Merge tag 'asoc-v5.15' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[platform/kernel/linux-starfive.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
31
32 int sysctl_unprivileged_userfaultfd __read_mostly;
33
34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
36 enum userfaultfd_state {
37         UFFD_STATE_WAIT_API,
38         UFFD_STATE_RUNNING,
39 };
40
41 /*
42  * Start with fault_pending_wqh and fault_wqh so they're more likely
43  * to be in the same cacheline.
44  *
45  * Locking order:
46  *      fd_wqh.lock
47  *              fault_pending_wqh.lock
48  *                      fault_wqh.lock
49  *              event_wqh.lock
50  *
51  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
52  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
53  * also taken in IRQ context.
54  */
55 struct userfaultfd_ctx {
56         /* waitqueue head for the pending (i.e. not read) userfaults */
57         wait_queue_head_t fault_pending_wqh;
58         /* waitqueue head for the userfaults */
59         wait_queue_head_t fault_wqh;
60         /* waitqueue head for the pseudo fd to wakeup poll/read */
61         wait_queue_head_t fd_wqh;
62         /* waitqueue head for events */
63         wait_queue_head_t event_wqh;
64         /* a refile sequence protected by fault_pending_wqh lock */
65         seqcount_spinlock_t refile_seq;
66         /* pseudo fd refcounting */
67         refcount_t refcount;
68         /* userfaultfd syscall flags */
69         unsigned int flags;
70         /* features requested from the userspace */
71         unsigned int features;
72         /* state machine */
73         enum userfaultfd_state state;
74         /* released */
75         bool released;
76         /* memory mappings are changing because of non-cooperative event */
77         bool mmap_changing;
78         /* mm with one ore more vmas attached to this userfaultfd_ctx */
79         struct mm_struct *mm;
80 };
81
82 struct userfaultfd_fork_ctx {
83         struct userfaultfd_ctx *orig;
84         struct userfaultfd_ctx *new;
85         struct list_head list;
86 };
87
88 struct userfaultfd_unmap_ctx {
89         struct userfaultfd_ctx *ctx;
90         unsigned long start;
91         unsigned long end;
92         struct list_head list;
93 };
94
95 struct userfaultfd_wait_queue {
96         struct uffd_msg msg;
97         wait_queue_entry_t wq;
98         struct userfaultfd_ctx *ctx;
99         bool waken;
100 };
101
102 struct userfaultfd_wake_range {
103         unsigned long start;
104         unsigned long len;
105 };
106
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108                                      int wake_flags, void *key)
109 {
110         struct userfaultfd_wake_range *range = key;
111         int ret;
112         struct userfaultfd_wait_queue *uwq;
113         unsigned long start, len;
114
115         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116         ret = 0;
117         /* len == 0 means wake all */
118         start = range->start;
119         len = range->len;
120         if (len && (start > uwq->msg.arg.pagefault.address ||
121                     start + len <= uwq->msg.arg.pagefault.address))
122                 goto out;
123         WRITE_ONCE(uwq->waken, true);
124         /*
125          * The Program-Order guarantees provided by the scheduler
126          * ensure uwq->waken is visible before the task is woken.
127          */
128         ret = wake_up_state(wq->private, mode);
129         if (ret) {
130                 /*
131                  * Wake only once, autoremove behavior.
132                  *
133                  * After the effect of list_del_init is visible to the other
134                  * CPUs, the waitqueue may disappear from under us, see the
135                  * !list_empty_careful() in handle_userfault().
136                  *
137                  * try_to_wake_up() has an implicit smp_mb(), and the
138                  * wq->private is read before calling the extern function
139                  * "wake_up_state" (which in turns calls try_to_wake_up).
140                  */
141                 list_del_init(&wq->entry);
142         }
143 out:
144         return ret;
145 }
146
147 /**
148  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to the userfaultfd context.
151  */
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154         refcount_inc(&ctx->refcount);
155 }
156
157 /**
158  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159  * context.
160  * @ctx: [in] Pointer to userfaultfd context.
161  *
162  * The userfaultfd context reference must have been previously acquired either
163  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164  */
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167         if (refcount_dec_and_test(&ctx->refcount)) {
168                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176                 mmdrop(ctx->mm);
177                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178         }
179 }
180
181 static inline void msg_init(struct uffd_msg *msg)
182 {
183         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184         /*
185          * Must use memset to zero out the paddings or kernel data is
186          * leaked to userland.
187          */
188         memset(msg, 0, sizeof(struct uffd_msg));
189 }
190
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192                                             unsigned int flags,
193                                             unsigned long reason,
194                                             unsigned int features)
195 {
196         struct uffd_msg msg;
197         msg_init(&msg);
198         msg.event = UFFD_EVENT_PAGEFAULT;
199         msg.arg.pagefault.address = address;
200         /*
201          * These flags indicate why the userfault occurred:
202          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
203          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
204          * - Neither of these flags being set indicates a MISSING fault.
205          *
206          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
207          * fault. Otherwise, it was a read fault.
208          */
209         if (flags & FAULT_FLAG_WRITE)
210                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
211         if (reason & VM_UFFD_WP)
212                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
213         if (reason & VM_UFFD_MINOR)
214                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
215         if (features & UFFD_FEATURE_THREAD_ID)
216                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
217         return msg;
218 }
219
220 #ifdef CONFIG_HUGETLB_PAGE
221 /*
222  * Same functionality as userfaultfd_must_wait below with modifications for
223  * hugepmd ranges.
224  */
225 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
226                                          struct vm_area_struct *vma,
227                                          unsigned long address,
228                                          unsigned long flags,
229                                          unsigned long reason)
230 {
231         struct mm_struct *mm = ctx->mm;
232         pte_t *ptep, pte;
233         bool ret = true;
234
235         mmap_assert_locked(mm);
236
237         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
238
239         if (!ptep)
240                 goto out;
241
242         ret = false;
243         pte = huge_ptep_get(ptep);
244
245         /*
246          * Lockless access: we're in a wait_event so it's ok if it
247          * changes under us.
248          */
249         if (huge_pte_none(pte))
250                 ret = true;
251         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
252                 ret = true;
253 out:
254         return ret;
255 }
256 #else
257 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
258                                          struct vm_area_struct *vma,
259                                          unsigned long address,
260                                          unsigned long flags,
261                                          unsigned long reason)
262 {
263         return false;   /* should never get here */
264 }
265 #endif /* CONFIG_HUGETLB_PAGE */
266
267 /*
268  * Verify the pagetables are still not ok after having reigstered into
269  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
270  * userfault that has already been resolved, if userfaultfd_read and
271  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
272  * threads.
273  */
274 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
275                                          unsigned long address,
276                                          unsigned long flags,
277                                          unsigned long reason)
278 {
279         struct mm_struct *mm = ctx->mm;
280         pgd_t *pgd;
281         p4d_t *p4d;
282         pud_t *pud;
283         pmd_t *pmd, _pmd;
284         pte_t *pte;
285         bool ret = true;
286
287         mmap_assert_locked(mm);
288
289         pgd = pgd_offset(mm, address);
290         if (!pgd_present(*pgd))
291                 goto out;
292         p4d = p4d_offset(pgd, address);
293         if (!p4d_present(*p4d))
294                 goto out;
295         pud = pud_offset(p4d, address);
296         if (!pud_present(*pud))
297                 goto out;
298         pmd = pmd_offset(pud, address);
299         /*
300          * READ_ONCE must function as a barrier with narrower scope
301          * and it must be equivalent to:
302          *      _pmd = *pmd; barrier();
303          *
304          * This is to deal with the instability (as in
305          * pmd_trans_unstable) of the pmd.
