Merge existing fixes from regulator/for-5.12
[platform/kernel/linux-starfive.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  *
44  * Locking order:
45  *      fd_wqh.lock
46  *              fault_pending_wqh.lock
47  *                      fault_wqh.lock
48  *              event_wqh.lock
49  *
50  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52  * also taken in IRQ context.
53  */
54 struct userfaultfd_ctx {
55         /* waitqueue head for the pending (i.e. not read) userfaults */
56         wait_queue_head_t fault_pending_wqh;
57         /* waitqueue head for the userfaults */
58         wait_queue_head_t fault_wqh;
59         /* waitqueue head for the pseudo fd to wakeup poll/read */
60         wait_queue_head_t fd_wqh;
61         /* waitqueue head for events */
62         wait_queue_head_t event_wqh;
63         /* a refile sequence protected by fault_pending_wqh lock */
64         seqcount_spinlock_t refile_seq;
65         /* pseudo fd refcounting */
66         refcount_t refcount;
67         /* userfaultfd syscall flags */
68         unsigned int flags;
69         /* features requested from the userspace */
70         unsigned int features;
71         /* state machine */
72         enum userfaultfd_state state;
73         /* released */
74         bool released;
75         /* memory mappings are changing because of non-cooperative event */
76         bool mmap_changing;
77         /* mm with one ore more vmas attached to this userfaultfd_ctx */
78         struct mm_struct *mm;
79 };
80
81 struct userfaultfd_fork_ctx {
82         struct userfaultfd_ctx *orig;
83         struct userfaultfd_ctx *new;
84         struct list_head list;
85 };
86
87 struct userfaultfd_unmap_ctx {
88         struct userfaultfd_ctx *ctx;
89         unsigned long start;
90         unsigned long end;
91         struct list_head list;
92 };
93
94 struct userfaultfd_wait_queue {
95         struct uffd_msg msg;
96         wait_queue_entry_t wq;
97         struct userfaultfd_ctx *ctx;
98         bool waken;
99 };
100
101 struct userfaultfd_wake_range {
102         unsigned long start;
103         unsigned long len;
104 };
105
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107                                      int wake_flags, void *key)
108 {
109         struct userfaultfd_wake_range *range = key;
110         int ret;
111         struct userfaultfd_wait_queue *uwq;
112         unsigned long start, len;
113
114         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115         ret = 0;
116         /* len == 0 means wake all */
117         start = range->start;
118         len = range->len;
119         if (len && (start > uwq->msg.arg.pagefault.address ||
120                     start + len <= uwq->msg.arg.pagefault.address))
121                 goto out;
122         WRITE_ONCE(uwq->waken, true);
123         /*
124          * The Program-Order guarantees provided by the scheduler
125          * ensure uwq->waken is visible before the task is woken.
126          */
127         ret = wake_up_state(wq->private, mode);
128         if (ret) {
129                 /*
130                  * Wake only once, autoremove behavior.
131                  *
132                  * After the effect of list_del_init is visible to the other
133                  * CPUs, the waitqueue may disappear from under us, see the
134                  * !list_empty_careful() in handle_userfault().
135                  *
136                  * try_to_wake_up() has an implicit smp_mb(), and the
137                  * wq->private is read before calling the extern function
138                  * "wake_up_state" (which in turns calls try_to_wake_up).
139                  */
140                 list_del_init(&wq->entry);
141         }
142 out:
143         return ret;
144 }
145
146 /**
147  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to the userfaultfd context.
150  */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153         refcount_inc(&ctx->refcount);
154 }
155
156 /**
157  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158  * context.
159  * @ctx: [in] Pointer to userfaultfd context.
160  *
161  * The userfaultfd context reference must have been previously acquired either
162  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163  */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166         if (refcount_dec_and_test(&ctx->refcount)) {
167                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175                 mmdrop(ctx->mm);
176                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177         }
178 }
179
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183         /*
184          * Must use memset to zero out the paddings or kernel data is
185          * leaked to userland.
186          */
187         memset(msg, 0, sizeof(struct uffd_msg));
188 }
189
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191                                             unsigned int flags,
192                                             unsigned long reason,
193                                             unsigned int features)
194 {
195         struct uffd_msg msg;
196         msg_init(&msg);
197         msg.event = UFFD_EVENT_PAGEFAULT;
198         msg.arg.pagefault.address = address;
199         if (flags & FAULT_FLAG_WRITE)
200                 /*
201                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204                  * was a read fault, otherwise if set it means it's
205                  * a write fault.
206                  */
207                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208         if (reason & VM_UFFD_WP)
209                 /*
210                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213                  * a missing fault, otherwise if set it means it's a
214                  * write protect fault.
215                  */
216                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217         if (features & UFFD_FEATURE_THREAD_ID)
218                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219         return msg;
220 }
221
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228                                          struct vm_area_struct *vma,
229                                          unsigned long address,
230                                          unsigned long flags,
231                                          unsigned long reason)
232 {
233         struct mm_struct *mm = ctx->mm;
234         pte_t *ptep, pte;
235         bool ret = true;
236
237         mmap_assert_locked(mm);
238
239         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241         if (!ptep)
242                 goto out;
243
244         ret = false;
245         pte = huge_ptep_get(ptep);
246
247         /*
248          * Lockless access: we're in a wait_event so it's ok if it
249          * changes under us.
250          */
251         if (huge_pte_none(pte))
252                 ret = true;
253         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254                 ret = true;
255 out:
256         return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260                                          struct vm_area_struct *vma,
261                                          unsigned long address,
262                                          unsigned long flags,
263                                          unsigned long reason)
264 {
265         return false;   /* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277                                          unsigned long address,
278                                          unsigned long flags,
279                                          unsigned long reason)
280 {
281         struct mm_struct *mm = ctx->mm;
282         pgd_t *pgd;
283         p4d_t *p4d;
284         pud_t *pud;
285         pmd_t *pmd, _pmd;
286         pte_t *pte;
287         bool ret = true;
288
289         mmap_assert_locked(mm);
290
291         pgd = pgd_offset(mm, address);
292         if (!pgd_present(*pgd))
293                 goto out;
294         p4d = p4d_offset(pgd, address);
295         if (!p4d_present(*p4d))
296                 goto out;
297         pud = pud_offset(p4d, address);
298         if (!pud_present(*pud))
299                 goto out;
300         pmd = pmd_offset(pud, address);
301         /*
302          * READ_ONCE must function as a barrier with narrower scope
303          * and it must be equivalent to:
304          *      _pmd = *pmd; barrier();
305          *
306          * This is to deal with the instability (as in
307          * pmd_trans_unstable) of the pmd.
308          */
309         _pmd = READ_ONCE(*pmd);
310         if (pmd_none(_pmd))
311                 goto out;
312
313         ret = false;
314         if (!pmd_present(_pmd))
315                 goto out;
316
317         if (pmd_trans_huge(_pmd)) {
318                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319                         ret = true;
320                 goto out;
321         }
322
323         /*
324          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325          * and use the standard pte_offset_map() instead of parsing _pmd.
326          */
327         pte = pte_offset_map(pmd, address);
328         /*
329          * Lockless access: we're in a wait_event so it's ok if it
330          * changes under us.
