hugetlb/userfaultfd: unshare all pmds for hugetlbfs when register wp
[platform/kernel/linux-rpi.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
31
32 int sysctl_unprivileged_userfaultfd __read_mostly;
33
34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
36 enum userfaultfd_state {
37         UFFD_STATE_WAIT_API,
38         UFFD_STATE_RUNNING,
39 };
40
41 /*
42  * Start with fault_pending_wqh and fault_wqh so they're more likely
43  * to be in the same cacheline.
44  *
45  * Locking order:
46  *      fd_wqh.lock
47  *              fault_pending_wqh.lock
48  *                      fault_wqh.lock
49  *              event_wqh.lock
50  *
51  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
52  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
53  * also taken in IRQ context.
54  */
55 struct userfaultfd_ctx {
56         /* waitqueue head for the pending (i.e. not read) userfaults */
57         wait_queue_head_t fault_pending_wqh;
58         /* waitqueue head for the userfaults */
59         wait_queue_head_t fault_wqh;
60         /* waitqueue head for the pseudo fd to wakeup poll/read */
61         wait_queue_head_t fd_wqh;
62         /* waitqueue head for events */
63         wait_queue_head_t event_wqh;
64         /* a refile sequence protected by fault_pending_wqh lock */
65         seqcount_spinlock_t refile_seq;
66         /* pseudo fd refcounting */
67         refcount_t refcount;
68         /* userfaultfd syscall flags */
69         unsigned int flags;
70         /* features requested from the userspace */
71         unsigned int features;
72         /* state machine */
73         enum userfaultfd_state state;
74         /* released */
75         bool released;
76         /* memory mappings are changing because of non-cooperative event */
77         bool mmap_changing;
78         /* mm with one ore more vmas attached to this userfaultfd_ctx */
79         struct mm_struct *mm;
80 };
81
82 struct userfaultfd_fork_ctx {
83         struct userfaultfd_ctx *orig;
84         struct userfaultfd_ctx *new;
85         struct list_head list;
86 };
87
88 struct userfaultfd_unmap_ctx {
89         struct userfaultfd_ctx *ctx;
90         unsigned long start;
91         unsigned long end;
92         struct list_head list;
93 };
94
95 struct userfaultfd_wait_queue {
96         struct uffd_msg msg;
97         wait_queue_entry_t wq;
98         struct userfaultfd_ctx *ctx;
99         bool waken;
100 };
101
102 struct userfaultfd_wake_range {
103         unsigned long start;
104         unsigned long len;
105 };
106
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108                                      int wake_flags, void *key)
109 {
110         struct userfaultfd_wake_range *range = key;
111         int ret;
112         struct userfaultfd_wait_queue *uwq;
113         unsigned long start, len;
114
115         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116         ret = 0;
117         /* len == 0 means wake all */
118         start = range->start;
119         len = range->len;
120         if (len && (start > uwq->msg.arg.pagefault.address ||
121                     start + len <= uwq->msg.arg.pagefault.address))
122                 goto out;
123         WRITE_ONCE(uwq->waken, true);
124         /*
125          * The Program-Order guarantees provided by the scheduler
126          * ensure uwq->waken is visible before the task is woken.
127          */
128         ret = wake_up_state(wq->private, mode);
129         if (ret) {
130                 /*
131                  * Wake only once, autoremove behavior.
132                  *
133                  * After the effect of list_del_init is visible to the other
134                  * CPUs, the waitqueue may disappear from under us, see the
135                  * !list_empty_careful() in handle_userfault().
136                  *
137                  * try_to_wake_up() has an implicit smp_mb(), and the
138                  * wq->private is read before calling the extern function
139                  * "wake_up_state" (which in turns calls try_to_wake_up).
140                  */
141                 list_del_init(&wq->entry);
142         }
143 out:
144         return ret;
145 }
146
147 /**
148  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to the userfaultfd context.
151  */
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154         refcount_inc(&ctx->refcount);
155 }
156
157 /**
158  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159  * context.
160  * @ctx: [in] Pointer to userfaultfd context.
161  *
162  * The userfaultfd context reference must have been previously acquired either
163  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164  */
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167         if (refcount_dec_and_test(&ctx->refcount)) {
168                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176                 mmdrop(ctx->mm);
177                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178         }
179 }
180
181 static inline void msg_init(struct uffd_msg *msg)
182 {
183         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184         /*
185          * Must use memset to zero out the paddings or kernel data is
186          * leaked to userland.
187          */
188         memset(msg, 0, sizeof(struct uffd_msg));
189 }
190
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192                                             unsigned int flags,
193                                             unsigned long reason,
194                                             unsigned int features)
195 {
196         struct uffd_msg msg;
197         msg_init(&msg);
198         msg.event = UFFD_EVENT_PAGEFAULT;
199         msg.arg.pagefault.address = address;
200         if (flags & FAULT_FLAG_WRITE)
201                 /*
202                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205                  * was a read fault, otherwise if set it means it's
206                  * a write fault.
207                  */
208                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
209         if (reason & VM_UFFD_WP)
210                 /*
211                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214                  * a missing fault, otherwise if set it means it's a
215                  * write protect fault.
216                  */
217                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218         if (features & UFFD_FEATURE_THREAD_ID)
219                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
220         return msg;
221 }
222
223 #ifdef CONFIG_HUGETLB_PAGE
224 /*
225  * Same functionality as userfaultfd_must_wait below with modifications for
226  * hugepmd ranges.
227  */
228 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
229                                          struct vm_area_struct *vma,
230                                          unsigned long address,
231                                          unsigned long flags,
232                                          unsigned long reason)
233 {
234         struct mm_struct *mm = ctx->mm;
235         pte_t *ptep, pte;
236         bool ret = true;
237
238         mmap_assert_locked(mm);
239
240         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
241
242         if (!ptep)
243                 goto out;
244
245         ret = false;
246         pte = huge_ptep_get(ptep);
247
248         /*
249          * Lockless access: we're in a wait_event so it's ok if it
250          * changes under us.
251          */
252         if (huge_pte_none(pte))
253                 ret = true;
254         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255                 ret = true;
256 out:
257         return ret;
258 }
259 #else
260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261                                          struct vm_area_struct *vma,
262                                          unsigned long address,
263                                          unsigned long flags,
264                                          unsigned long reason)
265 {
266         return false;   /* should never get here */
267 }
268 #endif /* CONFIG_HUGETLB_PAGE */
269
270 /*
271  * Verify the pagetables are still not ok after having reigstered into
272  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273  * userfault that has already been resolved, if userfaultfd_read and
274  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275  * threads.
276  */
277 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278                                          unsigned long address,
279                                          unsigned long flags,
280                                          unsigned long reason)
281 {
282         struct mm_struct *mm = ctx->mm;
283         pgd_t *pgd;
284         p4d_t *p4d;
285         pud_t *pud;
286         pmd_t *pmd, _pmd;
287         pte_t *pte;
288         bool ret = true;
289
290         mmap_assert_locked(mm);
291
292         pgd = pgd_offset(mm, address);
293         if (!pgd_present(*pgd))
294                 goto out;
295         p4d = p4d_offset(pgd, address);
296         if (!p4d_present(*p4d))
297                 goto out;
298         pud = pud_offset(p4d, address);
299         if (!pud_present(*pud))
300                 goto out;
301         pmd = pmd_offset(pud, address);
302         /*
303          * READ_ONCE must function as a barrier with narrower scope
304          * and it must be equivalent to:
305          *      _pmd = *pmd; barrier();
306          *
307          * This is to deal with the instability (as in
308          * pmd_trans_unstable) of the pmd.
