1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
38 static struct ctl_table vm_userfaultfd_table[] = {
40 .procname = "unprivileged_userfaultfd",
41 .data = &sysctl_unprivileged_userfaultfd,
42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
44 .proc_handler = proc_dointvec_minmax,
45 .extra1 = SYSCTL_ZERO,
52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
55 * Start with fault_pending_wqh and fault_wqh so they're more likely
56 * to be in the same cacheline.
60 * fault_pending_wqh.lock
64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66 * also taken in IRQ context.
68 struct userfaultfd_ctx {
69 /* waitqueue head for the pending (i.e. not read) userfaults */
70 wait_queue_head_t fault_pending_wqh;
71 /* waitqueue head for the userfaults */
72 wait_queue_head_t fault_wqh;
73 /* waitqueue head for the pseudo fd to wakeup poll/read */
74 wait_queue_head_t fd_wqh;
75 /* waitqueue head for events */
76 wait_queue_head_t event_wqh;
77 /* a refile sequence protected by fault_pending_wqh lock */
78 seqcount_spinlock_t refile_seq;
79 /* pseudo fd refcounting */
81 /* userfaultfd syscall flags */
83 /* features requested from the userspace */
84 unsigned int features;
87 /* memory mappings are changing because of non-cooperative event */
88 atomic_t mmap_changing;
89 /* mm with one ore more vmas attached to this userfaultfd_ctx */
93 struct userfaultfd_fork_ctx {
94 struct userfaultfd_ctx *orig;
95 struct userfaultfd_ctx *new;
96 struct list_head list;
99 struct userfaultfd_unmap_ctx {
100 struct userfaultfd_ctx *ctx;
103 struct list_head list;
106 struct userfaultfd_wait_queue {
108 wait_queue_entry_t wq;
109 struct userfaultfd_ctx *ctx;
113 struct userfaultfd_wake_range {
118 /* internal indication that UFFD_API ioctl was successfully executed */
119 #define UFFD_FEATURE_INITIALIZED (1u << 31)
121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
123 return ctx->features & UFFD_FEATURE_INITIALIZED;
127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
128 * meaningful when userfaultfd_wp()==true on the vma and when it's
131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
146 vm_flags_reset(vma, flags);
148 * For shared mappings, we want to enable writenotify while
149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153 vma_set_page_prot(vma);
156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
157 int wake_flags, void *key)
159 struct userfaultfd_wake_range *range = key;
161 struct userfaultfd_wait_queue *uwq;
162 unsigned long start, len;
164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
166 /* len == 0 means wake all */
167 start = range->start;
169 if (len && (start > uwq->msg.arg.pagefault.address ||
170 start + len <= uwq->msg.arg.pagefault.address))
172 WRITE_ONCE(uwq->waken, true);
174 * The Program-Order guarantees provided by the scheduler
175 * ensure uwq->waken is visible before the task is woken.
177 ret = wake_up_state(wq->private, mode);
180 * Wake only once, autoremove behavior.
182 * After the effect of list_del_init is visible to the other
183 * CPUs, the waitqueue may disappear from under us, see the
184 * !list_empty_careful() in handle_userfault().
186 * try_to_wake_up() has an implicit smp_mb(), and the
187 * wq->private is read before calling the extern function
188 * "wake_up_state" (which in turns calls try_to_wake_up).
190 list_del_init(&wq->entry);
197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
199 * @ctx: [in] Pointer to the userfaultfd context.
201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
203 refcount_inc(&ctx->refcount);
207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
209 * @ctx: [in] Pointer to userfaultfd context.
211 * The userfaultfd context reference must have been previously acquired either
212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
216 if (refcount_dec_and_test(&ctx->refcount)) {
217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
226 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
230 static inline void msg_init(struct uffd_msg *msg)
232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
234 * Must use memset to zero out the paddings or kernel data is
235 * leaked to userland.
237 memset(msg, 0, sizeof(struct uffd_msg));
240 static inline struct uffd_msg userfault_msg(unsigned long address,
241 unsigned long real_address,
243 unsigned long reason,
244 unsigned int features)
249 msg.event = UFFD_EVENT_PAGEFAULT;
251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252 real_address : address;
255 * These flags indicate why the userfault occurred:
256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258 * - Neither of these flags being set indicates a MISSING fault.
260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261 * fault. Otherwise, it was a read fault.
263 if (flags & FAULT_FLAG_WRITE)
264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
265 if (reason & VM_UFFD_WP)
266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
267 if (reason & VM_UFFD_MINOR)
268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
269 if (features & UFFD_FEATURE_THREAD_ID)
270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
274 #ifdef CONFIG_HUGETLB_PAGE
276 * Same functionality as userfaultfd_must_wait below with modifications for
279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
280 struct vm_area_struct *vma,
281 unsigned long address,
283 unsigned long reason)
288 mmap_assert_locked(ctx->mm);
290 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma));
295 pte = huge_ptep_get(ptep);
298 * Lockless access: we're in a wait_event so it's ok if it
299 * changes under us. PTE markers should be handled the same as none
302 if (huge_pte_none_mostly(pte))
304 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
310 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
311 struct vm_area_struct *vma,
312 unsigned long address,
314 unsigned long reason)
316 return false; /* should never get here */
318 #endif /* CONFIG_HUGETLB_PAGE */
321 * Verify the pagetables are still not ok after having reigstered into
322 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
323 * userfault that has already been resolved, if userfaultfd_read and
324 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
327 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
328 unsigned long address,
330 unsigned long reason)
332 struct mm_struct *mm = ctx->mm;
341 mmap_assert_locked(mm);
343 pgd = pgd_offset(mm, address);
344 if (!pgd_present(*pgd))
346 p4d = p4d_offset(pgd, address);
347 if (!p4d_present(*p4d))
349 pud = pud_offset(p4d, address);
350 if (!pud_present(*pud))
352 pmd = pmd_offset(pud, address);
354 _pmd = pmdp_get_lockless(pmd);
359 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
362 if (pmd_trans_huge(_pmd)) {
363 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
368 pte = pte_offset_map(pmd, address);
374 * Lockless access: we're in a wait_event so it's ok if it
375 * changes under us. PTE markers should be handled the same as none
378 ptent = ptep_get(pte);
379 if (pte_none_mostly(ptent))
381 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
389 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
391 if (flags & FAULT_FLAG_INTERRUPTIBLE)
392 return TASK_INTERRUPTIBLE;
394 if (flags & FAULT_FLAG_KILLABLE)
395 return TASK_KILLABLE;
397 return TASK_UNINTERRUPTIBLE;
401 * The locking rules involved in returning VM_FAULT_RETRY depending on
402 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
403 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
404 * recommendation in __lock_page_or_retry is not an understatement.