331          */
332         if (pte_none(*pte))
333                 ret = true;
334         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335                 ret = true;
336         pte_unmap(pte);
337
338 out:
339         return ret;
340 }
341
342 static inline long userfaultfd_get_blocking_state(unsigned int flags)
343 {
344         if (flags & FAULT_FLAG_INTERRUPTIBLE)
345                 return TASK_INTERRUPTIBLE;
346
347         if (flags & FAULT_FLAG_KILLABLE)
348                 return TASK_KILLABLE;
349
350         return TASK_UNINTERRUPTIBLE;
351 }
352
353 /*
354  * The locking rules involved in returning VM_FAULT_RETRY depending on
355  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357  * recommendation in __lock_page_or_retry is not an understatement.
358  *
359  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361  * not set.
362  *
363  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364  * set, VM_FAULT_RETRY can still be returned if and only if there are
365  * fatal_signal_pending()s, and the mmap_lock must be released before
366  * returning it.
367  */
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
369 {
370         struct mm_struct *mm = vmf->vma->vm_mm;
371         struct userfaultfd_ctx *ctx;
372         struct userfaultfd_wait_queue uwq;
373         vm_fault_t ret = VM_FAULT_SIGBUS;
374         bool must_wait;
375         long blocking_state;
376
377         /*
378          * We don't do userfault handling for the final child pid update.
379          *
380          * We also don't do userfault handling during
381          * coredumping. hugetlbfs has the special
382          * follow_hugetlb_page() to skip missing pages in the
383          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384          * the no_page_table() helper in follow_page_mask(), but the
385          * shmem_vm_ops->fault method is invoked even during
386          * coredumping without mmap_lock and it ends up here.
387          */
388         if (current->flags & (PF_EXITING|PF_DUMPCORE))
389                 goto out;
390
391         /*
392          * Coredumping runs without mmap_lock so we can only check that
393          * the mmap_lock is held, if PF_DUMPCORE was not set.
394          */
395         mmap_assert_locked(mm);
396
397         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
398         if (!ctx)
399                 goto out;
400
401         BUG_ON(ctx->mm != mm);
402
403         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
404         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
405
406         if (ctx->features & UFFD_FEATURE_SIGBUS)
407                 goto out;
408         if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
409             ctx->flags & UFFD_USER_MODE_ONLY) {
410                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
411                         "sysctl knob to 1 if kernel faults must be handled "
412                         "without obtaining CAP_SYS_PTRACE capability\n");
413                 goto out;
414         }
415
416         /*
417          * If it's already released don't get it. This avoids to loop
418          * in __get_user_pages if userfaultfd_release waits on the
419          * caller of handle_userfault to release the mmap_lock.
420          */
421         if (unlikely(READ_ONCE(ctx->released))) {
422                 /*
423                  * Don't return VM_FAULT_SIGBUS in this case, so a non
424                  * cooperative manager can close the uffd after the
425                  * last UFFDIO_COPY, without risking to trigger an
426                  * involuntary SIGBUS if the process was starting the
427                  * userfaultfd while the userfaultfd was still armed
428                  * (but after the last UFFDIO_COPY). If the uffd
429                  * wasn't already closed when the userfault reached
430                  * this point, that would normally be solved by
431                  * userfaultfd_must_wait returning 'false'.
432                  *
433                  * If we were to return VM_FAULT_SIGBUS here, the non
434                  * cooperative manager would be instead forced to
435                  * always call UFFDIO_UNREGISTER before it can safely
436                  * close the uffd.
437                  */
438                 ret = VM_FAULT_NOPAGE;
439                 goto out;
440         }
441
442         /*
443          * Check that we can return VM_FAULT_RETRY.
444          *
445          * NOTE: it should become possible to return VM_FAULT_RETRY
446          * even if FAULT_FLAG_TRIED is set without leading to gup()
447          * -EBUSY failures, if the userfaultfd is to be extended for
448          * VM_UFFD_WP tracking and we intend to arm the userfault
449          * without first stopping userland access to the memory. For
450          * VM_UFFD_MISSING userfaults this is enough for now.
451          */
452         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
453                 /*
454                  * Validate the invariant that nowait must allow retry
455                  * to be sure not to return SIGBUS erroneously on
456                  * nowait invocations.
457                  */
458                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
459 #ifdef CONFIG_DEBUG_VM
460                 if (printk_ratelimit()) {
461                         printk(KERN_WARNING
462                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
463                                vmf->flags);
464                         dump_stack();
465                 }
466 #endif
467                 goto out;
468         }
469
470         /*
471          * Handle nowait, not much to do other than tell it to retry
472          * and wait.
473          */
474         ret = VM_FAULT_RETRY;
475         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
476                 goto out;
477
478         /* take the reference before dropping the mmap_lock */
479         userfaultfd_ctx_get(ctx);
480
481         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
482         uwq.wq.private = current;
483         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
484                         ctx->features);
485         uwq.ctx = ctx;
486         uwq.waken = false;
487
488         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
489
490         spin_lock_irq(&ctx->fault_pending_wqh.lock);
491         /*
492          * After the __add_wait_queue the uwq is visible to userland
493          * through poll/read().
494          */
495         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
496         /*
497          * The smp_mb() after __set_current_state prevents the reads
498          * following the spin_unlock to happen before the list_add in
499          * __add_wait_queue.
500          */
501         set_current_state(blocking_state);
502         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
503
504         if (!is_vm_hugetlb_page(vmf->vma))
505                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
506                                                   reason);
507         else
508                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
509                                                        vmf->address,
510                                                        vmf->flags, reason);
511         mmap_read_unlock(mm);
512
513         if (likely(must_wait && !READ_ONCE(ctx->released))) {
514                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
515                 schedule();
516         }
517
518         __set_current_state(TASK_RUNNING);
519
520         /*
521          * Here we race with the list_del; list_add in
522          * userfaultfd_ctx_read(), however because we don't ever run
523          * list_del_init() to refile across the two lists, the prev
524          * and next pointers will never point to self. list_add also
525          * would never let any of the two pointers to point to
526          * self. So list_empty_careful won't risk to see both pointers
527          * pointing to self at any time during the list refile. The
528          * only case where list_del_init() is called is the full
529          * removal in the wake function and there we don't re-list_add
530          * and it's fine not to block on the spinlock. The uwq on this
531          * kernel stack can be released after the list_del_init.
532          */
533         if (!list_empty_careful(&uwq.wq.entry)) {
534                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
535                 /*
536                  * No need of list_del_init(), the uwq on the stack
537                  * will be freed shortly anyway.
538                  */
539                 list_del(&uwq.wq.entry);
540                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
541         }
542
543         /*
544          * ctx may go away after this if the userfault pseudo fd is
545          * already released.
546          */
547         userfaultfd_ctx_put(ctx);
548
549 out:
550         return ret;
551 }
552
553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
554                                               struct userfaultfd_wait_queue *ewq)
555 {
556         struct userfaultfd_ctx *release_new_ctx;
557
558         if (WARN_ON_ONCE(current->flags & PF_EXITING))
559                 goto out;
560
561         ewq->ctx = ctx;
562         init_waitqueue_entry(&ewq->wq, current);
563         release_new_ctx = NULL;
564
565         spin_lock_irq(&ctx->event_wqh.lock);
566         /*
567          * After the __add_wait_queue the uwq is visible to userland
568          * through poll/read().