306          */
307         _pmd = READ_ONCE(*pmd);
308         if (pmd_none(_pmd))
309                 goto out;
310
311         ret = false;
312         if (!pmd_present(_pmd))
313                 goto out;
314
315         if (pmd_trans_huge(_pmd)) {
316                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
317                         ret = true;
318                 goto out;
319         }
320
321         /*
322          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323          * and use the standard pte_offset_map() instead of parsing _pmd.
324          */
325         pte = pte_offset_map(pmd, address);
326         /*
327          * Lockless access: we're in a wait_event so it's ok if it
328          * changes under us.
329          */
330         if (pte_none(*pte))
331                 ret = true;
332         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
333                 ret = true;
334         pte_unmap(pte);
335
336 out:
337         return ret;
338 }
339
340 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
341 {
342         if (flags & FAULT_FLAG_INTERRUPTIBLE)
343                 return TASK_INTERRUPTIBLE;
344
345         if (flags & FAULT_FLAG_KILLABLE)
346                 return TASK_KILLABLE;
347
348         return TASK_UNINTERRUPTIBLE;
349 }
350
351 /*
352  * The locking rules involved in returning VM_FAULT_RETRY depending on
353  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
354  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
355  * recommendation in __lock_page_or_retry is not an understatement.
356  *
357  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
358  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
359  * not set.
360  *
361  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
362  * set, VM_FAULT_RETRY can still be returned if and only if there are
363  * fatal_signal_pending()s, and the mmap_lock must be released before
364  * returning it.
365  */
366 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
367 {
368         struct mm_struct *mm = vmf->vma->vm_mm;
369         struct userfaultfd_ctx *ctx;
370         struct userfaultfd_wait_queue uwq;
371         vm_fault_t ret = VM_FAULT_SIGBUS;
372         bool must_wait;
373         unsigned int blocking_state;
374
375         /*
376          * We don't do userfault handling for the final child pid update.
377          *
378          * We also don't do userfault handling during
379          * coredumping. hugetlbfs has the special
380          * follow_hugetlb_page() to skip missing pages in the
381          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
382          * the no_page_table() helper in follow_page_mask(), but the
383          * shmem_vm_ops->fault method is invoked even during
384          * coredumping without mmap_lock and it ends up here.
385          */
386         if (current->flags & (PF_EXITING|PF_DUMPCORE))
387                 goto out;
388
389         /*
390          * Coredumping runs without mmap_lock so we can only check that
391          * the mmap_lock is held, if PF_DUMPCORE was not set.
392          */
393         mmap_assert_locked(mm);
394
395         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
396         if (!ctx)
397                 goto out;
398
399         BUG_ON(ctx->mm != mm);
400
401         /* Any unrecognized flag is a bug. */
402         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
403         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
404         VM_BUG_ON(!reason || (reason & (reason - 1)));
405
406         if (ctx->features & UFFD_FEATURE_SIGBUS)
407                 goto out;
408         if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
409             ctx->flags & UFFD_USER_MODE_ONLY) {
410                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
411                         "sysctl knob to 1 if kernel faults must be handled "
412                         "without obtaining CAP_SYS_PTRACE capability\n");
413                 goto out;
414         }
415
416         /*
417          * If it's already released don't get it. This avoids to loop
418          * in __get_user_pages if userfaultfd_release waits on the
419          * caller of handle_userfault to release the mmap_lock.
420          */
421         if (unlikely(READ_ONCE(ctx->released))) {
422                 /*
423                  * Don't return VM_FAULT_SIGBUS in this case, so a non
424                  * cooperative manager can close the uffd after the
425                  * last UFFDIO_COPY, without risking to trigger an
426                  * involuntary SIGBUS if the process was starting the
427                  * userfaultfd while the userfaultfd was still armed
428                  * (but after the last UFFDIO_COPY). If the uffd
429                  * wasn't already closed when the userfault reached
430                  * this point, that would normally be solved by
431                  * userfaultfd_must_wait returning 'false'.
432                  *
433                  * If we were to return VM_FAULT_SIGBUS here, the non
434                  * cooperative manager would be instead forced to
435                  * always call UFFDIO_UNREGISTER before it can safely
436                  * close the uffd.
437                  */
438                 ret = VM_FAULT_NOPAGE;
439                 goto out;
440         }
441
442         /*
443          * Check that we can return VM_FAULT_RETRY.
444          *
445          * NOTE: it should become possible to return VM_FAULT_RETRY
446          * even if FAULT_FLAG_TRIED is set without leading to gup()
447          * -EBUSY failures, if the userfaultfd is to be extended for
448          * VM_UFFD_WP tracking and we intend to arm the userfault
449          * without first stopping userland access to the memory. For
450          * VM_UFFD_MISSING userfaults this is enough for now.
451          */
452         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
453                 /*
454                  * Validate the invariant that nowait must allow retry
455                  * to be sure not to return SIGBUS erroneously on
456                  * nowait invocations.
457                  */
458                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
459 #ifdef CONFIG_DEBUG_VM
460                 if (printk_ratelimit()) {
461                         printk(KERN_WARNING
462                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
463                                vmf->flags);
464                         dump_stack();
465                 }
466 #endif
467                 goto out;
468         }
469
470         /*
471          * Handle nowait, not much to do other than tell it to retry
472          * and wait.
473          */
474         ret = VM_FAULT_RETRY;
475         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
476                 goto out;
477
478         /* take the reference before dropping the mmap_lock */
479         userfaultfd_ctx_get(ctx);
480
481         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
482         uwq.wq.private = current;
483         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
484                         ctx->features);
485         uwq.ctx = ctx;
486         uwq.waken = false;
487
488         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
489
490         spin_lock_irq(&ctx->fault_pending_wqh.lock);
491         /*
492          * After the __add_wait_queue the uwq is visible to userland
493          * through poll/read().
494          */
495         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
496         /*
497          * The smp_mb() after __set_current_state prevents the reads
498          * following the spin_unlock to happen before the list_add in
499          * __add_wait_queue.
500          */
501         set_current_state(blocking_state);
502         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
503
504         if (!is_vm_hugetlb_page(vmf->vma))
505                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
506                                                   reason);
507         else
508                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
509                                                        vmf->address,
510                                                        vmf->flags, reason);
511         mmap_read_unlock(mm);
512
513         if (likely(must_wait && !READ_ONCE(ctx->released))) {
514                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
515                 schedule();
516         }
517
518         __set_current_state(TASK_RUNNING);
519
520         /*
521          * Here we race with the list_del; list_add in
522          * userfaultfd_ctx_read(), however because we don't ever run
523          * list_del_init() to refile across the two lists, the prev
524          * and next pointers will never point to self. list_add also
525          * would never let any of the two pointers to point to
526          * self. So list_empty_careful won't risk to see both pointers
527          * pointing to self at any time during the list refile. The
528          * only case where list_del_init() is called is the full
529          * removal in the wake function and there we don't re-list_add
530          * and it's fine not to block on the spinlock. The uwq on this
531          * kernel stack can be released after the list_del_init.
532          */
533         if (!list_empty_careful(&uwq.wq.entry)) {
534                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
535                 /*
536                  * No need of list_del_init(), the uwq on the stack
537                  * will be freed shortly anyway.
538                  */
539                 list_del(&uwq.wq.entry);
540                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
541         }
542
543         /*
544          * ctx may go away after this if the userfault pseudo fd is
545          * already released.
546          */
547         userfaultfd_ctx_put(ctx);
548
549 out:
550         return ret;
551 }
552
553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
554                                               struct userfaultfd_wait_queue *ewq)
555 {
556         struct userfaultfd_ctx *release_new_ctx;
557
558         if (WARN_ON_ONCE(current->flags & PF_EXITING))
559                 goto out;
560
561         ewq->ctx = ctx;
562         init_waitqueue_entry(&ewq->wq, current);
563         release_new_ctx = NULL;
564
565         spin_lock_irq(&ctx->event_wqh.lock);
566         /*
567          * After the __add_wait_queue the uwq is visible to userland
568          * through poll/read().