309          */
310         _pmd = READ_ONCE(*pmd);
311         if (pmd_none(_pmd))
312                 goto out;
313
314         ret = false;
315         if (!pmd_present(_pmd))
316                 goto out;
317
318         if (pmd_trans_huge(_pmd)) {
319                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
320                         ret = true;
321                 goto out;
322         }
323
324         /*
325          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
326          * and use the standard pte_offset_map() instead of parsing _pmd.
327          */
328         pte = pte_offset_map(pmd, address);
329         /*
330          * Lockless access: we're in a wait_event so it's ok if it
331          * changes under us.
332          */
333         if (pte_none(*pte))
334                 ret = true;
335         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
336                 ret = true;
337         pte_unmap(pte);
338
339 out:
340         return ret;
341 }
342
343 static inline long userfaultfd_get_blocking_state(unsigned int flags)
344 {
345         if (flags & FAULT_FLAG_INTERRUPTIBLE)
346                 return TASK_INTERRUPTIBLE;
347
348         if (flags & FAULT_FLAG_KILLABLE)
349                 return TASK_KILLABLE;
350
351         return TASK_UNINTERRUPTIBLE;
352 }
353
354 /*
355  * The locking rules involved in returning VM_FAULT_RETRY depending on
356  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
357  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
358  * recommendation in __lock_page_or_retry is not an understatement.
359  *
360  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
361  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
362  * not set.
363  *
364  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
365  * set, VM_FAULT_RETRY can still be returned if and only if there are
366  * fatal_signal_pending()s, and the mmap_lock must be released before
367  * returning it.
368  */
369 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
370 {
371         struct mm_struct *mm = vmf->vma->vm_mm;
372         struct userfaultfd_ctx *ctx;
373         struct userfaultfd_wait_queue uwq;
374         vm_fault_t ret = VM_FAULT_SIGBUS;
375         bool must_wait;
376         long blocking_state;
377
378         /*
379          * We don't do userfault handling for the final child pid update.
380          *
381          * We also don't do userfault handling during
382          * coredumping. hugetlbfs has the special
383          * follow_hugetlb_page() to skip missing pages in the
384          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
385          * the no_page_table() helper in follow_page_mask(), but the
386          * shmem_vm_ops->fault method is invoked even during
387          * coredumping without mmap_lock and it ends up here.
388          */
389         if (current->flags & (PF_EXITING|PF_DUMPCORE))
390                 goto out;
391
392         /*
393          * Coredumping runs without mmap_lock so we can only check that
394          * the mmap_lock is held, if PF_DUMPCORE was not set.
395          */
396         mmap_assert_locked(mm);
397
398         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
399         if (!ctx)
400                 goto out;
401
402         BUG_ON(ctx->mm != mm);
403
404         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
405         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
406
407         if (ctx->features & UFFD_FEATURE_SIGBUS)
408                 goto out;
409         if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
410             ctx->flags & UFFD_USER_MODE_ONLY) {
411                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
412                         "sysctl knob to 1 if kernel faults must be handled "
413                         "without obtaining CAP_SYS_PTRACE capability\n");
414                 goto out;
415         }
416
417         /*
418          * If it's already released don't get it. This avoids to loop
419          * in __get_user_pages if userfaultfd_release waits on the
420          * caller of handle_userfault to release the mmap_lock.
421          */
422         if (unlikely(READ_ONCE(ctx->released))) {
423                 /*
424                  * Don't return VM_FAULT_SIGBUS in this case, so a non
425                  * cooperative manager can close the uffd after the
426                  * last UFFDIO_COPY, without risking to trigger an
427                  * involuntary SIGBUS if the process was starting the
428                  * userfaultfd while the userfaultfd was still armed
429                  * (but after the last UFFDIO_COPY). If the uffd
430                  * wasn't already closed when the userfault reached
431                  * this point, that would normally be solved by
432                  * userfaultfd_must_wait returning 'false'.
433                  *
434                  * If we were to return VM_FAULT_SIGBUS here, the non
435                  * cooperative manager would be instead forced to
436                  * always call UFFDIO_UNREGISTER before it can safely
437                  * close the uffd.
438                  */
439                 ret = VM_FAULT_NOPAGE;
440                 goto out;
441         }
442
443         /*
444          * Check that we can return VM_FAULT_RETRY.
445          *
446          * NOTE: it should become possible to return VM_FAULT_RETRY
447          * even if FAULT_FLAG_TRIED is set without leading to gup()
448          * -EBUSY failures, if the userfaultfd is to be extended for
449          * VM_UFFD_WP tracking and we intend to arm the userfault
450          * without first stopping userland access to the memory. For
451          * VM_UFFD_MISSING userfaults this is enough for now.
452          */
453         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
454                 /*
455                  * Validate the invariant that nowait must allow retry
456                  * to be sure not to return SIGBUS erroneously on
457                  * nowait invocations.
458                  */
459                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
460 #ifdef CONFIG_DEBUG_VM
461                 if (printk_ratelimit()) {
462                         printk(KERN_WARNING
463                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464                                vmf->flags);
465                         dump_stack();
466                 }
467 #endif
468                 goto out;
469         }
470
471         /*
472          * Handle nowait, not much to do other than tell it to retry
473          * and wait.
474          */
475         ret = VM_FAULT_RETRY;
476         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
477                 goto out;
478
479         /* take the reference before dropping the mmap_lock */
480         userfaultfd_ctx_get(ctx);
481
482         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483         uwq.wq.private = current;
484         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485                         ctx->features);
486         uwq.ctx = ctx;
487         uwq.waken = false;
488
489         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
490
491         spin_lock_irq(&ctx->fault_pending_wqh.lock);
492         /*
493          * After the __add_wait_queue the uwq is visible to userland
494          * through poll/read().
495          */
496         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497         /*
498          * The smp_mb() after __set_current_state prevents the reads
499          * following the spin_unlock to happen before the list_add in
500          * __add_wait_queue.
501          */
502         set_current_state(blocking_state);
503         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
504
505         if (!is_vm_hugetlb_page(vmf->vma))
506                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507                                                   reason);
508         else
509                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510                                                        vmf->address,
511                                                        vmf->flags, reason);
512         mmap_read_unlock(mm);
513
514         if (likely(must_wait && !READ_ONCE(ctx->released))) {
515                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
516                 schedule();
517         }
518
519         __set_current_state(TASK_RUNNING);
520
521         /*
522          * Here we race with the list_del; list_add in
523          * userfaultfd_ctx_read(), however because we don't ever run
524          * list_del_init() to refile across the two lists, the prev
525          * and next pointers will never point to self. list_add also
526          * would never let any of the two pointers to point to
527          * self. So list_empty_careful won't risk to see both pointers
528          * pointing to self at any time during the list refile. The
529          * only case where list_del_init() is called is the full
530          * removal in the wake function and there we don't re-list_add
531          * and it's fine not to block on the spinlock. The uwq on this
532          * kernel stack can be released after the list_del_init.
533          */
534         if (!list_empty_careful(&uwq.wq.entry)) {
535                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
536                 /*
537                  * No need of list_del_init(), the uwq on the stack
538                  * will be freed shortly anyway.
539                  */
540                 list_del(&uwq.wq.entry);
541                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
542         }
543
544         /*
545          * ctx may go away after this if the userfault pseudo fd is
546          * already released.
