1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
32 int sysctl_unprivileged_userfaultfd __read_mostly;
34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
36 enum userfaultfd_state {
42 * Start with fault_pending_wqh and fault_wqh so they're more likely
43 * to be in the same cacheline.
47 * fault_pending_wqh.lock
51 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
52 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
53 * also taken in IRQ context.
55 struct userfaultfd_ctx {
56 /* waitqueue head for the pending (i.e. not read) userfaults */
57 wait_queue_head_t fault_pending_wqh;
58 /* waitqueue head for the userfaults */
59 wait_queue_head_t fault_wqh;
60 /* waitqueue head for the pseudo fd to wakeup poll/read */
61 wait_queue_head_t fd_wqh;
62 /* waitqueue head for events */
63 wait_queue_head_t event_wqh;
64 /* a refile sequence protected by fault_pending_wqh lock */
65 seqcount_spinlock_t refile_seq;
66 /* pseudo fd refcounting */
68 /* userfaultfd syscall flags */
70 /* features requested from the userspace */
71 unsigned int features;
73 enum userfaultfd_state state;
76 /* memory mappings are changing because of non-cooperative event */
78 /* mm with one ore more vmas attached to this userfaultfd_ctx */
82 struct userfaultfd_fork_ctx {
83 struct userfaultfd_ctx *orig;
84 struct userfaultfd_ctx *new;
85 struct list_head list;
88 struct userfaultfd_unmap_ctx {
89 struct userfaultfd_ctx *ctx;
92 struct list_head list;
95 struct userfaultfd_wait_queue {
97 wait_queue_entry_t wq;
98 struct userfaultfd_ctx *ctx;
102 struct userfaultfd_wake_range {
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 int wake_flags, void *key)
110 struct userfaultfd_wake_range *range = key;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
117 /* len == 0 means wake all */
118 start = range->start;
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
123 WRITE_ONCE(uwq->waken, true);
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
128 ret = wake_up_state(wq->private, mode);
131 * Wake only once, autoremove behavior.
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
141 list_del_init(&wq->entry);
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
150 * @ctx: [in] Pointer to the userfaultfd context.
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
154 refcount_inc(&ctx->refcount);
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
160 * @ctx: [in] Pointer to userfaultfd context.
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167 if (refcount_dec_and_test(&ctx->refcount)) {
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
181 static inline void msg_init(struct uffd_msg *msg)
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
188 memset(msg, 0, sizeof(struct uffd_msg));
191 static inline struct uffd_msg userfault_msg(unsigned long address,
193 unsigned long reason,
194 unsigned int features)
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
201 * These flags indicate why the userfault occurred:
202 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
203 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
204 * - Neither of these flags being set indicates a MISSING fault.
206 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
207 * fault. Otherwise, it was a read fault.
209 if (flags & FAULT_FLAG_WRITE)
210 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
211 if (reason & VM_UFFD_WP)
212 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
213 if (reason & VM_UFFD_MINOR)
214 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
215 if (features & UFFD_FEATURE_THREAD_ID)
216 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
220 #ifdef CONFIG_HUGETLB_PAGE
222 * Same functionality as userfaultfd_must_wait below with modifications for
225 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
226 struct vm_area_struct *vma,
227 unsigned long address,
229 unsigned long reason)
231 struct mm_struct *mm = ctx->mm;
235 mmap_assert_locked(mm);
237 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
243 pte = huge_ptep_get(ptep);
246 * Lockless access: we're in a wait_event so it's ok if it
249 if (huge_pte_none(pte))
251 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
257 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
258 struct vm_area_struct *vma,
259 unsigned long address,
261 unsigned long reason)
263 return false; /* should never get here */
265 #endif /* CONFIG_HUGETLB_PAGE */
268 * Verify the pagetables are still not ok after having reigstered into
269 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
270 * userfault that has already been resolved, if userfaultfd_read and
271 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
275 unsigned long address,
277 unsigned long reason)
279 struct mm_struct *mm = ctx->mm;
287 mmap_assert_locked(mm);
289 pgd = pgd_offset(mm, address);
290 if (!pgd_present(*pgd))
292 p4d = p4d_offset(pgd, address);
293 if (!p4d_present(*p4d))
295 pud = pud_offset(p4d, address);
296 if (!pud_present(*pud))
298 pmd = pmd_offset(pud, address);
300 * READ_ONCE must function as a barrier with narrower scope
301 * and it must be equivalent to:
302 * _pmd = *pmd; barrier();
304 * This is to deal with the instability (as in
305 * pmd_trans_unstable) of the pmd.
307 _pmd = READ_ONCE(*pmd);
312 if (!pmd_present(_pmd))
315 if (pmd_trans_huge(_pmd)) {
316 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 * and use the standard pte_offset_map() instead of parsing _pmd.
325 pte = pte_offset_map(pmd, address);
327 * Lockless access: we're in a wait_event so it's ok if it
332 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
340 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
342 if (flags & FAULT_FLAG_INTERRUPTIBLE)
343 return TASK_INTERRUPTIBLE;
345 if (flags & FAULT_FLAG_KILLABLE)
346 return TASK_KILLABLE;
348 return TASK_UNINTERRUPTIBLE;
352 * The locking rules involved in returning VM_FAULT_RETRY depending on
353 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
354 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
355 * recommendation in __lock_page_or_retry is not an understatement.
