1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 int sysctl_unprivileged_userfaultfd __read_mostly;
35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
43 * fault_pending_wqh.lock
47 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
48 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
49 * also taken in IRQ context.
51 struct userfaultfd_ctx {
52 /* waitqueue head for the pending (i.e. not read) userfaults */
53 wait_queue_head_t fault_pending_wqh;
54 /* waitqueue head for the userfaults */
55 wait_queue_head_t fault_wqh;
56 /* waitqueue head for the pseudo fd to wakeup poll/read */
57 wait_queue_head_t fd_wqh;
58 /* waitqueue head for events */
59 wait_queue_head_t event_wqh;
60 /* a refile sequence protected by fault_pending_wqh lock */
61 seqcount_spinlock_t refile_seq;
62 /* pseudo fd refcounting */
64 /* userfaultfd syscall flags */
66 /* features requested from the userspace */
67 unsigned int features;
70 /* memory mappings are changing because of non-cooperative event */
71 atomic_t mmap_changing;
72 /* mm with one ore more vmas attached to this userfaultfd_ctx */
76 struct userfaultfd_fork_ctx {
77 struct userfaultfd_ctx *orig;
78 struct userfaultfd_ctx *new;
79 struct list_head list;
82 struct userfaultfd_unmap_ctx {
83 struct userfaultfd_ctx *ctx;
86 struct list_head list;
89 struct userfaultfd_wait_queue {
91 wait_queue_entry_t wq;
92 struct userfaultfd_ctx *ctx;
96 struct userfaultfd_wake_range {
101 /* internal indication that UFFD_API ioctl was successfully executed */
102 #define UFFD_FEATURE_INITIALIZED (1u << 31)
104 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
106 return ctx->features & UFFD_FEATURE_INITIALIZED;
109 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
110 int wake_flags, void *key)
112 struct userfaultfd_wake_range *range = key;
114 struct userfaultfd_wait_queue *uwq;
115 unsigned long start, len;
117 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
119 /* len == 0 means wake all */
120 start = range->start;
122 if (len && (start > uwq->msg.arg.pagefault.address ||
123 start + len <= uwq->msg.arg.pagefault.address))
125 WRITE_ONCE(uwq->waken, true);
127 * The Program-Order guarantees provided by the scheduler
128 * ensure uwq->waken is visible before the task is woken.
130 ret = wake_up_state(wq->private, mode);
133 * Wake only once, autoremove behavior.
135 * After the effect of list_del_init is visible to the other
136 * CPUs, the waitqueue may disappear from under us, see the
137 * !list_empty_careful() in handle_userfault().
139 * try_to_wake_up() has an implicit smp_mb(), and the
140 * wq->private is read before calling the extern function
141 * "wake_up_state" (which in turns calls try_to_wake_up).
143 list_del_init(&wq->entry);
150 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
152 * @ctx: [in] Pointer to the userfaultfd context.
154 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
156 refcount_inc(&ctx->refcount);
160 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
162 * @ctx: [in] Pointer to userfaultfd context.
164 * The userfaultfd context reference must have been previously acquired either
165 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
167 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
169 if (refcount_dec_and_test(&ctx->refcount)) {
170 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
176 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
177 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
179 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
183 static inline void msg_init(struct uffd_msg *msg)
185 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
187 * Must use memset to zero out the paddings or kernel data is
188 * leaked to userland.
190 memset(msg, 0, sizeof(struct uffd_msg));
193 static inline struct uffd_msg userfault_msg(unsigned long address,
195 unsigned long reason,
196 unsigned int features)
200 msg.event = UFFD_EVENT_PAGEFAULT;
202 if (!(features & UFFD_FEATURE_EXACT_ADDRESS))
203 address &= PAGE_MASK;
204 msg.arg.pagefault.address = address;
206 * These flags indicate why the userfault occurred:
207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 * - Neither of these flags being set indicates a MISSING fault.