569          */
570         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
571         for (;;) {
572                 set_current_state(TASK_KILLABLE);
573                 if (ewq->msg.event == 0)
574                         break;
575                 if (READ_ONCE(ctx->released) ||
576                     fatal_signal_pending(current)) {
577                         /*
578                          * &ewq->wq may be queued in fork_event, but
579                          * __remove_wait_queue ignores the head
580                          * parameter. It would be a problem if it
581                          * didn't.
582                          */
583                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
584                         if (ewq->msg.event == UFFD_EVENT_FORK) {
585                                 struct userfaultfd_ctx *new;
586
587                                 new = (struct userfaultfd_ctx *)
588                                         (unsigned long)
589                                         ewq->msg.arg.reserved.reserved1;
590                                 release_new_ctx = new;
591                         }
592                         break;
593                 }
594
595                 spin_unlock_irq(&ctx->event_wqh.lock);
596
597                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
598                 schedule();
599
600                 spin_lock_irq(&ctx->event_wqh.lock);
601         }
602         __set_current_state(TASK_RUNNING);
603         spin_unlock_irq(&ctx->event_wqh.lock);
604
605         if (release_new_ctx) {
606                 struct vm_area_struct *vma;
607                 struct mm_struct *mm = release_new_ctx->mm;
608
609                 /* the various vma->vm_userfaultfd_ctx still points to it */
610                 mmap_write_lock(mm);
611                 for (vma = mm->mmap; vma; vma = vma->vm_next)
612                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
613                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
614                                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
615                         }
616                 mmap_write_unlock(mm);
617
618                 userfaultfd_ctx_put(release_new_ctx);
619         }
620
621         /*
622          * ctx may go away after this if the userfault pseudo fd is
623          * already released.
624          */
625 out:
626         WRITE_ONCE(ctx->mmap_changing, false);
627         userfaultfd_ctx_put(ctx);
628 }
629
630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
631                                        struct userfaultfd_wait_queue *ewq)
632 {
633         ewq->msg.event = 0;
634         wake_up_locked(&ctx->event_wqh);
635         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
636 }
637
638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
639 {
640         struct userfaultfd_ctx *ctx = NULL, *octx;
641         struct userfaultfd_fork_ctx *fctx;
642
643         octx = vma->vm_userfaultfd_ctx.ctx;
644         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
646                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
647                 return 0;
648         }
649
650         list_for_each_entry(fctx, fcs, list)
651                 if (fctx->orig == octx) {
652                         ctx = fctx->new;
653                         break;
654                 }
655
656         if (!ctx) {
657                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
658                 if (!fctx)
659                         return -ENOMEM;
660
661                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
662                 if (!ctx) {
663                         kfree(fctx);
664                         return -ENOMEM;
665                 }
666
667                 refcount_set(&ctx->refcount, 1);
668                 ctx->flags = octx->flags;
669                 ctx->state = UFFD_STATE_RUNNING;
670                 ctx->features = octx->features;
671                 ctx->released = false;
672                 ctx->mmap_changing = false;
673                 ctx->mm = vma->vm_mm;
674                 mmgrab(ctx->mm);
675
676                 userfaultfd_ctx_get(octx);
677                 WRITE_ONCE(octx->mmap_changing, true);
678                 fctx->orig = octx;
679                 fctx->new = ctx;
680                 list_add_tail(&fctx->list, fcs);
681         }
682
683         vma->vm_userfaultfd_ctx.ctx = ctx;
684         return 0;
685 }
686
687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
688 {
689         struct userfaultfd_ctx *ctx = fctx->orig;
690         struct userfaultfd_wait_queue ewq;
691
692         msg_init(&ewq.msg);
693
694         ewq.msg.event = UFFD_EVENT_FORK;
695         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
696
697         userfaultfd_event_wait_completion(ctx, &ewq);
698 }
699
700 void dup_userfaultfd_complete(struct list_head *fcs)
701 {
702         struct userfaultfd_fork_ctx *fctx, *n;
703
704         list_for_each_entry_safe(fctx, n, fcs, list) {
705                 dup_fctx(fctx);
706                 list_del(&fctx->list);
707                 kfree(fctx);
708         }
709 }
710
711 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
712                              struct vm_userfaultfd_ctx *vm_ctx)
713 {
714         struct userfaultfd_ctx *ctx;
715
716         ctx = vma->vm_userfaultfd_ctx.ctx;
717
718         if (!ctx)
719                 return;
720
721         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
722                 vm_ctx->ctx = ctx;
723                 userfaultfd_ctx_get(ctx);
724                 WRITE_ONCE(ctx->mmap_changing, true);
725         } else {
726                 /* Drop uffd context if remap feature not enabled */
727                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
728                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
729         }
730 }
731
732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
733                                  unsigned long from, unsigned long to,
734                                  unsigned long len)
735 {
736         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
737         struct userfaultfd_wait_queue ewq;
738
739         if (!ctx)
740                 return;
741
742         if (to & ~PAGE_MASK) {
743                 userfaultfd_ctx_put(ctx);
744                 return;
745         }
746
747         msg_init(&ewq.msg);
748
749         ewq.msg.event = UFFD_EVENT_REMAP;
750         ewq.msg.arg.remap.from = from;
751         ewq.msg.arg.remap.to = to;
752         ewq.msg.arg.remap.len = len;
753
754         userfaultfd_event_wait_completion(ctx, &ewq);
755 }
756
757 bool userfaultfd_remove(struct vm_area_struct *vma,
758                         unsigned long start, unsigned long end)
759 {
760         struct mm_struct *mm = vma->vm_mm;
761         struct userfaultfd_ctx *ctx;
762         struct userfaultfd_wait_queue ewq;
763
764         ctx = vma->vm_userfaultfd_ctx.ctx;
765         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
766                 return true;
767
768         userfaultfd_ctx_get(ctx);
769         WRITE_ONCE(ctx->mmap_changing, true);
770         mmap_read_unlock(mm);
771
772         msg_init(&ewq.msg);
773
774         ewq.msg.event = UFFD_EVENT_REMOVE;
775         ewq.msg.arg.remove.start = start;
776         ewq.msg.arg.remove.end = end;
777
778         userfaultfd_event_wait_completion(ctx, &ewq);
779
780         return false;
781 }
782
783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
784                           unsigned long start, unsigned long end)
785 {
786         struct userfaultfd_unmap_ctx *unmap_ctx;
787
788         list_for_each_entry(unmap_ctx, unmaps, list)
789                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
790                     unmap_ctx->end == end)
791                         return true;
792
793         return false;
794 }
795
796 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
797                            unsigned long start, unsigned long end,
798                            struct list_head *unmaps)
799 {
800         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
801                 struct userfaultfd_unmap_ctx *unmap_ctx;
802                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
803
804                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
805                     has_unmap_ctx(ctx, unmaps, start, end))
806                         continue;
807
808                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
809                 if (!unmap_ctx)
810                         return -ENOMEM;
811
812                 userfaultfd_ctx_get(ctx);
813                 WRITE_ONCE(ctx->mmap_changing, true);
814                 unmap_ctx->ctx = ctx;
815                 unmap_ctx->start = start;
816                 unmap_ctx->end = end;
817                 list_add_tail(&unmap_ctx->list, unmaps);
818         }
819
820         return 0;
821 }
822
823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
824 {
825         struct userfaultfd_unmap_ctx *ctx, *n;
826         struct userfaultfd_wait_queue ewq;
827
828         list_for_each_entry_safe(ctx, n, uf, list) {
829                 msg_init(&ewq.msg);
830
831                 ewq.msg.event = UFFD_EVENT_UNMAP;
832                 ewq.msg.arg.remove.start = ctx->start;
833                 ewq.msg.arg.remove.end = ctx->end;
834
835                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
836
837                 list_del(&ctx->list);
838                 kfree(ctx);
839         }
840 }
841
842 static int userfaultfd_release(struct inode *inode, struct file *file)
843 {
844         struct userfaultfd_ctx *ctx = file->private_data;
845         struct mm_struct *mm = ctx->mm;
846         struct vm_area_struct *vma, *prev;
847         /* len == 0 means wake all */
848         struct userfaultfd_wake_range range = { .len = 0, };
849         unsigned long new_flags;
850
851         WRITE_ONCE(ctx->released, true);
852
853         if (!mmget_not_zero(mm))
854                 goto wakeup;
855
856         /*
857          * Flush page faults out of all CPUs. NOTE: all page faults
858          * must be retried without returning VM_FAULT_SIGBUS if
859          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
860          * changes while handle_userfault released the mmap_lock. So
861          * it's critical that released is set to true (above), before
862          * taking the mmap_lock for writing.