357 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
358 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
362 * set, VM_FAULT_RETRY can still be returned if and only if there are
363 * fatal_signal_pending()s, and the mmap_lock must be released before
366 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
368 struct mm_struct *mm = vmf->vma->vm_mm;
369 struct userfaultfd_ctx *ctx;
370 struct userfaultfd_wait_queue uwq;
371 vm_fault_t ret = VM_FAULT_SIGBUS;
373 unsigned int blocking_state;
376 * We don't do userfault handling for the final child pid update.
378 * We also don't do userfault handling during
379 * coredumping. hugetlbfs has the special
380 * follow_hugetlb_page() to skip missing pages in the
381 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
382 * the no_page_table() helper in follow_page_mask(), but the
383 * shmem_vm_ops->fault method is invoked even during
384 * coredumping without mmap_lock and it ends up here.
386 if (current->flags & (PF_EXITING|PF_DUMPCORE))
390 * Coredumping runs without mmap_lock so we can only check that
391 * the mmap_lock is held, if PF_DUMPCORE was not set.
393 mmap_assert_locked(mm);
395 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
399 BUG_ON(ctx->mm != mm);
401 /* Any unrecognized flag is a bug. */
402 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
403 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
404 VM_BUG_ON(!reason || (reason & (reason - 1)));
406 if (ctx->features & UFFD_FEATURE_SIGBUS)
408 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
409 ctx->flags & UFFD_USER_MODE_ONLY) {
410 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
411 "sysctl knob to 1 if kernel faults must be handled "
412 "without obtaining CAP_SYS_PTRACE capability\n");
417 * If it's already released don't get it. This avoids to loop
418 * in __get_user_pages if userfaultfd_release waits on the
419 * caller of handle_userfault to release the mmap_lock.
421 if (unlikely(READ_ONCE(ctx->released))) {
423 * Don't return VM_FAULT_SIGBUS in this case, so a non
424 * cooperative manager can close the uffd after the
425 * last UFFDIO_COPY, without risking to trigger an
426 * involuntary SIGBUS if the process was starting the
427 * userfaultfd while the userfaultfd was still armed
428 * (but after the last UFFDIO_COPY). If the uffd
429 * wasn't already closed when the userfault reached
430 * this point, that would normally be solved by
431 * userfaultfd_must_wait returning 'false'.
433 * If we were to return VM_FAULT_SIGBUS here, the non
434 * cooperative manager would be instead forced to
435 * always call UFFDIO_UNREGISTER before it can safely
438 ret = VM_FAULT_NOPAGE;
443 * Check that we can return VM_FAULT_RETRY.
445 * NOTE: it should become possible to return VM_FAULT_RETRY
446 * even if FAULT_FLAG_TRIED is set without leading to gup()
447 * -EBUSY failures, if the userfaultfd is to be extended for
448 * VM_UFFD_WP tracking and we intend to arm the userfault
449 * without first stopping userland access to the memory. For
450 * VM_UFFD_MISSING userfaults this is enough for now.
452 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
454 * Validate the invariant that nowait must allow retry
455 * to be sure not to return SIGBUS erroneously on
456 * nowait invocations.
458 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
459 #ifdef CONFIG_DEBUG_VM
460 if (printk_ratelimit()) {
462 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
471 * Handle nowait, not much to do other than tell it to retry
474 ret = VM_FAULT_RETRY;
475 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
478 /* take the reference before dropping the mmap_lock */
479 userfaultfd_ctx_get(ctx);
481 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
482 uwq.wq.private = current;
483 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
488 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
490 spin_lock_irq(&ctx->fault_pending_wqh.lock);
492 * After the __add_wait_queue the uwq is visible to userland
493 * through poll/read().
495 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497 * The smp_mb() after __set_current_state prevents the reads
498 * following the spin_unlock to happen before the list_add in
501 set_current_state(blocking_state);
502 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
504 if (!is_vm_hugetlb_page(vmf->vma))
505 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
508 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
511 mmap_read_unlock(mm);
513 if (likely(must_wait && !READ_ONCE(ctx->released))) {
514 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
518 __set_current_state(TASK_RUNNING);
521 * Here we race with the list_del; list_add in
522 * userfaultfd_ctx_read(), however because we don't ever run
523 * list_del_init() to refile across the two lists, the prev
524 * and next pointers will never point to self. list_add also
525 * would never let any of the two pointers to point to
526 * self. So list_empty_careful won't risk to see both pointers
527 * pointing to self at any time during the list refile. The
528 * only case where list_del_init() is called is the full
529 * removal in the wake function and there we don't re-list_add
530 * and it's fine not to block on the spinlock. The uwq on this
531 * kernel stack can be released after the list_del_init.
533 if (!list_empty_careful(&uwq.wq.entry)) {
534 spin_lock_irq(&ctx->fault_pending_wqh.lock);
536 * No need of list_del_init(), the uwq on the stack
537 * will be freed shortly anyway.
539 list_del(&uwq.wq.entry);
540 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
544 * ctx may go away after this if the userfault pseudo fd is
547 userfaultfd_ctx_put(ctx);
553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
554 struct userfaultfd_wait_queue *ewq)
556 struct userfaultfd_ctx *release_new_ctx;
558 if (WARN_ON_ONCE(current->flags & PF_EXITING))
562 init_waitqueue_entry(&ewq->wq, current);
563 release_new_ctx = NULL;
565 spin_lock_irq(&ctx->event_wqh.lock);
567 * After the __add_wait_queue the uwq is visible to userland
568 * through poll/read().