211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 * fault. Otherwise, it was a read fault.
214 if (flags & FAULT_FLAG_WRITE)
215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
216 if (reason & VM_UFFD_WP)
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (reason & VM_UFFD_MINOR)
219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
220 if (features & UFFD_FEATURE_THREAD_ID)
221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
225 #ifdef CONFIG_HUGETLB_PAGE
227 * Same functionality as userfaultfd_must_wait below with modifications for
230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
231 struct vm_area_struct *vma,
232 unsigned long address,
234 unsigned long reason)
236 struct mm_struct *mm = ctx->mm;
240 mmap_assert_locked(mm);
242 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
248 pte = huge_ptep_get(ptep);
251 * Lockless access: we're in a wait_event so it's ok if it
254 if (huge_pte_none(pte))
256 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
262 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
263 struct vm_area_struct *vma,
264 unsigned long address,
266 unsigned long reason)
268 return false; /* should never get here */
270 #endif /* CONFIG_HUGETLB_PAGE */
273 * Verify the pagetables are still not ok after having reigstered into
274 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
275 * userfault that has already been resolved, if userfaultfd_read and
276 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
279 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
280 unsigned long address,
282 unsigned long reason)
284 struct mm_struct *mm = ctx->mm;
292 mmap_assert_locked(mm);
294 pgd = pgd_offset(mm, address);
295 if (!pgd_present(*pgd))
297 p4d = p4d_offset(pgd, address);
298 if (!p4d_present(*p4d))
300 pud = pud_offset(p4d, address);
301 if (!pud_present(*pud))
303 pmd = pmd_offset(pud, address);
305 * READ_ONCE must function as a barrier with narrower scope
306 * and it must be equivalent to:
307 * _pmd = *pmd; barrier();
309 * This is to deal with the instability (as in
310 * pmd_trans_unstable) of the pmd.
312 _pmd = READ_ONCE(*pmd);
317 if (!pmd_present(_pmd))
320 if (pmd_trans_huge(_pmd)) {
321 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
328 * and use the standard pte_offset_map() instead of parsing _pmd.
330 pte = pte_offset_map(pmd, address);
332 * Lockless access: we're in a wait_event so it's ok if it
337 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
345 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
347 if (flags & FAULT_FLAG_INTERRUPTIBLE)
348 return TASK_INTERRUPTIBLE;
350 if (flags & FAULT_FLAG_KILLABLE)
351 return TASK_KILLABLE;
353 return TASK_UNINTERRUPTIBLE;
357 * The locking rules involved in returning VM_FAULT_RETRY depending on
358 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
359 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
360 * recommendation in __lock_page_or_retry is not an understatement.
362 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
363 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
366 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
367 * set, VM_FAULT_RETRY can still be returned if and only if there are
368 * fatal_signal_pending()s, and the mmap_lock must be released before
371 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
373 struct mm_struct *mm = vmf->vma->vm_mm;
374 struct userfaultfd_ctx *ctx;
375 struct userfaultfd_wait_queue uwq;
376 vm_fault_t ret = VM_FAULT_SIGBUS;
378 unsigned int blocking_state;
381 * We don't do userfault handling for the final child pid update.
383 * We also don't do userfault handling during
384 * coredumping. hugetlbfs has the special
385 * follow_hugetlb_page() to skip missing pages in the
386 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
387 * the no_page_table() helper in follow_page_mask(), but the
388 * shmem_vm_ops->fault method is invoked even during
389 * coredumping without mmap_lock and it ends up here.
391 if (current->flags & (PF_EXITING|PF_DUMPCORE))
395 * Coredumping runs without mmap_lock so we can only check that
396 * the mmap_lock is held, if PF_DUMPCORE was not set.