863          */
864         mmap_write_lock(mm);
865         prev = NULL;
866         for (vma = mm->mmap; vma; vma = vma->vm_next) {
867                 cond_resched();
868                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
869                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
870                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
871                         prev = vma;
872                         continue;
873                 }
874                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
875                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
876                                  new_flags, vma->anon_vma,
877                                  vma->vm_file, vma->vm_pgoff,
878                                  vma_policy(vma),
879                                  NULL_VM_UFFD_CTX);
880                 if (prev)
881                         vma = prev;
882                 else
883                         prev = vma;
884                 vma->vm_flags = new_flags;
885                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
886         }
887         mmap_write_unlock(mm);
888         mmput(mm);
889 wakeup:
890         /*
891          * After no new page faults can wait on this fault_*wqh, flush
892          * the last page faults that may have been already waiting on
893          * the fault_*wqh.
894          */
895         spin_lock_irq(&ctx->fault_pending_wqh.lock);
896         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
897         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
898         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
899
900         /* Flush pending events that may still wait on event_wqh */
901         wake_up_all(&ctx->event_wqh);
902
903         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
904         userfaultfd_ctx_put(ctx);
905         return 0;
906 }
907
908 /* fault_pending_wqh.lock must be hold by the caller */
909 static inline struct userfaultfd_wait_queue *find_userfault_in(
910                 wait_queue_head_t *wqh)
911 {
912         wait_queue_entry_t *wq;
913         struct userfaultfd_wait_queue *uwq;
914
915         lockdep_assert_held(&wqh->lock);
916
917         uwq = NULL;
918         if (!waitqueue_active(wqh))
919                 goto out;
920         /* walk in reverse to provide FIFO behavior to read userfaults */
921         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
922         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
923 out:
924         return uwq;
925 }
926
927 static inline struct userfaultfd_wait_queue *find_userfault(
928                 struct userfaultfd_ctx *ctx)
929 {
930         return find_userfault_in(&ctx->fault_pending_wqh);
931 }
932
933 static inline struct userfaultfd_wait_queue *find_userfault_evt(
934                 struct userfaultfd_ctx *ctx)
935 {
936         return find_userfault_in(&ctx->event_wqh);
937 }
938
939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
940 {
941         struct userfaultfd_ctx *ctx = file->private_data;
942         __poll_t ret;
943
944         poll_wait(file, &ctx->fd_wqh, wait);
945
946         switch (ctx->state) {
947         case UFFD_STATE_WAIT_API:
948                 return EPOLLERR;
949         case UFFD_STATE_RUNNING:
950                 /*
951                  * poll() never guarantees that read won't block.
952                  * userfaults can be waken before they're read().
953                  */
954                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
955                         return EPOLLERR;
956                 /*
957                  * lockless access to see if there are pending faults
958                  * __pollwait last action is the add_wait_queue but
959                  * the spin_unlock would allow the waitqueue_active to
960                  * pass above the actual list_add inside
961                  * add_wait_queue critical section. So use a full
962                  * memory barrier to serialize the list_add write of
963                  * add_wait_queue() with the waitqueue_active read
964                  * below.
965                  */
966                 ret = 0;
967                 smp_mb();
968                 if (waitqueue_active(&ctx->fault_pending_wqh))
969                         ret = EPOLLIN;
970                 else if (waitqueue_active(&ctx->event_wqh))
971                         ret = EPOLLIN;
972
973                 return ret;
974         default:
975                 WARN_ON_ONCE(1);
976                 return EPOLLERR;
977         }
978 }
979
980 static const struct file_operations userfaultfd_fops;
981
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983                                   struct inode *inode,
984                                   struct uffd_msg *msg)
985 {
986         int fd;
987
988         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989                         O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
990         if (fd < 0)
991                 return fd;
992
993         msg->arg.reserved.reserved1 = 0;
994         msg->arg.fork.ufd = fd;
995         return 0;
996 }
997
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999                                     struct uffd_msg *msg, struct inode *inode)
1000 {
1001         ssize_t ret;
1002         DECLARE_WAITQUEUE(wait, current);
1003         struct userfaultfd_wait_queue *uwq;
1004         /*
1005          * Handling fork event requires sleeping operations, so
1006          * we drop the event_wqh lock, then do these ops, then
1007          * lock it back and wake up the waiter. While the lock is
1008          * dropped the ewq may go away so we keep track of it
1009          * carefully.
1010          */
1011         LIST_HEAD(fork_event);
1012         struct userfaultfd_ctx *fork_nctx = NULL;
1013
1014         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1015         spin_lock_irq(&ctx->fd_wqh.lock);
1016         __add_wait_queue(&ctx->fd_wqh, &wait);
1017         for (;;) {
1018                 set_current_state(TASK_INTERRUPTIBLE);
1019                 spin_lock(&ctx->fault_pending_wqh.lock);
1020                 uwq = find_userfault(ctx);
1021                 if (uwq) {
1022                         /*
1023                          * Use a seqcount to repeat the lockless check
1024                          * in wake_userfault() to avoid missing
1025                          * wakeups because during the refile both
1026                          * waitqueue could become empty if this is the
1027                          * only userfault.
1028                          */
1029                         write_seqcount_begin(&ctx->refile_seq);
1030
1031                         /*
1032                          * The fault_pending_wqh.lock prevents the uwq
1033                          * to disappear from under us.
1034                          *
1035                          * Refile this userfault from
1036                          * fault_pending_wqh to fault_wqh, it's not
1037                          * pending anymore after we read it.
1038                          *
1039                          * Use list_del() by hand (as
1040                          * userfaultfd_wake_function also uses
1041                          * list_del_init() by hand) to be sure nobody
1042                          * changes __remove_wait_queue() to use
1043                          * list_del_init() in turn breaking the
1044                          * !list_empty_careful() check in
1045                          * handle_userfault(). The uwq->wq.head list
1046                          * must never be empty at any time during the
1047                          * refile, or the waitqueue could disappear
1048                          * from under us. The "wait_queue_head_t"
1049                          * parameter of __remove_wait_queue() is unused
1050                          * anyway.
