
3875
3876         /*
3877          * If the number of records remaining in the block is at least
3878          * the minimum, we're done.
3879          */
3880         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3881                 error = xfs_btree_dec_cursor(cur, level, stat);
3882                 if (error)
3883                         goto error0;
3884                 return 0;
3885         }
3886
3887         /*
3888          * Otherwise, we have to move some records around to keep the
3889          * tree balanced.  Look at the left and right sibling blocks to
3890          * see if we can re-balance by moving only one record.
3891          */
3892         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3893         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3894
3895         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3896                 /*
3897                  * One child of root, need to get a chance to copy its contents
3898                  * into the root and delete it. Can't go up to next level,
3899                  * there's nothing to delete there.
3900                  */
3901                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3902                     xfs_btree_ptr_is_null(cur, &lptr) &&
3903                     level == cur->bc_nlevels - 2) {
3904                         error = xfs_btree_kill_iroot(cur);
3905                         if (!error)
3906                                 error = xfs_btree_dec_cursor(cur, level, stat);
3907                         if (error)
3908                                 goto error0;
3909                         return 0;
3910                 }
3911         }
3912
3913         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3914                !xfs_btree_ptr_is_null(cur, &lptr));
3915
3916         /*
3917          * Duplicate the cursor so our btree manipulations here won't
3918          * disrupt the next level up.
3919          */
3920         error = xfs_btree_dup_cursor(cur, &tcur);
3921         if (error)
3922                 goto error0;
3923
3924         /*
3925          * If there's a right sibling, see if it's ok to shift an entry
3926          * out of it.
3927          */
3928         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3929                 /*
3930                  * Move the temp cursor to the last entry in the next block.
3931                  * Actually any entry but the first would suffice.
3932                  */
3933                 i = xfs_btree_lastrec(tcur, level);
3934                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3935                         error = -EFSCORRUPTED;
3936                         goto error0;
3937                 }
3938
3939                 error = xfs_btree_increment(tcur, level, &i);
3940                 if (error)
3941                         goto error0;
3942                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3943                         error = -EFSCORRUPTED;
3944                         goto error0;
3945                 }
3946
3947                 i = xfs_btree_lastrec(tcur, level);
3948                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3949                         error = -EFSCORRUPTED;
3950                         goto error0;
3951                 }
3952
3953                 /* Grab a pointer to the block. */
3954                 right = xfs_btree_get_block(tcur, level, &rbp);
3955 #ifdef DEBUG
3956                 error = xfs_btree_check_block(tcur, right, level, rbp);
3957                 if (error)
3958                         goto error0;
3959 #endif
3960                 /* Grab the current block number, for future use. */
3961                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3962
3963                 /*
3964                  * If right block is full enough so that removing one entry
3965                  * won't make it too empty, and left-shifting an entry out
3966                  * of right to us works, we're done.
3967                  */
3968                 if (xfs_btree_get_numrecs(right) - 1 >=
3969                     cur->bc_ops->get_minrecs(tcur, level)) {
3970                         error = xfs_btree_lshift(tcur, level, &i);
3971                         if (error)
3972                                 goto error0;
3973                         if (i) {
3974                                 ASSERT(xfs_btree_get_numrecs(block) >=
3975                                        cur->bc_ops->get_minrecs(tcur, level));
3976
3977                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3978                                 tcur = NULL;
3979
3980                                 error = xfs_btree_dec_cursor(cur, level, stat);
3981                                 if (error)
3982                                         goto error0;
3983                                 return 0;
3984                         }
3985                 }
3986
3987                 /*
3988                  * Otherwise, grab the number of records in right for
3989                  * future reference, and fix up the temp cursor to point
3990                  * to our block again (last record).
3991                  */
3992                 rrecs = xfs_btree_get_numrecs(right);
3993                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3994                         i = xfs_btree_firstrec(tcur, level);
3995                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3996                                 error = -EFSCORRUPTED;
3997                                 goto error0;
3998                         }
3999
4000                         error = xfs_btree_decrement(tcur, level, &i);
4001                         if (error)
4002                                 goto error0;
4003                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4004                                 error = -EFSCORRUPTED;
4005                                 goto error0;
4006                         }
4007                 }
4008         }
4009
4010         /*
4011          * If there's a left sibling, see if it's ok to shift an entry
4012          * out of it.
4013          */
4014         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4015                 /*
4016                  * Move the temp cursor to the first entry in the
4017                  * previous block.