398 mmap_assert_locked(mm);
400 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
404 BUG_ON(ctx->mm != mm);
406 /* Any unrecognized flag is a bug. */
407 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
408 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
409 VM_BUG_ON(!reason || (reason & (reason - 1)));
411 if (ctx->features & UFFD_FEATURE_SIGBUS)
413 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
414 ctx->flags & UFFD_USER_MODE_ONLY) {
415 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
416 "sysctl knob to 1 if kernel faults must be handled "
417 "without obtaining CAP_SYS_PTRACE capability\n");
422 * If it's already released don't get it. This avoids to loop
423 * in __get_user_pages if userfaultfd_release waits on the
424 * caller of handle_userfault to release the mmap_lock.
426 if (unlikely(READ_ONCE(ctx->released))) {
428 * Don't return VM_FAULT_SIGBUS in this case, so a non
429 * cooperative manager can close the uffd after the
430 * last UFFDIO_COPY, without risking to trigger an
431 * involuntary SIGBUS if the process was starting the
432 * userfaultfd while the userfaultfd was still armed
433 * (but after the last UFFDIO_COPY). If the uffd
434 * wasn't already closed when the userfault reached
435 * this point, that would normally be solved by
436 * userfaultfd_must_wait returning 'false'.
438 * If we were to return VM_FAULT_SIGBUS here, the non
439 * cooperative manager would be instead forced to
440 * always call UFFDIO_UNREGISTER before it can safely
443 ret = VM_FAULT_NOPAGE;
448 * Check that we can return VM_FAULT_RETRY.
450 * NOTE: it should become possible to return VM_FAULT_RETRY
451 * even if FAULT_FLAG_TRIED is set without leading to gup()
452 * -EBUSY failures, if the userfaultfd is to be extended for
453 * VM_UFFD_WP tracking and we intend to arm the userfault
454 * without first stopping userland access to the memory. For
455 * VM_UFFD_MISSING userfaults this is enough for now.
457 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
459 * Validate the invariant that nowait must allow retry
460 * to be sure not to return SIGBUS erroneously on
461 * nowait invocations.
463 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
464 #ifdef CONFIG_DEBUG_VM
465 if (printk_ratelimit()) {
467 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
476 * Handle nowait, not much to do other than tell it to retry
479 ret = VM_FAULT_RETRY;
480 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
483 /* take the reference before dropping the mmap_lock */
484 userfaultfd_ctx_get(ctx);
486 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
487 uwq.wq.private = current;
488 uwq.msg = userfault_msg(vmf->real_address, vmf->flags, reason,
493 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
495 spin_lock_irq(&ctx->fault_pending_wqh.lock);
497 * After the __add_wait_queue the uwq is visible to userland
498 * through poll/read().
500 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
502 * The smp_mb() after __set_current_state prevents the reads
503 * following the spin_unlock to happen before the list_add in
506 set_current_state(blocking_state);
507 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
509 if (!is_vm_hugetlb_page(vmf->vma))
510 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
513 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
516 mmap_read_unlock(mm);
518 if (likely(must_wait && !READ_ONCE(ctx->released))) {
519 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
523 __set_current_state(TASK_RUNNING);
526 * Here we race with the list_del; list_add in
527 * userfaultfd_ctx_read(), however because we don't ever run
528 * list_del_init() to refile across the two lists, the prev
529 * and next pointers will never point to self. list_add also
530 * would never let any of the two pointers to point to
531 * self. So list_empty_careful won't risk to see both pointers
532 * pointing to self at any time during the list refile. The
533 * only case where list_del_init() is called is the full
534 * removal in the wake function and there we don't re-list_add
535 * and it's fine not to block on the spinlock. The uwq on this
536 * kernel stack can be released after the list_del_init.
538 if (!list_empty_careful(&uwq.wq.entry)) {
539 spin_lock_irq(&ctx->fault_pending_wqh.lock);
541 * No need of list_del_init(), the uwq on the stack
542 * will be freed shortly anyway.