547          */
548         userfaultfd_ctx_put(ctx);
549
550 out:
551         return ret;
552 }
553
554 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
555                                               struct userfaultfd_wait_queue *ewq)
556 {
557         struct userfaultfd_ctx *release_new_ctx;
558
559         if (WARN_ON_ONCE(current->flags & PF_EXITING))
560                 goto out;
561
562         ewq->ctx = ctx;
563         init_waitqueue_entry(&ewq->wq, current);
564         release_new_ctx = NULL;
565
566         spin_lock_irq(&ctx->event_wqh.lock);
567         /*
568          * After the __add_wait_queue the uwq is visible to userland
569          * through poll/read().
570          */
571         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
572         for (;;) {
573                 set_current_state(TASK_KILLABLE);
574                 if (ewq->msg.event == 0)
575                         break;
576                 if (READ_ONCE(ctx->released) ||
577                     fatal_signal_pending(current)) {
578                         /*
579                          * &ewq->wq may be queued in fork_event, but
580                          * __remove_wait_queue ignores the head
581                          * parameter. It would be a problem if it
582                          * didn't.
583                          */
584                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
585                         if (ewq->msg.event == UFFD_EVENT_FORK) {
586                                 struct userfaultfd_ctx *new;
587
588                                 new = (struct userfaultfd_ctx *)
589                                         (unsigned long)
590                                         ewq->msg.arg.reserved.reserved1;
591                                 release_new_ctx = new;
592                         }
593                         break;
594                 }
595
596                 spin_unlock_irq(&ctx->event_wqh.lock);
597
598                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
599                 schedule();
600
601                 spin_lock_irq(&ctx->event_wqh.lock);
602         }
603         __set_current_state(TASK_RUNNING);
604         spin_unlock_irq(&ctx->event_wqh.lock);
605
606         if (release_new_ctx) {
607                 struct vm_area_struct *vma;
608                 struct mm_struct *mm = release_new_ctx->mm;
609
610                 /* the various vma->vm_userfaultfd_ctx still points to it */
611                 mmap_write_lock(mm);
612                 for (vma = mm->mmap; vma; vma = vma->vm_next)
613                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
614                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
615                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
616                         }
617                 mmap_write_unlock(mm);
618
619                 userfaultfd_ctx_put(release_new_ctx);
620         }
621
622         /*
623          * ctx may go away after this if the userfault pseudo fd is
624          * already released.
625          */
626 out:
627         WRITE_ONCE(ctx->mmap_changing, false);
628         userfaultfd_ctx_put(ctx);
629 }
630
631 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
632                                        struct userfaultfd_wait_queue *ewq)
633 {
634         ewq->msg.event = 0;
635         wake_up_locked(&ctx->event_wqh);
636         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
637 }
638
639 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
640 {
641         struct userfaultfd_ctx *ctx = NULL, *octx;
642         struct userfaultfd_fork_ctx *fctx;
643
644         octx = vma->vm_userfaultfd_ctx.ctx;
645         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
646                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
647                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
648                 return 0;
649         }
650
651         list_for_each_entry(fctx, fcs, list)
652                 if (fctx->orig == octx) {
653                         ctx = fctx->new;
654                         break;
655                 }
656
657         if (!ctx) {
658                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
659                 if (!fctx)
660                         return -ENOMEM;
661
662                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
663                 if (!ctx) {
664                         kfree(fctx);
665                         return -ENOMEM;
666                 }
667
668                 refcount_set(&ctx->refcount, 1);
669                 ctx->flags = octx->flags;
670                 ctx->state = UFFD_STATE_RUNNING;
671                 ctx->features = octx->features;
672                 ctx->released = false;
673                 ctx->mmap_changing = false;
674                 ctx->mm = vma->vm_mm;
675                 mmgrab(ctx->mm);
676
677                 userfaultfd_ctx_get(octx);
678                 WRITE_ONCE(octx->mmap_changing, true);
679                 fctx->orig = octx;
680                 fctx->new = ctx;
681                 list_add_tail(&fctx->list, fcs);
682         }
683
684         vma->vm_userfaultfd_ctx.ctx = ctx;
685         return 0;
686 }
687
688 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
689 {
690         struct userfaultfd_ctx *ctx = fctx->orig;
691         struct userfaultfd_wait_queue ewq;
692
693         msg_init(&ewq.msg);
694
695         ewq.msg.event = UFFD_EVENT_FORK;
696         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
697
698         userfaultfd_event_wait_completion(ctx, &ewq);
699 }
700
701 void dup_userfaultfd_complete(struct list_head *fcs)
702 {
703         struct userfaultfd_fork_ctx *fctx, *n;
704
705         list_for_each_entry_safe(fctx, n, fcs, list) {
706                 dup_fctx(fctx);
707                 list_del(&fctx->list);
708                 kfree(fctx);
709         }
710 }
711
712 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
713                              struct vm_userfaultfd_ctx *vm_ctx)
714 {
715         struct userfaultfd_ctx *ctx;
716
717         ctx = vma->vm_userfaultfd_ctx.ctx;
718
719         if (!ctx)
720                 return;
721
722         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
723                 vm_ctx->ctx = ctx;
724                 userfaultfd_ctx_get(ctx);
725                 WRITE_ONCE(ctx->mmap_changing, true);
726         } else {
727                 /* Drop uffd context if remap feature not enabled */
728                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
729                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
730         }
731 }
732
733 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
734                                  unsigned long from, unsigned long to,
735                                  unsigned long len)
736 {
737         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
738         struct userfaultfd_wait_queue ewq;
739
740         if (!ctx)
741                 return;
742
743         if (to & ~PAGE_MASK) {
744                 userfaultfd_ctx_put(ctx);
745                 return;
746         }
747
748         msg_init(&ewq.msg);
749
750         ewq.msg.event = UFFD_EVENT_REMAP;
751         ewq.msg.arg.remap.from = from;
752         ewq.msg.arg.remap.to = to;
753         ewq.msg.arg.remap.len = len;
754
755         userfaultfd_event_wait_completion(ctx, &ewq);
756 }
757
758 bool userfaultfd_remove(struct vm_area_struct *vma,
759                         unsigned long start, unsigned long end)
760 {
761         struct mm_struct *mm = vma->vm_mm;
762         struct userfaultfd_ctx *ctx;
763         struct userfaultfd_wait_queue ewq;
764
765         ctx = vma->vm_userfaultfd_ctx.ctx;
766         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
767                 return true;
768
769         userfaultfd_ctx_get(ctx);
770         WRITE_ONCE(ctx->mmap_changing, true);
771         mmap_read_unlock(mm);
772
773         msg_init(&ewq.msg);
774
775         ewq.msg.event = UFFD_EVENT_REMOVE;
776         ewq.msg.arg.remove.start = start;
777         ewq.msg.arg.remove.end = end;
778
779         userfaultfd_event_wait_completion(ctx, &ewq);
780
781         return false;
782 }
783
784 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
785                           unsigned long start, unsigned long end)
786 {
787         struct userfaultfd_unmap_ctx *unmap_ctx;
788
789         list_for_each_entry(unmap_ctx, unmaps, list)
790                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
791                     unmap_ctx->end == end)
792                         return true;
793
794         return false;
795 }
796
797 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
798                            unsigned long start, unsigned long end,
799                            struct list_head *unmaps)
800 {
801         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
802                 struct userfaultfd_unmap_ctx *unmap_ctx;
803                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
804
805                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
806                     has_unmap_ctx(ctx, unmaps, start, end))
807                         continue;
808
809                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
810                 if (!unmap_ctx)
811                         return -ENOMEM;
812
813                 userfaultfd_ctx_get(ctx);
814                 WRITE_ONCE(ctx->mmap_changing, true);
815                 unmap_ctx->ctx = ctx;
816                 unmap_ctx->start = start;
817                 unmap_ctx->end = end;
818                 list_add_tail(&unmap_ctx->list, unmaps);
819         }
820
821         return 0;
822 }
823
824 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
825 {
826         struct userfaultfd_unmap_ctx *ctx, *n;
827         struct userfaultfd_wait_queue ewq;
828
829         list_for_each_entry_safe(ctx, n, uf, list) {
830                 msg_init(&ewq.msg);
831
832                 ewq.msg.event = UFFD_EVENT_UNMAP;
833                 ewq.msg.arg.remove.start = ctx->start;
834                 ewq.msg.arg.remove.end = ctx->end;
835
836                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
837
838                 list_del(&ctx->list);
839                 kfree(ctx);
840         }
841 }
842
843 static int userfaultfd_release(struct inode *inode, struct file *file)
844 {
845         struct userfaultfd_ctx *ctx = file->private_data;
846         struct mm_struct *mm = ctx->mm;
847         struct vm_area_struct *vma, *prev;
848         /* len == 0 means wake all */
849         struct userfaultfd_wake_range range = { .len = 0, };
850         unsigned long new_flags;
851
852         WRITE_ONCE(ctx->released, true);
853
854         if (!mmget_not_zero(mm))
855                 goto wakeup;
856
857         /*
858          * Flush page faults out of all CPUs. NOTE: all page faults
859          * must be retried without returning VM_FAULT_SIGBUS if
860          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
861          * changes while handle_userfault released the mmap_lock. So
862          * it's critical that released is set to true (above), before
863          * taking the mmap_lock for writing.