406 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
407 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
410 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
411 * set, VM_FAULT_RETRY can still be returned if and only if there are
412 * fatal_signal_pending()s, and the mmap_lock must be released before
415 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
417 struct vm_area_struct *vma = vmf->vma;
418 struct mm_struct *mm = vma->vm_mm;
419 struct userfaultfd_ctx *ctx;
420 struct userfaultfd_wait_queue uwq;
421 vm_fault_t ret = VM_FAULT_SIGBUS;
423 unsigned int blocking_state;
426 * We don't do userfault handling for the final child pid update.
428 * We also don't do userfault handling during
429 * coredumping. hugetlbfs has the special
430 * follow_hugetlb_page() to skip missing pages in the
431 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
432 * the no_page_table() helper in follow_page_mask(), but the
433 * shmem_vm_ops->fault method is invoked even during
434 * coredumping without mmap_lock and it ends up here.
436 if (current->flags & (PF_EXITING|PF_DUMPCORE))
440 * Coredumping runs without mmap_lock so we can only check that
441 * the mmap_lock is held, if PF_DUMPCORE was not set.
443 mmap_assert_locked(mm);
445 ctx = vma->vm_userfaultfd_ctx.ctx;
449 BUG_ON(ctx->mm != mm);
451 /* Any unrecognized flag is a bug. */
452 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
453 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
454 VM_BUG_ON(!reason || (reason & (reason - 1)));
456 if (ctx->features & UFFD_FEATURE_SIGBUS)
458 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
462 * If it's already released don't get it. This avoids to loop
463 * in __get_user_pages if userfaultfd_release waits on the
464 * caller of handle_userfault to release the mmap_lock.
466 if (unlikely(READ_ONCE(ctx->released))) {
468 * Don't return VM_FAULT_SIGBUS in this case, so a non
469 * cooperative manager can close the uffd after the
470 * last UFFDIO_COPY, without risking to trigger an
471 * involuntary SIGBUS if the process was starting the
472 * userfaultfd while the userfaultfd was still armed
473 * (but after the last UFFDIO_COPY). If the uffd
474 * wasn't already closed when the userfault reached
475 * this point, that would normally be solved by
476 * userfaultfd_must_wait returning 'false'.
478 * If we were to return VM_FAULT_SIGBUS here, the non
479 * cooperative manager would be instead forced to
480 * always call UFFDIO_UNREGISTER before it can safely
483 ret = VM_FAULT_NOPAGE;
488 * Check that we can return VM_FAULT_RETRY.
490 * NOTE: it should become possible to return VM_FAULT_RETRY
491 * even if FAULT_FLAG_TRIED is set without leading to gup()
492 * -EBUSY failures, if the userfaultfd is to be extended for
493 * VM_UFFD_WP tracking and we intend to arm the userfault
494 * without first stopping userland access to the memory. For
495 * VM_UFFD_MISSING userfaults this is enough for now.
497 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
499 * Validate the invariant that nowait must allow retry
500 * to be sure not to return SIGBUS erroneously on
501 * nowait invocations.
503 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
504 #ifdef CONFIG_DEBUG_VM
505 if (printk_ratelimit()) {
507 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
516 * Handle nowait, not much to do other than tell it to retry
519 ret = VM_FAULT_RETRY;
520 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
523 /* take the reference before dropping the mmap_lock */
524 userfaultfd_ctx_get(ctx);
526 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
527 uwq.wq.private = current;
528 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
529 reason, ctx->features);
533 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
536 * Take the vma lock now, in order to safely call
537 * userfaultfd_huge_must_wait() later. Since acquiring the
538 * (sleepable) vma lock can modify the current task state, that
539 * must be before explicitly calling set_current_state().
541 if (is_vm_hugetlb_page(vma))
542 hugetlb_vma_lock_read(vma);
544 spin_lock_irq(&ctx->fault_pending_wqh.lock);
546 * After the __add_wait_queue the uwq is visible to userland
547 * through poll/read().
549 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
551 * The smp_mb() after __set_current_state prevents the reads
552 * following the spin_unlock to happen before the list_add in
555 set_current_state(blocking_state);
556 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
558 if (!is_vm_hugetlb_page(vma))
559 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
562 must_wait = userfaultfd_huge_must_wait(ctx, vma,
565 if (is_vm_hugetlb_page(vma))
566 hugetlb_vma_unlock_read(vma);
567 mmap_read_unlock(mm);
569 if (likely(must_wait && !READ_ONCE(ctx->released))) {
570 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
574 __set_current_state(TASK_RUNNING);
577 * Here we race with the list_del; list_add in
578 * userfaultfd_ctx_read(), however because we don't ever run
579 * list_del_init() to refile across the two lists, the prev
580 * and next pointers will never point to self. list_add also
581 * would never let any of the two pointers to point to
582 * self. So list_empty_careful won't risk to see both pointers
583 * pointing to self at any time during the list refile. The
584 * only case where list_del_init() is called is the full
585 * removal in the wake function and there we don't re-list_add
586 * and it's fine not to block on the spinlock. The uwq on this
587 * kernel stack can be released after the list_del_init.
