4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 enum userfaultfd_state {
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
57 /* userfaultfd syscall flags */
59 /* features requested from the userspace */
60 unsigned int features;
62 enum userfaultfd_state state;
65 /* memory mappings are changing because of non-cooperative event */
67 /* mm with one ore more vmas attached to this userfaultfd_ctx */
71 struct userfaultfd_fork_ctx {
72 struct userfaultfd_ctx *orig;
73 struct userfaultfd_ctx *new;
74 struct list_head list;
77 struct userfaultfd_unmap_ctx {
78 struct userfaultfd_ctx *ctx;
81 struct list_head list;
84 struct userfaultfd_wait_queue {
86 wait_queue_entry_t wq;
87 struct userfaultfd_ctx *ctx;
91 struct userfaultfd_wake_range {
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97 int wake_flags, void *key)
99 struct userfaultfd_wake_range *range = key;
101 struct userfaultfd_wait_queue *uwq;
102 unsigned long start, len;
104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
106 /* len == 0 means wake all */
107 start = range->start;
109 if (len && (start > uwq->msg.arg.pagefault.address ||
110 start + len <= uwq->msg.arg.pagefault.address))
112 WRITE_ONCE(uwq->waken, true);
114 * The Program-Order guarantees provided by the scheduler
115 * ensure uwq->waken is visible before the task is woken.
117 ret = wake_up_state(wq->private, mode);
120 * Wake only once, autoremove behavior.
122 * After the effect of list_del_init is visible to the other
123 * CPUs, the waitqueue may disappear from under us, see the
124 * !list_empty_careful() in handle_userfault().
126 * try_to_wake_up() has an implicit smp_mb(), and the
127 * wq->private is read before calling the extern function
128 * "wake_up_state" (which in turns calls try_to_wake_up).
130 list_del_init(&wq->entry);
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * @ctx: [in] Pointer to the userfaultfd context.
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
143 if (!atomic_inc_not_zero(&ctx->refcount))
148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150 * @ctx: [in] Pointer to userfaultfd context.
152 * The userfaultfd context reference must have been previously acquired either
153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157 if (atomic_dec_and_test(&ctx->refcount)) {
158 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
164 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
165 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
167 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
171 static inline void msg_init(struct uffd_msg *msg)
173 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175 * Must use memset to zero out the paddings or kernel data is
176 * leaked to userland.
178 memset(msg, 0, sizeof(struct uffd_msg));
181 static inline struct uffd_msg userfault_msg(unsigned long address,
183 unsigned long reason,
184 unsigned int features)
188 msg.event = UFFD_EVENT_PAGEFAULT;
189 msg.arg.pagefault.address = address;
190 if (flags & FAULT_FLAG_WRITE)
192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 if (reason & VM_UFFD_WP)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 if (features & UFFD_FEATURE_THREAD_ID)
209 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
213 #ifdef CONFIG_HUGETLB_PAGE
215 * Same functionality as userfaultfd_must_wait below with modifications for
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219 struct vm_area_struct *vma,
220 unsigned long address,
222 unsigned long reason)
224 struct mm_struct *mm = ctx->mm;
228 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
230 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
236 pte = huge_ptep_get(ptep);
239 * Lockless access: we're in a wait_event so it's ok if it
242 if (huge_pte_none(pte))
244 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
250 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
251 struct vm_area_struct *vma,
252 unsigned long address,
254 unsigned long reason)
256 return false; /* should never get here */
258 #endif /* CONFIG_HUGETLB_PAGE */
261 * Verify the pagetables are still not ok after having reigstered into
262 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
263 * userfault that has already been resolved, if userfaultfd_read and
264 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
267 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
268 unsigned long address,
270 unsigned long reason)
272 struct mm_struct *mm = ctx->mm;
280 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
282 pgd = pgd_offset(mm, address);
283 if (!pgd_present(*pgd))
285 p4d = p4d_offset(pgd, address);
286 if (!p4d_present(*p4d))
288 pud = pud_offset(p4d, address);
289 if (!pud_present(*pud))
291 pmd = pmd_offset(pud, address);
293 * READ_ONCE must function as a barrier with narrower scope
294 * and it must be equivalent to:
295 * _pmd = *pmd; barrier();
297 * This is to deal with the instability (as in
298 * pmd_trans_unstable) of the pmd.
300 _pmd = READ_ONCE(*pmd);
305 if (!pmd_present(_pmd))
308 if (pmd_trans_huge(_pmd))
312 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
313 * and use the standard pte_offset_map() instead of parsing _pmd.
315 pte = pte_offset_map(pmd, address);
317 * Lockless access: we're in a wait_event so it's ok if it
329 * The locking rules involved in returning VM_FAULT_RETRY depending on
330 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
331 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
332 * recommendation in __lock_page_or_retry is not an understatement.
334 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
335 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
338 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
339 * set, VM_FAULT_RETRY can still be returned if and only if there are
340 * fatal_signal_pending()s, and the mmap_sem must be released before
343 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
345 struct mm_struct *mm = vmf->vma->vm_mm;
346 struct userfaultfd_ctx *ctx;
347 struct userfaultfd_wait_queue uwq;
348 vm_fault_t ret = VM_FAULT_SIGBUS;
349 bool must_wait, return_to_userland;
353 * We don't do userfault handling for the final child pid update.