570 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
572 set_current_state(TASK_KILLABLE);
573 if (ewq->msg.event == 0)
575 if (READ_ONCE(ctx->released) ||
576 fatal_signal_pending(current)) {
578 * &ewq->wq may be queued in fork_event, but
579 * __remove_wait_queue ignores the head
580 * parameter. It would be a problem if it
583 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
584 if (ewq->msg.event == UFFD_EVENT_FORK) {
585 struct userfaultfd_ctx *new;
587 new = (struct userfaultfd_ctx *)
589 ewq->msg.arg.reserved.reserved1;
590 release_new_ctx = new;
595 spin_unlock_irq(&ctx->event_wqh.lock);
597 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
600 spin_lock_irq(&ctx->event_wqh.lock);
602 __set_current_state(TASK_RUNNING);
603 spin_unlock_irq(&ctx->event_wqh.lock);
605 if (release_new_ctx) {
606 struct vm_area_struct *vma;
607 struct mm_struct *mm = release_new_ctx->mm;
609 /* the various vma->vm_userfaultfd_ctx still points to it */
611 for (vma = mm->mmap; vma; vma = vma->vm_next)
612 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
613 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
614 vma->vm_flags &= ~__VM_UFFD_FLAGS;
616 mmap_write_unlock(mm);
618 userfaultfd_ctx_put(release_new_ctx);
622 * ctx may go away after this if the userfault pseudo fd is
626 WRITE_ONCE(ctx->mmap_changing, false);
627 userfaultfd_ctx_put(ctx);
630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
631 struct userfaultfd_wait_queue *ewq)
634 wake_up_locked(&ctx->event_wqh);
635 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
640 struct userfaultfd_ctx *ctx = NULL, *octx;
641 struct userfaultfd_fork_ctx *fctx;
643 octx = vma->vm_userfaultfd_ctx.ctx;
644 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
646 vma->vm_flags &= ~__VM_UFFD_FLAGS;
650 list_for_each_entry(fctx, fcs, list)
651 if (fctx->orig == octx) {
657 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
661 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
667 refcount_set(&ctx->refcount, 1);
668 ctx->flags = octx->flags;
669 ctx->state = UFFD_STATE_RUNNING;
670 ctx->features = octx->features;
671 ctx->released = false;
672 ctx->mmap_changing = false;
673 ctx->mm = vma->vm_mm;
676 userfaultfd_ctx_get(octx);
677 WRITE_ONCE(octx->mmap_changing, true);
680 list_add_tail(&fctx->list, fcs);
683 vma->vm_userfaultfd_ctx.ctx = ctx;
687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
689 struct userfaultfd_ctx *ctx = fctx->orig;
690 struct userfaultfd_wait_queue ewq;
694 ewq.msg.event = UFFD_EVENT_FORK;
695 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
697 userfaultfd_event_wait_completion(ctx, &ewq);
700 void dup_userfaultfd_complete(struct list_head *fcs)
702 struct userfaultfd_fork_ctx *fctx, *n;
704 list_for_each_entry_safe(fctx, n, fcs, list) {
706 list_del(&fctx->list);
711 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
712 struct vm_userfaultfd_ctx *vm_ctx)
714 struct userfaultfd_ctx *ctx;
716 ctx = vma->vm_userfaultfd_ctx.ctx;
721 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
723 userfaultfd_ctx_get(ctx);
724 WRITE_ONCE(ctx->mmap_changing, true);
726 /* Drop uffd context if remap feature not enabled */
727 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
728 vma->vm_flags &= ~__VM_UFFD_FLAGS;
732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
733 unsigned long from, unsigned long to,
736 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
737 struct userfaultfd_wait_queue ewq;
742 if (to & ~PAGE_MASK) {
743 userfaultfd_ctx_put(ctx);
749 ewq.msg.event = UFFD_EVENT_REMAP;
750 ewq.msg.arg.remap.from = from;
751 ewq.msg.arg.remap.to = to;
752 ewq.msg.arg.remap.len = len;
754 userfaultfd_event_wait_completion(ctx, &ewq);
757 bool userfaultfd_remove(struct vm_area_struct *vma,
758 unsigned long start, unsigned long end)
760 struct mm_struct *mm = vma->vm_mm;
761 struct userfaultfd_ctx *ctx;
762 struct userfaultfd_wait_queue ewq;
764 ctx = vma->vm_userfaultfd_ctx.ctx;
765 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
768 userfaultfd_ctx_get(ctx);
769 WRITE_ONCE(ctx->mmap_changing, true);
770 mmap_read_unlock(mm);
774 ewq.msg.event = UFFD_EVENT_REMOVE;
775 ewq.msg.arg.remove.start = start;
776 ewq.msg.arg.remove.end = end;
778 userfaultfd_event_wait_completion(ctx, &ewq);
783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
784 unsigned long start, unsigned long end)
786 struct userfaultfd_unmap_ctx *unmap_ctx;
788 list_for_each_entry(unmap_ctx, unmaps, list)
789 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
790 unmap_ctx->end == end)
796 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
797 unsigned long start, unsigned long end,
798 struct list_head *unmaps)
800 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
801 struct userfaultfd_unmap_ctx *unmap_ctx;
802 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
804 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
805 has_unmap_ctx(ctx, unmaps, start, end))
808 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
812 userfaultfd_ctx_get(ctx);
813 WRITE_ONCE(ctx->mmap_changing, true);
814 unmap_ctx->ctx = ctx;
815 unmap_ctx->start = start;
816 unmap_ctx->end = end;