4018                  */
4019                 i = xfs_btree_firstrec(tcur, level);
4020                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4021                         error = -EFSCORRUPTED;
4022                         goto error0;
4023                 }
4024
4025                 error = xfs_btree_decrement(tcur, level, &i);
4026                 if (error)
4027                         goto error0;
4028                 i = xfs_btree_firstrec(tcur, level);
4029                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4030                         error = -EFSCORRUPTED;
4031                         goto error0;
4032                 }
4033
4034                 /* Grab a pointer to the block. */
4035                 left = xfs_btree_get_block(tcur, level, &lbp);
4036 #ifdef DEBUG
4037                 error = xfs_btree_check_block(cur, left, level, lbp);
4038                 if (error)
4039                         goto error0;
4040 #endif
4041                 /* Grab the current block number, for future use. */
4042                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4043
4044                 /*
4045                  * If left block is full enough so that removing one entry
4046                  * won't make it too empty, and right-shifting an entry out
4047                  * of left to us works, we're done.
4048                  */
4049                 if (xfs_btree_get_numrecs(left) - 1 >=
4050                     cur->bc_ops->get_minrecs(tcur, level)) {
4051                         error = xfs_btree_rshift(tcur, level, &i);
4052                         if (error)
4053                                 goto error0;
4054                         if (i) {
4055                                 ASSERT(xfs_btree_get_numrecs(block) >=
4056                                        cur->bc_ops->get_minrecs(tcur, level));
4057                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4058                                 tcur = NULL;
4059                                 if (level == 0)
4060                                         cur->bc_levels[0].ptr++;
4061
4062                                 *stat = 1;
4063                                 return 0;
4064                         }
4065                 }
4066
4067                 /*
4068                  * Otherwise, grab the number of records in right for
4069                  * future reference.
4070                  */
4071                 lrecs = xfs_btree_get_numrecs(left);
4072         }
4073
4074         /* Delete the temp cursor, we're done with it. */
4075         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4076         tcur = NULL;
4077
4078         /* If here, we need to do a join to keep the tree balanced. */
4079         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4080
4081         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4082             lrecs + xfs_btree_get_numrecs(block) <=
4083                         cur->bc_ops->get_maxrecs(cur, level)) {
4084                 /*
4085                  * Set "right" to be the starting block,
4086                  * "left" to be the left neighbor.
4087                  */
4088                 rptr = cptr;
4089                 right = block;
4090                 rbp = bp;
4091                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4092                 if (error)
4093                         goto error0;
4094
4095         /*
4096          * If that won't work, see if we can join with the right neighbor block.
4097          */
4098         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4099                    rrecs + xfs_btree_get_numrecs(block) <=
4100                         cur->bc_ops->get_maxrecs(cur, level)) {
4101                 /*
4102                  * Set "left" to be the starting block,
4103                  * "right" to be the right neighbor.
4104                  */
4105                 lptr = cptr;
4106                 left = block;
4107                 lbp = bp;
4108                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4109                 if (error)
4110                         goto error0;
4111
4112         /*
4113          * Otherwise, we can't fix the imbalance.
4114          * Just return.  This is probably a logic error, but it's not fatal.
4115          */
4116         } else {
4117                 error = xfs_btree_dec_cursor(cur, level, stat);
4118                 if (error)
4119                         goto error0;
4120                 return 0;
4121         }
4122
4123         rrecs = xfs_btree_get_numrecs(right);
4124         lrecs = xfs_btree_get_numrecs(left);
4125
4126         /*
4127          * We're now going to join "left" and "right" by moving all the stuff
4128          * in "right" to "left" and deleting "right".
4129          */
4130         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4131         if (level > 0) {
4132                 /* It's a non-leaf.  Move keys and pointers. */
4133                 union xfs_btree_key     *lkp;   /* left btree key */
4134                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4135                 union xfs_btree_key     *rkp;   /* right btree key */
4136                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4137
4138                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4139                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4140                 rkp = xfs_btree_key_addr(cur, 1, right);
4141                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4142
4143                 for (i = 1; i < rrecs; i++) {
4144                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4145                         if (error)
4146                                 goto error0;
4147                 }
4148
4149                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4150                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4151
4152                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4153                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4154         } else {
4155                 /* It's a leaf.  Move records.  */
4156                 union xfs_btree_rec     *lrp;   /* left record pointer */
4157                 union xfs_btree_rec     *rrp;   /* right record pointer */
4158
4159                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4160                 rrp = xfs_btree_rec_addr(cur, 1, right);
4161
4162                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4163                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4164         }
4165
4166         XFS_BTREE_STATS_INC(cur, join);
4167
4168         /*
4169          * Fix up the number of records and right block pointer in the
4170          * surviving block, and log it.
4171          */
4172         xfs_btree_set_numrecs(left, lrecs + rrecs);
4173         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4174         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4175         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4176
4177         /* If there is a right sibling, point it to the remaining block. */
4178         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4179         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4180                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4181                 if (error)
4182                         goto error0;
4183                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4184                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4185         }
4186
4187         /* Free the deleted block. */
4188         error = xfs_btree_free_block(cur, rbp);
4189         if (error)
4190                 goto error0;
4191
4192         /*
4193          * If we joined with the left neighbor, set the buffer in the
4194          * cursor to the left block, and fix up the index.