355 * We also don't do userfault handling during
356 * coredumping. hugetlbfs has the special
357 * follow_hugetlb_page() to skip missing pages in the
358 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
359 * the no_page_table() helper in follow_page_mask(), but the
360 * shmem_vm_ops->fault method is invoked even during
361 * coredumping without mmap_sem and it ends up here.
363 if (current->flags & (PF_EXITING|PF_DUMPCORE))
367 * Coredumping runs without mmap_sem so we can only check that
368 * the mmap_sem is held, if PF_DUMPCORE was not set.
370 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
372 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
376 BUG_ON(ctx->mm != mm);
378 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
379 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
381 if (ctx->features & UFFD_FEATURE_SIGBUS)
385 * If it's already released don't get it. This avoids to loop
386 * in __get_user_pages if userfaultfd_release waits on the
387 * caller of handle_userfault to release the mmap_sem.
389 if (unlikely(READ_ONCE(ctx->released))) {
391 * Don't return VM_FAULT_SIGBUS in this case, so a non
392 * cooperative manager can close the uffd after the
393 * last UFFDIO_COPY, without risking to trigger an
394 * involuntary SIGBUS if the process was starting the
395 * userfaultfd while the userfaultfd was still armed
396 * (but after the last UFFDIO_COPY). If the uffd
397 * wasn't already closed when the userfault reached
398 * this point, that would normally be solved by
399 * userfaultfd_must_wait returning 'false'.
401 * If we were to return VM_FAULT_SIGBUS here, the non
402 * cooperative manager would be instead forced to
403 * always call UFFDIO_UNREGISTER before it can safely
406 ret = VM_FAULT_NOPAGE;
411 * Check that we can return VM_FAULT_RETRY.
413 * NOTE: it should become possible to return VM_FAULT_RETRY
414 * even if FAULT_FLAG_TRIED is set without leading to gup()
415 * -EBUSY failures, if the userfaultfd is to be extended for
416 * VM_UFFD_WP tracking and we intend to arm the userfault
417 * without first stopping userland access to the memory. For
418 * VM_UFFD_MISSING userfaults this is enough for now.
420 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
422 * Validate the invariant that nowait must allow retry
423 * to be sure not to return SIGBUS erroneously on
424 * nowait invocations.
426 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
427 #ifdef CONFIG_DEBUG_VM
428 if (printk_ratelimit()) {
430 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
439 * Handle nowait, not much to do other than tell it to retry
442 ret = VM_FAULT_RETRY;
443 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
446 /* take the reference before dropping the mmap_sem */
447 userfaultfd_ctx_get(ctx);
449 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
450 uwq.wq.private = current;
451 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
457 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
458 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
459 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
462 spin_lock(&ctx->fault_pending_wqh.lock);
464 * After the __add_wait_queue the uwq is visible to userland
465 * through poll/read().
467 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
469 * The smp_mb() after __set_current_state prevents the reads
470 * following the spin_unlock to happen before the list_add in
473 set_current_state(blocking_state);
474 spin_unlock(&ctx->fault_pending_wqh.lock);
476 if (!is_vm_hugetlb_page(vmf->vma))
477 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
480 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
483 up_read(&mm->mmap_sem);
485 if (likely(must_wait && !READ_ONCE(ctx->released) &&
486 (return_to_userland ? !signal_pending(current) :
487 !fatal_signal_pending(current)))) {
488 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
490 ret |= VM_FAULT_MAJOR;
493 * False wakeups can orginate even from rwsem before
494 * up_read() however userfaults will wait either for a
495 * targeted wakeup on the specific uwq waitqueue from
496 * wake_userfault() or for signals or for uffd
499 while (!READ_ONCE(uwq.waken)) {
501 * This needs the full smp_store_mb()
502 * guarantee as the state write must be
503 * visible to other CPUs before reading
504 * uwq.waken from other CPUs.
506 set_current_state(blocking_state);
507 if (READ_ONCE(uwq.waken) ||
508 READ_ONCE(ctx->released) ||
509 (return_to_userland ? signal_pending(current) :
510 fatal_signal_pending(current)))
516 __set_current_state(TASK_RUNNING);
518 if (return_to_userland) {
519 if (signal_pending(current) &&
520 !fatal_signal_pending(current)) {
522 * If we got a SIGSTOP or SIGCONT and this is
523 * a normal userland page fault, just let
524 * userland return so the signal will be
525 * handled and gdb debugging works. The page
526 * fault code immediately after we return from
527 * this function is going to release the
528 * mmap_sem and it's not depending on it
529 * (unlike gup would if we were not to return
532 * If a fatal signal is pending we still take
533 * the streamlined VM_FAULT_RETRY failure path
534 * and there's no need to retake the mmap_sem
537 down_read(&mm->mmap_sem);
538 ret = VM_FAULT_NOPAGE;
543 * Here we race with the list_del; list_add in
544 * userfaultfd_ctx_read(), however because we don't ever run
545 * list_del_init() to refile across the two lists, the prev
546 * and next pointers will never point to self. list_add also
547 * would never let any of the two pointers to point to
548 * self. So list_empty_careful won't risk to see both pointers
549 * pointing to self at any time during the list refile. The
550 * only case where list_del_init() is called is the full
551 * removal in the wake function and there we don't re-list_add
552 * and it's fine not to block on the spinlock. The uwq on this
553 * kernel stack can be released after the list_del_init.