569          */
570         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
571         for (;;) {
572                 set_current_state(TASK_KILLABLE);
573                 if (ewq->msg.event == 0)
574                         break;
575                 if (READ_ONCE(ctx->released) ||
576                     fatal_signal_pending(current)) {
577                         /*
578                          * &ewq->wq may be queued in fork_event, but
579                          * __remove_wait_queue ignores the head
580                          * parameter. It would be a problem if it
581                          * didn't.
582                          */
583                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
584                         if (ewq->msg.event == UFFD_EVENT_FORK) {
585                                 struct userfaultfd_ctx *new;
586
587                                 new = (struct userfaultfd_ctx *)
588                                         (unsigned long)
589                                         ewq->msg.arg.reserved.reserved1;
590                                 release_new_ctx = new;
591                         }
592                         break;
593                 }
594
595                 spin_unlock_irq(&ctx->event_wqh.lock);
596
597                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
598                 schedule();
599
600                 spin_lock_irq(&ctx->event_wqh.lock);
601         }
602         __set_current_state(TASK_RUNNING);
603         spin_unlock_irq(&ctx->event_wqh.lock);
604
605         if (release_new_ctx) {
606                 struct vm_area_struct *vma;
607                 struct mm_struct *mm = release_new_ctx->mm;
608
609                 /* the various vma->vm_userfaultfd_ctx still points to it */
610                 mmap_write_lock(mm);
611                 for (vma = mm->mmap; vma; vma = vma->vm_next)
612                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
613                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
614                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
615                         }
616                 mmap_write_unlock(mm);
617
618                 userfaultfd_ctx_put(release_new_ctx);
619         }
620
621         /*
622          * ctx may go away after this if the userfault pseudo fd is
623          * already released.
624          */
625 out:
626         WRITE_ONCE(ctx->mmap_changing, false);
627         userfaultfd_ctx_put(ctx);
628 }
629
630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
631                                        struct userfaultfd_wait_queue *ewq)
632 {
633         ewq->msg.event = 0;
634         wake_up_locked(&ctx->event_wqh);
635         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
636 }
637
638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
639 {
640         struct userfaultfd_ctx *ctx = NULL, *octx;
641         struct userfaultfd_fork_ctx *fctx;
642
643         octx = vma->vm_userfaultfd_ctx.ctx;
644         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
646                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
647                 return 0;
648         }
649
650         list_for_each_entry(fctx, fcs, list)
651                 if (fctx->orig == octx) {
652                         ctx = fctx->new;
653                         break;
654                 }
655
656         if (!ctx) {
657                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
658                 if (!fctx)
659                         return -ENOMEM;
660
661                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
662                 if (!ctx) {
663                         kfree(fctx);
664                         return -ENOMEM;
665                 }
666
667                 refcount_set(&ctx->refcount, 1);
668                 ctx->flags = octx->flags;
669                 ctx->state = UFFD_STATE_RUNNING;
670                 ctx->features = octx->features;
671                 ctx->released = false;
672                 ctx->mmap_changing = false;
673                 ctx->mm = vma->vm_mm;
674                 mmgrab(ctx->mm);
675
676                 userfaultfd_ctx_get(octx);
677                 WRITE_ONCE(octx->mmap_changing, true);
678                 fctx->orig = octx;
679                 fctx->new = ctx;
680                 list_add_tail(&fctx->list, fcs);
681         }
682
683         vma->vm_userfaultfd_ctx.ctx = ctx;
684         return 0;
685 }
686
687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
688 {
689         struct userfaultfd_ctx *ctx = fctx->orig;
690         struct userfaultfd_wait_queue ewq;
691
692         msg_init(&ewq.msg);
693
694         ewq.msg.event = UFFD_EVENT_FORK;
695         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
696
697         userfaultfd_event_wait_completion(ctx, &ewq);
698 }
699
700 void dup_userfaultfd_complete(struct list_head *fcs)
701 {
702         struct userfaultfd_fork_ctx *fctx, *n;
703
704         list_for_each_entry_safe(fctx, n, fcs, list) {
705                 dup_fctx(fctx);
706                 list_del(&fctx->list);
707                 kfree(fctx);
708         }
709 }
710
711 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
712                              struct vm_userfaultfd_ctx *vm_ctx)
713 {
714         struct userfaultfd_ctx *ctx;
715
716         ctx = vma->vm_userfaultfd_ctx.ctx;
717
718         if (!ctx)
719                 return;
720
721         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
722                 vm_ctx->ctx = ctx;
723                 userfaultfd_ctx_get(ctx);
724                 WRITE_ONCE(ctx->mmap_changing, true);
725         } else {
726                 /* Drop uffd context if remap feature not enabled */
727                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
728                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
729         }
730 }
731
732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
733                                  unsigned long from, unsigned long to,
734                                  unsigned long len)
735 {
736         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
737         struct userfaultfd_wait_queue ewq;
738
739         if (!ctx)
740                 return;
741
742         if (to & ~PAGE_MASK) {
743                 userfaultfd_ctx_put(ctx);
744                 return;
745         }
746
747         msg_init(&ewq.msg);
748
749         ewq.msg.event = UFFD_EVENT_REMAP;
750         ewq.msg.arg.remap.from = from;
751         ewq.msg.arg.remap.to = to;
752         ewq.msg.arg.remap.len = len;
753
754         userfaultfd_event_wait_completion(ctx, &ewq);
755 }
756
757 bool userfaultfd_remove(struct vm_area_struct *vma,
758                         unsigned long start, unsigned long end)
759 {
760         struct mm_struct *mm = vma->vm_mm;
761         struct userfaultfd_ctx *ctx;
762         struct userfaultfd_wait_queue ewq;
763
764         ctx = vma->vm_userfaultfd_ctx.ctx;
765         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
766                 return true;
767
768         userfaultfd_ctx_get(ctx);
769         WRITE_ONCE(ctx->mmap_changing, true);
770         mmap_read_unlock(mm);
771
772         msg_init(&ewq.msg);
773
774         ewq.msg.event = UFFD_EVENT_REMOVE;
775         ewq.msg.arg.remove.start = start;
776         ewq.msg.arg.remove.end = end;
777
778         userfaultfd_event_wait_completion(ctx, &ewq);
779
780         return false;
781 }
782
783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
784                           unsigned long start, unsigned long end)
785 {
786         struct userfaultfd_unmap_ctx *unmap_ctx;
787
788         list_for_each_entry(unmap_ctx, unmaps, list)
789                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
790                     unmap_ctx->end == end)
791                         return true;
792
793         return false;
794 }
795
796 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
797                            unsigned long start, unsigned long end,
798                            struct list_head *unmaps)
799 {
800         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
801                 struct userfaultfd_unmap_ctx *unmap_ctx;
802                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
803
804                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
805                     has_unmap_ctx(ctx, unmaps, start, end))
806                         continue;
807
808                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
809                 if (!unmap_ctx)
810                         return -ENOMEM;
811
812                 userfaultfd_ctx_get(ctx);
813                 WRITE_ONCE(ctx->mmap_changing, true);
814                 unmap_ctx->ctx = ctx;
815                 unmap_ctx->start = start;
816                 unmap_ctx->end = end;
817                 list_add_tail(&unmap_ctx->list, unmaps);
818         }
819
820         return 0;
821 }
822
823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
824 {
825         struct userfaultfd_unmap_ctx *ctx, *n;
826         struct userfaultfd_wait_queue ewq;
827
828         list_for_each_entry_safe(ctx, n, uf, list) {
829                 msg_init(&ewq.msg);
830
831                 ewq.msg.event = UFFD_EVENT_UNMAP;
832                 ewq.msg.arg.remove.start = ctx->start;
833                 ewq.msg.arg.remove.end = ctx->end;
834
835                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
836
837                 list_del(&ctx->list);
838                 kfree(ctx);
839         }
840 }
841
842 static int userfaultfd_release(struct inode *inode, struct file *file)
843 {
844         struct userfaultfd_ctx *ctx = file->private_data;
845         struct mm_struct *mm = ctx->mm;
846         struct vm_area_struct *vma, *prev;
847         /* len == 0 means wake all */
848         struct userfaultfd_wake_range range = { .len = 0, };
849         unsigned long new_flags;
850
851         WRITE_ONCE(ctx->released, true);
852
853         if (!mmget_not_zero(mm))
854                 goto wakeup;
855
856         /*
857          * Flush page faults out of all CPUs. NOTE: all page faults
858          * must be retried without returning VM_FAULT_SIGBUS if
859          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
860          * changes while handle_userfault released the mmap_lock. So
861          * it's critical that released is set to true (above), before
862          * taking the mmap_lock for writing.