4195          */
4196         if (bp != lbp) {
4197                 cur->bc_levels[level].bp = lbp;
4198                 cur->bc_levels[level].ptr += lrecs;
4199                 cur->bc_levels[level].ra = 0;
4200         }
4201         /*
4202          * If we joined with the right neighbor and there's a level above
4203          * us, increment the cursor at that level.
4204          */
4205         else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4206                    (level + 1 < cur->bc_nlevels)) {
4207                 error = xfs_btree_increment(cur, level + 1, &i);
4208                 if (error)
4209                         goto error0;
4210         }
4211
4212         /*
4213          * Readjust the ptr at this level if it's not a leaf, since it's
4214          * still pointing at the deletion point, which makes the cursor
4215          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4216          * We can't use decrement because it would change the next level up.
4217          */
4218         if (level > 0)
4219                 cur->bc_levels[level].ptr--;
4220
4221         /*
4222          * We combined blocks, so we have to update the parent keys if the
4223          * btree supports overlapped intervals.  However,
4224          * bc_levels[level + 1].ptr points to the old block so that the caller
4225          * knows which record to delete.  Therefore, the caller must be savvy
4226          * enough to call updkeys for us if we return stat == 2.  The other
4227          * exit points from this function don't require deletions further up
4228          * the tree, so they can call updkeys directly.
4229          */
4230
4231         /* Return value means the next level up has something to do. */
4232         *stat = 2;
4233         return 0;
4234
4235 error0:
4236         if (tcur)
4237                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4238         return error;
4239 }
4240
4241 /*
4242  * Delete the record pointed to by cur.
4243  * The cursor refers to the place where the record was (could be inserted)
4244  * when the operation returns.
4245  */
4246 int                                     /* error */
4247 xfs_btree_delete(
4248         struct xfs_btree_cur    *cur,
4249         int                     *stat)  /* success/failure */
4250 {
4251         int                     error;  /* error return value */
4252         int                     level;
4253         int                     i;
4254         bool                    joined = false;
4255
4256         /*
4257          * Go up the tree, starting at leaf level.
4258          *
4259          * If 2 is returned then a join was done; go to the next level.
4260          * Otherwise we are done.
4261          */
4262         for (level = 0, i = 2; i == 2; level++) {
4263                 error = xfs_btree_delrec(cur, level, &i);
4264                 if (error)
4265                         goto error0;
4266                 if (i == 2)
4267                         joined = true;
4268         }
4269
4270         /*
4271          * If we combined blocks as part of deleting the record, delrec won't
4272          * have updated the parent high keys so we have to do that here.
4273          */
4274         if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4275                 error = xfs_btree_updkeys_force(cur, 0);
4276                 if (error)
4277                         goto error0;
4278         }
4279
4280         if (i == 0) {
4281                 for (level = 1; level < cur->bc_nlevels; level++) {
4282                         if (cur->bc_levels[level].ptr == 0) {
4283                                 error = xfs_btree_decrement(cur, level, &i);
4284                                 if (error)
4285                                         goto error0;
4286                                 break;
4287                         }
4288                 }
4289         }
4290
4291         *stat = i;
4292         return 0;
4293 error0:
4294         return error;
4295 }
4296
4297 /*
4298  * Get the data from the pointed-to record.
4299  */
4300 int                                     /* error */
4301 xfs_btree_get_rec(
4302         struct xfs_btree_cur    *cur,   /* btree cursor */
4303         union xfs_btree_rec     **recp, /* output: btree record */
4304         int                     *stat)  /* output: success/failure */
4305 {
4306         struct xfs_btree_block  *block; /* btree block */
4307         struct xfs_buf          *bp;    /* buffer pointer */
4308         int                     ptr;    /* record number */
4309 #ifdef DEBUG
4310         int                     error;  /* error return value */
4311 #endif
4312
4313         ptr = cur->bc_levels[0].ptr;
4314         block = xfs_btree_get_block(cur, 0, &bp);
4315
4316 #ifdef DEBUG
4317         error = xfs_btree_check_block(cur, block, 0, bp);
4318         if (error)
4319                 return error;
4320 #endif
4321
4322         /*
4323          * Off the right end or left end, return failure.
4324          */
4325         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4326                 *stat = 0;
4327                 return 0;
4328         }
4329
4330         /*
4331          * Point to the record and extract its data.