589 if (!list_empty_careful(&uwq.wq.entry)) {
590 spin_lock_irq(&ctx->fault_pending_wqh.lock);
592 * No need of list_del_init(), the uwq on the stack
593 * will be freed shortly anyway.
595 list_del(&uwq.wq.entry);
596 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
600 * ctx may go away after this if the userfault pseudo fd is
603 userfaultfd_ctx_put(ctx);
609 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
610 struct userfaultfd_wait_queue *ewq)
612 struct userfaultfd_ctx *release_new_ctx;
614 if (WARN_ON_ONCE(current->flags & PF_EXITING))
618 init_waitqueue_entry(&ewq->wq, current);
619 release_new_ctx = NULL;
621 spin_lock_irq(&ctx->event_wqh.lock);
623 * After the __add_wait_queue the uwq is visible to userland
624 * through poll/read().
626 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
628 set_current_state(TASK_KILLABLE);
629 if (ewq->msg.event == 0)
631 if (READ_ONCE(ctx->released) ||
632 fatal_signal_pending(current)) {
634 * &ewq->wq may be queued in fork_event, but
635 * __remove_wait_queue ignores the head
636 * parameter. It would be a problem if it
639 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
640 if (ewq->msg.event == UFFD_EVENT_FORK) {
641 struct userfaultfd_ctx *new;
643 new = (struct userfaultfd_ctx *)
645 ewq->msg.arg.reserved.reserved1;
646 release_new_ctx = new;
651 spin_unlock_irq(&ctx->event_wqh.lock);
653 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
656 spin_lock_irq(&ctx->event_wqh.lock);
658 __set_current_state(TASK_RUNNING);
659 spin_unlock_irq(&ctx->event_wqh.lock);
661 if (release_new_ctx) {
662 struct vm_area_struct *vma;
663 struct mm_struct *mm = release_new_ctx->mm;
664 VMA_ITERATOR(vmi, mm, 0);
666 /* the various vma->vm_userfaultfd_ctx still points to it */
668 for_each_vma(vmi, vma) {
669 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
671 userfaultfd_set_vm_flags(vma,
672 vma->vm_flags & ~__VM_UFFD_FLAGS);
675 mmap_write_unlock(mm);
677 userfaultfd_ctx_put(release_new_ctx);
681 * ctx may go away after this if the userfault pseudo fd is
685 atomic_dec(&ctx->mmap_changing);
686 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
687 userfaultfd_ctx_put(ctx);
690 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
691 struct userfaultfd_wait_queue *ewq)
694 wake_up_locked(&ctx->event_wqh);
695 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
698 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
700 struct userfaultfd_ctx *ctx = NULL, *octx;
701 struct userfaultfd_fork_ctx *fctx;
703 octx = vma->vm_userfaultfd_ctx.ctx;
704 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
705 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
706 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
710 list_for_each_entry(fctx, fcs, list)
711 if (fctx->orig == octx) {
717 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
721 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
727 refcount_set(&ctx->refcount, 1);
728 ctx->flags = octx->flags;
729 ctx->features = octx->features;
730 ctx->released = false;
731 atomic_set(&ctx->mmap_changing, 0);
732 ctx->mm = vma->vm_mm;
735 userfaultfd_ctx_get(octx);
736 atomic_inc(&octx->mmap_changing);
739 list_add_tail(&fctx->list, fcs);
742 vma->vm_userfaultfd_ctx.ctx = ctx;
746 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
748 struct userfaultfd_ctx *ctx = fctx->orig;
749 struct userfaultfd_wait_queue ewq;
753 ewq.msg.event = UFFD_EVENT_FORK;
754 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
756 userfaultfd_event_wait_completion(ctx, &ewq);
759 void dup_userfaultfd_complete(struct list_head *fcs)
761 struct userfaultfd_fork_ctx *fctx, *n;
763 list_for_each_entry_safe(fctx, n, fcs, list) {
765 list_del(&fctx->list);
770 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
771 struct vm_userfaultfd_ctx *vm_ctx)
773 struct userfaultfd_ctx *ctx;
775 ctx = vma->vm_userfaultfd_ctx.ctx;
780 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
782 userfaultfd_ctx_get(ctx);
783 atomic_inc(&ctx->mmap_changing);
785 /* Drop uffd context if remap feature not enabled */
786 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
787 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
791 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
792 unsigned long from, unsigned long to,
795 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
796 struct userfaultfd_wait_queue ewq;
801 if (to & ~PAGE_MASK) {
802 userfaultfd_ctx_put(ctx);
808 ewq.msg.event = UFFD_EVENT_REMAP;
809 ewq.msg.arg.remap.from = from;
810 ewq.msg.arg.remap.to = to;
811 ewq.msg.arg.remap.len = len;
813 userfaultfd_event_wait_completion(ctx, &ewq);
816 bool userfaultfd_remove(struct vm_area_struct *vma,
817 unsigned long start, unsigned long end)
819 struct mm_struct *mm = vma->vm_mm;
820 struct userfaultfd_ctx *ctx;
821 struct userfaultfd_wait_queue ewq;
823 ctx = vma->vm_userfaultfd_ctx.ctx;
824 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
827 userfaultfd_ctx_get(ctx);
828 atomic_inc(&ctx->mmap_changing);
829 mmap_read_unlock(mm);
833 ewq.msg.event = UFFD_EVENT_REMOVE;
834 ewq.msg.arg.remove.start = start;
835 ewq.msg.arg.remove.end = end;
837 userfaultfd_event_wait_completion(ctx, &ewq);
842 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
843 unsigned long start, unsigned long end)
845 struct userfaultfd_unmap_ctx *unmap_ctx;
847 list_for_each_entry(unmap_ctx, unmaps, list)
848 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
849 unmap_ctx->end == end)
855 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
856 unsigned long end, struct list_head *unmaps)
858 struct userfaultfd_unmap_ctx *unmap_ctx;
859 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