863          */
864         mmap_write_lock(mm);
865         prev = NULL;
866         for (vma = mm->mmap; vma; vma = vma->vm_next) {
867                 cond_resched();
868                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
869                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
870                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
871                         prev = vma;
872                         continue;
873                 }
874                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
875                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
876                                  new_flags, vma->anon_vma,
877                                  vma->vm_file, vma->vm_pgoff,
878                                  vma_policy(vma),
879                                  NULL_VM_UFFD_CTX);
880                 if (prev)
881                         vma = prev;
882                 else
883                         prev = vma;
884                 vma->vm_flags = new_flags;
885                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
886         }
887         mmap_write_unlock(mm);
888         mmput(mm);
889 wakeup:
890         /*
891          * After no new page faults can wait on this fault_*wqh, flush
892          * the last page faults that may have been already waiting on
893          * the fault_*wqh.
894          */
895         spin_lock_irq(&ctx->fault_pending_wqh.lock);
896         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
897         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
898         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
899
900         /* Flush pending events that may still wait on event_wqh */
901         wake_up_all(&ctx->event_wqh);
902
903         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
904         userfaultfd_ctx_put(ctx);
905         return 0;
906 }
907
908 /* fault_pending_wqh.lock must be hold by the caller */
909 static inline struct userfaultfd_wait_queue *find_userfault_in(
910                 wait_queue_head_t *wqh)
911 {
912         wait_queue_entry_t *wq;
913         struct userfaultfd_wait_queue *uwq;
914
915         lockdep_assert_held(&wqh->lock);
916
917         uwq = NULL;
918         if (!waitqueue_active(wqh))
919                 goto out;
920         /* walk in reverse to provide FIFO behavior to read userfaults */
921         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
922         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
923 out:
924         return uwq;
925 }
926
927 static inline struct userfaultfd_wait_queue *find_userfault(
928                 struct userfaultfd_ctx *ctx)
929 {
930         return find_userfault_in(&ctx->fault_pending_wqh);
931 }
932
933 static inline struct userfaultfd_wait_queue *find_userfault_evt(
934                 struct userfaultfd_ctx *ctx)
935 {
936         return find_userfault_in(&ctx->event_wqh);
937 }
938
939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
940 {
941         struct userfaultfd_ctx *ctx = file->private_data;
942         __poll_t ret;
943
944         poll_wait(file, &ctx->fd_wqh, wait);
945
946         switch (ctx->state) {
947         case UFFD_STATE_WAIT_API:
948                 return EPOLLERR;
949         case UFFD_STATE_RUNNING:
950                 /*
951                  * poll() never guarantees that read won't block.
952                  * userfaults can be waken before they're read().
953                  */
954                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
955                         return EPOLLERR;
956                 /*
957                  * lockless access to see if there are pending faults
958                  * __pollwait last action is the add_wait_queue but
959                  * the spin_unlock would allow the waitqueue_active to
960                  * pass above the actual list_add inside
961                  * add_wait_queue critical section. So use a full
962                  * memory barrier to serialize the list_add write of
963                  * add_wait_queue() with the waitqueue_active read
964                  * below.
965                  */
966                 ret = 0;
967                 smp_mb();
968                 if (waitqueue_active(&ctx->fault_pending_wqh))
969                         ret = EPOLLIN;
970                 else if (waitqueue_active(&ctx->event_wqh))
971                         ret = EPOLLIN;
972
973                 return ret;
974         default:
975                 WARN_ON_ONCE(1);
976                 return EPOLLERR;
977         }
978 }
979
980 static const struct file_operations userfaultfd_fops;
981
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983                                   struct inode *inode,
984                                   struct uffd_msg *msg)
985 {
986         int fd;
987
988         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989                         O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
990         if (fd < 0)
991                 return fd;
992
993         msg->arg.reserved.reserved1 = 0;
994         msg->arg.fork.ufd = fd;
995         return 0;
996 }
997
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999                                     struct uffd_msg *msg, struct inode *inode)
1000 {
1001         ssize_t ret;
1002         DECLARE_WAITQUEUE(wait, current);
1003         struct userfaultfd_wait_queue *uwq;
1004         /*
1005          * Handling fork event requires sleeping operations, so
1006          * we drop the event_wqh lock, then do these ops, then
1007          * lock it back and wake up the waiter. While the lock is
1008          * dropped the ewq may go away so we keep track of it
1009          * carefully.
1010          */
1011         LIST_HEAD(fork_event);
1012         struct userfaultfd_ctx *fork_nctx = NULL;
1013
1014         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1015         spin_lock_irq(&ctx->fd_wqh.lock);
1016         __add_wait_queue(&ctx->fd_wqh, &wait);
1017         for (;;) {
1018                 set_current_state(TASK_INTERRUPTIBLE);
1019                 spin_lock(&ctx->fault_pending_wqh.lock);
1020                 uwq = find_userfault(ctx);
1021                 if (uwq) {
1022                         /*
1023                          * Use a seqcount to repeat the lockless check
1024                          * in wake_userfault() to avoid missing
1025                          * wakeups because during the refile both
1026                          * waitqueue could become empty if this is the
1027                          * only userfault.
1028                          */
1029                         write_seqcount_begin(&ctx->refile_seq);
1030
1031                         /*
1032                          * The fault_pending_wqh.lock prevents the uwq
1033                          * to disappear from under us.
1034                          *
1035                          * Refile this userfault from
1036                          * fault_pending_wqh to fault_wqh, it's not
1037                          * pending anymore after we read it.
1038                          *
1039                          * Use list_del() by hand (as
1040                          * userfaultfd_wake_function also uses
1041                          * list_del_init() by hand) to be sure nobody
1042                          * changes __remove_wait_queue() to use
1043                          * list_del_init() in turn breaking the
1044                          * !list_empty_careful() check in
1045                          * handle_userfault(). The uwq->wq.head list
1046                          * must never be empty at any time during the
1047                          * refile, or the waitqueue could disappear
1048                          * from under us. The "wait_queue_head_t"
1049                          * parameter of __remove_wait_queue() is unused
1050                          * anyway.