4332          */
4333         *recp = xfs_btree_rec_addr(cur, ptr, block);
4334         *stat = 1;
4335         return 0;
4336 }
4337
4338 /* Visit a block in a btree. */
4339 STATIC int
4340 xfs_btree_visit_block(
4341         struct xfs_btree_cur            *cur,
4342         int                             level,
4343         xfs_btree_visit_blocks_fn       fn,
4344         void                            *data)
4345 {
4346         struct xfs_btree_block          *block;
4347         struct xfs_buf                  *bp;
4348         union xfs_btree_ptr             rptr;
4349         int                             error;
4350
4351         /* do right sibling readahead */
4352         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4353         block = xfs_btree_get_block(cur, level, &bp);
4354
4355         /* process the block */
4356         error = fn(cur, level, data);
4357         if (error)
4358                 return error;
4359
4360         /* now read rh sibling block for next iteration */
4361         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4362         if (xfs_btree_ptr_is_null(cur, &rptr))
4363                 return -ENOENT;
4364
4365         /*
4366          * We only visit blocks once in this walk, so we have to avoid the
4367          * internal xfs_btree_lookup_get_block() optimisation where it will
4368          * return the same block without checking if the right sibling points
4369          * back to us and creates a cyclic reference in the btree.
4370          */
4371         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4372                 if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4373                                                         xfs_buf_daddr(bp)))
4374                         return -EFSCORRUPTED;
4375         } else {
4376                 if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4377                                                         xfs_buf_daddr(bp)))
4378                         return -EFSCORRUPTED;
4379         }
4380         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4381 }
4382
4383
4384 /* Visit every block in a btree. */
4385 int
4386 xfs_btree_visit_blocks(
4387         struct xfs_btree_cur            *cur,
4388         xfs_btree_visit_blocks_fn       fn,
4389         unsigned int                    flags,
4390         void                            *data)
4391 {
4392         union xfs_btree_ptr             lptr;
4393         int                             level;
4394         struct xfs_btree_block          *block = NULL;
4395         int                             error = 0;
4396
4397         cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4398
4399         /* for each level */
4400         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4401                 /* grab the left hand block */
4402                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4403                 if (error)
4404                         return error;
4405
4406                 /* readahead the left most block for the next level down */
4407                 if (level > 0) {
4408                         union xfs_btree_ptr     *ptr;
4409
4410                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4411                         xfs_btree_readahead_ptr(cur, ptr, 1);
4412
4413                         /* save for the next iteration of the loop */
4414                         xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4415
4416                         if (!(flags & XFS_BTREE_VISIT_LEAVES))
4417                                 continue;
4418                 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4419                         continue;
4420                 }
4421
4422                 /* for each buffer in the level */
4423                 do {
4424                         error = xfs_btree_visit_block(cur, level, fn, data);
4425                 } while (!error);
4426
4427                 if (error != -ENOENT)
4428                         return error;
4429         }
4430
4431         return 0;
4432 }
4433
4434 /*
4435  * Change the owner of a btree.
4436  *
4437  * The mechanism we use here is ordered buffer logging. Because we don't know
4438  * how many buffers were are going to need to modify, we don't really want to
4439  * have to make transaction reservations for the worst case of every buffer in a
4440  * full size btree as that may be more space that we can fit in the log....
4441  *
4442  * We do the btree walk in the most optimal manner possible - we have sibling
4443  * pointers so we can just walk all the blocks on each level from left to right
4444  * in a single pass, and then move to the next level and do the same. We can
4445  * also do readahead on the sibling pointers to get IO moving more quickly,
4446  * though for slow disks this is unlikely to make much difference to performance
4447  * as the amount of CPU work we have to do before moving to the next block is
4448  * relatively small.
4449  *
4450  * For each btree block that we load, modify the owner appropriately, set the
4451  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4452  * we mark the region we change dirty so that if the buffer is relogged in
4453  * a subsequent transaction the changes we make here as an ordered buffer are
4454  * correctly relogged in that transaction.  If we are in recovery context, then
4455  * just queue the modified buffer as delayed write buffer so the transaction
4456  * recovery completion writes the changes to disk.
4457  */
4458 struct xfs_btree_block_change_owner_info {
4459         uint64_t                new_owner;
4460         struct list_head        *buffer_list;
4461 };
4462
4463 static int
4464 xfs_btree_block_change_owner(
4465         struct xfs_btree_cur    *cur,
4466         int                     level,
4467         void                    *data)
4468 {
4469         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4470         struct xfs_btree_block  *block;
4471         struct xfs_buf          *bp;
4472
4473         /* modify the owner */
4474         block = xfs_btree_get_block(cur, level, &bp);
4475         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4476                 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4477                         return 0;
4478                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4479         } else {
4480                 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4481                         return 0;
4482                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4483         }
4484
4485         /*
4486          * If the block is a root block hosted in an inode, we might not have a
4487          * buffer pointer here and we shouldn't attempt to log the change as the
4488          * information is already held in the inode and discarded when the root
4489          * block is formatted into the on-disk inode fork. We still change it,
4490          * though, so everything is consistent in memory.