864          */
865         mmap_write_lock(mm);
866         prev = NULL;
867         for (vma = mm->mmap; vma; vma = vma->vm_next) {
868                 cond_resched();
869                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
870                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
871                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
872                         prev = vma;
873                         continue;
874                 }
875                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
876                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
877                                  new_flags, vma->anon_vma,
878                                  vma->vm_file, vma->vm_pgoff,
879                                  vma_policy(vma),
880                                  NULL_VM_UFFD_CTX);
881                 if (prev)
882                         vma = prev;
883                 else
884                         prev = vma;
885                 vma->vm_flags = new_flags;
886                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
887         }
888         mmap_write_unlock(mm);
889         mmput(mm);
890 wakeup:
891         /*
892          * After no new page faults can wait on this fault_*wqh, flush
893          * the last page faults that may have been already waiting on
894          * the fault_*wqh.
895          */
896         spin_lock_irq(&ctx->fault_pending_wqh.lock);
897         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
898         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
899         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
900
901         /* Flush pending events that may still wait on event_wqh */
902         wake_up_all(&ctx->event_wqh);
903
904         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
905         userfaultfd_ctx_put(ctx);
906         return 0;
907 }
908
909 /* fault_pending_wqh.lock must be hold by the caller */
910 static inline struct userfaultfd_wait_queue *find_userfault_in(
911                 wait_queue_head_t *wqh)
912 {
913         wait_queue_entry_t *wq;
914         struct userfaultfd_wait_queue *uwq;
915
916         lockdep_assert_held(&wqh->lock);
917
918         uwq = NULL;
919         if (!waitqueue_active(wqh))
920                 goto out;
921         /* walk in reverse to provide FIFO behavior to read userfaults */
922         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
923         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
924 out:
925         return uwq;
926 }
927
928 static inline struct userfaultfd_wait_queue *find_userfault(
929                 struct userfaultfd_ctx *ctx)
930 {
931         return find_userfault_in(&ctx->fault_pending_wqh);
932 }
933
934 static inline struct userfaultfd_wait_queue *find_userfault_evt(
935                 struct userfaultfd_ctx *ctx)
936 {
937         return find_userfault_in(&ctx->event_wqh);
938 }
939
940 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
941 {
942         struct userfaultfd_ctx *ctx = file->private_data;
943         __poll_t ret;
944
945         poll_wait(file, &ctx->fd_wqh, wait);
946
947         switch (ctx->state) {
948         case UFFD_STATE_WAIT_API:
949                 return EPOLLERR;
950         case UFFD_STATE_RUNNING:
951                 /*
952                  * poll() never guarantees that read won't block.
953                  * userfaults can be waken before they're read().
954                  */
955                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
956                         return EPOLLERR;
957                 /*
958                  * lockless access to see if there are pending faults
959                  * __pollwait last action is the add_wait_queue but
960                  * the spin_unlock would allow the waitqueue_active to
961                  * pass above the actual list_add inside
962                  * add_wait_queue critical section. So use a full
963                  * memory barrier to serialize the list_add write of
964                  * add_wait_queue() with the waitqueue_active read
965                  * below.
966                  */
967                 ret = 0;
968                 smp_mb();
969                 if (waitqueue_active(&ctx->fault_pending_wqh))
970                         ret = EPOLLIN;
971                 else if (waitqueue_active(&ctx->event_wqh))
972                         ret = EPOLLIN;
973
974                 return ret;
975         default:
976                 WARN_ON_ONCE(1);
977                 return EPOLLERR;
978         }
979 }
980
981 static const struct file_operations userfaultfd_fops;
982
983 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
984                                   struct inode *inode,
985                                   struct uffd_msg *msg)
986 {
987         int fd;
988
989         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
990                         O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
991         if (fd < 0)
992                 return fd;
993
994         msg->arg.reserved.reserved1 = 0;
995         msg->arg.fork.ufd = fd;
996         return 0;
997 }
998
999 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1000                                     struct uffd_msg *msg, struct inode *inode)
1001 {
1002         ssize_t ret;
1003         DECLARE_WAITQUEUE(wait, current);
1004         struct userfaultfd_wait_queue *uwq;
1005         /*
1006          * Handling fork event requires sleeping operations, so
1007          * we drop the event_wqh lock, then do these ops, then
1008          * lock it back and wake up the waiter. While the lock is
1009          * dropped the ewq may go away so we keep track of it
1010          * carefully.
1011          */
1012         LIST_HEAD(fork_event);
1013         struct userfaultfd_ctx *fork_nctx = NULL;
1014
1015         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1016         spin_lock_irq(&ctx->fd_wqh.lock);
1017         __add_wait_queue(&ctx->fd_wqh, &wait);
1018         for (;;) {
1019                 set_current_state(TASK_INTERRUPTIBLE);
1020                 spin_lock(&ctx->fault_pending_wqh.lock);
1021                 uwq = find_userfault(ctx);
1022                 if (uwq) {
1023                         /*
1024                          * Use a seqcount to repeat the lockless check
1025                          * in wake_userfault() to avoid missing
1026                          * wakeups because during the refile both
1027                          * waitqueue could become empty if this is the
1028                          * only userfault.
1029                          */
1030                         write_seqcount_begin(&ctx->refile_seq);
1031
1032                         /*
1033                          * The fault_pending_wqh.lock prevents the uwq
1034                          * to disappear from under us.
1035                          *
1036                          * Refile this userfault from
1037                          * fault_pending_wqh to fault_wqh, it's not
1038                          * pending anymore after we read it.