861 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
862 has_unmap_ctx(ctx, unmaps, start, end))
865 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
869 userfaultfd_ctx_get(ctx);
870 atomic_inc(&ctx->mmap_changing);
871 unmap_ctx->ctx = ctx;
872 unmap_ctx->start = start;
873 unmap_ctx->end = end;
874 list_add_tail(&unmap_ctx->list, unmaps);
879 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
881 struct userfaultfd_unmap_ctx *ctx, *n;
882 struct userfaultfd_wait_queue ewq;
884 list_for_each_entry_safe(ctx, n, uf, list) {
887 ewq.msg.event = UFFD_EVENT_UNMAP;
888 ewq.msg.arg.remove.start = ctx->start;
889 ewq.msg.arg.remove.end = ctx->end;
891 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
893 list_del(&ctx->list);
898 static int userfaultfd_release(struct inode *inode, struct file *file)
900 struct userfaultfd_ctx *ctx = file->private_data;
901 struct mm_struct *mm = ctx->mm;
902 struct vm_area_struct *vma, *prev;
903 /* len == 0 means wake all */
904 struct userfaultfd_wake_range range = { .len = 0, };
905 unsigned long new_flags;
906 VMA_ITERATOR(vmi, mm, 0);
908 WRITE_ONCE(ctx->released, true);
910 if (!mmget_not_zero(mm))
914 * Flush page faults out of all CPUs. NOTE: all page faults
915 * must be retried without returning VM_FAULT_SIGBUS if
916 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
917 * changes while handle_userfault released the mmap_lock. So
918 * it's critical that released is set to true (above), before
919 * taking the mmap_lock for writing.
923 for_each_vma(vmi, vma) {
925 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
926 !!(vma->vm_flags & __VM_UFFD_FLAGS));
927 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
931 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
932 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
933 new_flags, vma->anon_vma,
934 vma->vm_file, vma->vm_pgoff,
936 NULL_VM_UFFD_CTX, anon_vma_name(vma));
943 userfaultfd_set_vm_flags(vma, new_flags);
944 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
946 mmap_write_unlock(mm);
950 * After no new page faults can wait on this fault_*wqh, flush
951 * the last page faults that may have been already waiting on
954 spin_lock_irq(&ctx->fault_pending_wqh.lock);
955 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
956 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
957 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
959 /* Flush pending events that may still wait on event_wqh */
960 wake_up_all(&ctx->event_wqh);
962 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
963 userfaultfd_ctx_put(ctx);
967 /* fault_pending_wqh.lock must be hold by the caller */
968 static inline struct userfaultfd_wait_queue *find_userfault_in(
969 wait_queue_head_t *wqh)
971 wait_queue_entry_t *wq;
972 struct userfaultfd_wait_queue *uwq;
974 lockdep_assert_held(&wqh->lock);
977 if (!waitqueue_active(wqh))
979 /* walk in reverse to provide FIFO behavior to read userfaults */
980 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
981 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
986 static inline struct userfaultfd_wait_queue *find_userfault(
987 struct userfaultfd_ctx *ctx)
989 return find_userfault_in(&ctx->fault_pending_wqh);
992 static inline struct userfaultfd_wait_queue *find_userfault_evt(
993 struct userfaultfd_ctx *ctx)
995 return find_userfault_in(&ctx->event_wqh);
998 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
1000 struct userfaultfd_ctx *ctx = file->private_data;
1003 poll_wait(file, &ctx->fd_wqh, wait);
1005 if (!userfaultfd_is_initialized(ctx))
1009 * poll() never guarantees that read won't block.
1010 * userfaults can be waken before they're read().
1012 if (unlikely(!(file->f_flags & O_NONBLOCK)))
1015 * lockless access to see if there are pending faults
1016 * __pollwait last action is the add_wait_queue but
1017 * the spin_unlock would allow the waitqueue_active to
1018 * pass above the actual list_add inside
1019 * add_wait_queue critical section. So use a full
1020 * memory barrier to serialize the list_add write of
1021 * add_wait_queue() with the waitqueue_active read
1026 if (waitqueue_active(&ctx->fault_pending_wqh))
1028 else if (waitqueue_active(&ctx->event_wqh))
1034 static const struct file_operations userfaultfd_fops;
1036 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1037 struct inode *inode,
1038 struct uffd_msg *msg)
1042 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1043 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1047 msg->arg.reserved.reserved1 = 0;
1048 msg->arg.fork.ufd = fd;
1052 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1053 struct uffd_msg *msg, struct inode *inode)
1056 DECLARE_WAITQUEUE(wait, current);
1057 struct userfaultfd_wait_queue *uwq;
1059 * Handling fork event requires sleeping operations, so
1060 * we drop the event_wqh lock, then do these ops, then
1061 * lock it back and wake up the waiter. While the lock is
1062 * dropped the ewq may go away so we keep track of it
1065 LIST_HEAD(fork_event);
1066 struct userfaultfd_ctx *fork_nctx = NULL;
1068 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1069 spin_lock_irq(&ctx->fd_wqh.lock);
1070 __add_wait_queue(&ctx->fd_wqh, &wait);
1072 set_current_state(TASK_INTERRUPTIBLE);
1073 spin_lock(&ctx->fault_pending_wqh.lock);
1074 uwq = find_userfault(ctx);
1077 * Use a seqcount to repeat the lockless check
1078 * in wake_userfault() to avoid missing
1079 * wakeups because during the refile both
1080 * waitqueue could become empty if this is the
1083 write_seqcount_begin(&ctx->refile_seq);
1086 * The fault_pending_wqh.lock prevents the uwq
1087 * to disappear from under us.