4491          */
4492         if (!bp) {
4493                 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4494                 ASSERT(level == cur->bc_nlevels - 1);
4495                 return 0;
4496         }
4497
4498         if (cur->bc_tp) {
4499                 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4500                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4501                         return -EAGAIN;
4502                 }
4503         } else {
4504                 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4505         }
4506
4507         return 0;
4508 }
4509
4510 int
4511 xfs_btree_change_owner(
4512         struct xfs_btree_cur    *cur,
4513         uint64_t                new_owner,
4514         struct list_head        *buffer_list)
4515 {
4516         struct xfs_btree_block_change_owner_info        bbcoi;
4517
4518         bbcoi.new_owner = new_owner;
4519         bbcoi.buffer_list = buffer_list;
4520
4521         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4522                         XFS_BTREE_VISIT_ALL, &bbcoi);
4523 }
4524
4525 /* Verify the v5 fields of a long-format btree block. */
4526 xfs_failaddr_t
4527 xfs_btree_lblock_v5hdr_verify(
4528         struct xfs_buf          *bp,
4529         uint64_t                owner)
4530 {
4531         struct xfs_mount        *mp = bp->b_mount;
4532         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4533
4534         if (!xfs_has_crc(mp))
4535                 return __this_address;
4536         if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4537                 return __this_address;
4538         if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4539                 return __this_address;
4540         if (owner != XFS_RMAP_OWN_UNKNOWN &&
4541             be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4542                 return __this_address;
4543         return NULL;
4544 }
4545
4546 /* Verify a long-format btree block. */
4547 xfs_failaddr_t
4548 xfs_btree_lblock_verify(
4549         struct xfs_buf          *bp,
4550         unsigned int            max_recs)
4551 {
4552         struct xfs_mount        *mp = bp->b_mount;
4553         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4554         xfs_fsblock_t           fsb;
4555         xfs_failaddr_t          fa;
4556
4557         /* numrecs verification */
4558         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4559                 return __this_address;
4560
4561         /* sibling pointer verification */
4562         fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4563         fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4564                         block->bb_u.l.bb_leftsib);
4565         if (!fa)
4566                 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4567                                 block->bb_u.l.bb_rightsib);
4568         return fa;
4569 }
4570
4571 /**
4572  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4573  *                                    btree block
4574  *
4575  * @bp: buffer containing the btree block
4576  */
4577 xfs_failaddr_t
4578 xfs_btree_sblock_v5hdr_verify(
4579         struct xfs_buf          *bp)
4580 {
4581         struct xfs_mount        *mp = bp->b_mount;
4582         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4583         struct xfs_perag        *pag = bp->b_pag;
4584
4585         if (!xfs_has_crc(mp))
4586                 return __this_address;
4587         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4588                 return __this_address;
4589         if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4590                 return __this_address;
4591         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4592                 return __this_address;
4593         return NULL;
4594 }
4595
4596 /**
4597  * xfs_btree_sblock_verify() -- verify a short-format btree block
4598  *
4599  * @bp: buffer containing the btree block
4600  * @max_recs: maximum records allowed in this btree node
4601  */
4602 xfs_failaddr_t
4603 xfs_btree_sblock_verify(
4604         struct xfs_buf          *bp,
4605         unsigned int            max_recs)
4606 {
4607         struct xfs_mount        *mp = bp->b_mount;
4608         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4609         xfs_agblock_t           agbno;
4610         xfs_failaddr_t          fa;
4611
4612         /* numrecs verification */
4613         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4614                 return __this_address;
4615
4616         /* sibling pointer verification */
4617         agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4618         fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4619                         block->bb_u.s.bb_leftsib);
4620         if (!fa)
4621                 fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4622                                 block->bb_u.s.bb_rightsib);
4623         return fa;
4624 }
4625
4626 /*
4627  * For the given limits on leaf and keyptr records per block, calculate the
4628  * height of the tree needed to index the number of leaf records.
4629  */
4630 unsigned int
4631 xfs_btree_compute_maxlevels(
4632         const unsigned int      *limits,
4633         unsigned long long      records)
4634 {
4635         unsigned long long      level_blocks = howmany_64(records, limits[0]);
4636         unsigned int            height = 1;
4637
4638         while (level_blocks > 1) {
4639                 level_blocks = howmany_64(level_blocks, limits[1]);
4640                 height++;
4641         }
4642
4643         return height;
4644 }
4645
4646 /*
4647  * For the given limits on leaf and keyptr records per block, calculate the
4648  * number of blocks needed to index the given number of leaf records.
4649  */
4650 unsigned long long
4651 xfs_btree_calc_size(
4652         const unsigned int      *limits,
4653         unsigned long long      records)
4654 {
4655         unsigned long long      level_blocks = howmany_64(records, limits[0]);
4656         unsigned long long      blocks = level_blocks;
4657
4658         while (level_blocks > 1) {
4659                 level_blocks = howmany_64(level_blocks, limits[1]);
4660                 blocks += level_blocks;
4661         }
4662
4663         return blocks;
4664 }
4665
4666 /*
4667  * Given a number of available blocks for the btree to consume with records and
4668  * pointers, calculate the height of the tree needed to index all the records
4669  * that space can hold based on the number of pointers each interior node
4670  * holds.