817 list_add_tail(&unmap_ctx->list, unmaps);
823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
825 struct userfaultfd_unmap_ctx *ctx, *n;
826 struct userfaultfd_wait_queue ewq;
828 list_for_each_entry_safe(ctx, n, uf, list) {
831 ewq.msg.event = UFFD_EVENT_UNMAP;
832 ewq.msg.arg.remove.start = ctx->start;
833 ewq.msg.arg.remove.end = ctx->end;
835 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
837 list_del(&ctx->list);
842 static int userfaultfd_release(struct inode *inode, struct file *file)
844 struct userfaultfd_ctx *ctx = file->private_data;
845 struct mm_struct *mm = ctx->mm;
846 struct vm_area_struct *vma, *prev;
847 /* len == 0 means wake all */
848 struct userfaultfd_wake_range range = { .len = 0, };
849 unsigned long new_flags;
851 WRITE_ONCE(ctx->released, true);
853 if (!mmget_not_zero(mm))
857 * Flush page faults out of all CPUs. NOTE: all page faults
858 * must be retried without returning VM_FAULT_SIGBUS if
859 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
860 * changes while handle_userfault released the mmap_lock. So
861 * it's critical that released is set to true (above), before
862 * taking the mmap_lock for writing.
866 for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
869 !!(vma->vm_flags & __VM_UFFD_FLAGS));
870 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
874 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
875 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
876 new_flags, vma->anon_vma,
877 vma->vm_file, vma->vm_pgoff,
884 vma->vm_flags = new_flags;
885 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
887 mmap_write_unlock(mm);
891 * After no new page faults can wait on this fault_*wqh, flush
892 * the last page faults that may have been already waiting on
895 spin_lock_irq(&ctx->fault_pending_wqh.lock);
896 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
897 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
898 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
900 /* Flush pending events that may still wait on event_wqh */
901 wake_up_all(&ctx->event_wqh);
903 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
904 userfaultfd_ctx_put(ctx);
908 /* fault_pending_wqh.lock must be hold by the caller */
909 static inline struct userfaultfd_wait_queue *find_userfault_in(
910 wait_queue_head_t *wqh)
912 wait_queue_entry_t *wq;
913 struct userfaultfd_wait_queue *uwq;
915 lockdep_assert_held(&wqh->lock);
918 if (!waitqueue_active(wqh))
920 /* walk in reverse to provide FIFO behavior to read userfaults */
921 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
922 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
927 static inline struct userfaultfd_wait_queue *find_userfault(
928 struct userfaultfd_ctx *ctx)
930 return find_userfault_in(&ctx->fault_pending_wqh);
933 static inline struct userfaultfd_wait_queue *find_userfault_evt(
934 struct userfaultfd_ctx *ctx)
936 return find_userfault_in(&ctx->event_wqh);
939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
941 struct userfaultfd_ctx *ctx = file->private_data;
944 poll_wait(file, &ctx->fd_wqh, wait);
946 switch (ctx->state) {
947 case UFFD_STATE_WAIT_API:
949 case UFFD_STATE_RUNNING:
951 * poll() never guarantees that read won't block.
952 * userfaults can be waken before they're read().
954 if (unlikely(!(file->f_flags & O_NONBLOCK)))
957 * lockless access to see if there are pending faults
958 * __pollwait last action is the add_wait_queue but
959 * the spin_unlock would allow the waitqueue_active to
960 * pass above the actual list_add inside
961 * add_wait_queue critical section. So use a full
962 * memory barrier to serialize the list_add write of
963 * add_wait_queue() with the waitqueue_active read
968 if (waitqueue_active(&ctx->fault_pending_wqh))
970 else if (waitqueue_active(&ctx->event_wqh))
980 static const struct file_operations userfaultfd_fops;
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
984 struct uffd_msg *msg)
988 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
993 msg->arg.reserved.reserved1 = 0;
994 msg->arg.fork.ufd = fd;
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999 struct uffd_msg *msg, struct inode *inode)
1002 DECLARE_WAITQUEUE(wait, current);
1003 struct userfaultfd_wait_queue *uwq;
1005 * Handling fork event requires sleeping operations, so
1006 * we drop the event_wqh lock, then do these ops, then
1007 * lock it back and wake up the waiter. While the lock is
1008 * dropped the ewq may go away so we keep track of it
1011 LIST_HEAD(fork_event);
1012 struct userfaultfd_ctx *fork_nctx = NULL;
1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1015 spin_lock_irq(&ctx->fd_wqh.lock);
1016 __add_wait_queue(&ctx->fd_wqh, &wait);
1018 set_current_state(TASK_INTERRUPTIBLE);
1019 spin_lock(&ctx->fault_pending_wqh.lock);
1020 uwq = find_userfault(ctx);
1023 * Use a seqcount to repeat the lockless check
1024 * in wake_userfault() to avoid missing
1025 * wakeups because during the refile both
1026 * waitqueue could become empty if this is the
1029 write_seqcount_begin(&ctx->refile_seq);
1032 * The fault_pending_wqh.lock prevents the uwq
1033 * to disappear from under us.