555 if (!list_empty_careful(&uwq.wq.entry)) {
556 spin_lock(&ctx->fault_pending_wqh.lock);
558 * No need of list_del_init(), the uwq on the stack
559 * will be freed shortly anyway.
561 list_del(&uwq.wq.entry);
562 spin_unlock(&ctx->fault_pending_wqh.lock);
566 * ctx may go away after this if the userfault pseudo fd is
569 userfaultfd_ctx_put(ctx);
575 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
576 struct userfaultfd_wait_queue *ewq)
578 struct userfaultfd_ctx *release_new_ctx;
580 if (WARN_ON_ONCE(current->flags & PF_EXITING))
584 init_waitqueue_entry(&ewq->wq, current);
585 release_new_ctx = NULL;
587 spin_lock(&ctx->event_wqh.lock);
589 * After the __add_wait_queue the uwq is visible to userland
590 * through poll/read().
592 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
594 set_current_state(TASK_KILLABLE);
595 if (ewq->msg.event == 0)
597 if (READ_ONCE(ctx->released) ||
598 fatal_signal_pending(current)) {
600 * &ewq->wq may be queued in fork_event, but
601 * __remove_wait_queue ignores the head
602 * parameter. It would be a problem if it
605 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
606 if (ewq->msg.event == UFFD_EVENT_FORK) {
607 struct userfaultfd_ctx *new;
609 new = (struct userfaultfd_ctx *)
611 ewq->msg.arg.reserved.reserved1;
612 release_new_ctx = new;
617 spin_unlock(&ctx->event_wqh.lock);
619 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
622 spin_lock(&ctx->event_wqh.lock);
624 __set_current_state(TASK_RUNNING);
625 spin_unlock(&ctx->event_wqh.lock);
627 if (release_new_ctx) {
628 struct vm_area_struct *vma;
629 struct mm_struct *mm = release_new_ctx->mm;
631 /* the various vma->vm_userfaultfd_ctx still points to it */
632 down_write(&mm->mmap_sem);
633 for (vma = mm->mmap; vma; vma = vma->vm_next)
634 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
635 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
636 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
638 up_write(&mm->mmap_sem);
640 userfaultfd_ctx_put(release_new_ctx);
644 * ctx may go away after this if the userfault pseudo fd is
648 WRITE_ONCE(ctx->mmap_changing, false);
649 userfaultfd_ctx_put(ctx);
652 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
653 struct userfaultfd_wait_queue *ewq)
656 wake_up_locked(&ctx->event_wqh);
657 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
660 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
662 struct userfaultfd_ctx *ctx = NULL, *octx;
663 struct userfaultfd_fork_ctx *fctx;
665 octx = vma->vm_userfaultfd_ctx.ctx;
666 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
667 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
668 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
672 list_for_each_entry(fctx, fcs, list)
673 if (fctx->orig == octx) {
679 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
683 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
689 atomic_set(&ctx->refcount, 1);
690 ctx->flags = octx->flags;
691 ctx->state = UFFD_STATE_RUNNING;
692 ctx->features = octx->features;
693 ctx->released = false;
694 ctx->mmap_changing = false;
695 ctx->mm = vma->vm_mm;
698 userfaultfd_ctx_get(octx);
699 WRITE_ONCE(octx->mmap_changing, true);
702 list_add_tail(&fctx->list, fcs);
705 vma->vm_userfaultfd_ctx.ctx = ctx;
709 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
711 struct userfaultfd_ctx *ctx = fctx->orig;
712 struct userfaultfd_wait_queue ewq;
716 ewq.msg.event = UFFD_EVENT_FORK;
717 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
719 userfaultfd_event_wait_completion(ctx, &ewq);
722 void dup_userfaultfd_complete(struct list_head *fcs)
724 struct userfaultfd_fork_ctx *fctx, *n;
726 list_for_each_entry_safe(fctx, n, fcs, list) {
728 list_del(&fctx->list);
733 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
734 struct vm_userfaultfd_ctx *vm_ctx)
736 struct userfaultfd_ctx *ctx;
738 ctx = vma->vm_userfaultfd_ctx.ctx;
739 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
741 userfaultfd_ctx_get(ctx);
742 WRITE_ONCE(ctx->mmap_changing, true);
746 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
747 unsigned long from, unsigned long to,
750 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
751 struct userfaultfd_wait_queue ewq;
756 if (to & ~PAGE_MASK) {
757 userfaultfd_ctx_put(ctx);
763 ewq.msg.event = UFFD_EVENT_REMAP;
764 ewq.msg.arg.remap.from = from;
765 ewq.msg.arg.remap.to = to;
766 ewq.msg.arg.remap.len = len;
768 userfaultfd_event_wait_completion(ctx, &ewq);
771 bool userfaultfd_remove(struct vm_area_struct *vma,
772 unsigned long start, unsigned long end)
774 struct mm_struct *mm = vma->vm_mm;
775 struct userfaultfd_ctx *ctx;