1039                          *
1040                          * Use list_del() by hand (as
1041                          * userfaultfd_wake_function also uses
1042                          * list_del_init() by hand) to be sure nobody
1043                          * changes __remove_wait_queue() to use
1044                          * list_del_init() in turn breaking the
1045                          * !list_empty_careful() check in
1046                          * handle_userfault(). The uwq->wq.head list
1047                          * must never be empty at any time during the
1048                          * refile, or the waitqueue could disappear
1049                          * from under us. The "wait_queue_head_t"
1050                          * parameter of __remove_wait_queue() is unused
1051                          * anyway.
1052                          */
1053                         list_del(&uwq->wq.entry);
1054                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1055
1056                         write_seqcount_end(&ctx->refile_seq);
1057
1058                         /* careful to always initialize msg if ret == 0 */
1059                         *msg = uwq->msg;
1060                         spin_unlock(&ctx->fault_pending_wqh.lock);
1061                         ret = 0;
1062                         break;
1063                 }
1064                 spin_unlock(&ctx->fault_pending_wqh.lock);
1065
1066                 spin_lock(&ctx->event_wqh.lock);
1067                 uwq = find_userfault_evt(ctx);
1068                 if (uwq) {
1069                         *msg = uwq->msg;
1070
1071                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1072                                 fork_nctx = (struct userfaultfd_ctx *)
1073                                         (unsigned long)
1074                                         uwq->msg.arg.reserved.reserved1;
1075                                 list_move(&uwq->wq.entry, &fork_event);
1076                                 /*
1077                                  * fork_nctx can be freed as soon as
1078                                  * we drop the lock, unless we take a
1079                                  * reference on it.
1080                                  */
1081                                 userfaultfd_ctx_get(fork_nctx);
1082                                 spin_unlock(&ctx->event_wqh.lock);
1083                                 ret = 0;
1084                                 break;
1085                         }
1086
1087                         userfaultfd_event_complete(ctx, uwq);
1088                         spin_unlock(&ctx->event_wqh.lock);
1089                         ret = 0;
1090                         break;
1091                 }
1092                 spin_unlock(&ctx->event_wqh.lock);
1093
1094                 if (signal_pending(current)) {
1095                         ret = -ERESTARTSYS;
1096                         break;
1097                 }
1098                 if (no_wait) {
1099                         ret = -EAGAIN;
1100                         break;
1101                 }
1102                 spin_unlock_irq(&ctx->fd_wqh.lock);
1103                 schedule();
1104                 spin_lock_irq(&ctx->fd_wqh.lock);
1105         }
1106         __remove_wait_queue(&ctx->fd_wqh, &wait);
1107         __set_current_state(TASK_RUNNING);
1108         spin_unlock_irq(&ctx->fd_wqh.lock);
1109
1110         if (!ret && msg->event == UFFD_EVENT_FORK) {
1111                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1112                 spin_lock_irq(&ctx->event_wqh.lock);
1113                 if (!list_empty(&fork_event)) {
1114                         /*
1115                          * The fork thread didn't abort, so we can
1116                          * drop the temporary refcount.
1117                          */
1118                         userfaultfd_ctx_put(fork_nctx);
1119
1120                         uwq = list_first_entry(&fork_event,
1121                                                typeof(*uwq),
1122                                                wq.entry);
1123                         /*
1124                          * If fork_event list wasn't empty and in turn
1125                          * the event wasn't already released by fork
1126                          * (the event is allocated on fork kernel
1127                          * stack), put the event back to its place in
1128                          * the event_wq. fork_event head will be freed
1129                          * as soon as we return so the event cannot
1130                          * stay queued there no matter the current
1131                          * "ret" value.
1132                          */
1133                         list_del(&uwq->wq.entry);
1134                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1135
1136                         /*
1137                          * Leave the event in the waitqueue and report
1138                          * error to userland if we failed to resolve
1139                          * the userfault fork.
1140                          */
1141                         if (likely(!ret))
1142                                 userfaultfd_event_complete(ctx, uwq);
1143                 } else {
1144                         /*
1145                          * Here the fork thread aborted and the
1146                          * refcount from the fork thread on fork_nctx
1147                          * has already been released. We still hold
1148                          * the reference we took before releasing the
1149                          * lock above. If resolve_userfault_fork
1150                          * failed we've to drop it because the
1151                          * fork_nctx has to be freed in such case. If
1152                          * it succeeded we'll hold it because the new
1153                          * uffd references it.
1154                          */
1155                         if (ret)
1156                                 userfaultfd_ctx_put(fork_nctx);
1157                 }
1158                 spin_unlock_irq(&ctx->event_wqh.lock);
1159         }
1160
1161         return ret;
1162 }
1163
1164 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1165                                 size_t count, loff_t *ppos)
1166 {
1167         struct userfaultfd_ctx *ctx = file->private_data;
1168         ssize_t _ret, ret = 0;
1169         struct uffd_msg msg;
1170         int no_wait = file->f_flags & O_NONBLOCK;
1171         struct inode *inode = file_inode(file);
1172
1173         if (ctx->state == UFFD_STATE_WAIT_API)
1174                 return -EINVAL;
1175
1176         for (;;) {
1177                 if (count < sizeof(msg))
1178                         return ret ? ret : -EINVAL;
1179                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1180                 if (_ret < 0)
1181                         return ret ? ret : _ret;
1182                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1183                         return ret ? ret : -EFAULT;
1184                 ret += sizeof(msg);
1185                 buf += sizeof(msg);
1186                 count -= sizeof(msg);
1187                 /*
1188                  * Allow to read more than one fault at time but only
1189                  * block if waiting for the very first one.
1190                  */
1191                 no_wait = O_NONBLOCK;
1192         }
1193 }
1194
1195 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1196                              struct userfaultfd_wake_range *range)
1197 {
1198         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1199         /* wake all in the range and autoremove */
1200         if (waitqueue_active(&ctx->fault_pending_wqh))
1201                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1202                                      range);
1203         if (waitqueue_active(&ctx->fault_wqh))
1204                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1205         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1206 }
1207
1208 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1209                                            struct userfaultfd_wake_range *range)
1210 {
1211         unsigned seq;
1212         bool need_wakeup;
1213
1214         /*
1215          * To be sure waitqueue_active() is not reordered by the CPU
1216          * before the pagetable update, use an explicit SMP memory
1217          * barrier here. PT lock release or mmap_read_unlock(mm) still
1218          * have release semantics that can allow the
1219          * waitqueue_active() to be reordered before the pte update.
1220          */
1221         smp_mb();
1222
1223         /*
1224          * Use waitqueue_active because it's very frequent to
1225          * change the address space atomically even if there are no
1226          * userfaults yet. So we take the spinlock only when we're
1227          * sure we've userfaults to wake.