1089 * Refile this userfault from
1090 * fault_pending_wqh to fault_wqh, it's not
1091 * pending anymore after we read it.
1093 * Use list_del() by hand (as
1094 * userfaultfd_wake_function also uses
1095 * list_del_init() by hand) to be sure nobody
1096 * changes __remove_wait_queue() to use
1097 * list_del_init() in turn breaking the
1098 * !list_empty_careful() check in
1099 * handle_userfault(). The uwq->wq.head list
1100 * must never be empty at any time during the
1101 * refile, or the waitqueue could disappear
1102 * from under us. The "wait_queue_head_t"
1103 * parameter of __remove_wait_queue() is unused
1106 list_del(&uwq->wq.entry);
1107 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1109 write_seqcount_end(&ctx->refile_seq);
1111 /* careful to always initialize msg if ret == 0 */
1113 spin_unlock(&ctx->fault_pending_wqh.lock);
1117 spin_unlock(&ctx->fault_pending_wqh.lock);
1119 spin_lock(&ctx->event_wqh.lock);
1120 uwq = find_userfault_evt(ctx);
1124 if (uwq->msg.event == UFFD_EVENT_FORK) {
1125 fork_nctx = (struct userfaultfd_ctx *)
1127 uwq->msg.arg.reserved.reserved1;
1128 list_move(&uwq->wq.entry, &fork_event);
1130 * fork_nctx can be freed as soon as
1131 * we drop the lock, unless we take a
1134 userfaultfd_ctx_get(fork_nctx);
1135 spin_unlock(&ctx->event_wqh.lock);
1140 userfaultfd_event_complete(ctx, uwq);
1141 spin_unlock(&ctx->event_wqh.lock);
1145 spin_unlock(&ctx->event_wqh.lock);
1147 if (signal_pending(current)) {
1155 spin_unlock_irq(&ctx->fd_wqh.lock);
1157 spin_lock_irq(&ctx->fd_wqh.lock);
1159 __remove_wait_queue(&ctx->fd_wqh, &wait);
1160 __set_current_state(TASK_RUNNING);
1161 spin_unlock_irq(&ctx->fd_wqh.lock);
1163 if (!ret && msg->event == UFFD_EVENT_FORK) {
1164 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1165 spin_lock_irq(&ctx->event_wqh.lock);
1166 if (!list_empty(&fork_event)) {
1168 * The fork thread didn't abort, so we can
1169 * drop the temporary refcount.
1171 userfaultfd_ctx_put(fork_nctx);
1173 uwq = list_first_entry(&fork_event,
1177 * If fork_event list wasn't empty and in turn
1178 * the event wasn't already released by fork
1179 * (the event is allocated on fork kernel
1180 * stack), put the event back to its place in
1181 * the event_wq. fork_event head will be freed
1182 * as soon as we return so the event cannot
1183 * stay queued there no matter the current
1186 list_del(&uwq->wq.entry);
1187 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1190 * Leave the event in the waitqueue and report
1191 * error to userland if we failed to resolve
1192 * the userfault fork.
1195 userfaultfd_event_complete(ctx, uwq);
1198 * Here the fork thread aborted and the
1199 * refcount from the fork thread on fork_nctx
1200 * has already been released. We still hold
1201 * the reference we took before releasing the
1202 * lock above. If resolve_userfault_fork
1203 * failed we've to drop it because the
1204 * fork_nctx has to be freed in such case. If
1205 * it succeeded we'll hold it because the new
1206 * uffd references it.
1209 userfaultfd_ctx_put(fork_nctx);
1211 spin_unlock_irq(&ctx->event_wqh.lock);
1217 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1218 size_t count, loff_t *ppos)
1220 struct userfaultfd_ctx *ctx = file->private_data;
1221 ssize_t _ret, ret = 0;
1222 struct uffd_msg msg;
1223 int no_wait = file->f_flags & O_NONBLOCK;
1224 struct inode *inode = file_inode(file);
1226 if (!userfaultfd_is_initialized(ctx))
1230 if (count < sizeof(msg))
1231 return ret ? ret : -EINVAL;
1232 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1234 return ret ? ret : _ret;
1235 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1236 return ret ? ret : -EFAULT;
1239 count -= sizeof(msg);
1241 * Allow to read more than one fault at time but only
1242 * block if waiting for the very first one.
1244 no_wait = O_NONBLOCK;
1248 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1249 struct userfaultfd_wake_range *range)
1251 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1252 /* wake all in the range and autoremove */
1253 if (waitqueue_active(&ctx->fault_pending_wqh))
1254 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1256 if (waitqueue_active(&ctx->fault_wqh))
1257 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1258 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1261 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1262 struct userfaultfd_wake_range *range)
1268 * To be sure waitqueue_active() is not reordered by the CPU
1269 * before the pagetable update, use an explicit SMP memory
1270 * barrier here. PT lock release or mmap_read_unlock(mm) still
1271 * have release semantics that can allow the
1272 * waitqueue_active() to be reordered before the pte update.
1277 * Use waitqueue_active because it's very frequent to
1278 * change the address space atomically even if there are no
1279 * userfaults yet. So we take the spinlock only when we're
1280 * sure we've userfaults to wake.