776 struct userfaultfd_wait_queue ewq;
778 ctx = vma->vm_userfaultfd_ctx.ctx;
779 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
782 userfaultfd_ctx_get(ctx);
783 WRITE_ONCE(ctx->mmap_changing, true);
784 up_read(&mm->mmap_sem);
788 ewq.msg.event = UFFD_EVENT_REMOVE;
789 ewq.msg.arg.remove.start = start;
790 ewq.msg.arg.remove.end = end;
792 userfaultfd_event_wait_completion(ctx, &ewq);
797 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
798 unsigned long start, unsigned long end)
800 struct userfaultfd_unmap_ctx *unmap_ctx;
802 list_for_each_entry(unmap_ctx, unmaps, list)
803 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
804 unmap_ctx->end == end)
810 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
811 unsigned long start, unsigned long end,
812 struct list_head *unmaps)
814 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
815 struct userfaultfd_unmap_ctx *unmap_ctx;
816 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
818 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
819 has_unmap_ctx(ctx, unmaps, start, end))
822 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
826 userfaultfd_ctx_get(ctx);
827 WRITE_ONCE(ctx->mmap_changing, true);
828 unmap_ctx->ctx = ctx;
829 unmap_ctx->start = start;
830 unmap_ctx->end = end;
831 list_add_tail(&unmap_ctx->list, unmaps);
837 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
839 struct userfaultfd_unmap_ctx *ctx, *n;
840 struct userfaultfd_wait_queue ewq;
842 list_for_each_entry_safe(ctx, n, uf, list) {
845 ewq.msg.event = UFFD_EVENT_UNMAP;
846 ewq.msg.arg.remove.start = ctx->start;
847 ewq.msg.arg.remove.end = ctx->end;
849 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
851 list_del(&ctx->list);
856 static int userfaultfd_release(struct inode *inode, struct file *file)
858 struct userfaultfd_ctx *ctx = file->private_data;
859 struct mm_struct *mm = ctx->mm;
860 struct vm_area_struct *vma, *prev;
861 /* len == 0 means wake all */
862 struct userfaultfd_wake_range range = { .len = 0, };
863 unsigned long new_flags;
865 WRITE_ONCE(ctx->released, true);
867 if (!mmget_not_zero(mm))
871 * Flush page faults out of all CPUs. NOTE: all page faults
872 * must be retried without returning VM_FAULT_SIGBUS if
873 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
874 * changes while handle_userfault released the mmap_sem. So
875 * it's critical that released is set to true (above), before
876 * taking the mmap_sem for writing.
878 down_write(&mm->mmap_sem);
880 for (vma = mm->mmap; vma; vma = vma->vm_next) {
882 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
883 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
884 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
888 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
889 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
890 new_flags, vma->anon_vma,
891 vma->vm_file, vma->vm_pgoff,
898 vma->vm_flags = new_flags;
899 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
901 up_write(&mm->mmap_sem);
905 * After no new page faults can wait on this fault_*wqh, flush
906 * the last page faults that may have been already waiting on
909 spin_lock(&ctx->fault_pending_wqh.lock);
910 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
911 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
912 spin_unlock(&ctx->fault_pending_wqh.lock);
914 /* Flush pending events that may still wait on event_wqh */
915 wake_up_all(&ctx->event_wqh);
917 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
918 userfaultfd_ctx_put(ctx);
922 /* fault_pending_wqh.lock must be hold by the caller */
923 static inline struct userfaultfd_wait_queue *find_userfault_in(
924 wait_queue_head_t *wqh)
926 wait_queue_entry_t *wq;
927 struct userfaultfd_wait_queue *uwq;
929 VM_BUG_ON(!spin_is_locked(&wqh->lock));
932 if (!waitqueue_active(wqh))
934 /* walk in reverse to provide FIFO behavior to read userfaults */
935 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
936 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
941 static inline struct userfaultfd_wait_queue *find_userfault(
942 struct userfaultfd_ctx *ctx)
944 return find_userfault_in(&ctx->fault_pending_wqh);
947 static inline struct userfaultfd_wait_queue *find_userfault_evt(
948 struct userfaultfd_ctx *ctx)
950 return find_userfault_in(&ctx->event_wqh);
953 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
955 struct userfaultfd_ctx *ctx = file->private_data;
958 poll_wait(file, &ctx->fd_wqh, wait);
960 switch (ctx->state) {
961 case UFFD_STATE_WAIT_API:
963 case UFFD_STATE_RUNNING:
965 * poll() never guarantees that read won't block.
966 * userfaults can be waken before they're read().