1051                          */
1052                         list_del(&uwq->wq.entry);
1053                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1054
1055                         write_seqcount_end(&ctx->refile_seq);
1056
1057                         /* careful to always initialize msg if ret == 0 */
1058                         *msg = uwq->msg;
1059                         spin_unlock(&ctx->fault_pending_wqh.lock);
1060                         ret = 0;
1061                         break;
1062                 }
1063                 spin_unlock(&ctx->fault_pending_wqh.lock);
1064
1065                 spin_lock(&ctx->event_wqh.lock);
1066                 uwq = find_userfault_evt(ctx);
1067                 if (uwq) {
1068                         *msg = uwq->msg;
1069
1070                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1071                                 fork_nctx = (struct userfaultfd_ctx *)
1072                                         (unsigned long)
1073                                         uwq->msg.arg.reserved.reserved1;
1074                                 list_move(&uwq->wq.entry, &fork_event);
1075                                 /*
1076                                  * fork_nctx can be freed as soon as
1077                                  * we drop the lock, unless we take a
1078                                  * reference on it.
1079                                  */
1080                                 userfaultfd_ctx_get(fork_nctx);
1081                                 spin_unlock(&ctx->event_wqh.lock);
1082                                 ret = 0;
1083                                 break;
1084                         }
1085
1086                         userfaultfd_event_complete(ctx, uwq);
1087                         spin_unlock(&ctx->event_wqh.lock);
1088                         ret = 0;
1089                         break;
1090                 }
1091                 spin_unlock(&ctx->event_wqh.lock);
1092
1093                 if (signal_pending(current)) {
1094                         ret = -ERESTARTSYS;
1095                         break;
1096                 }
1097                 if (no_wait) {
1098                         ret = -EAGAIN;
1099                         break;
1100                 }
1101                 spin_unlock_irq(&ctx->fd_wqh.lock);
1102                 schedule();
1103                 spin_lock_irq(&ctx->fd_wqh.lock);
1104         }
1105         __remove_wait_queue(&ctx->fd_wqh, &wait);
1106         __set_current_state(TASK_RUNNING);
1107         spin_unlock_irq(&ctx->fd_wqh.lock);
1108
1109         if (!ret && msg->event == UFFD_EVENT_FORK) {
1110                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111                 spin_lock_irq(&ctx->event_wqh.lock);
1112                 if (!list_empty(&fork_event)) {
1113                         /*
1114                          * The fork thread didn't abort, so we can
1115                          * drop the temporary refcount.
1116                          */
1117                         userfaultfd_ctx_put(fork_nctx);
1118
1119                         uwq = list_first_entry(&fork_event,
1120                                                typeof(*uwq),
1121                                                wq.entry);
1122                         /*
1123                          * If fork_event list wasn't empty and in turn
1124                          * the event wasn't already released by fork
1125                          * (the event is allocated on fork kernel
1126                          * stack), put the event back to its place in
1127                          * the event_wq. fork_event head will be freed
1128                          * as soon as we return so the event cannot
1129                          * stay queued there no matter the current
1130                          * "ret" value.
1131                          */
1132                         list_del(&uwq->wq.entry);
1133                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1134
1135                         /*
1136                          * Leave the event in the waitqueue and report
1137                          * error to userland if we failed to resolve
1138                          * the userfault fork.
1139                          */
1140                         if (likely(!ret))
1141                                 userfaultfd_event_complete(ctx, uwq);
1142                 } else {
1143                         /*
1144                          * Here the fork thread aborted and the
1145                          * refcount from the fork thread on fork_nctx
1146                          * has already been released. We still hold
1147                          * the reference we took before releasing the
1148                          * lock above. If resolve_userfault_fork
1149                          * failed we've to drop it because the
1150                          * fork_nctx has to be freed in such case. If
1151                          * it succeeded we'll hold it because the new
1152                          * uffd references it.
1153                          */
1154                         if (ret)
1155                                 userfaultfd_ctx_put(fork_nctx);
1156                 }
1157                 spin_unlock_irq(&ctx->event_wqh.lock);
1158         }
1159
1160         return ret;
1161 }
1162
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164                                 size_t count, loff_t *ppos)
1165 {
1166         struct userfaultfd_ctx *ctx = file->private_data;
1167         ssize_t _ret, ret = 0;
1168         struct uffd_msg msg;
1169         int no_wait = file->f_flags & O_NONBLOCK;
1170         struct inode *inode = file_inode(file);
1171
1172         if (ctx->state == UFFD_STATE_WAIT_API)
1173                 return -EINVAL;
1174
1175         for (;;) {
1176                 if (count < sizeof(msg))
1177                         return ret ? ret : -EINVAL;
1178                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1179                 if (_ret < 0)
1180                         return ret ? ret : _ret;
1181                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182                         return ret ? ret : -EFAULT;
1183                 ret += sizeof(msg);
1184                 buf += sizeof(msg);
1185                 count -= sizeof(msg);
1186                 /*
1187                  * Allow to read more than one fault at time but only
1188                  * block if waiting for the very first one.
1189                  */
1190                 no_wait = O_NONBLOCK;
1191         }
1192 }
1193
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195                              struct userfaultfd_wake_range *range)
1196 {
1197         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198         /* wake all in the range and autoremove */
1199         if (waitqueue_active(&ctx->fault_pending_wqh))
1200                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1201                                      range);
1202         if (waitqueue_active(&ctx->fault_wqh))
1203                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1205 }
1206
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208                                            struct userfaultfd_wake_range *range)
1209 {
1210         unsigned seq;
1211         bool need_wakeup;
1212
1213         /*
1214          * To be sure waitqueue_active() is not reordered by the CPU
1215          * before the pagetable update, use an explicit SMP memory
1216          * barrier here. PT lock release or mmap_read_unlock(mm) still
1217          * have release semantics that can allow the
1218          * waitqueue_active() to be reordered before the pte update.
1219          */
1220         smp_mb();
1221
1222         /*
1223          * Use waitqueue_active because it's very frequent to
1224          * change the address space atomically even if there are no
1225          * userfaults yet. So we take the spinlock only when we're
1226          * sure we've userfaults to wake.