1283 seq = read_seqcount_begin(&ctx->refile_seq);
1284 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1285 waitqueue_active(&ctx->fault_wqh);
1287 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1289 __wake_userfault(ctx, range);
1292 static __always_inline int validate_range(struct mm_struct *mm,
1293 __u64 start, __u64 len)
1295 __u64 task_size = mm->task_size;
1297 if (start & ~PAGE_MASK)
1299 if (len & ~PAGE_MASK)
1303 if (start < mmap_min_addr)
1305 if (start >= task_size)
1307 if (len > task_size - start)
1312 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1315 struct mm_struct *mm = ctx->mm;
1316 struct vm_area_struct *vma, *prev, *cur;
1318 struct uffdio_register uffdio_register;
1319 struct uffdio_register __user *user_uffdio_register;
1320 unsigned long vm_flags, new_flags;
1323 unsigned long start, end, vma_end;
1324 struct vma_iterator vmi;
1327 user_uffdio_register = (struct uffdio_register __user *) arg;
1330 if (copy_from_user(&uffdio_register, user_uffdio_register,
1331 sizeof(uffdio_register)-sizeof(__u64)))
1335 if (!uffdio_register.mode)
1337 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1340 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1341 vm_flags |= VM_UFFD_MISSING;
1342 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1343 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1346 vm_flags |= VM_UFFD_WP;
1348 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1349 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1352 vm_flags |= VM_UFFD_MINOR;
1355 ret = validate_range(mm, uffdio_register.range.start,
1356 uffdio_register.range.len);
1360 start = uffdio_register.range.start;
1361 end = start + uffdio_register.range.len;
1364 if (!mmget_not_zero(mm))
1368 mmap_write_lock(mm);
1369 vma_iter_init(&vmi, mm, start);
1370 vma = vma_find(&vmi, end);
1375 * If the first vma contains huge pages, make sure start address
1376 * is aligned to huge page size.
1378 if (is_vm_hugetlb_page(vma)) {
1379 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1381 if (start & (vma_hpagesize - 1))
1386 * Search for not compatible vmas.
1389 basic_ioctls = false;
1394 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1395 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1397 /* check not compatible vmas */
1399 if (!vma_can_userfault(cur, vm_flags))
1403 * UFFDIO_COPY will fill file holes even without
1404 * PROT_WRITE. This check enforces that if this is a
1405 * MAP_SHARED, the process has write permission to the backing
1406 * file. If VM_MAYWRITE is set it also enforces that on a
1407 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1408 * F_WRITE_SEAL can be taken until the vma is destroyed.
1411 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1415 * If this vma contains ending address, and huge pages
1418 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1419 end > cur->vm_start) {
1420 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1424 if (end & (vma_hpagesize - 1))
1427 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1431 * Check that this vma isn't already owned by a
1432 * different userfaultfd. We can't allow more than one
1433 * userfaultfd to own a single vma simultaneously or we
1434 * wouldn't know which one to deliver the userfaults to.
1437 if (cur->vm_userfaultfd_ctx.ctx &&
1438 cur->vm_userfaultfd_ctx.ctx != ctx)
1442 * Note vmas containing huge pages
1444 if (is_vm_hugetlb_page(cur))
1445 basic_ioctls = true;
1448 } for_each_vma_range(vmi, cur, end);
1451 vma_iter_set(&vmi, start);
1452 prev = vma_prev(&vmi);
1453 if (vma->vm_start < start)
1457 for_each_vma_range(vmi, vma, end) {
1460 BUG_ON(!vma_can_userfault(vma, vm_flags));
1461 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1462 vma->vm_userfaultfd_ctx.ctx != ctx);
1463 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1466 * Nothing to do: this vma is already registered into this
1467 * userfaultfd and with the right tracking mode too.
1469 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1470 (vma->vm_flags & vm_flags) == vm_flags)
1473 if (vma->vm_start > start)
1474 start = vma->vm_start;
1475 vma_end = min(end, vma->vm_end);
1477 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1478 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1479 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1480 vma->anon_vma, vma->vm_file, pgoff,
1482 ((struct vm_userfaultfd_ctx){ ctx }),
1483 anon_vma_name(vma));
1485 /* vma_merge() invalidated the mas */
1489 if (vma->vm_start < start) {
1490 ret = split_vma(&vmi, vma, start, 1);
1494 if (vma->vm_end > end) {
1495 ret = split_vma(&vmi, vma, end, 0);
1501 * In the vma_merge() successful mprotect-like case 8:
1502 * the next vma was merged into the current one and
1503 * the current one has not been updated yet.
1505 userfaultfd_set_vm_flags(vma, new_flags);
1506 vma->vm_userfaultfd_ctx.ctx = ctx;
1508 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1509 hugetlb_unshare_all_pmds(vma);
1513 start = vma->vm_end;
1517 mmap_write_unlock(mm);
1522 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1523 UFFD_API_RANGE_IOCTLS;
1526 * Declare the WP ioctl only if the WP mode is
1527 * specified and all checks passed with the range
1529 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1530 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1532 /* CONTINUE ioctl is only supported for MINOR ranges. */
1533 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1534 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1537 * Now that we scanned all vmas we can already tell
1538 * userland which ioctls methods are guaranteed to
1539 * succeed on this range.
1541 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1548 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1551 struct mm_struct *mm = ctx->mm;
1552 struct vm_area_struct *vma, *prev, *cur;
1554 struct uffdio_range uffdio_unregister;
1555 unsigned long new_flags;
1557 unsigned long start, end, vma_end;
1558 const void __user *buf = (void __user *)arg;
1559 struct vma_iterator vmi;
1563 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1566 ret = validate_range(mm, uffdio_unregister.start,
1567 uffdio_unregister.len);
1571 start = uffdio_unregister.start;
1572 end = start + uffdio_unregister.len;
1575 if (!mmget_not_zero(mm))
1578 mmap_write_lock(mm);
1580 vma_iter_init(&vmi, mm, start);
1581 vma = vma_find(&vmi, end);
1586 * If the first vma contains huge pages, make sure start address
1587 * is aligned to huge page size.
1589 if (is_vm_hugetlb_page(vma)) {
1590 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1592 if (start & (vma_hpagesize - 1))
1597 * Search for not compatible vmas.