544 list_del(&uwq.wq.entry);
545 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
549 * ctx may go away after this if the userfault pseudo fd is
552 userfaultfd_ctx_put(ctx);
558 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
559 struct userfaultfd_wait_queue *ewq)
561 struct userfaultfd_ctx *release_new_ctx;
563 if (WARN_ON_ONCE(current->flags & PF_EXITING))
567 init_waitqueue_entry(&ewq->wq, current);
568 release_new_ctx = NULL;
570 spin_lock_irq(&ctx->event_wqh.lock);
572 * After the __add_wait_queue the uwq is visible to userland
573 * through poll/read().
575 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
577 set_current_state(TASK_KILLABLE);
578 if (ewq->msg.event == 0)
580 if (READ_ONCE(ctx->released) ||
581 fatal_signal_pending(current)) {
583 * &ewq->wq may be queued in fork_event, but
584 * __remove_wait_queue ignores the head
585 * parameter. It would be a problem if it
588 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
589 if (ewq->msg.event == UFFD_EVENT_FORK) {
590 struct userfaultfd_ctx *new;
592 new = (struct userfaultfd_ctx *)
594 ewq->msg.arg.reserved.reserved1;
595 release_new_ctx = new;
600 spin_unlock_irq(&ctx->event_wqh.lock);
602 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
605 spin_lock_irq(&ctx->event_wqh.lock);
607 __set_current_state(TASK_RUNNING);
608 spin_unlock_irq(&ctx->event_wqh.lock);
610 if (release_new_ctx) {
611 struct vm_area_struct *vma;
612 struct mm_struct *mm = release_new_ctx->mm;
614 /* the various vma->vm_userfaultfd_ctx still points to it */
616 for (vma = mm->mmap; vma; vma = vma->vm_next)
617 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
618 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
619 vma->vm_flags &= ~__VM_UFFD_FLAGS;
621 mmap_write_unlock(mm);
623 userfaultfd_ctx_put(release_new_ctx);
627 * ctx may go away after this if the userfault pseudo fd is
631 atomic_dec(&ctx->mmap_changing);
632 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
633 userfaultfd_ctx_put(ctx);
636 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
637 struct userfaultfd_wait_queue *ewq)
640 wake_up_locked(&ctx->event_wqh);
641 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
644 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
646 struct userfaultfd_ctx *ctx = NULL, *octx;
647 struct userfaultfd_fork_ctx *fctx;
649 octx = vma->vm_userfaultfd_ctx.ctx;
650 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
651 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
652 vma->vm_flags &= ~__VM_UFFD_FLAGS;
656 list_for_each_entry(fctx, fcs, list)
657 if (fctx->orig == octx) {
663 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
667 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
673 refcount_set(&ctx->refcount, 1);
674 ctx->flags = octx->flags;
675 ctx->features = octx->features;
676 ctx->released = false;
677 atomic_set(&ctx->mmap_changing, 0);
678 ctx->mm = vma->vm_mm;
681 userfaultfd_ctx_get(octx);
682 atomic_inc(&octx->mmap_changing);
685 list_add_tail(&fctx->list, fcs);
688 vma->vm_userfaultfd_ctx.ctx = ctx;
692 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
694 struct userfaultfd_ctx *ctx = fctx->orig;
695 struct userfaultfd_wait_queue ewq;
699 ewq.msg.event = UFFD_EVENT_FORK;
700 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
702 userfaultfd_event_wait_completion(ctx, &ewq);
705 void dup_userfaultfd_complete(struct list_head *fcs)
707 struct userfaultfd_fork_ctx *fctx, *n;
709 list_for_each_entry_safe(fctx, n, fcs, list) {
711 list_del(&fctx->list);