968 if (unlikely(!(file->f_flags & O_NONBLOCK)))
971 * lockless access to see if there are pending faults
972 * __pollwait last action is the add_wait_queue but
973 * the spin_unlock would allow the waitqueue_active to
974 * pass above the actual list_add inside
975 * add_wait_queue critical section. So use a full
976 * memory barrier to serialize the list_add write of
977 * add_wait_queue() with the waitqueue_active read
982 if (waitqueue_active(&ctx->fault_pending_wqh))
984 else if (waitqueue_active(&ctx->event_wqh))
994 static const struct file_operations userfaultfd_fops;
996 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
997 struct userfaultfd_ctx *new,
998 struct uffd_msg *msg)
1002 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1003 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1007 msg->arg.reserved.reserved1 = 0;
1008 msg->arg.fork.ufd = fd;
1012 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1013 struct uffd_msg *msg)
1016 DECLARE_WAITQUEUE(wait, current);
1017 struct userfaultfd_wait_queue *uwq;
1019 * Handling fork event requires sleeping operations, so
1020 * we drop the event_wqh lock, then do these ops, then
1021 * lock it back and wake up the waiter. While the lock is
1022 * dropped the ewq may go away so we keep track of it
1025 LIST_HEAD(fork_event);
1026 struct userfaultfd_ctx *fork_nctx = NULL;
1028 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1029 spin_lock_irq(&ctx->fd_wqh.lock);
1030 __add_wait_queue(&ctx->fd_wqh, &wait);
1032 set_current_state(TASK_INTERRUPTIBLE);
1033 spin_lock(&ctx->fault_pending_wqh.lock);
1034 uwq = find_userfault(ctx);
1037 * Use a seqcount to repeat the lockless check
1038 * in wake_userfault() to avoid missing
1039 * wakeups because during the refile both
1040 * waitqueue could become empty if this is the
1043 write_seqcount_begin(&ctx->refile_seq);
1046 * The fault_pending_wqh.lock prevents the uwq
1047 * to disappear from under us.
1049 * Refile this userfault from
1050 * fault_pending_wqh to fault_wqh, it's not
1051 * pending anymore after we read it.
1053 * Use list_del() by hand (as
1054 * userfaultfd_wake_function also uses
1055 * list_del_init() by hand) to be sure nobody
1056 * changes __remove_wait_queue() to use
1057 * list_del_init() in turn breaking the
1058 * !list_empty_careful() check in
1059 * handle_userfault(). The uwq->wq.head list
1060 * must never be empty at any time during the
1061 * refile, or the waitqueue could disappear
1062 * from under us. The "wait_queue_head_t"
1063 * parameter of __remove_wait_queue() is unused
1066 list_del(&uwq->wq.entry);
1067 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1069 write_seqcount_end(&ctx->refile_seq);
1071 /* careful to always initialize msg if ret == 0 */
1073 spin_unlock(&ctx->fault_pending_wqh.lock);
1077 spin_unlock(&ctx->fault_pending_wqh.lock);
1079 spin_lock(&ctx->event_wqh.lock);
1080 uwq = find_userfault_evt(ctx);
1084 if (uwq->msg.event == UFFD_EVENT_FORK) {
1085 fork_nctx = (struct userfaultfd_ctx *)
1087 uwq->msg.arg.reserved.reserved1;
1088 list_move(&uwq->wq.entry, &fork_event);
1090 * fork_nctx can be freed as soon as
1091 * we drop the lock, unless we take a
1094 userfaultfd_ctx_get(fork_nctx);
1095 spin_unlock(&ctx->event_wqh.lock);
1100 userfaultfd_event_complete(ctx, uwq);
1101 spin_unlock(&ctx->event_wqh.lock);
1105 spin_unlock(&ctx->event_wqh.lock);
1107 if (signal_pending(current)) {
1115 spin_unlock_irq(&ctx->fd_wqh.lock);
1117 spin_lock_irq(&ctx->fd_wqh.lock);
1119 __remove_wait_queue(&ctx->fd_wqh, &wait);
1120 __set_current_state(TASK_RUNNING);
1121 spin_unlock_irq(&ctx->fd_wqh.lock);
1123 if (!ret && msg->event == UFFD_EVENT_FORK) {
1124 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1125 spin_lock(&ctx->event_wqh.lock);
1126 if (!list_empty(&fork_event)) {
1128 * The fork thread didn't abort, so we can
1129 * drop the temporary refcount.
1131 userfaultfd_ctx_put(fork_nctx);
1133 uwq = list_first_entry(&fork_event,
1137 * If fork_event list wasn't empty and in turn
1138 * the event wasn't already released by fork
1139 * (the event is allocated on fork kernel
1140 * stack), put the event back to its place in
1141 * the event_wq. fork_event head will be freed
1142 * as soon as we return so the event cannot
1143 * stay queued there no matter the current
1146 list_del(&uwq->wq.entry);
1147 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1150 * Leave the event in the waitqueue and report
1151 * error to userland if we failed to resolve
1152 * the userfault fork.
1155 userfaultfd_event_complete(ctx, uwq);
1158 * Here the fork thread aborted and the
1159 * refcount from the fork thread on fork_nctx
1160 * has already been released. We still hold
1161 * the reference we took before releasing the
1162 * lock above. If resolve_userfault_fork
1163 * failed we've to drop it because the
1164 * fork_nctx has to be freed in such case. If
1165 * it succeeded we'll hold it because the new
1166 * uffd references it.