1227          */
1228         do {
1229                 seq = read_seqcount_begin(&ctx->refile_seq);
1230                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231                         waitqueue_active(&ctx->fault_wqh);
1232                 cond_resched();
1233         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1234         if (need_wakeup)
1235                 __wake_userfault(ctx, range);
1236 }
1237
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239                                           __u64 *start, __u64 len)
1240 {
1241         __u64 task_size = mm->task_size;
1242
1243         *start = untagged_addr(*start);
1244
1245         if (*start & ~PAGE_MASK)
1246                 return -EINVAL;
1247         if (len & ~PAGE_MASK)
1248                 return -EINVAL;
1249         if (!len)
1250                 return -EINVAL;
1251         if (*start < mmap_min_addr)
1252                 return -EINVAL;
1253         if (*start >= task_size)
1254                 return -EINVAL;
1255         if (len > task_size - *start)
1256                 return -EINVAL;
1257         return 0;
1258 }
1259
1260 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1261                                      unsigned long vm_flags)
1262 {
1263         /* FIXME: add WP support to hugetlbfs and shmem */
1264         return vma_is_anonymous(vma) ||
1265                 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1266                  !(vm_flags & VM_UFFD_WP));
1267 }
1268
1269 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1270                                 unsigned long arg)
1271 {
1272         struct mm_struct *mm = ctx->mm;
1273         struct vm_area_struct *vma, *prev, *cur;
1274         int ret;
1275         struct uffdio_register uffdio_register;
1276         struct uffdio_register __user *user_uffdio_register;
1277         unsigned long vm_flags, new_flags;
1278         bool found;
1279         bool basic_ioctls;
1280         unsigned long start, end, vma_end;
1281
1282         user_uffdio_register = (struct uffdio_register __user *) arg;
1283
1284         ret = -EFAULT;
1285         if (copy_from_user(&uffdio_register, user_uffdio_register,
1286                            sizeof(uffdio_register)-sizeof(__u64)))
1287                 goto out;
1288
1289         ret = -EINVAL;
1290         if (!uffdio_register.mode)
1291                 goto out;
1292         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1293                                      UFFDIO_REGISTER_MODE_WP))
1294                 goto out;
1295         vm_flags = 0;
1296         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1297                 vm_flags |= VM_UFFD_MISSING;
1298         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1299                 vm_flags |= VM_UFFD_WP;
1300
1301         ret = validate_range(mm, &uffdio_register.range.start,
1302                              uffdio_register.range.len);
1303         if (ret)
1304                 goto out;
1305
1306         start = uffdio_register.range.start;
1307         end = start + uffdio_register.range.len;
1308
1309         ret = -ENOMEM;
1310         if (!mmget_not_zero(mm))
1311                 goto out;
1312
1313         mmap_write_lock(mm);
1314         vma = find_vma_prev(mm, start, &prev);
1315         if (!vma)
1316                 goto out_unlock;
1317
1318         /* check that there's at least one vma in the range */
1319         ret = -EINVAL;
1320         if (vma->vm_start >= end)
1321                 goto out_unlock;
1322
1323         /*
1324          * If the first vma contains huge pages, make sure start address
1325          * is aligned to huge page size.
1326          */
1327         if (is_vm_hugetlb_page(vma)) {
1328                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1329
1330                 if (start & (vma_hpagesize - 1))
1331                         goto out_unlock;
1332         }
1333
1334         /*
1335          * Search for not compatible vmas.
1336          */
1337         found = false;
1338         basic_ioctls = false;
1339         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1340                 cond_resched();
1341
1342                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1343                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1344
1345                 /* check not compatible vmas */
1346                 ret = -EINVAL;
1347                 if (!vma_can_userfault(cur, vm_flags))
1348                         goto out_unlock;
1349
1350                 /*
1351                  * UFFDIO_COPY will fill file holes even without
1352                  * PROT_WRITE. This check enforces that if this is a
1353                  * MAP_SHARED, the process has write permission to the backing
1354                  * file. If VM_MAYWRITE is set it also enforces that on a
1355                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1356                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1357                  */
1358                 ret = -EPERM;
1359                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1360                         goto out_unlock;
1361
1362                 /*
1363                  * If this vma contains ending address, and huge pages
1364                  * check alignment.
1365                  */
1366                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367                     end > cur->vm_start) {
1368                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1369
1370                         ret = -EINVAL;
1371
1372                         if (end & (vma_hpagesize - 1))
1373                                 goto out_unlock;
1374                 }
1375                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1376                         goto out_unlock;
1377
1378                 /*
1379                  * Check that this vma isn't already owned by a
1380                  * different userfaultfd. We can't allow more than one
1381                  * userfaultfd to own a single vma simultaneously or we
1382                  * wouldn't know which one to deliver the userfaults to.
1383                  */
1384                 ret = -EBUSY;
1385                 if (cur->vm_userfaultfd_ctx.ctx &&
1386                     cur->vm_userfaultfd_ctx.ctx != ctx)
1387                         goto out_unlock;
1388
1389                 /*
1390                  * Note vmas containing huge pages
1391                  */
1392                 if (is_vm_hugetlb_page(cur))
1393                         basic_ioctls = true;
1394
1395                 found = true;
1396         }
1397         BUG_ON(!found);
1398
1399         if (vma->vm_start < start)
1400                 prev = vma;
1401
1402         ret = 0;
1403         do {
1404                 cond_resched();
1405
1406                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1407                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1408                        vma->vm_userfaultfd_ctx.ctx != ctx);
1409                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1410
1411                 /*
1412                  * Nothing to do: this vma is already registered into this
1413                  * userfaultfd and with the right tracking mode too.
1414                  */
1415                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1416                     (vma->vm_flags & vm_flags) == vm_flags)
1417                         goto skip;
1418
1419                 if (vma->vm_start > start)
1420                         start = vma->vm_start;
1421                 vma_end = min(end, vma->vm_end);
1422
1423                 new_flags = (vma->vm_flags &
1424                              ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1425                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1426                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1427                                  vma_policy(vma),
1428                                  ((struct vm_userfaultfd_ctx){ ctx }));
1429                 if (prev) {
1430                         vma = prev;
1431                         goto next;
1432                 }
1433                 if (vma->vm_start < start) {
1434                         ret = split_vma(mm, vma, start, 1);
1435                         if (ret)
1436                                 break;
1437                 }
1438                 if (vma->vm_end > end) {
1439                         ret = split_vma(mm, vma, end, 0);
1440                         if (ret)
1441                                 break;
1442                 }
1443         next:
1444                 /*
1445                  * In the vma_merge() successful mprotect-like case 8:
1446                  * the next vma was merged into the current one and
1447                  * the current one has not been updated yet.
1448                  */
1449                 vma->vm_flags = new_flags;
1450                 vma->vm_userfaultfd_ctx.ctx = ctx;
1451
1452         skip:
1453                 prev = vma;
1454                 start = vma->vm_end;
1455                 vma = vma->vm_next;
1456         } while (vma && vma->vm_start < end);
1457 out_unlock:
1458         mmap_write_unlock(mm);
1459         mmput(mm);
1460         if (!ret) {
1461                 __u64 ioctls_out;
1462
1463                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1464                     UFFD_API_RANGE_IOCTLS;
1465
1466                 /*
1467                  * Declare the WP ioctl only if the WP mode is
1468                  * specified and all checks passed with the range
1469                  */
1470                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1471                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1472
1473                 /*
1474                  * Now that we scanned all vmas we can already tell
1475                  * userland which ioctls methods are guaranteed to
1476                  * succeed on this range.
1477                  */
1478                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1479                         ret = -EFAULT;
1480         }
1481 out:
1482         return ret;
1483 }
1484
1485 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1486                                   unsigned long arg)
1487 {
1488         struct mm_struct *mm = ctx->mm;
1489         struct vm_area_struct *vma, *prev, *cur;
1490         int ret;
1491         struct uffdio_range uffdio_unregister;
1492         unsigned long new_flags;
1493         bool found;
1494         unsigned long start, end, vma_end;
1495         const void __user *buf = (void __user *)arg;
1496
1497         ret = -EFAULT;
1498         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1499                 goto out;
1500
1501         ret = validate_range(mm, &uffdio_unregister.start,
1502                              uffdio_unregister.len);
1503         if (ret)
1504                 goto out;
1505
1506         start = uffdio_unregister.start;
1507         end = start + uffdio_unregister.len;
1508
1509         ret = -ENOMEM;
1510         if (!mmget_not_zero(mm))
1511                 goto out;
1512
1513         mmap_write_lock(mm);
1514         vma = find_vma_prev(mm, start, &prev);
1515         if (!vma)
1516                 goto out_unlock;
1517
1518         /* check that there's at least one vma in the range */
1519         ret = -EINVAL;
1520         if (vma->vm_start >= end)
1521                 goto out_unlock;
1522
1523         /*
1524          * If the first vma contains huge pages, make sure start address
1525          * is aligned to huge page size.