1604 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1605 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1608 * Check not compatible vmas, not strictly required
1609 * here as not compatible vmas cannot have an
1610 * userfaultfd_ctx registered on them, but this
1611 * provides for more strict behavior to notice
1612 * unregistration errors.
1614 if (!vma_can_userfault(cur, cur->vm_flags))
1618 } for_each_vma_range(vmi, cur, end);
1621 vma_iter_set(&vmi, start);
1622 prev = vma_prev(&vmi);
1623 if (vma->vm_start < start)
1627 for_each_vma_range(vmi, vma, end) {
1630 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1633 * Nothing to do: this vma is already registered into this
1634 * userfaultfd and with the right tracking mode too.
1636 if (!vma->vm_userfaultfd_ctx.ctx)
1639 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1641 if (vma->vm_start > start)
1642 start = vma->vm_start;
1643 vma_end = min(end, vma->vm_end);
1645 if (userfaultfd_missing(vma)) {
1647 * Wake any concurrent pending userfault while
1648 * we unregister, so they will not hang
1649 * permanently and it avoids userland to call
1650 * UFFDIO_WAKE explicitly.
1652 struct userfaultfd_wake_range range;
1653 range.start = start;
1654 range.len = vma_end - start;
1655 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1658 /* Reset ptes for the whole vma range if wr-protected */
1659 if (userfaultfd_wp(vma))
1660 uffd_wp_range(vma, start, vma_end - start, false);
1662 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1663 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1664 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1665 vma->anon_vma, vma->vm_file, pgoff,
1667 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1672 if (vma->vm_start < start) {
1673 ret = split_vma(&vmi, vma, start, 1);
1677 if (vma->vm_end > end) {
1678 ret = split_vma(&vmi, vma, end, 0);
1684 * In the vma_merge() successful mprotect-like case 8:
1685 * the next vma was merged into the current one and
1686 * the current one has not been updated yet.
1688 userfaultfd_set_vm_flags(vma, new_flags);
1689 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1693 start = vma->vm_end;
1697 mmap_write_unlock(mm);
1704 * userfaultfd_wake may be used in combination with the
1705 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1707 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1711 struct uffdio_range uffdio_wake;
1712 struct userfaultfd_wake_range range;
1713 const void __user *buf = (void __user *)arg;
1716 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1719 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1723 range.start = uffdio_wake.start;
1724 range.len = uffdio_wake.len;
1727 * len == 0 means wake all and we don't want to wake all here,
1728 * so check it again to be sure.
1730 VM_BUG_ON(!range.len);
1732 wake_userfault(ctx, &range);
1739 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1743 struct uffdio_copy uffdio_copy;
1744 struct uffdio_copy __user *user_uffdio_copy;
1745 struct userfaultfd_wake_range range;
1746 uffd_flags_t flags = 0;
1748 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1751 if (atomic_read(&ctx->mmap_changing))
1755 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1756 /* don't copy "copy" last field */
1757 sizeof(uffdio_copy)-sizeof(__s64)))
1760 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1764 * double check for wraparound just in case. copy_from_user()
1765 * will later check uffdio_copy.src + uffdio_copy.len to fit
1766 * in the userland range.
1769 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1771 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1773 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1774 flags |= MFILL_ATOMIC_WP;
1775 if (mmget_not_zero(ctx->mm)) {
1776 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1777 uffdio_copy.len, &ctx->mmap_changing,
1783 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1788 /* len == 0 would wake all */
1790 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1791 range.start = uffdio_copy.dst;
1792 wake_userfault(ctx, &range);
1794 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1799 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1803 struct uffdio_zeropage uffdio_zeropage;
1804 struct uffdio_zeropage __user *user_uffdio_zeropage;
1805 struct userfaultfd_wake_range range;
1807 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1810 if (atomic_read(&ctx->mmap_changing))
1814 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1815 /* don't copy "zeropage" last field */
1816 sizeof(uffdio_zeropage)-sizeof(__s64)))
1819 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1820 uffdio_zeropage.range.len);
1824 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1827 if (mmget_not_zero(ctx->mm)) {
1828 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1829 uffdio_zeropage.range.len,
1830 &ctx->mmap_changing);
1835 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1839 /* len == 0 would wake all */
1842 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1843 range.start = uffdio_zeropage.range.start;
1844 wake_userfault(ctx, &range);
1846 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1851 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1855 struct uffdio_writeprotect uffdio_wp;
1856 struct uffdio_writeprotect __user *user_uffdio_wp;
1857 struct userfaultfd_wake_range range;
1858 bool mode_wp, mode_dontwake;
1860 if (atomic_read(&ctx->mmap_changing))
1863 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1865 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1866 sizeof(struct uffdio_writeprotect)))
1869 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1870 uffdio_wp.range.len);
1874 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1875 UFFDIO_WRITEPROTECT_MODE_WP))
1878 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1879 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1881 if (mode_wp && mode_dontwake)
1884 if (mmget_not_zero(ctx->mm)) {
1885 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1886 uffdio_wp.range.len, mode_wp,
1887 &ctx->mmap_changing);
1896 if (!mode_wp && !mode_dontwake) {
1897 range.start = uffdio_wp.range.start;
1898 range.len = uffdio_wp.range.len;
1899 wake_userfault(ctx, &range);
1904 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1907 struct uffdio_continue uffdio_continue;
1908 struct uffdio_continue __user *user_uffdio_continue;
1909 struct userfaultfd_wake_range range;
1910 uffd_flags_t flags = 0;
1912 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1915 if (atomic_read(&ctx->mmap_changing))
1919 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1920 /* don't copy the output fields */
1921 sizeof(uffdio_continue) - (sizeof(__s64))))
1924 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1925 uffdio_continue.range.len);
1930 /* double check for wraparound just in case. */
1931 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1932 uffdio_continue.range.start) {
1935 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1936 UFFDIO_CONTINUE_MODE_WP))
1938 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1939 flags |= MFILL_ATOMIC_WP;
1941 if (mmget_not_zero(ctx->mm)) {
1942 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1943 uffdio_continue.range.len,
1944 &ctx->mmap_changing, flags);
1950 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1955 /* len == 0 would wake all */
1958 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1959 range.start = uffdio_continue.range.start;
1960 wake_userfault(ctx, &range);
1962 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1968 static inline unsigned int uffd_ctx_features(__u64 user_features)
1971 * For the current set of features the bits just coincide. Set
1972 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1974 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1978 * userland asks for a certain API version and we return which bits
1979 * and ioctl commands are implemented in this kernel for such API
1980 * version or -EINVAL if unknown.