1035 * Refile this userfault from
1036 * fault_pending_wqh to fault_wqh, it's not
1037 * pending anymore after we read it.
1039 * Use list_del() by hand (as
1040 * userfaultfd_wake_function also uses
1041 * list_del_init() by hand) to be sure nobody
1042 * changes __remove_wait_queue() to use
1043 * list_del_init() in turn breaking the
1044 * !list_empty_careful() check in
1045 * handle_userfault(). The uwq->wq.head list
1046 * must never be empty at any time during the
1047 * refile, or the waitqueue could disappear
1048 * from under us. The "wait_queue_head_t"
1049 * parameter of __remove_wait_queue() is unused
1052 list_del(&uwq->wq.entry);
1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1055 write_seqcount_end(&ctx->refile_seq);
1057 /* careful to always initialize msg if ret == 0 */
1059 spin_unlock(&ctx->fault_pending_wqh.lock);
1063 spin_unlock(&ctx->fault_pending_wqh.lock);
1065 spin_lock(&ctx->event_wqh.lock);
1066 uwq = find_userfault_evt(ctx);
1070 if (uwq->msg.event == UFFD_EVENT_FORK) {
1071 fork_nctx = (struct userfaultfd_ctx *)
1073 uwq->msg.arg.reserved.reserved1;
1074 list_move(&uwq->wq.entry, &fork_event);
1076 * fork_nctx can be freed as soon as
1077 * we drop the lock, unless we take a
1080 userfaultfd_ctx_get(fork_nctx);
1081 spin_unlock(&ctx->event_wqh.lock);
1086 userfaultfd_event_complete(ctx, uwq);
1087 spin_unlock(&ctx->event_wqh.lock);
1091 spin_unlock(&ctx->event_wqh.lock);
1093 if (signal_pending(current)) {
1101 spin_unlock_irq(&ctx->fd_wqh.lock);
1103 spin_lock_irq(&ctx->fd_wqh.lock);
1105 __remove_wait_queue(&ctx->fd_wqh, &wait);
1106 __set_current_state(TASK_RUNNING);
1107 spin_unlock_irq(&ctx->fd_wqh.lock);
1109 if (!ret && msg->event == UFFD_EVENT_FORK) {
1110 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111 spin_lock_irq(&ctx->event_wqh.lock);
1112 if (!list_empty(&fork_event)) {
1114 * The fork thread didn't abort, so we can
1115 * drop the temporary refcount.
1117 userfaultfd_ctx_put(fork_nctx);
1119 uwq = list_first_entry(&fork_event,
1123 * If fork_event list wasn't empty and in turn
1124 * the event wasn't already released by fork
1125 * (the event is allocated on fork kernel
1126 * stack), put the event back to its place in
1127 * the event_wq. fork_event head will be freed
1128 * as soon as we return so the event cannot
1129 * stay queued there no matter the current
1132 list_del(&uwq->wq.entry);
1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1136 * Leave the event in the waitqueue and report
1137 * error to userland if we failed to resolve
1138 * the userfault fork.
1141 userfaultfd_event_complete(ctx, uwq);
1144 * Here the fork thread aborted and the
1145 * refcount from the fork thread on fork_nctx
1146 * has already been released. We still hold
1147 * the reference we took before releasing the
1148 * lock above. If resolve_userfault_fork
1149 * failed we've to drop it because the
1150 * fork_nctx has to be freed in such case. If
1151 * it succeeded we'll hold it because the new
1152 * uffd references it.
1155 userfaultfd_ctx_put(fork_nctx);
1157 spin_unlock_irq(&ctx->event_wqh.lock);
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164 size_t count, loff_t *ppos)
1166 struct userfaultfd_ctx *ctx = file->private_data;
1167 ssize_t _ret, ret = 0;
1168 struct uffd_msg msg;
1169 int no_wait = file->f_flags & O_NONBLOCK;
1170 struct inode *inode = file_inode(file);
1172 if (ctx->state == UFFD_STATE_WAIT_API)
1176 if (count < sizeof(msg))
1177 return ret ? ret : -EINVAL;
1178 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1180 return ret ? ret : _ret;
1181 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182 return ret ? ret : -EFAULT;
1185 count -= sizeof(msg);
1187 * Allow to read more than one fault at time but only
1188 * block if waiting for the very first one.
1190 no_wait = O_NONBLOCK;
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195 struct userfaultfd_wake_range *range)
1197 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198 /* wake all in the range and autoremove */
1199 if (waitqueue_active(&ctx->fault_pending_wqh))
1200 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1202 if (waitqueue_active(&ctx->fault_wqh))
1203 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208 struct userfaultfd_wake_range *range)
1214 * To be sure waitqueue_active() is not reordered by the CPU
1215 * before the pagetable update, use an explicit SMP memory
1216 * barrier here. PT lock release or mmap_read_unlock(mm) still
1217 * have release semantics that can allow the
1218 * waitqueue_active() to be reordered before the pte update.
1223 * Use waitqueue_active because it's very frequent to
1224 * change the address space atomically even if there are no
1225 * userfaults yet. So we take the spinlock only when we're
1226 * sure we've userfaults to wake.