1169 userfaultfd_ctx_put(fork_nctx);
1171 spin_unlock(&ctx->event_wqh.lock);
1177 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1178 size_t count, loff_t *ppos)
1180 struct userfaultfd_ctx *ctx = file->private_data;
1181 ssize_t _ret, ret = 0;
1182 struct uffd_msg msg;
1183 int no_wait = file->f_flags & O_NONBLOCK;
1185 if (ctx->state == UFFD_STATE_WAIT_API)
1189 if (count < sizeof(msg))
1190 return ret ? ret : -EINVAL;
1191 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1193 return ret ? ret : _ret;
1194 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1195 return ret ? ret : -EFAULT;
1198 count -= sizeof(msg);
1200 * Allow to read more than one fault at time but only
1201 * block if waiting for the very first one.
1203 no_wait = O_NONBLOCK;
1207 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1208 struct userfaultfd_wake_range *range)
1210 spin_lock(&ctx->fault_pending_wqh.lock);
1211 /* wake all in the range and autoremove */
1212 if (waitqueue_active(&ctx->fault_pending_wqh))
1213 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1215 if (waitqueue_active(&ctx->fault_wqh))
1216 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1217 spin_unlock(&ctx->fault_pending_wqh.lock);
1220 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1221 struct userfaultfd_wake_range *range)
1227 * To be sure waitqueue_active() is not reordered by the CPU
1228 * before the pagetable update, use an explicit SMP memory
1229 * barrier here. PT lock release or up_read(mmap_sem) still
1230 * have release semantics that can allow the
1231 * waitqueue_active() to be reordered before the pte update.
1236 * Use waitqueue_active because it's very frequent to
1237 * change the address space atomically even if there are no
1238 * userfaults yet. So we take the spinlock only when we're
1239 * sure we've userfaults to wake.
1242 seq = read_seqcount_begin(&ctx->refile_seq);
1243 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1244 waitqueue_active(&ctx->fault_wqh);
1246 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1248 __wake_userfault(ctx, range);
1251 static __always_inline int validate_range(struct mm_struct *mm,
1252 __u64 start, __u64 len)
1254 __u64 task_size = mm->task_size;
1256 if (start & ~PAGE_MASK)
1258 if (len & ~PAGE_MASK)
1262 if (start < mmap_min_addr)
1264 if (start >= task_size)
1266 if (len > task_size - start)
1271 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1273 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1277 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1280 struct mm_struct *mm = ctx->mm;
1281 struct vm_area_struct *vma, *prev, *cur;
1283 struct uffdio_register uffdio_register;
1284 struct uffdio_register __user *user_uffdio_register;
1285 unsigned long vm_flags, new_flags;
1288 unsigned long start, end, vma_end;
1290 user_uffdio_register = (struct uffdio_register __user *) arg;
1293 if (copy_from_user(&uffdio_register, user_uffdio_register,
1294 sizeof(uffdio_register)-sizeof(__u64)))
1298 if (!uffdio_register.mode)
1300 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1301 UFFDIO_REGISTER_MODE_WP))
1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1305 vm_flags |= VM_UFFD_MISSING;
1306 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1307 vm_flags |= VM_UFFD_WP;
1309 * FIXME: remove the below error constraint by
1310 * implementing the wprotect tracking mode.
1316 ret = validate_range(mm, uffdio_register.range.start,
1317 uffdio_register.range.len);
1321 start = uffdio_register.range.start;
1322 end = start + uffdio_register.range.len;
1325 if (!mmget_not_zero(mm))
1328 down_write(&mm->mmap_sem);
1329 vma = find_vma_prev(mm, start, &prev);
1333 /* check that there's at least one vma in the range */
1335 if (vma->vm_start >= end)
1339 * If the first vma contains huge pages, make sure start address
1340 * is aligned to huge page size.
1342 if (is_vm_hugetlb_page(vma)) {
1343 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1345 if (start & (vma_hpagesize - 1))
1350 * Search for not compatible vmas.
1353 basic_ioctls = false;
1354 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1357 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1358 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1360 /* check not compatible vmas */
1362 if (!vma_can_userfault(cur))
1366 * UFFDIO_COPY will fill file holes even without
1367 * PROT_WRITE. This check enforces that if this is a
1368 * MAP_SHARED, the process has write permission to the backing
1369 * file. If VM_MAYWRITE is set it also enforces that on a
1370 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1371 * F_WRITE_SEAL can be taken until the vma is destroyed.
1374 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1378 * If this vma contains ending address, and huge pages
1381 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1382 end > cur->vm_start) {
1383 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1387 if (end & (vma_hpagesize - 1))
1392 * Check that this vma isn't already owned by a
1393 * different userfaultfd. We can't allow more than one
1394 * userfaultfd to own a single vma simultaneously or we
1395 * wouldn't know which one to deliver the userfaults to.