1982 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1985 struct uffdio_api uffdio_api;
1986 void __user *buf = (void __user *)arg;
1987 unsigned int ctx_features;
1992 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1994 features = uffdio_api.features;
1996 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1999 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2001 /* report all available features and ioctls to userland */
2002 uffdio_api.features = UFFD_API_FEATURES;
2003 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2004 uffdio_api.features &=
2005 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2007 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2008 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2010 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2011 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2012 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2014 uffdio_api.ioctls = UFFD_API_IOCTLS;
2016 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2019 /* only enable the requested features for this uffd context */
2020 ctx_features = uffd_ctx_features(features);
2022 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2029 memset(&uffdio_api, 0, sizeof(uffdio_api));
2030 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2035 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2039 struct userfaultfd_ctx *ctx = file->private_data;
2041 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2046 ret = userfaultfd_api(ctx, arg);
2048 case UFFDIO_REGISTER:
2049 ret = userfaultfd_register(ctx, arg);
2051 case UFFDIO_UNREGISTER:
2052 ret = userfaultfd_unregister(ctx, arg);
2055 ret = userfaultfd_wake(ctx, arg);
2058 ret = userfaultfd_copy(ctx, arg);
2060 case UFFDIO_ZEROPAGE:
2061 ret = userfaultfd_zeropage(ctx, arg);
2063 case UFFDIO_WRITEPROTECT:
2064 ret = userfaultfd_writeprotect(ctx, arg);
2066 case UFFDIO_CONTINUE:
2067 ret = userfaultfd_continue(ctx, arg);
2073 #ifdef CONFIG_PROC_FS
2074 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2076 struct userfaultfd_ctx *ctx = f->private_data;
2077 wait_queue_entry_t *wq;
2078 unsigned long pending = 0, total = 0;
2080 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2081 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2085 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2088 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2091 * If more protocols will be added, there will be all shown
2092 * separated by a space. Like this:
2093 * protocols: aa:... bb:...
2095 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2096 pending, total, UFFD_API, ctx->features,
2097 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2101 static const struct file_operations userfaultfd_fops = {
2102 #ifdef CONFIG_PROC_FS
2103 .show_fdinfo = userfaultfd_show_fdinfo,
2105 .release = userfaultfd_release,
2106 .poll = userfaultfd_poll,
2107 .read = userfaultfd_read,
2108 .unlocked_ioctl = userfaultfd_ioctl,
2109 .compat_ioctl = compat_ptr_ioctl,
2110 .llseek = noop_llseek,
2113 static void init_once_userfaultfd_ctx(void *mem)
2115 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2117 init_waitqueue_head(&ctx->fault_pending_wqh);
2118 init_waitqueue_head(&ctx->fault_wqh);
2119 init_waitqueue_head(&ctx->event_wqh);
2120 init_waitqueue_head(&ctx->fd_wqh);
2121 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2124 static int new_userfaultfd(int flags)
2126 struct userfaultfd_ctx *ctx;
2129 BUG_ON(!current->mm);
2131 /* Check the UFFD_* constants for consistency. */
2132 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2133 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2134 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2136 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2139 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2143 refcount_set(&ctx->refcount, 1);
2146 ctx->released = false;
2147 atomic_set(&ctx->mmap_changing, 0);
2148 ctx->mm = current->mm;
2149 /* prevent the mm struct to be freed */
2152 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2153 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2156 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2161 static inline bool userfaultfd_syscall_allowed(int flags)
2163 /* Userspace-only page faults are always allowed */
2164 if (flags & UFFD_USER_MODE_ONLY)
2168 * The user is requesting a userfaultfd which can handle kernel faults.
2169 * Privileged users are always allowed to do this.
2171 if (capable(CAP_SYS_PTRACE))
2174 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2175 return sysctl_unprivileged_userfaultfd;
2178 SYSCALL_DEFINE1(userfaultfd, int, flags)
2180 if (!userfaultfd_syscall_allowed(flags))
2183 return new_userfaultfd(flags);
2186 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2188 if (cmd != USERFAULTFD_IOC_NEW)
2191 return new_userfaultfd(flags);
2194 static const struct file_operations userfaultfd_dev_fops = {
2195 .unlocked_ioctl = userfaultfd_dev_ioctl,
2196 .compat_ioctl = userfaultfd_dev_ioctl,
2197 .owner = THIS_MODULE,
2198 .llseek = noop_llseek,
2201 static struct miscdevice userfaultfd_misc = {
2202 .minor = MISC_DYNAMIC_MINOR,
2203 .name = "userfaultfd",
2204 .fops = &userfaultfd_dev_fops
2207 static int __init userfaultfd_init(void)
2211 ret = misc_register(&userfaultfd_misc);
2215 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2216 sizeof(struct userfaultfd_ctx),
2218 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2219 init_once_userfaultfd_ctx);
2220 #ifdef CONFIG_SYSCTL
2221 register_sysctl_init("vm", vm_userfaultfd_table);
2225 __initcall(userfaultfd_init);