716 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
717 struct vm_userfaultfd_ctx *vm_ctx)
719 struct userfaultfd_ctx *ctx;
721 ctx = vma->vm_userfaultfd_ctx.ctx;
726 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
728 userfaultfd_ctx_get(ctx);
729 atomic_inc(&ctx->mmap_changing);
731 /* Drop uffd context if remap feature not enabled */
732 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
733 vma->vm_flags &= ~__VM_UFFD_FLAGS;
737 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
738 unsigned long from, unsigned long to,
741 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
742 struct userfaultfd_wait_queue ewq;
747 if (to & ~PAGE_MASK) {
748 userfaultfd_ctx_put(ctx);
754 ewq.msg.event = UFFD_EVENT_REMAP;
755 ewq.msg.arg.remap.from = from;
756 ewq.msg.arg.remap.to = to;
757 ewq.msg.arg.remap.len = len;
759 userfaultfd_event_wait_completion(ctx, &ewq);
762 bool userfaultfd_remove(struct vm_area_struct *vma,
763 unsigned long start, unsigned long end)
765 struct mm_struct *mm = vma->vm_mm;
766 struct userfaultfd_ctx *ctx;
767 struct userfaultfd_wait_queue ewq;
769 ctx = vma->vm_userfaultfd_ctx.ctx;
770 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
773 userfaultfd_ctx_get(ctx);
774 atomic_inc(&ctx->mmap_changing);
775 mmap_read_unlock(mm);
779 ewq.msg.event = UFFD_EVENT_REMOVE;
780 ewq.msg.arg.remove.start = start;
781 ewq.msg.arg.remove.end = end;
783 userfaultfd_event_wait_completion(ctx, &ewq);
788 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
789 unsigned long start, unsigned long end)
791 struct userfaultfd_unmap_ctx *unmap_ctx;
793 list_for_each_entry(unmap_ctx, unmaps, list)
794 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
795 unmap_ctx->end == end)
801 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
802 unsigned long start, unsigned long end,
803 struct list_head *unmaps)
805 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
806 struct userfaultfd_unmap_ctx *unmap_ctx;
807 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
809 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
810 has_unmap_ctx(ctx, unmaps, start, end))
813 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
817 userfaultfd_ctx_get(ctx);
818 atomic_inc(&ctx->mmap_changing);
819 unmap_ctx->ctx = ctx;
820 unmap_ctx->start = start;
821 unmap_ctx->end = end;
822 list_add_tail(&unmap_ctx->list, unmaps);
828 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
830 struct userfaultfd_unmap_ctx *ctx, *n;
831 struct userfaultfd_wait_queue ewq;
833 list_for_each_entry_safe(ctx, n, uf, list) {
836 ewq.msg.event = UFFD_EVENT_UNMAP;
837 ewq.msg.arg.remove.start = ctx->start;
838 ewq.msg.arg.remove.end = ctx->end;
840 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
842 list_del(&ctx->list);
847 static int userfaultfd_release(struct inode *inode, struct file *file)
849 struct userfaultfd_ctx *ctx = file->private_data;
850 struct mm_struct *mm = ctx->mm;
851 struct vm_area_struct *vma, *prev;
852 /* len == 0 means wake all */
853 struct userfaultfd_wake_range range = { .len = 0, };
854 unsigned long new_flags;
856 WRITE_ONCE(ctx->released, true);
858 if (!mmget_not_zero(mm))
862 * Flush page faults out of all CPUs. NOTE: all page faults
863 * must be retried without returning VM_FAULT_SIGBUS if
864 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
865 * changes while handle_userfault released the mmap_lock. So
866 * it's critical that released is set to true (above), before
867 * taking the mmap_lock for writing.