1526          */
1527         if (is_vm_hugetlb_page(vma)) {
1528                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1529
1530                 if (start & (vma_hpagesize - 1))
1531                         goto out_unlock;
1532         }
1533
1534         /*
1535          * Search for not compatible vmas.
1536          */
1537         found = false;
1538         ret = -EINVAL;
1539         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1540                 cond_resched();
1541
1542                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1543                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1544
1545                 /*
1546                  * Check not compatible vmas, not strictly required
1547                  * here as not compatible vmas cannot have an
1548                  * userfaultfd_ctx registered on them, but this
1549                  * provides for more strict behavior to notice
1550                  * unregistration errors.
1551                  */
1552                 if (!vma_can_userfault(cur, cur->vm_flags))
1553                         goto out_unlock;
1554
1555                 found = true;
1556         }
1557         BUG_ON(!found);
1558
1559         if (vma->vm_start < start)
1560                 prev = vma;
1561
1562         ret = 0;
1563         do {
1564                 cond_resched();
1565
1566                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1567
1568                 /*
1569                  * Nothing to do: this vma is already registered into this
1570                  * userfaultfd and with the right tracking mode too.
1571                  */
1572                 if (!vma->vm_userfaultfd_ctx.ctx)
1573                         goto skip;
1574
1575                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1576
1577                 if (vma->vm_start > start)
1578                         start = vma->vm_start;
1579                 vma_end = min(end, vma->vm_end);
1580
1581                 if (userfaultfd_missing(vma)) {
1582                         /*
1583                          * Wake any concurrent pending userfault while
1584                          * we unregister, so they will not hang
1585                          * permanently and it avoids userland to call
1586                          * UFFDIO_WAKE explicitly.
1587                          */
1588                         struct userfaultfd_wake_range range;
1589                         range.start = start;
1590                         range.len = vma_end - start;
1591                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1592                 }
1593
1594                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1595                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1596                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1597                                  vma_policy(vma),
1598                                  NULL_VM_UFFD_CTX);
1599                 if (prev) {
1600                         vma = prev;
1601                         goto next;
1602                 }
1603                 if (vma->vm_start < start) {
1604                         ret = split_vma(mm, vma, start, 1);
1605                         if (ret)
1606                                 break;
1607                 }
1608                 if (vma->vm_end > end) {
1609                         ret = split_vma(mm, vma, end, 0);
1610                         if (ret)
1611                                 break;
1612                 }
1613         next:
1614                 /*
1615                  * In the vma_merge() successful mprotect-like case 8:
1616                  * the next vma was merged into the current one and
1617                  * the current one has not been updated yet.
1618                  */
1619                 vma->vm_flags = new_flags;
1620                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1621
1622         skip:
1623                 prev = vma;
1624                 start = vma->vm_end;
1625                 vma = vma->vm_next;
1626         } while (vma && vma->vm_start < end);
1627 out_unlock:
1628         mmap_write_unlock(mm);
1629         mmput(mm);
1630 out:
1631         return ret;
1632 }
1633
1634 /*
1635  * userfaultfd_wake may be used in combination with the
1636  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1637  */
1638 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1639                             unsigned long arg)
1640 {
1641         int ret;
1642         struct uffdio_range uffdio_wake;
1643         struct userfaultfd_wake_range range;
1644         const void __user *buf = (void __user *)arg;
1645
1646         ret = -EFAULT;
1647         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1648                 goto out;
1649
1650         ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1651         if (ret)
1652                 goto out;
1653
1654         range.start = uffdio_wake.start;
1655         range.len = uffdio_wake.len;
1656
1657         /*
1658          * len == 0 means wake all and we don't want to wake all here,
1659          * so check it again to be sure.
1660          */
1661         VM_BUG_ON(!range.len);
1662
1663         wake_userfault(ctx, &range);
1664         ret = 0;
1665
1666 out:
1667         return ret;
1668 }
1669
1670 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1671                             unsigned long arg)
1672 {
1673         __s64 ret;
1674         struct uffdio_copy uffdio_copy;
1675         struct uffdio_copy __user *user_uffdio_copy;
1676         struct userfaultfd_wake_range range;
1677
1678         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1679
1680         ret = -EAGAIN;
1681         if (READ_ONCE(ctx->mmap_changing))
1682                 goto out;
1683
1684         ret = -EFAULT;
1685         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1686                            /* don't copy "copy" last field */
1687                            sizeof(uffdio_copy)-sizeof(__s64)))
1688                 goto out;
1689
1690         ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1691         if (ret)
1692                 goto out;
1693         /*
1694          * double check for wraparound just in case. copy_from_user()
1695          * will later check uffdio_copy.src + uffdio_copy.len to fit
1696          * in the userland range.
1697          */
1698         ret = -EINVAL;
1699         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1700                 goto out;
1701         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1702                 goto out;
1703         if (mmget_not_zero(ctx->mm)) {
1704                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1705                                    uffdio_copy.len, &ctx->mmap_changing,
1706                                    uffdio_copy.mode);
1707                 mmput(ctx->mm);
1708         } else {
1709                 return -ESRCH;
1710         }
1711         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1712                 return -EFAULT;
1713         if (ret < 0)
1714                 goto out;
1715         BUG_ON(!ret);
1716         /* len == 0 would wake all */
1717         range.len = ret;
1718         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1719                 range.start = uffdio_copy.dst;
1720                 wake_userfault(ctx, &range);
1721         }
1722         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1723 out:
1724         return ret;
1725 }
1726
1727 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1728                                 unsigned long arg)
1729 {
1730         __s64 ret;
1731         struct uffdio_zeropage uffdio_zeropage;
1732         struct uffdio_zeropage __user *user_uffdio_zeropage;
1733         struct userfaultfd_wake_range range;
1734
1735         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1736
1737         ret = -EAGAIN;
1738         if (READ_ONCE(ctx->mmap_changing))
1739                 goto out;
1740
1741         ret = -EFAULT;
1742         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1743                            /* don't copy "zeropage" last field */
1744                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1745                 goto out;
1746
1747         ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1748                              uffdio_zeropage.range.len);
1749         if (ret)
1750                 goto out;
1751         ret = -EINVAL;
1752         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1753                 goto out;
1754
1755         if (mmget_not_zero(ctx->mm)) {
1756                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1757                                      uffdio_zeropage.range.len,
1758                                      &ctx->mmap_changing);
1759                 mmput(ctx->mm);
1760         } else {
1761                 return -ESRCH;
1762         }
1763         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1764                 return -EFAULT;
1765         if (ret < 0)
1766                 goto out;
1767         /* len == 0 would wake all */
1768         BUG_ON(!ret);
1769         range.len = ret;
1770         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1771                 range.start = uffdio_zeropage.range.start;
1772                 wake_userfault(ctx, &range);
1773         }
1774         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1775 out:
1776         return ret;
1777 }
1778
1779 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1780                                     unsigned long arg)
1781 {
1782         int ret;
1783         struct uffdio_writeprotect uffdio_wp;
1784         struct uffdio_writeprotect __user *user_uffdio_wp;
1785         struct userfaultfd_wake_range range;
1786         bool mode_wp, mode_dontwake;
1787
1788         if (READ_ONCE(ctx->mmap_changing))
1789                 return -EAGAIN;
1790
1791         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1792
1793         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1794                            sizeof(struct uffdio_writeprotect)))
1795                 return -EFAULT;
1796
1797         ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1798                              uffdio_wp.range.len);
1799         if (ret)
1800                 return ret;
1801
1802         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1803                                UFFDIO_WRITEPROTECT_MODE_WP))
1804                 return -EINVAL;
1805
1806         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1807         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1808
1809         if (mode_wp && mode_dontwake)
1810                 return -EINVAL;
1811
1812         ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1813                                   uffdio_wp.range.len, mode_wp,
1814                                   &ctx->mmap_changing);
1815         if (ret)
1816                 return ret;
1817
1818         if (!mode_wp && !mode_dontwake) {
1819                 range.start = uffdio_wp.range.start;
1820                 range.len = uffdio_wp.range.len;
1821                 wake_userfault(ctx, &range);
1822         }
1823         return ret;
1824 }
1825
1826 static inline unsigned int uffd_ctx_features(__u64 user_features)
1827 {
1828         /*
1829          * For the current set of features the bits just coincide
1830          */
1831         return (unsigned int)user_features;
1832 }
1833
1834 /*
1835  * userland asks for a certain API version and we return which bits
1836  * and ioctl commands are implemented in this kernel for such API
1837  * version or -EINVAL if unknown.