1398 if (cur->vm_userfaultfd_ctx.ctx &&
1399 cur->vm_userfaultfd_ctx.ctx != ctx)
1403 * Note vmas containing huge pages
1405 if (is_vm_hugetlb_page(cur))
1406 basic_ioctls = true;
1412 if (vma->vm_start < start)
1419 BUG_ON(!vma_can_userfault(vma));
1420 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1421 vma->vm_userfaultfd_ctx.ctx != ctx);
1422 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1425 * Nothing to do: this vma is already registered into this
1426 * userfaultfd and with the right tracking mode too.
1428 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1429 (vma->vm_flags & vm_flags) == vm_flags)
1432 if (vma->vm_start > start)
1433 start = vma->vm_start;
1434 vma_end = min(end, vma->vm_end);
1436 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1437 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1438 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1440 ((struct vm_userfaultfd_ctx){ ctx }));
1445 if (vma->vm_start < start) {
1446 ret = split_vma(mm, vma, start, 1);
1450 if (vma->vm_end > end) {
1451 ret = split_vma(mm, vma, end, 0);
1457 * In the vma_merge() successful mprotect-like case 8:
1458 * the next vma was merged into the current one and
1459 * the current one has not been updated yet.
1461 vma->vm_flags = new_flags;
1462 vma->vm_userfaultfd_ctx.ctx = ctx;
1466 start = vma->vm_end;
1468 } while (vma && vma->vm_start < end);
1470 up_write(&mm->mmap_sem);
1474 * Now that we scanned all vmas we can already tell
1475 * userland which ioctls methods are guaranteed to
1476 * succeed on this range.
1478 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1479 UFFD_API_RANGE_IOCTLS,
1480 &user_uffdio_register->ioctls))
1487 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1490 struct mm_struct *mm = ctx->mm;
1491 struct vm_area_struct *vma, *prev, *cur;
1493 struct uffdio_range uffdio_unregister;
1494 unsigned long new_flags;
1496 unsigned long start, end, vma_end;
1497 const void __user *buf = (void __user *)arg;
1500 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1503 ret = validate_range(mm, uffdio_unregister.start,
1504 uffdio_unregister.len);
1508 start = uffdio_unregister.start;
1509 end = start + uffdio_unregister.len;
1512 if (!mmget_not_zero(mm))
1515 down_write(&mm->mmap_sem);
1516 vma = find_vma_prev(mm, start, &prev);
1520 /* check that there's at least one vma in the range */
1522 if (vma->vm_start >= end)
1526 * If the first vma contains huge pages, make sure start address
1527 * is aligned to huge page size.
1529 if (is_vm_hugetlb_page(vma)) {
1530 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1532 if (start & (vma_hpagesize - 1))
1537 * Search for not compatible vmas.
1541 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1544 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1545 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1548 * Check not compatible vmas, not strictly required
1549 * here as not compatible vmas cannot have an
1550 * userfaultfd_ctx registered on them, but this
1551 * provides for more strict behavior to notice
1552 * unregistration errors.
1554 if (!vma_can_userfault(cur))
1561 if (vma->vm_start < start)
1568 BUG_ON(!vma_can_userfault(vma));
1569 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1572 * Nothing to do: this vma is already registered into this
1573 * userfaultfd and with the right tracking mode too.
1575 if (!vma->vm_userfaultfd_ctx.ctx)
1578 if (vma->vm_start > start)
1579 start = vma->vm_start;
1580 vma_end = min(end, vma->vm_end);
1582 if (userfaultfd_missing(vma)) {
1584 * Wake any concurrent pending userfault while
1585 * we unregister, so they will not hang
1586 * permanently and it avoids userland to call
1587 * UFFDIO_WAKE explicitly.
1589 struct userfaultfd_wake_range range;
1590 range.start = start;
1591 range.len = vma_end - start;
1592 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1595 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1596 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1597 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1604 if (vma->vm_start < start) {
1605 ret = split_vma(mm, vma, start, 1);
1609 if (vma->vm_end > end) {
1610 ret = split_vma(mm, vma, end, 0);
1616 * In the vma_merge() successful mprotect-like case 8:
1617 * the next vma was merged into the current one and
1618 * the current one has not been updated yet.
1620 vma->vm_flags = new_flags;
1621 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1625 start = vma->vm_end;
1627 } while (vma && vma->vm_start < end);
1629 up_write(&mm->mmap_sem);
1636 * userfaultfd_wake may be used in combination with the
1637 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1639 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1643 struct uffdio_range uffdio_wake;
1644 struct userfaultfd_wake_range range;
1645 const void __user *buf = (void __user *)arg;
1648 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1651 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1655 range.start = uffdio_wake.start;
1656 range.len = uffdio_wake.len;
1659 * len == 0 means wake all and we don't want to wake all here,
1660 * so check it again to be sure.
1662 VM_BUG_ON(!range.len);
1664 wake_userfault(ctx, &range);
1671 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1675 struct uffdio_copy uffdio_copy;
1676 struct uffdio_copy __user *user_uffdio_copy;
1677 struct userfaultfd_wake_range range;
1679 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1682 if (READ_ONCE(ctx->mmap_changing))
1686 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1687 /* don't copy "copy" last field */
1688 sizeof(uffdio_copy)-sizeof(__s64)))
1691 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1695 * double check for wraparound just in case. copy_from_user()
1696 * will later check uffdio_copy.src + uffdio_copy.len to fit
1697 * in the userland range.