871 for (vma = mm->mmap; vma; vma = vma->vm_next) {
873 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
874 !!(vma->vm_flags & __VM_UFFD_FLAGS));
875 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
879 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
880 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
881 new_flags, vma->anon_vma,
882 vma->vm_file, vma->vm_pgoff,
884 NULL_VM_UFFD_CTX, anon_vma_name(vma));
889 vma->vm_flags = new_flags;
890 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
892 mmap_write_unlock(mm);
896 * After no new page faults can wait on this fault_*wqh, flush
897 * the last page faults that may have been already waiting on
900 spin_lock_irq(&ctx->fault_pending_wqh.lock);
901 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
902 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
903 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
905 /* Flush pending events that may still wait on event_wqh */
906 wake_up_all(&ctx->event_wqh);
908 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
909 userfaultfd_ctx_put(ctx);
913 /* fault_pending_wqh.lock must be hold by the caller */
914 static inline struct userfaultfd_wait_queue *find_userfault_in(
915 wait_queue_head_t *wqh)
917 wait_queue_entry_t *wq;
918 struct userfaultfd_wait_queue *uwq;
920 lockdep_assert_held(&wqh->lock);
923 if (!waitqueue_active(wqh))
925 /* walk in reverse to provide FIFO behavior to read userfaults */
926 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
927 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
932 static inline struct userfaultfd_wait_queue *find_userfault(
933 struct userfaultfd_ctx *ctx)
935 return find_userfault_in(&ctx->fault_pending_wqh);
938 static inline struct userfaultfd_wait_queue *find_userfault_evt(
939 struct userfaultfd_ctx *ctx)
941 return find_userfault_in(&ctx->event_wqh);
944 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
946 struct userfaultfd_ctx *ctx = file->private_data;
949 poll_wait(file, &ctx->fd_wqh, wait);
951 if (!userfaultfd_is_initialized(ctx))
955 * poll() never guarantees that read won't block.
956 * userfaults can be waken before they're read().
958 if (unlikely(!(file->f_flags & O_NONBLOCK)))
961 * lockless access to see if there are pending faults
962 * __pollwait last action is the add_wait_queue but
963 * the spin_unlock would allow the waitqueue_active to
964 * pass above the actual list_add inside
965 * add_wait_queue critical section. So use a full
966 * memory barrier to serialize the list_add write of
967 * add_wait_queue() with the waitqueue_active read
972 if (waitqueue_active(&ctx->fault_pending_wqh))
974 else if (waitqueue_active(&ctx->event_wqh))
980 static const struct file_operations userfaultfd_fops;
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
984 struct uffd_msg *msg)
988 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
993 msg->arg.reserved.reserved1 = 0;
994 msg->arg.fork.ufd = fd;
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999 struct uffd_msg *msg, struct inode *inode)
1002 DECLARE_WAITQUEUE(wait, current);
1003 struct userfaultfd_wait_queue *uwq;
1005 * Handling fork event requires sleeping operations, so
1006 * we drop the event_wqh lock, then do these ops, then
1007 * lock it back and wake up the waiter. While the lock is
1008 * dropped the ewq may go away so we keep track of it
1011 LIST_HEAD(fork_event);
1012 struct userfaultfd_ctx *fork_nctx = NULL;
1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1015 spin_lock_irq(&ctx->fd_wqh.lock);
1016 __add_wait_queue(&ctx->fd_wqh, &wait);
1018 set_current_state(TASK_INTERRUPTIBLE);
1019 spin_lock(&ctx->fault_pending_wqh.lock);
1020 uwq = find_userfault(ctx);
1023 * Use a seqcount to repeat the lockless check
1024 * in wake_userfault() to avoid missing
1025 * wakeups because during the refile both
1026 * waitqueue could become empty if this is the
1029 write_seqcount_begin(&ctx->refile_seq);
1032 * The fault_pending_wqh.lock prevents the uwq
1033 * to disappear from under us.
1035 * Refile this userfault from
1036 * fault_pending_wqh to fault_wqh, it's not
1037 * pending anymore after we read it.