1838  */
1839 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1840                            unsigned long arg)
1841 {
1842         struct uffdio_api uffdio_api;
1843         void __user *buf = (void __user *)arg;
1844         int ret;
1845         __u64 features;
1846
1847         ret = -EINVAL;
1848         if (ctx->state != UFFD_STATE_WAIT_API)
1849                 goto out;
1850         ret = -EFAULT;
1851         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1852                 goto out;
1853         features = uffdio_api.features;
1854         ret = -EINVAL;
1855         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1856                 goto err_out;
1857         ret = -EPERM;
1858         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1859                 goto err_out;
1860         /* report all available features and ioctls to userland */
1861         uffdio_api.features = UFFD_API_FEATURES;
1862         uffdio_api.ioctls = UFFD_API_IOCTLS;
1863         ret = -EFAULT;
1864         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1865                 goto out;
1866         ctx->state = UFFD_STATE_RUNNING;
1867         /* only enable the requested features for this uffd context */
1868         ctx->features = uffd_ctx_features(features);
1869         ret = 0;
1870 out:
1871         return ret;
1872 err_out:
1873         memset(&uffdio_api, 0, sizeof(uffdio_api));
1874         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1875                 ret = -EFAULT;
1876         goto out;
1877 }
1878
1879 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1880                               unsigned long arg)
1881 {
1882         int ret = -EINVAL;
1883         struct userfaultfd_ctx *ctx = file->private_data;
1884
1885         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1886                 return -EINVAL;
1887
1888         switch(cmd) {
1889         case UFFDIO_API:
1890                 ret = userfaultfd_api(ctx, arg);
1891                 break;
1892         case UFFDIO_REGISTER:
1893                 ret = userfaultfd_register(ctx, arg);
1894                 break;
1895         case UFFDIO_UNREGISTER:
1896                 ret = userfaultfd_unregister(ctx, arg);
1897                 break;
1898         case UFFDIO_WAKE:
1899                 ret = userfaultfd_wake(ctx, arg);
1900                 break;
1901         case UFFDIO_COPY:
1902                 ret = userfaultfd_copy(ctx, arg);
1903                 break;
1904         case UFFDIO_ZEROPAGE:
1905                 ret = userfaultfd_zeropage(ctx, arg);
1906                 break;
1907         case UFFDIO_WRITEPROTECT:
1908                 ret = userfaultfd_writeprotect(ctx, arg);
1909                 break;
1910         }
1911         return ret;
1912 }
1913
1914 #ifdef CONFIG_PROC_FS
1915 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1916 {
1917         struct userfaultfd_ctx *ctx = f->private_data;
1918         wait_queue_entry_t *wq;
1919         unsigned long pending = 0, total = 0;
1920
1921         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1922         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1923                 pending++;
1924                 total++;
1925         }
1926         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1927                 total++;
1928         }
1929         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1930
1931         /*
1932          * If more protocols will be added, there will be all shown
1933          * separated by a space. Like this:
1934          *      protocols: aa:... bb:...
1935          */
1936         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1937                    pending, total, UFFD_API, ctx->features,
1938                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1939 }
1940 #endif
1941
1942 static const struct file_operations userfaultfd_fops = {
1943 #ifdef CONFIG_PROC_FS
1944         .show_fdinfo    = userfaultfd_show_fdinfo,
1945 #endif
1946         .release        = userfaultfd_release,
1947         .poll           = userfaultfd_poll,
1948         .read           = userfaultfd_read,
1949         .unlocked_ioctl = userfaultfd_ioctl,
1950         .compat_ioctl   = compat_ptr_ioctl,
1951         .llseek         = noop_llseek,
1952 };
1953
1954 static void init_once_userfaultfd_ctx(void *mem)
1955 {
1956         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1957
1958         init_waitqueue_head(&ctx->fault_pending_wqh);
1959         init_waitqueue_head(&ctx->fault_wqh);
1960         init_waitqueue_head(&ctx->event_wqh);
1961         init_waitqueue_head(&ctx->fd_wqh);
1962         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1963 }
1964
1965 SYSCALL_DEFINE1(userfaultfd, int, flags)
1966 {
1967         struct userfaultfd_ctx *ctx;
1968         int fd;
1969
1970         if (!sysctl_unprivileged_userfaultfd &&
1971             (flags & UFFD_USER_MODE_ONLY) == 0 &&
1972             !capable(CAP_SYS_PTRACE)) {
1973                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
1974                         "sysctl knob to 1 if kernel faults must be handled "
1975                         "without obtaining CAP_SYS_PTRACE capability\n");
1976                 return -EPERM;
1977         }
1978
1979         BUG_ON(!current->mm);
1980
1981         /* Check the UFFD_* constants for consistency.  */
1982         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
1983         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1984         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1985
1986         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
1987                 return -EINVAL;
1988
1989         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1990         if (!ctx)
1991                 return -ENOMEM;
1992
1993         refcount_set(&ctx->refcount, 1);
1994         ctx->flags = flags;
1995         ctx->features = 0;
1996         ctx->state = UFFD_STATE_WAIT_API;
1997         ctx->released = false;
1998         ctx->mmap_changing = false;
1999         ctx->mm = current->mm;
2000         /* prevent the mm struct to be freed */
2001         mmgrab(ctx->mm);
2002
2003         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2004                         O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2005         if (fd < 0) {
2006                 mmdrop(ctx->mm);
2007                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2008         }
2009         return fd;
2010 }
2011
2012 static int __init userfaultfd_init(void)
2013 {
2014         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2015                                                 sizeof(struct userfaultfd_ctx),
2016                                                 0,
2017                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2018                                                 init_once_userfaultfd_ctx);
2019         return 0;
2020 }
2021 __initcall(userfaultfd_init);