1051                          */
1052                         list_del(&uwq->wq.entry);
1053                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1054
1055                         write_seqcount_end(&ctx->refile_seq);
1056
1057                         /* careful to always initialize msg if ret == 0 */
1058                         *msg = uwq->msg;
1059                         spin_unlock(&ctx->fault_pending_wqh.lock);
1060                         ret = 0;
1061                         break;
1062                 }
1063                 spin_unlock(&ctx->fault_pending_wqh.lock);
1064
1065                 spin_lock(&ctx->event_wqh.lock);
1066                 uwq = find_userfault_evt(ctx);
1067                 if (uwq) {
1068                         *msg = uwq->msg;
1069
1070                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1071                                 fork_nctx = (struct userfaultfd_ctx *)
1072                                         (unsigned long)
1073                                         uwq->msg.arg.reserved.reserved1;
1074                                 list_move(&uwq->wq.entry, &fork_event);
1075                                 /*
1076                                  * fork_nctx can be freed as soon as
1077                                  * we drop the lock, unless we take a
1078                                  * reference on it.
1079                                  */
1080                                 userfaultfd_ctx_get(fork_nctx);
1081                                 spin_unlock(&ctx->event_wqh.lock);
1082                                 ret = 0;
1083                                 break;
1084                         }
1085
1086                         userfaultfd_event_complete(ctx, uwq);
1087                         spin_unlock(&ctx->event_wqh.lock);
1088                         ret = 0;
1089                         break;
1090                 }
1091                 spin_unlock(&ctx->event_wqh.lock);
1092
1093                 if (signal_pending(current)) {
1094                         ret = -ERESTARTSYS;
1095                         break;
1096                 }
1097                 if (no_wait) {
1098                         ret = -EAGAIN;
1099                         break;
1100                 }
1101                 spin_unlock_irq(&ctx->fd_wqh.lock);
1102                 schedule();
1103                 spin_lock_irq(&ctx->fd_wqh.lock);
1104         }
1105         __remove_wait_queue(&ctx->fd_wqh, &wait);
1106         __set_current_state(TASK_RUNNING);
1107         spin_unlock_irq(&ctx->fd_wqh.lock);
1108
1109         if (!ret && msg->event == UFFD_EVENT_FORK) {
1110                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111                 spin_lock_irq(&ctx->event_wqh.lock);
1112                 if (!list_empty(&fork_event)) {
1113                         /*
1114                          * The fork thread didn't abort, so we can
1115                          * drop the temporary refcount.
1116                          */
1117                         userfaultfd_ctx_put(fork_nctx);
1118
1119                         uwq = list_first_entry(&fork_event,
1120                                                typeof(*uwq),
1121                                                wq.entry);
1122                         /*
1123                          * If fork_event list wasn't empty and in turn
1124                          * the event wasn't already released by fork
1125                          * (the event is allocated on fork kernel
1126                          * stack), put the event back to its place in
1127                          * the event_wq. fork_event head will be freed
1128                          * as soon as we return so the event cannot
1129                          * stay queued there no matter the current
1130                          * "ret" value.
1131                          */
1132                         list_del(&uwq->wq.entry);
1133                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1134
1135                         /*
1136                          * Leave the event in the waitqueue and report
1137                          * error to userland if we failed to resolve
1138                          * the userfault fork.
1139                          */
1140                         if (likely(!ret))
1141                                 userfaultfd_event_complete(ctx, uwq);
1142                 } else {
1143                         /*
1144                          * Here the fork thread aborted and the
1145                          * refcount from the fork thread on fork_nctx
1146                          * has already been released. We still hold
1147                          * the reference we took before releasing the
1148                          * lock above. If resolve_userfault_fork
1149                          * failed we've to drop it because the
1150                          * fork_nctx has to be freed in such case. If
1151                          * it succeeded we'll hold it because the new
1152                          * uffd references it.
1153                          */
1154                         if (ret)
1155                                 userfaultfd_ctx_put(fork_nctx);
1156                 }
1157                 spin_unlock_irq(&ctx->event_wqh.lock);
1158         }
1159
1160         return ret;
1161 }
1162
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164                                 size_t count, loff_t *ppos)
1165 {
1166         struct userfaultfd_ctx *ctx = file->private_data;
1167         ssize_t _ret, ret = 0;
1168         struct uffd_msg msg;
1169         int no_wait = file->f_flags & O_NONBLOCK;
1170         struct inode *inode = file_inode(file);
1171
1172         if (ctx->state == UFFD_STATE_WAIT_API)
1173                 return -EINVAL;
1174
1175         for (;;) {
1176                 if (count < sizeof(msg))
1177                         return ret ? ret : -EINVAL;
1178                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1179                 if (_ret < 0)
1180                         return ret ? ret : _ret;
1181                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182                         return ret ? ret : -EFAULT;
1183                 ret += sizeof(msg);
1184                 buf += sizeof(msg);
1185                 count -= sizeof(msg);
1186                 /*
1187                  * Allow to read more than one fault at time but only
1188                  * block if waiting for the very first one.
1189                  */
1190                 no_wait = O_NONBLOCK;
1191         }
1192 }
1193
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195                              struct userfaultfd_wake_range *range)
1196 {
1197         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198         /* wake all in the range and autoremove */
1199         if (waitqueue_active(&ctx->fault_pending_wqh))
1200                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1201                                      range);
1202         if (waitqueue_active(&ctx->fault_wqh))
1203                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1205 }
1206
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208                                            struct userfaultfd_wake_range *range)
1209 {
1210         unsigned seq;
1211         bool need_wakeup;
1212
1213         /*
1214          * To be sure waitqueue_active() is not reordered by the CPU
1215          * before the pagetable update, use an explicit SMP memory
1216          * barrier here. PT lock release or mmap_read_unlock(mm) still
1217          * have release semantics that can allow the
1218          * waitqueue_active() to be reordered before the pte update.
1219          */
1220         smp_mb();
1221
1222         /*
1223          * Use waitqueue_active because it's very frequent to
1224          * change the address space atomically even if there are no
1225          * userfaults yet. So we take the spinlock only when we're
1226          * sure we've userfaults to wake.
1227          */
1228         do {
1229                 seq = read_seqcount_begin(&ctx->refile_seq);
1230                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231                         waitqueue_active(&ctx->fault_wqh);
1232                 cond_resched();
1233         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1234         if (need_wakeup)
1235                 __wake_userfault(ctx, range);
1236 }
1237
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239                                           __u64 start, __u64 len)
1240 {
1241         __u64 task_size = mm->task_size;
1242
1243         if (start & ~PAGE_MASK)
1244                 return -EINVAL;
1245         if (len & ~PAGE_MASK)
1246                 return -EINVAL;
1247         if (!len)
1248                 return -EINVAL;
1249         if (start < mmap_min_addr)
1250                 return -EINVAL;
1251         if (start >= task_size)
1252                 return -EINVAL;
1253         if (len > task_size - start)
1254                 return -EINVAL;
1255         return 0;
1256 }
1257
1258 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259                                      unsigned long vm_flags)
1260 {
1261         /* FIXME: add WP support to hugetlbfs and shmem */
1262         if (vm_flags & VM_UFFD_WP) {
1263                 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1264                         return false;
1265         }
1266
1267         if (vm_flags & VM_UFFD_MINOR) {
1268                 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1269                         return false;
1270         }
1271
1272         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1273                vma_is_shmem(vma);
1274 }
1275
1276 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1277                                 unsigned long arg)
1278 {
1279         struct mm_struct *mm = ctx->mm;
1280         struct vm_area_struct *vma, *prev, *cur;
1281         int ret;
1282         struct uffdio_register uffdio_register;
1283         struct uffdio_register __user *user_uffdio_register;
1284         unsigned long vm_flags, new_flags;
1285         bool found;
1286         bool basic_ioctls;
1287         unsigned long start, end, vma_end;
1288
1289         user_uffdio_register = (struct uffdio_register __user *) arg;
1290
1291         ret = -EFAULT;
1292         if (copy_from_user(&uffdio_register, user_uffdio_register,
1293                            sizeof(uffdio_register)-sizeof(__u64)))
1294                 goto out;
1295
1296         ret = -EINVAL;
1297         if (!uffdio_register.mode)
1298                 goto out;
1299         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1300                 goto out;
1301         vm_flags = 0;
1302         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303                 vm_flags |= VM_UFFD_MISSING;
1304         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1306                 goto out;
1307 #endif
1308                 vm_flags |= VM_UFFD_WP;
1309         }
1310         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1311 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1312                 goto out;
1313 #endif
1314                 vm_flags |= VM_UFFD_MINOR;
1315         }
1316
1317         ret = validate_range(mm, uffdio_register.range.start,
1318                              uffdio_register.range.len);
1319         if (ret)
1320                 goto out;
1321
1322         start = uffdio_register.range.start;
1323         end = start + uffdio_register.range.len;
1324
1325         ret = -ENOMEM;
1326         if (!mmget_not_zero(mm))
1327                 goto out;
1328
1329         mmap_write_lock(mm);
1330         vma = find_vma_prev(mm, start, &prev);
1331         if (!vma)
1332                 goto out_unlock;
1333
1334         /* check that there's at least one vma in the range */
1335         ret = -EINVAL;
1336         if (vma->vm_start >= end)
1337                 goto out_unlock;
1338
1339         /*
1340          * If the first vma contains huge pages, make sure start address
1341          * is aligned to huge page size.