4671  *
4672  * We start by assuming a single level tree consumes a single block, then track
4673  * the number of blocks each node level consumes until we no longer have space
4674  * to store the next node level. At this point, we are indexing all the leaf
4675  * blocks in the space, and there's no more free space to split the tree any
4676  * further. That's our maximum btree height.
4677  */
4678 unsigned int
4679 xfs_btree_space_to_height(
4680         const unsigned int      *limits,
4681         unsigned long long      leaf_blocks)
4682 {
4683         /*
4684          * The root btree block can have fewer than minrecs pointers in it
4685          * because the tree might not be big enough to require that amount of
4686          * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4687          */
4688         unsigned long long      node_blocks = 2;
4689         unsigned long long      blocks_left = leaf_blocks - 1;
4690         unsigned int            height = 1;
4691
4692         if (leaf_blocks < 1)
4693                 return 0;
4694
4695         while (node_blocks < blocks_left) {
4696                 blocks_left -= node_blocks;
4697                 node_blocks *= limits[1];
4698                 height++;
4699         }
4700
4701         return height;
4702 }
4703
4704 /*
4705  * Query a regular btree for all records overlapping a given interval.
4706  * Start with a LE lookup of the key of low_rec and return all records
4707  * until we find a record with a key greater than the key of high_rec.
4708  */
4709 STATIC int
4710 xfs_btree_simple_query_range(
4711         struct xfs_btree_cur            *cur,
4712         const union xfs_btree_key       *low_key,
4713         const union xfs_btree_key       *high_key,
4714         xfs_btree_query_range_fn        fn,
4715         void                            *priv)
4716 {
4717         union xfs_btree_rec             *recp;
4718         union xfs_btree_key             rec_key;
4719         int64_t                         diff;
4720         int                             stat;
4721         bool                            firstrec = true;
4722         int                             error;
4723
4724         ASSERT(cur->bc_ops->init_high_key_from_rec);
4725         ASSERT(cur->bc_ops->diff_two_keys);
4726
4727         /*
4728          * Find the leftmost record.  The btree cursor must be set
4729          * to the low record used to generate low_key.
4730          */
4731         stat = 0;
4732         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4733         if (error)
4734                 goto out;
4735
4736         /* Nothing?  See if there's anything to the right. */
4737         if (!stat) {
4738                 error = xfs_btree_increment(cur, 0, &stat);
4739                 if (error)
4740                         goto out;
4741         }
4742
4743         while (stat) {
4744                 /* Find the record. */
4745                 error = xfs_btree_get_rec(cur, &recp, &stat);
4746                 if (error || !stat)
4747                         break;
4748
4749                 /* Skip if high_key(rec) < low_key. */
4750                 if (firstrec) {
4751                         cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4752                         firstrec = false;
4753                         diff = cur->bc_ops->diff_two_keys(cur, low_key,
4754                                         &rec_key);
4755                         if (diff > 0)
4756                                 goto advloop;
4757                 }
4758
4759                 /* Stop if high_key < low_key(rec). */
4760                 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4761                 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4762                 if (diff > 0)
4763                         break;
4764
4765                 /* Callback */
4766                 error = fn(cur, recp, priv);
4767                 if (error)
4768                         break;
4769
4770 advloop:
4771                 /* Move on to the next record. */
4772                 error = xfs_btree_increment(cur, 0, &stat);
4773                 if (error)
4774                         break;
4775         }
4776
4777 out:
4778         return error;
4779 }
4780
4781 /*
4782  * Query an overlapped interval btree for all records overlapping a given
4783  * interval.  This function roughly follows the algorithm given in
4784  * "Interval Trees" of _Introduction to Algorithms_, which is section
4785  * 14.3 in the 2nd and 3rd editions.
4786  *
4787  * First, generate keys for the low and high records passed in.
4788  *
4789  * For any leaf node, generate the high and low keys for the record.
4790  * If the record keys overlap with the query low/high keys, pass the
4791  * record to the function iterator.
4792  *
4793  * For any internal node, compare the low and high keys of each
4794  * pointer against the query low/high keys.  If there's an overlap,
4795  * follow the pointer.
4796  *
4797  * As an optimization, we stop scanning a block when we find a low key
4798  * that is greater than the query's high key.