1229 seq = read_seqcount_begin(&ctx->refile_seq);
1230 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231 waitqueue_active(&ctx->fault_wqh);
1233 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1235 __wake_userfault(ctx, range);
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239 __u64 start, __u64 len)
1241 __u64 task_size = mm->task_size;
1243 if (start & ~PAGE_MASK)
1245 if (len & ~PAGE_MASK)
1249 if (start < mmap_min_addr)
1251 if (start >= task_size)
1253 if (len > task_size - start)
1258 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259 unsigned long vm_flags)
1261 /* FIXME: add WP support to hugetlbfs and shmem */
1262 if (vm_flags & VM_UFFD_WP) {
1263 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1267 if (vm_flags & VM_UFFD_MINOR) {
1268 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1272 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1276 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1279 struct mm_struct *mm = ctx->mm;
1280 struct vm_area_struct *vma, *prev, *cur;
1282 struct uffdio_register uffdio_register;
1283 struct uffdio_register __user *user_uffdio_register;
1284 unsigned long vm_flags, new_flags;
1287 unsigned long start, end, vma_end;
1289 user_uffdio_register = (struct uffdio_register __user *) arg;
1292 if (copy_from_user(&uffdio_register, user_uffdio_register,
1293 sizeof(uffdio_register)-sizeof(__u64)))
1297 if (!uffdio_register.mode)
1299 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303 vm_flags |= VM_UFFD_MISSING;
1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1308 vm_flags |= VM_UFFD_WP;
1310 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1311 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1314 vm_flags |= VM_UFFD_MINOR;
1317 ret = validate_range(mm, uffdio_register.range.start,
1318 uffdio_register.range.len);
1322 start = uffdio_register.range.start;
1323 end = start + uffdio_register.range.len;
1326 if (!mmget_not_zero(mm))
1329 mmap_write_lock(mm);
1330 vma = find_vma_prev(mm, start, &prev);
1334 /* check that there's at least one vma in the range */
1336 if (vma->vm_start >= end)
1340 * If the first vma contains huge pages, make sure start address
1341 * is aligned to huge page size.
1343 if (is_vm_hugetlb_page(vma)) {
1344 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1346 if (start & (vma_hpagesize - 1))
1351 * Search for not compatible vmas.
1354 basic_ioctls = false;
1355 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1358 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1359 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1361 /* check not compatible vmas */
1363 if (!vma_can_userfault(cur, vm_flags))
1367 * UFFDIO_COPY will fill file holes even without
1368 * PROT_WRITE. This check enforces that if this is a
1369 * MAP_SHARED, the process has write permission to the backing
1370 * file. If VM_MAYWRITE is set it also enforces that on a
1371 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372 * F_WRITE_SEAL can be taken until the vma is destroyed.
1375 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1379 * If this vma contains ending address, and huge pages
1382 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383 end > cur->vm_start) {
1384 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1388 if (end & (vma_hpagesize - 1))
1391 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1395 * Check that this vma isn't already owned by a
1396 * different userfaultfd. We can't allow more than one
1397 * userfaultfd to own a single vma simultaneously or we
1398 * wouldn't know which one to deliver the userfaults to.
1401 if (cur->vm_userfaultfd_ctx.ctx &&
1402 cur->vm_userfaultfd_ctx.ctx != ctx)
1406 * Note vmas containing huge pages
1408 if (is_vm_hugetlb_page(cur))
1409 basic_ioctls = true;
1415 if (vma->vm_start < start)
1422 BUG_ON(!vma_can_userfault(vma, vm_flags));
1423 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1424 vma->vm_userfaultfd_ctx.ctx != ctx);
1425 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1428 * Nothing to do: this vma is already registered into this
1429 * userfaultfd and with the right tracking mode too.
1431 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1432 (vma->vm_flags & vm_flags) == vm_flags)
1435 if (vma->vm_start > start)
1436 start = vma->vm_start;
1437 vma_end = min(end, vma->vm_end);
1439 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1440 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1441 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1443 ((struct vm_userfaultfd_ctx){ ctx }));
1448 if (vma->vm_start < start) {
1449 ret = split_vma(mm, vma, start, 1);
1453 if (vma->vm_end > end) {
1454 ret = split_vma(mm, vma, end, 0);
1460 * In the vma_merge() successful mprotect-like case 8:
1461 * the next vma was merged into the current one and
1462 * the current one has not been updated yet.
1464 vma->vm_flags = new_flags;
1465 vma->vm_userfaultfd_ctx.ctx = ctx;
1467 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1468 hugetlb_unshare_all_pmds(vma);
1472 start = vma->vm_end;
1474 } while (vma && vma->vm_start < end);
1476 mmap_write_unlock(mm);
1481 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1482 UFFD_API_RANGE_IOCTLS;
1485 * Declare the WP ioctl only if the WP mode is
1486 * specified and all checks passed with the range
1488 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1489 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1491 /* CONTINUE ioctl is only supported for MINOR ranges. */
1492 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1493 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1496 * Now that we scanned all vmas we can already tell
1497 * userland which ioctls methods are guaranteed to
1498 * succeed on this range.