1342          */
1343         if (is_vm_hugetlb_page(vma)) {
1344                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1345
1346                 if (start & (vma_hpagesize - 1))
1347                         goto out_unlock;
1348         }
1349
1350         /*
1351          * Search for not compatible vmas.
1352          */
1353         found = false;
1354         basic_ioctls = false;
1355         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1356                 cond_resched();
1357
1358                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1359                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1360
1361                 /* check not compatible vmas */
1362                 ret = -EINVAL;
1363                 if (!vma_can_userfault(cur, vm_flags))
1364                         goto out_unlock;
1365
1366                 /*
1367                  * UFFDIO_COPY will fill file holes even without
1368                  * PROT_WRITE. This check enforces that if this is a
1369                  * MAP_SHARED, the process has write permission to the backing
1370                  * file. If VM_MAYWRITE is set it also enforces that on a
1371                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1373                  */
1374                 ret = -EPERM;
1375                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1376                         goto out_unlock;
1377
1378                 /*
1379                  * If this vma contains ending address, and huge pages
1380                  * check alignment.
1381                  */
1382                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383                     end > cur->vm_start) {
1384                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1385
1386                         ret = -EINVAL;
1387
1388                         if (end & (vma_hpagesize - 1))
1389                                 goto out_unlock;
1390                 }
1391                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1392                         goto out_unlock;
1393
1394                 /*
1395                  * Check that this vma isn't already owned by a
1396                  * different userfaultfd. We can't allow more than one
1397                  * userfaultfd to own a single vma simultaneously or we
1398                  * wouldn't know which one to deliver the userfaults to.
1399                  */
1400                 ret = -EBUSY;
1401                 if (cur->vm_userfaultfd_ctx.ctx &&
1402                     cur->vm_userfaultfd_ctx.ctx != ctx)
1403                         goto out_unlock;
1404
1405                 /*
1406                  * Note vmas containing huge pages
1407                  */
1408                 if (is_vm_hugetlb_page(cur))
1409                         basic_ioctls = true;
1410
1411                 found = true;
1412         }
1413         BUG_ON(!found);
1414
1415         if (vma->vm_start < start)
1416                 prev = vma;
1417
1418         ret = 0;
1419         do {
1420                 cond_resched();
1421
1422                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1423                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1424                        vma->vm_userfaultfd_ctx.ctx != ctx);
1425                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1426
1427                 /*
1428                  * Nothing to do: this vma is already registered into this
1429                  * userfaultfd and with the right tracking mode too.
1430                  */
1431                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1432                     (vma->vm_flags & vm_flags) == vm_flags)
1433                         goto skip;
1434
1435                 if (vma->vm_start > start)
1436                         start = vma->vm_start;
1437                 vma_end = min(end, vma->vm_end);
1438
1439                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1440                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1441                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1442                                  vma_policy(vma),
1443                                  ((struct vm_userfaultfd_ctx){ ctx }));
1444                 if (prev) {
1445                         vma = prev;
1446                         goto next;
1447                 }
1448                 if (vma->vm_start < start) {
1449                         ret = split_vma(mm, vma, start, 1);
1450                         if (ret)
1451                                 break;
1452                 }
1453                 if (vma->vm_end > end) {
1454                         ret = split_vma(mm, vma, end, 0);
1455                         if (ret)
1456                                 break;
1457                 }
1458         next:
1459                 /*
1460                  * In the vma_merge() successful mprotect-like case 8:
1461                  * the next vma was merged into the current one and
1462                  * the current one has not been updated yet.
1463                  */
1464                 vma->vm_flags = new_flags;
1465                 vma->vm_userfaultfd_ctx.ctx = ctx;
1466
1467                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1468                         hugetlb_unshare_all_pmds(vma);
1469
1470         skip:
1471                 prev = vma;
1472                 start = vma->vm_end;
1473                 vma = vma->vm_next;
1474         } while (vma && vma->vm_start < end);
1475 out_unlock:
1476         mmap_write_unlock(mm);
1477         mmput(mm);
1478         if (!ret) {
1479                 __u64 ioctls_out;
1480
1481                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1482                     UFFD_API_RANGE_IOCTLS;
1483
1484                 /*
1485                  * Declare the WP ioctl only if the WP mode is
1486                  * specified and all checks passed with the range
1487                  */
1488                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1489                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1490
1491                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1492                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1493                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1494
1495                 /*
1496                  * Now that we scanned all vmas we can already tell
1497                  * userland which ioctls methods are guaranteed to
1498                  * succeed on this range.
1499                  */
1500                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1501                         ret = -EFAULT;
1502         }
1503 out:
1504         return ret;
1505 }
1506
1507 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1508                                   unsigned long arg)
1509 {
1510         struct mm_struct *mm = ctx->mm;
1511         struct vm_area_struct *vma, *prev, *cur;
1512         int ret;
1513         struct uffdio_range uffdio_unregister;
1514         unsigned long new_flags;
1515         bool found;
1516         unsigned long start, end, vma_end;
1517         const void __user *buf = (void __user *)arg;
1518
1519         ret = -EFAULT;
1520         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1521                 goto out;
1522
1523         ret = validate_range(mm, uffdio_unregister.start,
1524                              uffdio_unregister.len);
1525         if (ret)
1526                 goto out;
1527
1528         start = uffdio_unregister.start;
1529         end = start + uffdio_unregister.len;
1530
1531         ret = -ENOMEM;
1532         if (!mmget_not_zero(mm))
1533                 goto out;
1534
1535         mmap_write_lock(mm);
1536         vma = find_vma_prev(mm, start, &prev);
1537         if (!vma)
1538                 goto out_unlock;
1539
1540         /* check that there's at least one vma in the range */
1541         ret = -EINVAL;
1542         if (vma->vm_start >= end)
1543                 goto out_unlock;
1544
1545         /*
1546          * If the first vma contains huge pages, make sure start address
1547          * is aligned to huge page size.
1548          */
1549         if (is_vm_hugetlb_page(vma)) {
1550                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1551
1552                 if (start & (vma_hpagesize - 1))
1553                         goto out_unlock;
1554         }
1555
1556         /*
1557          * Search for not compatible vmas.
1558          */
1559         found = false;
1560         ret = -EINVAL;
1561         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1562                 cond_resched();
1563
1564                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1565                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1566
1567                 /*
1568                  * Check not compatible vmas, not strictly required
1569                  * here as not compatible vmas cannot have an
1570                  * userfaultfd_ctx registered on them, but this
1571                  * provides for more strict behavior to notice
1572                  * unregistration errors.