4799  */
4800 STATIC int
4801 xfs_btree_overlapped_query_range(
4802         struct xfs_btree_cur            *cur,
4803         const union xfs_btree_key       *low_key,
4804         const union xfs_btree_key       *high_key,
4805         xfs_btree_query_range_fn        fn,
4806         void                            *priv)
4807 {
4808         union xfs_btree_ptr             ptr;
4809         union xfs_btree_ptr             *pp;
4810         union xfs_btree_key             rec_key;
4811         union xfs_btree_key             rec_hkey;
4812         union xfs_btree_key             *lkp;
4813         union xfs_btree_key             *hkp;
4814         union xfs_btree_rec             *recp;
4815         struct xfs_btree_block          *block;
4816         int64_t                         ldiff;
4817         int64_t                         hdiff;
4818         int                             level;
4819         struct xfs_buf                  *bp;
4820         int                             i;
4821         int                             error;
4822
4823         /* Load the root of the btree. */
4824         level = cur->bc_nlevels - 1;
4825         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4826         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4827         if (error)
4828                 return error;
4829         xfs_btree_get_block(cur, level, &bp);
4830         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4831 #ifdef DEBUG
4832         error = xfs_btree_check_block(cur, block, level, bp);
4833         if (error)
4834                 goto out;
4835 #endif
4836         cur->bc_levels[level].ptr = 1;
4837
4838         while (level < cur->bc_nlevels) {
4839                 block = xfs_btree_get_block(cur, level, &bp);
4840
4841                 /* End of node, pop back towards the root. */
4842                 if (cur->bc_levels[level].ptr >
4843                                         be16_to_cpu(block->bb_numrecs)) {
4844 pop_up:
4845                         if (level < cur->bc_nlevels - 1)
4846                                 cur->bc_levels[level + 1].ptr++;
4847                         level++;
4848                         continue;
4849                 }
4850
4851                 if (level == 0) {
4852                         /* Handle a leaf node. */
4853                         recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4854                                         block);
4855
4856                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4857                         ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4858                                         low_key);
4859
4860                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4861                         hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4862                                         &rec_key);
4863
4864                         /*
4865                          * If (record's high key >= query's low key) and
4866                          *    (query's high key >= record's low key), then
4867                          * this record overlaps the query range; callback.
4868                          */
4869                         if (ldiff >= 0 && hdiff >= 0) {
4870                                 error = fn(cur, recp, priv);
4871                                 if (error)
4872                                         break;
4873                         } else if (hdiff < 0) {
4874                                 /* Record is larger than high key; pop. */
4875                                 goto pop_up;
4876                         }
4877                         cur->bc_levels[level].ptr++;
4878                         continue;
4879                 }
4880
4881                 /* Handle an internal node. */
4882                 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4883                 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4884                                 block);
4885                 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4886
4887                 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4888                 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4889
4890                 /*
4891                  * If (pointer's high key >= query's low key) and
4892                  *    (query's high key >= pointer's low key), then
4893                  * this record overlaps the query range; follow pointer.
4894                  */
4895                 if (ldiff >= 0 && hdiff >= 0) {
4896                         level--;
4897                         error = xfs_btree_lookup_get_block(cur, level, pp,
4898                                         &block);
4899                         if (error)
4900                                 goto out;
4901                         xfs_btree_get_block(cur, level, &bp);
4902                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4903 #ifdef DEBUG
4904                         error = xfs_btree_check_block(cur, block, level, bp);
4905                         if (error)
4906                                 goto out;
4907 #endif
4908                         cur->bc_levels[level].ptr = 1;
4909                         continue;
4910                 } else if (hdiff < 0) {
4911                         /* The low key is larger than the upper range; pop. */
4912                         goto pop_up;
4913                 }
4914                 cur->bc_levels[level].ptr++;
4915         }
4916
4917 out:
4918         /*
4919          * If we don't end this function with the cursor pointing at a record
4920          * block, a subsequent non-error cursor deletion will not release
4921          * node-level buffers, causing a buffer leak.  This is quite possible
4922          * with a zero-results range query, so release the buffers if we
4923          * failed to return any results.
4924          */
4925         if (cur->bc_levels[0].bp == NULL) {
4926                 for (i = 0; i < cur->bc_nlevels; i++) {
4927                         if (cur->bc_levels[i].bp) {
4928                                 xfs_trans_brelse(cur->bc_tp,
4929                                                 cur->bc_levels[i].bp);
4930                                 cur->bc_levels[i].bp = NULL;
4931                                 cur->bc_levels[i].ptr = 0;
4932                                 cur->bc_levels[i].ra = 0;
4933                         }
4934                 }
4935         }
4936
4937         return error;
4938 }
4939
4940 /*
4941  * Query a btree for all records overlapping a given interval of keys.  The
4942  * supplied function will be called with each record found; return one of the
4943  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4944  * code.  This function returns -ECANCELED, zero, or a negative error code.