1500 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1507 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1510 struct mm_struct *mm = ctx->mm;
1511 struct vm_area_struct *vma, *prev, *cur;
1513 struct uffdio_range uffdio_unregister;
1514 unsigned long new_flags;
1516 unsigned long start, end, vma_end;
1517 const void __user *buf = (void __user *)arg;
1520 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1523 ret = validate_range(mm, uffdio_unregister.start,
1524 uffdio_unregister.len);
1528 start = uffdio_unregister.start;
1529 end = start + uffdio_unregister.len;
1532 if (!mmget_not_zero(mm))
1535 mmap_write_lock(mm);
1536 vma = find_vma_prev(mm, start, &prev);
1540 /* check that there's at least one vma in the range */
1542 if (vma->vm_start >= end)
1546 * If the first vma contains huge pages, make sure start address
1547 * is aligned to huge page size.
1549 if (is_vm_hugetlb_page(vma)) {
1550 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1552 if (start & (vma_hpagesize - 1))
1557 * Search for not compatible vmas.
1561 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1564 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1565 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1568 * Check not compatible vmas, not strictly required
1569 * here as not compatible vmas cannot have an
1570 * userfaultfd_ctx registered on them, but this
1571 * provides for more strict behavior to notice
1572 * unregistration errors.
1574 if (!vma_can_userfault(cur, cur->vm_flags))
1581 if (vma->vm_start < start)
1588 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1591 * Nothing to do: this vma is already registered into this
1592 * userfaultfd and with the right tracking mode too.
1594 if (!vma->vm_userfaultfd_ctx.ctx)
1597 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1599 if (vma->vm_start > start)
1600 start = vma->vm_start;
1601 vma_end = min(end, vma->vm_end);
1603 if (userfaultfd_missing(vma)) {
1605 * Wake any concurrent pending userfault while
1606 * we unregister, so they will not hang
1607 * permanently and it avoids userland to call
1608 * UFFDIO_WAKE explicitly.
1610 struct userfaultfd_wake_range range;
1611 range.start = start;
1612 range.len = vma_end - start;
1613 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1616 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1617 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1618 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1625 if (vma->vm_start < start) {
1626 ret = split_vma(mm, vma, start, 1);
1630 if (vma->vm_end > end) {
1631 ret = split_vma(mm, vma, end, 0);
1637 * In the vma_merge() successful mprotect-like case 8:
1638 * the next vma was merged into the current one and
1639 * the current one has not been updated yet.
1641 vma->vm_flags = new_flags;
1642 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1646 start = vma->vm_end;
1648 } while (vma && vma->vm_start < end);
1650 mmap_write_unlock(mm);
1657 * userfaultfd_wake may be used in combination with the
1658 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1660 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1664 struct uffdio_range uffdio_wake;
1665 struct userfaultfd_wake_range range;
1666 const void __user *buf = (void __user *)arg;
1669 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1672 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1676 range.start = uffdio_wake.start;
1677 range.len = uffdio_wake.len;
1680 * len == 0 means wake all and we don't want to wake all here,
1681 * so check it again to be sure.
1683 VM_BUG_ON(!range.len);
1685 wake_userfault(ctx, &range);
1692 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1696 struct uffdio_copy uffdio_copy;
1697 struct uffdio_copy __user *user_uffdio_copy;
1698 struct userfaultfd_wake_range range;
1700 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1703 if (READ_ONCE(ctx->mmap_changing))
1707 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1708 /* don't copy "copy" last field */
1709 sizeof(uffdio_copy)-sizeof(__s64)))
1712 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716 * double check for wraparound just in case. copy_from_user()
1717 * will later check uffdio_copy.src + uffdio_copy.len to fit
1718 * in the userland range.
1721 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1723 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1725 if (mmget_not_zero(ctx->mm)) {
1726 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1727 uffdio_copy.len, &ctx->mmap_changing,
1733 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1738 /* len == 0 would wake all */
1740 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1741 range.start = uffdio_copy.dst;
1742 wake_userfault(ctx, &range);
1744 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1749 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1753 struct uffdio_zeropage uffdio_zeropage;
1754 struct uffdio_zeropage __user *user_uffdio_zeropage;
1755 struct userfaultfd_wake_range range;
1757 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1760 if (READ_ONCE(ctx->mmap_changing))
1764 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1765 /* don't copy "zeropage" last field */
1766 sizeof(uffdio_zeropage)-sizeof(__s64)))
1769 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1770 uffdio_zeropage.range.len);
1774 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1777 if (mmget_not_zero(ctx->mm)) {
1778 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1779 uffdio_zeropage.range.len,
1780 &ctx->mmap_changing);
1785 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1789 /* len == 0 would wake all */
1792 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1793 range.start = uffdio_zeropage.range.start;
1794 wake_userfault(ctx, &range);
1796 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1801 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1805 struct uffdio_writeprotect uffdio_wp;
1806 struct uffdio_writeprotect __user *user_uffdio_wp;
1807 struct userfaultfd_wake_range range;
1808 bool mode_wp, mode_dontwake;
1810 if (READ_ONCE(ctx->mmap_changing))
1813 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1815 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1816 sizeof(struct uffdio_writeprotect)))
1819 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1820 uffdio_wp.range.len);
1824 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1825 UFFDIO_WRITEPROTECT_MODE_WP))
1828 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1829 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1831 if (mode_wp && mode_dontwake)
1834 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1835 uffdio_wp.range.len, mode_wp,
1836 &ctx->mmap_changing);
1840 if (!mode_wp && !mode_dontwake) {
1841 range.start = uffdio_wp.range.start;
1842 range.len = uffdio_wp.range.len;
1843 wake_userfault(ctx, &range);
1848 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1851 struct uffdio_continue uffdio_continue;
1852 struct uffdio_continue __user *user_uffdio_continue;
1853 struct userfaultfd_wake_range range;
1855 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1858 if (READ_ONCE(ctx->mmap_changing))
1862 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1863 /* don't copy the output fields */
1864 sizeof(uffdio_continue) - (sizeof(__s64))))
1867 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1868 uffdio_continue.range.len);
1873 /* double check for wraparound just in case. */
1874 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1875 uffdio_continue.range.start) {
1878 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1881 if (mmget_not_zero(ctx->mm)) {
1882 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1883 uffdio_continue.range.len,
1884 &ctx->mmap_changing);
1890 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1895 /* len == 0 would wake all */
1898 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899 range.start = uffdio_continue.range.start;
1900 wake_userfault(ctx, &range);
1902 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1908 static inline unsigned int uffd_ctx_features(__u64 user_features)
1911 * For the current set of features the bits just coincide
1913 return (unsigned int)user_features;
1917 * userland asks for a certain API version and we return which bits
1918 * and ioctl commands are implemented in this kernel for such API
1919 * version or -EINVAL if unknown.