1573                  */
1574                 if (!vma_can_userfault(cur, cur->vm_flags))
1575                         goto out_unlock;
1576
1577                 found = true;
1578         }
1579         BUG_ON(!found);
1580
1581         if (vma->vm_start < start)
1582                 prev = vma;
1583
1584         ret = 0;
1585         do {
1586                 cond_resched();
1587
1588                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1589
1590                 /*
1591                  * Nothing to do: this vma is already registered into this
1592                  * userfaultfd and with the right tracking mode too.
1593                  */
1594                 if (!vma->vm_userfaultfd_ctx.ctx)
1595                         goto skip;
1596
1597                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1598
1599                 if (vma->vm_start > start)
1600                         start = vma->vm_start;
1601                 vma_end = min(end, vma->vm_end);
1602
1603                 if (userfaultfd_missing(vma)) {
1604                         /*
1605                          * Wake any concurrent pending userfault while
1606                          * we unregister, so they will not hang
1607                          * permanently and it avoids userland to call
1608                          * UFFDIO_WAKE explicitly.
1609                          */
1610                         struct userfaultfd_wake_range range;
1611                         range.start = start;
1612                         range.len = vma_end - start;
1613                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1614                 }
1615
1616                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1617                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1618                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1619                                  vma_policy(vma),
1620                                  NULL_VM_UFFD_CTX);
1621                 if (prev) {
1622                         vma = prev;
1623                         goto next;
1624                 }
1625                 if (vma->vm_start < start) {
1626                         ret = split_vma(mm, vma, start, 1);
1627                         if (ret)
1628                                 break;
1629                 }
1630                 if (vma->vm_end > end) {
1631                         ret = split_vma(mm, vma, end, 0);
1632                         if (ret)
1633                                 break;
1634                 }
1635         next:
1636                 /*
1637                  * In the vma_merge() successful mprotect-like case 8:
1638                  * the next vma was merged into the current one and
1639                  * the current one has not been updated yet.
1640                  */
1641                 vma->vm_flags = new_flags;
1642                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1643
1644         skip:
1645                 prev = vma;
1646                 start = vma->vm_end;
1647                 vma = vma->vm_next;
1648         } while (vma && vma->vm_start < end);
1649 out_unlock:
1650         mmap_write_unlock(mm);
1651         mmput(mm);
1652 out:
1653         return ret;
1654 }
1655
1656 /*
1657  * userfaultfd_wake may be used in combination with the
1658  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1659  */
1660 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1661                             unsigned long arg)
1662 {
1663         int ret;
1664         struct uffdio_range uffdio_wake;
1665         struct userfaultfd_wake_range range;
1666         const void __user *buf = (void __user *)arg;
1667
1668         ret = -EFAULT;
1669         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1670                 goto out;
1671
1672         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1673         if (ret)
1674                 goto out;
1675
1676         range.start = uffdio_wake.start;
1677         range.len = uffdio_wake.len;
1678
1679         /*
1680          * len == 0 means wake all and we don't want to wake all here,
1681          * so check it again to be sure.
1682          */
1683         VM_BUG_ON(!range.len);
1684
1685         wake_userfault(ctx, &range);
1686         ret = 0;
1687
1688 out:
1689         return ret;
1690 }
1691
1692 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1693                             unsigned long arg)
1694 {
1695         __s64 ret;
1696         struct uffdio_copy uffdio_copy;
1697         struct uffdio_copy __user *user_uffdio_copy;
1698         struct userfaultfd_wake_range range;
1699
1700         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1701
1702         ret = -EAGAIN;
1703         if (READ_ONCE(ctx->mmap_changing))
1704                 goto out;
1705
1706         ret = -EFAULT;
1707         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1708                            /* don't copy "copy" last field */
1709                            sizeof(uffdio_copy)-sizeof(__s64)))
1710                 goto out;
1711
1712         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1713         if (ret)
1714                 goto out;
1715         /*
1716          * double check for wraparound just in case. copy_from_user()
1717          * will later check uffdio_copy.src + uffdio_copy.len to fit
1718          * in the userland range.
1719          */
1720         ret = -EINVAL;
1721         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1722                 goto out;
1723         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1724                 goto out;
1725         if (mmget_not_zero(ctx->mm)) {
1726                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1727                                    uffdio_copy.len, &ctx->mmap_changing,
1728                                    uffdio_copy.mode);
1729                 mmput(ctx->mm);
1730         } else {
1731                 return -ESRCH;
1732         }
1733         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1734                 return -EFAULT;
1735         if (ret < 0)
1736                 goto out;
1737         BUG_ON(!ret);
1738         /* len == 0 would wake all */
1739         range.len = ret;
1740         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1741                 range.start = uffdio_copy.dst;
1742                 wake_userfault(ctx, &range);
1743         }
1744         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1745 out:
1746         return ret;
1747 }
1748
1749 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1750                                 unsigned long arg)
1751 {
1752         __s64 ret;
1753         struct uffdio_zeropage uffdio_zeropage;
1754         struct uffdio_zeropage __user *user_uffdio_zeropage;
1755         struct userfaultfd_wake_range range;
1756
1757         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1758
1759         ret = -EAGAIN;
1760         if (READ_ONCE(ctx->mmap_changing))
1761                 goto out;
1762
1763         ret = -EFAULT;
1764         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1765                            /* don't copy "zeropage" last field */
1766                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1767                 goto out;
1768
1769         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1770                              uffdio_zeropage.range.len);
1771         if (ret)
1772                 goto out;
1773         ret = -EINVAL;
1774         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1775                 goto out;
1776
1777         if (mmget_not_zero(ctx->mm)) {
1778                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1779                                      uffdio_zeropage.range.len,
1780                                      &ctx->mmap_changing);
1781                 mmput(ctx->mm);
1782         } else {
1783                 return -ESRCH;
1784         }
1785         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1786                 return -EFAULT;
1787         if (ret < 0)
1788                 goto out;
1789         /* len == 0 would wake all */
1790         BUG_ON(!ret);
1791         range.len = ret;
1792         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1793                 range.start = uffdio_zeropage.range.start;
1794                 wake_userfault(ctx, &range);
1795         }
1796         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1797 out:
1798         return ret;
1799 }
1800
1801 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1802                                     unsigned long arg)
1803 {
1804         int ret;
1805         struct uffdio_writeprotect uffdio_wp;
1806         struct uffdio_writeprotect __user *user_uffdio_wp;
1807         struct userfaultfd_wake_range range;
1808         bool mode_wp, mode_dontwake;
1809
1810         if (READ_ONCE(ctx->mmap_changing))
1811                 return -EAGAIN;
1812
1813         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1814
1815         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1816                            sizeof(struct uffdio_writeprotect)))
1817                 return -EFAULT;
1818
1819         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1820                              uffdio_wp.range.len);
1821         if (ret)
1822                 return ret;
1823
1824         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1825                                UFFDIO_WRITEPROTECT_MODE_WP))
1826                 return -EINVAL;
1827
1828         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1829         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1830
1831         if (mode_wp && mode_dontwake)
1832                 return -EINVAL;
1833
1834         ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1835                                   uffdio_wp.range.len, mode_wp,
1836                                   &ctx->mmap_changing);
1837         if (ret)
1838                 return ret;
1839
1840         if (!mode_wp && !mode_dontwake) {
1841                 range.start = uffdio_wp.range.start;
1842                 range.len = uffdio_wp.range.len;
1843                 wake_userfault(ctx, &range);
1844         }
1845         return ret;
1846 }
1847
1848 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1849 {
1850         __s64 ret;
1851         struct uffdio_continue uffdio_continue;
1852         struct uffdio_continue __user *user_uffdio_continue;
1853         struct userfaultfd_wake_range range;
1854
1855         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1856
1857         ret = -EAGAIN;
1858         if (READ_ONCE(ctx->mmap_changing))
1859                 goto out;
1860
1861         ret = -EFAULT;
1862         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1863                            /* don't copy the output fields */
1864                            sizeof(uffdio_continue) - (sizeof(__s64))))
1865                 goto out;
1866
1867         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1868                              uffdio_continue.range.len);
1869         if (ret)
1870                 goto out;
1871
1872         ret = -EINVAL;
1873         /* double check for wraparound just in case. */
1874         if (uffdio_continue.range.start + uffdio_continue.range.len <=
1875             uffdio_continue.range.start) {
1876                 goto out;
1877         }
1878         if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1879                 goto out;
1880
1881         if (mmget_not_zero(ctx->mm)) {
1882                 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1883                                      uffdio_continue.range.len,
1884                                      &ctx->mmap_changing);
1885                 mmput(ctx->mm);
1886         } else {
1887                 return -ESRCH;
1888         }
1889
1890         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891                 return -EFAULT;
1892         if (ret < 0)
1893                 goto out;
1894
1895         /* len == 0 would wake all */
1896         BUG_ON(!ret);
1897         range.len = ret;
1898         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899                 range.start = uffdio_continue.range.start;
1900                 wake_userfault(ctx, &range);
1901         }
1902         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1903
1904 out:
1905         return ret;
1906 }
1907
1908 static inline unsigned int uffd_ctx_features(__u64 user_features)
1909 {
1910         /*
1911          * For the current set of features the bits just coincide
1912          */
1913         return (unsigned int)user_features;
1914 }
1915
1916 /*
1917  * userland asks for a certain API version and we return which bits
1918  * and ioctl commands are implemented in this kernel for such API
1919  * version or -EINVAL if unknown.