4945  */
4946 int
4947 xfs_btree_query_range(
4948         struct xfs_btree_cur            *cur,
4949         const union xfs_btree_irec      *low_rec,
4950         const union xfs_btree_irec      *high_rec,
4951         xfs_btree_query_range_fn        fn,
4952         void                            *priv)
4953 {
4954         union xfs_btree_rec             rec;
4955         union xfs_btree_key             low_key;
4956         union xfs_btree_key             high_key;
4957
4958         /* Find the keys of both ends of the interval. */
4959         cur->bc_rec = *high_rec;
4960         cur->bc_ops->init_rec_from_cur(cur, &rec);
4961         cur->bc_ops->init_key_from_rec(&high_key, &rec);
4962
4963         cur->bc_rec = *low_rec;
4964         cur->bc_ops->init_rec_from_cur(cur, &rec);
4965         cur->bc_ops->init_key_from_rec(&low_key, &rec);
4966
4967         /* Enforce low key < high key. */
4968         if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4969                 return -EINVAL;
4970
4971         if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4972                 return xfs_btree_simple_query_range(cur, &low_key,
4973                                 &high_key, fn, priv);
4974         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4975                         fn, priv);
4976 }
4977
4978 /* Query a btree for all records. */
4979 int
4980 xfs_btree_query_all(
4981         struct xfs_btree_cur            *cur,
4982         xfs_btree_query_range_fn        fn,
4983         void                            *priv)
4984 {
4985         union xfs_btree_key             low_key;
4986         union xfs_btree_key             high_key;
4987
4988         memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4989         memset(&low_key, 0, sizeof(low_key));
4990         memset(&high_key, 0xFF, sizeof(high_key));
4991
4992         return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4993 }
4994
4995 static int
4996 xfs_btree_count_blocks_helper(
4997         struct xfs_btree_cur    *cur,
4998         int                     level,
4999         void                    *data)
5000 {
5001         xfs_extlen_t            *blocks = data;
5002         (*blocks)++;
5003
5004         return 0;
5005 }
5006
5007 /* Count the blocks in a btree and return the result in *blocks. */
5008 int
5009 xfs_btree_count_blocks(
5010         struct xfs_btree_cur    *cur,
5011         xfs_extlen_t            *blocks)
5012 {
5013         *blocks = 0;
5014         return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5015                         XFS_BTREE_VISIT_ALL, blocks);
5016 }
5017
5018 /* Compare two btree pointers. */
5019 int64_t
5020 xfs_btree_diff_two_ptrs(
5021         struct xfs_btree_cur            *cur,
5022         const union xfs_btree_ptr       *a,
5023         const union xfs_btree_ptr       *b)
5024 {
5025         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5026                 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5027         return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5028 }
5029
5030 /* If there's an extent, we're done. */
5031 STATIC int
5032 xfs_btree_has_record_helper(
5033         struct xfs_btree_cur            *cur,
5034         const union xfs_btree_rec       *rec,
5035         void                            *priv)
5036 {
5037         return -ECANCELED;
5038 }
5039
5040 /* Is there a record covering a given range of keys? */
5041 int
5042 xfs_btree_has_record(
5043         struct xfs_btree_cur            *cur,
5044         const union xfs_btree_irec      *low,
5045         const union xfs_btree_irec      *high,
5046         bool                            *exists)
5047 {
5048         int                             error;
5049
5050         error = xfs_btree_query_range(cur, low, high,
5051                         &xfs_btree_has_record_helper, NULL);
5052         if (error == -ECANCELED) {
5053                 *exists = true;
5054                 return 0;
5055         }
5056         *exists = false;
5057         return error;
5058 }
5059
5060 /* Are there more records in this btree? */
5061 bool
5062 xfs_btree_has_more_records(
5063         struct xfs_btree_cur    *cur)
5064 {
5065         struct xfs_btree_block  *block;
5066         struct xfs_buf          *bp;
5067
5068         block = xfs_btree_get_block(cur, 0, &bp);
5069
5070         /* There are still records in this block. */
5071         if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5072                 return true;
5073
5074         /* There are more record blocks. */
5075         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5076                 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5077         else
5078                 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5079 }
5080
5081 /* Set up all the btree cursor caches. */
5082 int __init
5083 xfs_btree_init_cur_caches(void)
5084 {
5085         int             error;
5086
5087         error = xfs_allocbt_init_cur_cache();
5088         if (error)
5089                 return error;
5090         error = xfs_inobt_init_cur_cache();
5091         if (error)
5092                 goto err;
5093         error = xfs_bmbt_init_cur_cache();
5094         if (error)
5095                 goto err;
5096         error = xfs_rmapbt_init_cur_cache();
5097         if (error)
5098                 goto err;
5099         error = xfs_refcountbt_init_cur_cache();
5100         if (error)
5101                 goto err;
5102
5103         return 0;
5104 err:
5105         xfs_btree_destroy_cur_caches();
5106         return error;
5107 }
5108
5109 /* Destroy all the btree cursor caches, if they've been allocated. */
5110 void
5111 xfs_btree_destroy_cur_caches(void)
5112 {
5113         xfs_allocbt_destroy_cur_cache();
5114         xfs_inobt_destroy_cur_cache();
5115         xfs_bmbt_destroy_cur_cache();
5116         xfs_rmapbt_destroy_cur_cache();
5117         xfs_refcountbt_destroy_cur_cache();
5118 }