1921 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1924 struct uffdio_api uffdio_api;
1925 void __user *buf = (void __user *)arg;
1930 if (ctx->state != UFFD_STATE_WAIT_API)
1933 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1935 features = uffdio_api.features;
1937 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1940 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1942 /* report all available features and ioctls to userland */
1943 uffdio_api.features = UFFD_API_FEATURES;
1944 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1945 uffdio_api.features &=
1946 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1948 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1949 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1951 uffdio_api.ioctls = UFFD_API_IOCTLS;
1953 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1955 ctx->state = UFFD_STATE_RUNNING;
1956 /* only enable the requested features for this uffd context */
1957 ctx->features = uffd_ctx_features(features);
1962 memset(&uffdio_api, 0, sizeof(uffdio_api));
1963 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1968 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1972 struct userfaultfd_ctx *ctx = file->private_data;
1974 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1979 ret = userfaultfd_api(ctx, arg);
1981 case UFFDIO_REGISTER:
1982 ret = userfaultfd_register(ctx, arg);
1984 case UFFDIO_UNREGISTER:
1985 ret = userfaultfd_unregister(ctx, arg);
1988 ret = userfaultfd_wake(ctx, arg);
1991 ret = userfaultfd_copy(ctx, arg);
1993 case UFFDIO_ZEROPAGE:
1994 ret = userfaultfd_zeropage(ctx, arg);
1996 case UFFDIO_WRITEPROTECT:
1997 ret = userfaultfd_writeprotect(ctx, arg);
1999 case UFFDIO_CONTINUE:
2000 ret = userfaultfd_continue(ctx, arg);
2006 #ifdef CONFIG_PROC_FS
2007 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2009 struct userfaultfd_ctx *ctx = f->private_data;
2010 wait_queue_entry_t *wq;
2011 unsigned long pending = 0, total = 0;
2013 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2014 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2018 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2021 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2024 * If more protocols will be added, there will be all shown
2025 * separated by a space. Like this:
2026 * protocols: aa:... bb:...
2028 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2029 pending, total, UFFD_API, ctx->features,
2030 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2034 static const struct file_operations userfaultfd_fops = {
2035 #ifdef CONFIG_PROC_FS
2036 .show_fdinfo = userfaultfd_show_fdinfo,
2038 .release = userfaultfd_release,
2039 .poll = userfaultfd_poll,
2040 .read = userfaultfd_read,
2041 .unlocked_ioctl = userfaultfd_ioctl,
2042 .compat_ioctl = compat_ptr_ioctl,
2043 .llseek = noop_llseek,
2046 static void init_once_userfaultfd_ctx(void *mem)
2048 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2050 init_waitqueue_head(&ctx->fault_pending_wqh);
2051 init_waitqueue_head(&ctx->fault_wqh);
2052 init_waitqueue_head(&ctx->event_wqh);
2053 init_waitqueue_head(&ctx->fd_wqh);
2054 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2057 SYSCALL_DEFINE1(userfaultfd, int, flags)
2059 struct userfaultfd_ctx *ctx;
2062 if (!sysctl_unprivileged_userfaultfd &&
2063 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2064 !capable(CAP_SYS_PTRACE)) {
2065 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2066 "sysctl knob to 1 if kernel faults must be handled "
2067 "without obtaining CAP_SYS_PTRACE capability\n");
2071 BUG_ON(!current->mm);
2073 /* Check the UFFD_* constants for consistency. */
2074 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2075 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2076 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2078 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2081 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2085 refcount_set(&ctx->refcount, 1);
2088 ctx->state = UFFD_STATE_WAIT_API;
2089 ctx->released = false;
2090 ctx->mmap_changing = false;
2091 ctx->mm = current->mm;
2092 /* prevent the mm struct to be freed */
2095 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2096 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2099 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2104 static int __init userfaultfd_init(void)
2106 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2107 sizeof(struct userfaultfd_ctx),
2109 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2110 init_once_userfaultfd_ctx);
2113 __initcall(userfaultfd_init);