1228          */
1229         do {
1230                 seq = read_seqcount_begin(&ctx->refile_seq);
1231                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1232                         waitqueue_active(&ctx->fault_wqh);
1233                 cond_resched();
1234         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1235         if (need_wakeup)
1236                 __wake_userfault(ctx, range);
1237 }
1238
1239 static __always_inline int validate_range(struct mm_struct *mm,
1240                                           __u64 *start, __u64 len)
1241 {
1242         __u64 task_size = mm->task_size;
1243
1244         *start = untagged_addr(*start);
1245
1246         if (*start & ~PAGE_MASK)
1247                 return -EINVAL;
1248         if (len & ~PAGE_MASK)
1249                 return -EINVAL;
1250         if (!len)
1251                 return -EINVAL;
1252         if (*start < mmap_min_addr)
1253                 return -EINVAL;
1254         if (*start >= task_size)
1255                 return -EINVAL;
1256         if (len > task_size - *start)
1257                 return -EINVAL;
1258         return 0;
1259 }
1260
1261 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1262                                      unsigned long vm_flags)
1263 {
1264         /* FIXME: add WP support to hugetlbfs and shmem */
1265         return vma_is_anonymous(vma) ||
1266                 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1267                  !(vm_flags & VM_UFFD_WP));
1268 }
1269
1270 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1271                                 unsigned long arg)
1272 {
1273         struct mm_struct *mm = ctx->mm;
1274         struct vm_area_struct *vma, *prev, *cur;
1275         int ret;
1276         struct uffdio_register uffdio_register;
1277         struct uffdio_register __user *user_uffdio_register;
1278         unsigned long vm_flags, new_flags;
1279         bool found;
1280         bool basic_ioctls;
1281         unsigned long start, end, vma_end;
1282
1283         user_uffdio_register = (struct uffdio_register __user *) arg;
1284
1285         ret = -EFAULT;
1286         if (copy_from_user(&uffdio_register, user_uffdio_register,
1287                            sizeof(uffdio_register)-sizeof(__u64)))
1288                 goto out;
1289
1290         ret = -EINVAL;
1291         if (!uffdio_register.mode)
1292                 goto out;
1293         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1294                                      UFFDIO_REGISTER_MODE_WP))
1295                 goto out;
1296         vm_flags = 0;
1297         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1298                 vm_flags |= VM_UFFD_MISSING;
1299         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1300                 vm_flags |= VM_UFFD_WP;
1301
1302         ret = validate_range(mm, &uffdio_register.range.start,
1303                              uffdio_register.range.len);
1304         if (ret)
1305                 goto out;
1306
1307         start = uffdio_register.range.start;
1308         end = start + uffdio_register.range.len;
1309
1310         ret = -ENOMEM;
1311         if (!mmget_not_zero(mm))
1312                 goto out;
1313
1314         mmap_write_lock(mm);
1315         vma = find_vma_prev(mm, start, &prev);
1316         if (!vma)
1317                 goto out_unlock;
1318
1319         /* check that there's at least one vma in the range */
1320         ret = -EINVAL;
1321         if (vma->vm_start >= end)
1322                 goto out_unlock;
1323
1324         /*
1325          * If the first vma contains huge pages, make sure start address
1326          * is aligned to huge page size.
1327          */
1328         if (is_vm_hugetlb_page(vma)) {
1329                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1330
1331                 if (start & (vma_hpagesize - 1))
1332                         goto out_unlock;
1333         }
1334
1335         /*
1336          * Search for not compatible vmas.
1337          */
1338         found = false;
1339         basic_ioctls = false;
1340         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1341                 cond_resched();
1342
1343                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1344                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1345
1346                 /* check not compatible vmas */
1347                 ret = -EINVAL;
1348                 if (!vma_can_userfault(cur, vm_flags))
1349                         goto out_unlock;
1350
1351                 /*
1352                  * UFFDIO_COPY will fill file holes even without
1353                  * PROT_WRITE. This check enforces that if this is a
1354                  * MAP_SHARED, the process has write permission to the backing
1355                  * file. If VM_MAYWRITE is set it also enforces that on a
1356                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1357                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1358                  */
1359                 ret = -EPERM;
1360                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1361                         goto out_unlock;
1362
1363                 /*
1364                  * If this vma contains ending address, and huge pages
1365                  * check alignment.
1366                  */
1367                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1368                     end > cur->vm_start) {
1369                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1370
1371                         ret = -EINVAL;
1372
1373                         if (end & (vma_hpagesize - 1))
1374                                 goto out_unlock;
1375                 }
1376                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1377                         goto out_unlock;
1378
1379                 /*
1380                  * Check that this vma isn't already owned by a
1381                  * different userfaultfd. We can't allow more than one
1382                  * userfaultfd to own a single vma simultaneously or we
1383                  * wouldn't know which one to deliver the userfaults to.
1384                  */
1385                 ret = -EBUSY;
1386                 if (cur->vm_userfaultfd_ctx.ctx &&
1387                     cur->vm_userfaultfd_ctx.ctx != ctx)
1388                         goto out_unlock;
1389
1390                 /*
1391                  * Note vmas containing huge pages
1392                  */
1393                 if (is_vm_hugetlb_page(cur))
1394                         basic_ioctls = true;
1395
1396                 found = true;
1397         }
1398         BUG_ON(!found);
1399
1400         if (vma->vm_start < start)
1401                 prev = vma;
1402
1403         ret = 0;
1404         do {
1405                 cond_resched();
1406
1407                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1408                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1409                        vma->vm_userfaultfd_ctx.ctx != ctx);
1410                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1411
1412                 /*
1413                  * Nothing to do: this vma is already registered into this
1414                  * userfaultfd and with the right tracking mode too.
1415                  */
1416                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1417                     (vma->vm_flags & vm_flags) == vm_flags)
1418                         goto skip;
1419
1420                 if (vma->vm_start > start)
1421                         start = vma->vm_start;
1422                 vma_end = min(end, vma->vm_end);
1423
1424                 new_flags = (vma->vm_flags &
1425                              ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1426                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1427                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1428                                  vma_policy(vma),
1429                                  ((struct vm_userfaultfd_ctx){ ctx }));
1430                 if (prev) {
1431                         vma = prev;
1432                         goto next;
1433                 }
1434                 if (vma->vm_start < start) {
1435                         ret = split_vma(mm, vma, start, 1);
1436                         if (ret)
1437                                 break;
1438                 }
1439                 if (vma->vm_end > end) {
1440                         ret = split_vma(mm, vma, end, 0);
1441                         if (ret)
1442                                 break;
1443                 }
1444         next:
1445                 /*
1446                  * In the vma_merge() successful mprotect-like case 8:
1447                  * the next vma was merged into the current one and
1448                  * the current one has not been updated yet.
1449                  */
1450                 vma->vm_flags = new_flags;
1451                 vma->vm_userfaultfd_ctx.ctx = ctx;
1452
1453                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1454                         hugetlb_unshare_all_pmds(vma);
1455
1456         skip:
1457                 prev = vma;
1458                 start = vma->vm_end;
1459                 vma = vma->vm_next;
1460         } while (vma && vma->vm_start < end);
1461 out_unlock:
1462         mmap_write_unlock(mm);
1463         mmput(mm);
1464         if (!ret) {
1465                 __u64 ioctls_out;
1466
1467                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1468                     UFFD_API_RANGE_IOCTLS;
1469
1470                 /*
1471                  * Declare the WP ioctl only if the WP mode is
1472                  * specified and all checks passed with the range
1473                  */
1474                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1475                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1476
1477                 /*
1478                  * Now that we scanned all vmas we can already tell
1479                  * userland which ioctls methods are guaranteed to
1480                  * succeed on this range.