1920  */
1921 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1922                            unsigned long arg)
1923 {
1924         struct uffdio_api uffdio_api;
1925         void __user *buf = (void __user *)arg;
1926         int ret;
1927         __u64 features;
1928
1929         ret = -EINVAL;
1930         if (ctx->state != UFFD_STATE_WAIT_API)
1931                 goto out;
1932         ret = -EFAULT;
1933         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1934                 goto out;
1935         features = uffdio_api.features;
1936         ret = -EINVAL;
1937         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1938                 goto err_out;
1939         ret = -EPERM;
1940         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1941                 goto err_out;
1942         /* report all available features and ioctls to userland */
1943         uffdio_api.features = UFFD_API_FEATURES;
1944 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1945         uffdio_api.features &=
1946                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1947 #endif
1948 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1949         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1950 #endif
1951         uffdio_api.ioctls = UFFD_API_IOCTLS;
1952         ret = -EFAULT;
1953         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1954                 goto out;
1955         ctx->state = UFFD_STATE_RUNNING;
1956         /* only enable the requested features for this uffd context */
1957         ctx->features = uffd_ctx_features(features);
1958         ret = 0;
1959 out:
1960         return ret;
1961 err_out:
1962         memset(&uffdio_api, 0, sizeof(uffdio_api));
1963         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1964                 ret = -EFAULT;
1965         goto out;
1966 }
1967
1968 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1969                               unsigned long arg)
1970 {
1971         int ret = -EINVAL;
1972         struct userfaultfd_ctx *ctx = file->private_data;
1973
1974         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1975                 return -EINVAL;
1976
1977         switch(cmd) {
1978         case UFFDIO_API:
1979                 ret = userfaultfd_api(ctx, arg);
1980                 break;
1981         case UFFDIO_REGISTER:
1982                 ret = userfaultfd_register(ctx, arg);
1983                 break;
1984         case UFFDIO_UNREGISTER:
1985                 ret = userfaultfd_unregister(ctx, arg);
1986                 break;
1987         case UFFDIO_WAKE:
1988                 ret = userfaultfd_wake(ctx, arg);
1989                 break;
1990         case UFFDIO_COPY:
1991                 ret = userfaultfd_copy(ctx, arg);
1992                 break;
1993         case UFFDIO_ZEROPAGE:
1994                 ret = userfaultfd_zeropage(ctx, arg);
1995                 break;
1996         case UFFDIO_WRITEPROTECT:
1997                 ret = userfaultfd_writeprotect(ctx, arg);
1998                 break;
1999         case UFFDIO_CONTINUE:
2000                 ret = userfaultfd_continue(ctx, arg);
2001                 break;
2002         }
2003         return ret;
2004 }
2005
2006 #ifdef CONFIG_PROC_FS
2007 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2008 {
2009         struct userfaultfd_ctx *ctx = f->private_data;
2010         wait_queue_entry_t *wq;
2011         unsigned long pending = 0, total = 0;
2012
2013         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2014         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2015                 pending++;
2016                 total++;
2017         }
2018         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2019                 total++;
2020         }
2021         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2022
2023         /*
2024          * If more protocols will be added, there will be all shown
2025          * separated by a space. Like this:
2026          *      protocols: aa:... bb:...
2027          */
2028         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2029                    pending, total, UFFD_API, ctx->features,
2030                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2031 }
2032 #endif
2033
2034 static const struct file_operations userfaultfd_fops = {
2035 #ifdef CONFIG_PROC_FS
2036         .show_fdinfo    = userfaultfd_show_fdinfo,
2037 #endif
2038         .release        = userfaultfd_release,
2039         .poll           = userfaultfd_poll,
2040         .read           = userfaultfd_read,
2041         .unlocked_ioctl = userfaultfd_ioctl,
2042         .compat_ioctl   = compat_ptr_ioctl,
2043         .llseek         = noop_llseek,
2044 };
2045
2046 static void init_once_userfaultfd_ctx(void *mem)
2047 {
2048         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2049
2050         init_waitqueue_head(&ctx->fault_pending_wqh);
2051         init_waitqueue_head(&ctx->fault_wqh);
2052         init_waitqueue_head(&ctx->event_wqh);
2053         init_waitqueue_head(&ctx->fd_wqh);
2054         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2055 }
2056
2057 SYSCALL_DEFINE1(userfaultfd, int, flags)
2058 {
2059         struct userfaultfd_ctx *ctx;
2060         int fd;
2061
2062         if (!sysctl_unprivileged_userfaultfd &&
2063             (flags & UFFD_USER_MODE_ONLY) == 0 &&
2064             !capable(CAP_SYS_PTRACE)) {
2065                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2066                         "sysctl knob to 1 if kernel faults must be handled "
2067                         "without obtaining CAP_SYS_PTRACE capability\n");
2068                 return -EPERM;
2069         }
2070
2071         BUG_ON(!current->mm);
2072
2073         /* Check the UFFD_* constants for consistency.  */
2074         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2075         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2076         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2077
2078         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2079                 return -EINVAL;
2080
2081         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2082         if (!ctx)
2083                 return -ENOMEM;
2084
2085         refcount_set(&ctx->refcount, 1);
2086         ctx->flags = flags;
2087         ctx->features = 0;
2088         ctx->state = UFFD_STATE_WAIT_API;
2089         ctx->released = false;
2090         ctx->mmap_changing = false;
2091         ctx->mm = current->mm;
2092         /* prevent the mm struct to be freed */
2093         mmgrab(ctx->mm);
2094
2095         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2096                         O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2097         if (fd < 0) {
2098                 mmdrop(ctx->mm);
2099                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2100         }
2101         return fd;
2102 }
2103
2104 static int __init userfaultfd_init(void)
2105 {
2106         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2107                                                 sizeof(struct userfaultfd_ctx),
2108                                                 0,
2109                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2110                                                 init_once_userfaultfd_ctx);
2111         return 0;
2112 }
2113 __initcall(userfaultfd_init);