1700 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1702 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1704 if (mmget_not_zero(ctx->mm)) {
1705 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1706 uffdio_copy.len, &ctx->mmap_changing);
1711 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1716 /* len == 0 would wake all */
1718 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1719 range.start = uffdio_copy.dst;
1720 wake_userfault(ctx, &range);
1722 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1727 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1731 struct uffdio_zeropage uffdio_zeropage;
1732 struct uffdio_zeropage __user *user_uffdio_zeropage;
1733 struct userfaultfd_wake_range range;
1735 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1738 if (READ_ONCE(ctx->mmap_changing))
1742 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1743 /* don't copy "zeropage" last field */
1744 sizeof(uffdio_zeropage)-sizeof(__s64)))
1747 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1748 uffdio_zeropage.range.len);
1752 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1755 if (mmget_not_zero(ctx->mm)) {
1756 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1757 uffdio_zeropage.range.len,
1758 &ctx->mmap_changing);
1763 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1767 /* len == 0 would wake all */
1770 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1771 range.start = uffdio_zeropage.range.start;
1772 wake_userfault(ctx, &range);
1774 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1779 static inline unsigned int uffd_ctx_features(__u64 user_features)
1782 * For the current set of features the bits just coincide
1784 return (unsigned int)user_features;
1788 * userland asks for a certain API version and we return which bits
1789 * and ioctl commands are implemented in this kernel for such API
1790 * version or -EINVAL if unknown.
1792 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1795 struct uffdio_api uffdio_api;
1796 void __user *buf = (void __user *)arg;
1801 if (ctx->state != UFFD_STATE_WAIT_API)
1804 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1806 features = uffdio_api.features;
1807 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1808 memset(&uffdio_api, 0, sizeof(uffdio_api));
1809 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1814 /* report all available features and ioctls to userland */
1815 uffdio_api.features = UFFD_API_FEATURES;
1816 uffdio_api.ioctls = UFFD_API_IOCTLS;
1818 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1820 ctx->state = UFFD_STATE_RUNNING;
1821 /* only enable the requested features for this uffd context */
1822 ctx->features = uffd_ctx_features(features);
1828 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1832 struct userfaultfd_ctx *ctx = file->private_data;
1834 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1839 ret = userfaultfd_api(ctx, arg);
1841 case UFFDIO_REGISTER:
1842 ret = userfaultfd_register(ctx, arg);
1844 case UFFDIO_UNREGISTER:
1845 ret = userfaultfd_unregister(ctx, arg);
1848 ret = userfaultfd_wake(ctx, arg);
1851 ret = userfaultfd_copy(ctx, arg);
1853 case UFFDIO_ZEROPAGE:
1854 ret = userfaultfd_zeropage(ctx, arg);
1860 #ifdef CONFIG_PROC_FS
1861 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1863 struct userfaultfd_ctx *ctx = f->private_data;
1864 wait_queue_entry_t *wq;
1865 unsigned long pending = 0, total = 0;
1867 spin_lock(&ctx->fault_pending_wqh.lock);
1868 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1872 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1875 spin_unlock(&ctx->fault_pending_wqh.lock);
1878 * If more protocols will be added, there will be all shown
1879 * separated by a space. Like this:
1880 * protocols: aa:... bb:...
1882 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1883 pending, total, UFFD_API, ctx->features,
1884 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1888 static const struct file_operations userfaultfd_fops = {
1889 #ifdef CONFIG_PROC_FS
1890 .show_fdinfo = userfaultfd_show_fdinfo,
1892 .release = userfaultfd_release,
1893 .poll = userfaultfd_poll,
1894 .read = userfaultfd_read,
1895 .unlocked_ioctl = userfaultfd_ioctl,
1896 .compat_ioctl = userfaultfd_ioctl,
1897 .llseek = noop_llseek,
1900 static void init_once_userfaultfd_ctx(void *mem)
1902 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1904 init_waitqueue_head(&ctx->fault_pending_wqh);
1905 init_waitqueue_head(&ctx->fault_wqh);
1906 init_waitqueue_head(&ctx->event_wqh);
1907 init_waitqueue_head(&ctx->fd_wqh);
1908 seqcount_init(&ctx->refile_seq);
1911 SYSCALL_DEFINE1(userfaultfd, int, flags)
1913 struct userfaultfd_ctx *ctx;
1916 BUG_ON(!current->mm);
1918 /* Check the UFFD_* constants for consistency. */
1919 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1920 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1922 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1925 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1929 atomic_set(&ctx->refcount, 1);
1932 ctx->state = UFFD_STATE_WAIT_API;
1933 ctx->released = false;
1934 ctx->mmap_changing = false;
1935 ctx->mm = current->mm;
1936 /* prevent the mm struct to be freed */
1939 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1940 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1943 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1948 static int __init userfaultfd_init(void)
1950 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1951 sizeof(struct userfaultfd_ctx),
1953 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1954 init_once_userfaultfd_ctx);
1957 __initcall(userfaultfd_init);