1039 * Use list_del() by hand (as
1040 * userfaultfd_wake_function also uses
1041 * list_del_init() by hand) to be sure nobody
1042 * changes __remove_wait_queue() to use
1043 * list_del_init() in turn breaking the
1044 * !list_empty_careful() check in
1045 * handle_userfault(). The uwq->wq.head list
1046 * must never be empty at any time during the
1047 * refile, or the waitqueue could disappear
1048 * from under us. The "wait_queue_head_t"
1049 * parameter of __remove_wait_queue() is unused
1052 list_del(&uwq->wq.entry);
1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1055 write_seqcount_end(&ctx->refile_seq);
1057 /* careful to always initialize msg if ret == 0 */
1059 spin_unlock(&ctx->fault_pending_wqh.lock);
1063 spin_unlock(&ctx->fault_pending_wqh.lock);
1065 spin_lock(&ctx->event_wqh.lock);
1066 uwq = find_userfault_evt(ctx);
1070 if (uwq->msg.event == UFFD_EVENT_FORK) {
1071 fork_nctx = (struct userfaultfd_ctx *)
1073 uwq->msg.arg.reserved.reserved1;
1074 list_move(&uwq->wq.entry, &fork_event);
1076 * fork_nctx can be freed as soon as
1077 * we drop the lock, unless we take a
1080 userfaultfd_ctx_get(fork_nctx);
1081 spin_unlock(&ctx->event_wqh.lock);
1086 userfaultfd_event_complete(ctx, uwq);
1087 spin_unlock(&ctx->event_wqh.lock);
1091 spin_unlock(&ctx->event_wqh.lock);
1093 if (signal_pending(current)) {
1101 spin_unlock_irq(&ctx->fd_wqh.lock);
1103 spin_lock_irq(&ctx->fd_wqh.lock);
1105 __remove_wait_queue(&ctx->fd_wqh, &wait);
1106 __set_current_state(TASK_RUNNING);
1107 spin_unlock_irq(&ctx->fd_wqh.lock);
1109 if (!ret && msg->event == UFFD_EVENT_FORK) {
1110 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111 spin_lock_irq(&ctx->event_wqh.lock);
1112 if (!list_empty(&fork_event)) {
1114 * The fork thread didn't abort, so we can
1115 * drop the temporary refcount.
1117 userfaultfd_ctx_put(fork_nctx);
1119 uwq = list_first_entry(&fork_event,
1123 * If fork_event list wasn't empty and in turn
1124 * the event wasn't already released by fork
1125 * (the event is allocated on fork kernel
1126 * stack), put the event back to its place in
1127 * the event_wq. fork_event head will be freed
1128 * as soon as we return so the event cannot
1129 * stay queued there no matter the current
1132 list_del(&uwq->wq.entry);
1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1136 * Leave the event in the waitqueue and report
1137 * error to userland if we failed to resolve
1138 * the userfault fork.
1141 userfaultfd_event_complete(ctx, uwq);
1144 * Here the fork thread aborted and the
1145 * refcount from the fork thread on fork_nctx
1146 * has already been released. We still hold
1147 * the reference we took before releasing the
1148 * lock above. If resolve_userfault_fork
1149 * failed we've to drop it because the
1150 * fork_nctx has to be freed in such case. If
1151 * it succeeded we'll hold it because the new
1152 * uffd references it.
1155 userfaultfd_ctx_put(fork_nctx);
1157 spin_unlock_irq(&ctx->event_wqh.lock);
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164 size_t count, loff_t *ppos)
1166 struct userfaultfd_ctx *ctx = file->private_data;
1167 ssize_t _ret, ret = 0;
1168 struct uffd_msg msg;
1169 int no_wait = file->f_flags & O_NONBLOCK;
1170 struct inode *inode = file_inode(file);
1172 if (!userfaultfd_is_initialized(ctx))
1176 if (count < sizeof(msg))
1177 return ret ? ret : -EINVAL;
1178 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1180 return ret ? ret : _ret;
1181 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182 return ret ? ret : -EFAULT;
1185 count -= sizeof(msg);
1187 * Allow to read more than one fault at time but only
1188 * block if waiting for the very first one.