1481                  */
1482                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1483                         ret = -EFAULT;
1484         }
1485 out:
1486         return ret;
1487 }
1488
1489 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1490                                   unsigned long arg)
1491 {
1492         struct mm_struct *mm = ctx->mm;
1493         struct vm_area_struct *vma, *prev, *cur;
1494         int ret;
1495         struct uffdio_range uffdio_unregister;
1496         unsigned long new_flags;
1497         bool found;
1498         unsigned long start, end, vma_end;
1499         const void __user *buf = (void __user *)arg;
1500
1501         ret = -EFAULT;
1502         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1503                 goto out;
1504
1505         ret = validate_range(mm, &uffdio_unregister.start,
1506                              uffdio_unregister.len);
1507         if (ret)
1508                 goto out;
1509
1510         start = uffdio_unregister.start;
1511         end = start + uffdio_unregister.len;
1512
1513         ret = -ENOMEM;
1514         if (!mmget_not_zero(mm))
1515                 goto out;
1516
1517         mmap_write_lock(mm);
1518         vma = find_vma_prev(mm, start, &prev);
1519         if (!vma)
1520                 goto out_unlock;
1521
1522         /* check that there's at least one vma in the range */
1523         ret = -EINVAL;
1524         if (vma->vm_start >= end)
1525                 goto out_unlock;
1526
1527         /*
1528          * If the first vma contains huge pages, make sure start address
1529          * is aligned to huge page size.
1530          */
1531         if (is_vm_hugetlb_page(vma)) {
1532                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1533
1534                 if (start & (vma_hpagesize - 1))
1535                         goto out_unlock;
1536         }
1537
1538         /*
1539          * Search for not compatible vmas.
1540          */
1541         found = false;
1542         ret = -EINVAL;
1543         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1544                 cond_resched();
1545
1546                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1547                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1548
1549                 /*
1550                  * Check not compatible vmas, not strictly required
1551                  * here as not compatible vmas cannot have an
1552                  * userfaultfd_ctx registered on them, but this
1553                  * provides for more strict behavior to notice
1554                  * unregistration errors.
1555                  */
1556                 if (!vma_can_userfault(cur, cur->vm_flags))
1557                         goto out_unlock;
1558
1559                 found = true;
1560         }
1561         BUG_ON(!found);
1562
1563         if (vma->vm_start < start)
1564                 prev = vma;
1565
1566         ret = 0;
1567         do {
1568                 cond_resched();
1569
1570                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1571
1572                 /*
1573                  * Nothing to do: this vma is already registered into this
1574                  * userfaultfd and with the right tracking mode too.
1575                  */
1576                 if (!vma->vm_userfaultfd_ctx.ctx)
1577                         goto skip;
1578
1579                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1580
1581                 if (vma->vm_start > start)
1582                         start = vma->vm_start;
1583                 vma_end = min(end, vma->vm_end);
1584
1585                 if (userfaultfd_missing(vma)) {
1586                         /*
1587                          * Wake any concurrent pending userfault while
1588                          * we unregister, so they will not hang
1589                          * permanently and it avoids userland to call
1590                          * UFFDIO_WAKE explicitly.
1591                          */
1592                         struct userfaultfd_wake_range range;
1593                         range.start = start;
1594                         range.len = vma_end - start;
1595                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1596                 }
1597
1598                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1599                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1600                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1601                                  vma_policy(vma),
1602                                  NULL_VM_UFFD_CTX);
1603                 if (prev) {
1604                         vma = prev;
1605                         goto next;
1606                 }
1607                 if (vma->vm_start < start) {
1608                         ret = split_vma(mm, vma, start, 1);
1609                         if (ret)
1610                                 break;
1611                 }
1612                 if (vma->vm_end > end) {
1613                         ret = split_vma(mm, vma, end, 0);
1614                         if (ret)
1615                                 break;
1616                 }
1617         next:
1618                 /*
1619                  * In the vma_merge() successful mprotect-like case 8:
1620                  * the next vma was merged into the current one and
1621                  * the current one has not been updated yet.
1622                  */
1623                 vma->vm_flags = new_flags;
1624                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1625
1626         skip:
1627                 prev = vma;
1628                 start = vma->vm_end;
1629                 vma = vma->vm_next;
1630         } while (vma && vma->vm_start < end);
1631 out_unlock:
1632         mmap_write_unlock(mm);
1633         mmput(mm);
1634 out:
1635         return ret;
1636 }
1637
1638 /*
1639  * userfaultfd_wake may be used in combination with the
1640  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1641  */
1642 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1643                             unsigned long arg)
1644 {
1645         int ret;
1646         struct uffdio_range uffdio_wake;
1647         struct userfaultfd_wake_range range;
1648         const void __user *buf = (void __user *)arg;
1649
1650         ret = -EFAULT;
1651         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1652                 goto out;
1653
1654         ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1655         if (ret)
1656                 goto out;
1657
1658         range.start = uffdio_wake.start;
1659         range.len = uffdio_wake.len;
1660
1661         /*
1662          * len == 0 means wake all and we don't want to wake all here,
1663          * so check it again to be sure.
1664          */
1665         VM_BUG_ON(!range.len);
1666
1667         wake_userfault(ctx, &range);
1668         ret = 0;
1669
1670 out:
1671         return ret;
1672 }
1673
1674 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1675                             unsigned long arg)
1676 {
1677         __s64 ret;
1678         struct uffdio_copy uffdio_copy;
1679         struct uffdio_copy __user *user_uffdio_copy;
1680         struct userfaultfd_wake_range range;
1681
1682         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1683
1684         ret = -EAGAIN;
1685         if (READ_ONCE(ctx->mmap_changing))
1686                 goto out;
1687
1688         ret = -EFAULT;
1689         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1690                            /* don't copy "copy" last field */
1691                            sizeof(uffdio_copy)-sizeof(__s64)))
1692                 goto out;
1693
1694         ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1695         if (ret)
1696                 goto out;
1697         /*
1698          * double check for wraparound just in case. copy_from_user()
1699          * will later check uffdio_copy.src + uffdio_copy.len to fit
1700          * in the userland range.
1701          */
1702         ret = -EINVAL;
1703         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1704                 goto out;
1705         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1706                 goto out;
1707         if (mmget_not_zero(ctx->mm)) {
1708                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1709                                    uffdio_copy.len, &ctx->mmap_changing,
1710                                    uffdio_copy.mode);
1711                 mmput(ctx->mm);
1712         } else {
1713                 return -ESRCH;
1714         }
1715         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1716                 return -EFAULT;
1717         if (ret < 0)
1718                 goto out;
1719         BUG_ON(!ret);
1720         /* len == 0 would wake all */
1721         range.len = ret;
1722         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1723                 range.start = uffdio_copy.dst;
1724                 wake_userfault(ctx, &range);
1725         }
1726         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1727 out:
1728         return ret;
1729 }
1730
1731 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1732                                 unsigned long arg)
1733 {
1734         __s64 ret;
1735         struct uffdio_zeropage uffdio_zeropage;
1736         struct uffdio_zeropage __user *user_uffdio_zeropage;
1737         struct userfaultfd_wake_range range;
1738
1739         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1740
1741         ret = -EAGAIN;
1742         if (READ_ONCE(ctx->mmap_changing))
1743                 goto out;
1744
1745         ret = -EFAULT;
1746         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1747                            /* don't copy "zeropage" last field */
1748                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1749                 goto out;
1750
1751         ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1752                              uffdio_zeropage.range.len);
1753         if (ret)
1754                 goto out;
1755         ret = -EINVAL;
1756         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1757                 goto out;
1758
1759         if (mmget_not_zero(ctx->mm)) {
1760                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1761                                      uffdio_zeropage.range.len,
1762                                      &ctx->mmap_changing);
1763                 mmput(ctx->mm);
1764         } else {
1765                 return -ESRCH;
1766         }
1767         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1768                 return -EFAULT;
1769         if (ret < 0)
1770                 goto out;
1771         /* len == 0 would wake all */
1772         BUG_ON(!ret);
1773         range.len = ret;
1774         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1775                 range.start = uffdio_zeropage.range.start;
1776                 wake_userfault(ctx, &range);
1777         }
1778         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1779 out:
1780         return ret;
1781 }
1782
1783 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1784                                     unsigned long arg)
1785 {
1786         int ret;
1787         struct uffdio_writeprotect uffdio_wp;
1788         struct uffdio_writeprotect __user *user_uffdio_wp;
1789         struct userfaultfd_wake_range range;
1790         bool mode_wp, mode_dontwake;
1791
1792         if (READ_ONCE(ctx->mmap_changing))
1793                 return -EAGAIN;
1794
1795         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1796
1797         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1798                            sizeof(struct uffdio_writeprotect)))
1799                 return -EFAULT;
1800
1801         ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1802                              uffdio_wp.range.len);
1803         if (ret)
1804                 return ret;
1805
1806         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1807                                UFFDIO_WRITEPROTECT_MODE_WP))
1808                 return -EINVAL;
1809
1810         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1811         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1812
1813         if (mode_wp && mode_dontwake)
1814                 return -EINVAL;
1815
1816         ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1817                                   uffdio_wp.range.len, mode_wp,
1818                                   &ctx->mmap_changing);
1819         if (ret)
1820                 return ret;
1821
1822         if (!mode_wp && !mode_dontwake) {
1823                 range.start = uffdio_wp.range.start;
1824                 range.len = uffdio_wp.range.len;
1825                 wake_userfault(ctx, &range);
1826         }
1827         return ret;
1828 }
1829
1830 static inline unsigned int uffd_ctx_features(__u64 user_features)
1831 {
1832         /*
1833          * For the current set of features the bits just coincide
1834          */
1835         return (unsigned int)user_features;
1836 }
1837
1838 /*
1839  * userland asks for a certain API version and we return which bits
1840  * and ioctl commands are implemented in this kernel for such API
1841  * version or -EINVAL if unknown.
1842  */
1843 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1844                            unsigned long arg)
1845 {
1846         struct uffdio_api uffdio_api;
1847         void __user *buf = (void __user *)arg;
1848         int ret;
1849         __u64 features;
1850
1851         ret = -EINVAL;
1852         if (ctx->state != UFFD_STATE_WAIT_API)
1853                 goto out;
1854         ret = -EFAULT;
1855         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1856                 goto out;
1857         features = uffdio_api.features;
1858         ret = -EINVAL;
1859         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1860                 goto err_out;
1861         ret = -EPERM;
1862         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1863                 goto err_out;
1864         /* report all available features and ioctls to userland */
1865         uffdio_api.features = UFFD_API_FEATURES;
1866         uffdio_api.ioctls = UFFD_API_IOCTLS;
1867         ret = -EFAULT;
1868         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1869                 goto out;
1870         ctx->state = UFFD_STATE_RUNNING;
1871         /* only enable the requested features for this uffd context */
1872         ctx->features = uffd_ctx_features(features);
1873         ret = 0;
1874 out:
1875         return ret;
1876 err_out:
1877         memset(&uffdio_api, 0, sizeof(uffdio_api));
1878         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1879                 ret = -EFAULT;
1880         goto out;
1881 }
1882
1883 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1884                               unsigned long arg)
1885 {
1886         int ret = -EINVAL;
1887         struct userfaultfd_ctx *ctx = file->private_data;
1888
1889         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1890                 return -EINVAL;
1891
1892         switch(cmd) {
1893         case UFFDIO_API:
1894                 ret = userfaultfd_api(ctx, arg);
1895                 break;
1896         case UFFDIO_REGISTER:
1897                 ret = userfaultfd_register(ctx, arg);
1898                 break;
1899         case UFFDIO_UNREGISTER:
1900                 ret = userfaultfd_unregister(ctx, arg);
1901                 break;
1902         case UFFDIO_WAKE:
1903                 ret = userfaultfd_wake(ctx, arg);
1904                 break;
1905         case UFFDIO_COPY:
1906                 ret = userfaultfd_copy(ctx, arg);
1907                 break;
1908         case UFFDIO_ZEROPAGE:
1909                 ret = userfaultfd_zeropage(ctx, arg);
1910                 break;
1911         case UFFDIO_WRITEPROTECT:
1912                 ret = userfaultfd_writeprotect(ctx, arg);
1913                 break;
1914         }
1915         return ret;
1916 }
1917
1918 #ifdef CONFIG_PROC_FS
1919 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1920 {
1921         struct userfaultfd_ctx *ctx = f->private_data;
1922         wait_queue_entry_t *wq;
1923         unsigned long pending = 0, total = 0;
1924
1925         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1926         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1927                 pending++;
1928                 total++;
1929         }
1930         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1931                 total++;
1932         }
1933         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1934
1935         /*
1936          * If more protocols will be added, there will be all shown
1937          * separated by a space. Like this:
1938          *      protocols: aa:... bb:...
1939          */
1940         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1941                    pending, total, UFFD_API, ctx->features,
1942                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1943 }
1944 #endif
1945
1946 static const struct file_operations userfaultfd_fops = {
1947 #ifdef CONFIG_PROC_FS
1948         .show_fdinfo    = userfaultfd_show_fdinfo,
1949 #endif
1950         .release        = userfaultfd_release,
1951         .poll           = userfaultfd_poll,
1952         .read           = userfaultfd_read,
1953         .unlocked_ioctl = userfaultfd_ioctl,
1954         .compat_ioctl   = compat_ptr_ioctl,
1955         .llseek         = noop_llseek,
1956 };
1957
1958 static void init_once_userfaultfd_ctx(void *mem)
1959 {
1960         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1961
1962         init_waitqueue_head(&ctx->fault_pending_wqh);
1963         init_waitqueue_head(&ctx->fault_wqh);
1964         init_waitqueue_head(&ctx->event_wqh);
1965         init_waitqueue_head(&ctx->fd_wqh);
1966         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1967 }
1968
1969 SYSCALL_DEFINE1(userfaultfd, int, flags)
1970 {
1971         struct userfaultfd_ctx *ctx;
1972         int fd;
1973
1974         if (!sysctl_unprivileged_userfaultfd &&
1975             (flags & UFFD_USER_MODE_ONLY) == 0 &&
1976             !capable(CAP_SYS_PTRACE)) {
1977                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
1978                         "sysctl knob to 1 if kernel faults must be handled "
1979                         "without obtaining CAP_SYS_PTRACE capability\n");
1980                 return -EPERM;
1981         }
1982
1983         BUG_ON(!current->mm);
1984
1985         /* Check the UFFD_* constants for consistency.  */
1986         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
1987         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1988         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1989
1990         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
1991                 return -EINVAL;
1992
1993         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1994         if (!ctx)
1995                 return -ENOMEM;
1996
1997         refcount_set(&ctx->refcount, 1);
1998         ctx->flags = flags;
1999         ctx->features = 0;
2000         ctx->state = UFFD_STATE_WAIT_API;
2001         ctx->released = false;
2002         ctx->mmap_changing = false;
2003         ctx->mm = current->mm;
2004         /* prevent the mm struct to be freed */
2005         mmgrab(ctx->mm);
2006
2007         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2008                         O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2009         if (fd < 0) {
2010                 mmdrop(ctx->mm);
2011                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2012         }
2013         return fd;
2014 }
2015
2016 static int __init userfaultfd_init(void)
2017 {
2018         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2019                                                 sizeof(struct userfaultfd_ctx),
2020                                                 0,
2021                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2022                                                 init_once_userfaultfd_ctx);
2023         return 0;
2024 }
2025 __initcall(userfaultfd_init);