1190 no_wait = O_NONBLOCK;
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195 struct userfaultfd_wake_range *range)
1197 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198 /* wake all in the range and autoremove */
1199 if (waitqueue_active(&ctx->fault_pending_wqh))
1200 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1202 if (waitqueue_active(&ctx->fault_wqh))
1203 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208 struct userfaultfd_wake_range *range)
1214 * To be sure waitqueue_active() is not reordered by the CPU
1215 * before the pagetable update, use an explicit SMP memory
1216 * barrier here. PT lock release or mmap_read_unlock(mm) still
1217 * have release semantics that can allow the
1218 * waitqueue_active() to be reordered before the pte update.
1223 * Use waitqueue_active because it's very frequent to
1224 * change the address space atomically even if there are no
1225 * userfaults yet. So we take the spinlock only when we're
1226 * sure we've userfaults to wake.
1229 seq = read_seqcount_begin(&ctx->refile_seq);
1230 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231 waitqueue_active(&ctx->fault_wqh);
1233 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1235 __wake_userfault(ctx, range);
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239 __u64 start, __u64 len)
1241 __u64 task_size = mm->task_size;
1243 if (start & ~PAGE_MASK)
1245 if (len & ~PAGE_MASK)
1249 if (start < mmap_min_addr)
1251 if (start >= task_size)
1253 if (len > task_size - start)
1258 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259 unsigned long vm_flags)
1261 /* FIXME: add WP support to hugetlbfs and shmem */
1262 if (vm_flags & VM_UFFD_WP) {
1263 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1267 if (vm_flags & VM_UFFD_MINOR) {
1268 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1272 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1276 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1279 struct mm_struct *mm = ctx->mm;
1280 struct vm_area_struct *vma, *prev, *cur;
1282 struct uffdio_register uffdio_register;
1283 struct uffdio_register __user *user_uffdio_register;
1284 unsigned long vm_flags, new_flags;
1287 unsigned long start, end, vma_end;
1289 user_uffdio_register = (struct uffdio_register __user *) arg;
1292 if (copy_from_user(&uffdio_register, user_uffdio_register,
1293 sizeof(uffdio_register)-sizeof(__u64)))
1297 if (!uffdio_register.mode)
1299 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303 vm_flags |= VM_UFFD_MISSING;
1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1308 vm_flags |= VM_UFFD_WP;
1310 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1311 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1314 vm_flags |= VM_UFFD_MINOR;
1317 ret = validate_range(mm, uffdio_register.range.start,
1318 uffdio_register.range.len);
1322 start = uffdio_register.range.start;
1323 end = start + uffdio_register.range.len;
1326 if (!mmget_not_zero(mm))
1329 mmap_write_lock(mm);
1330 vma = find_vma_prev(mm, start, &prev);
1334 /* check that there's at least one vma in the range */
1336 if (vma->vm_start >= end)
1340 * If the first vma contains huge pages, make sure start address
1341 * is aligned to huge page size.
1343 if (is_vm_hugetlb_page(vma)) {
1344 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1346 if (start & (vma_hpagesize - 1))
1351 * Search for not compatible vmas.
1354 basic_ioctls = false;
1355 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1358 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1359 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1361 /* check not compatible vmas */
1363 if (!vma_can_userfault(cur, vm_flags))
1367 * UFFDIO_COPY will fill file holes even without
1368 * PROT_WRITE. This check enforces that if this is a
1369 * MAP_SHARED, the process has write permission to the backing
1370 * file. If VM_MAYWRITE is set it also enforces that on a
1371 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372 * F_WRITE_SEAL can be taken until the vma is destroyed.
1375 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1379 * If this vma contains ending address, and huge pages
1382 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383 end > cur->vm_start) {
1384 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1388 if (end & (vma_hpagesize - 1))
1391 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1395 * Check that this vma isn't already owned by a
1396 * different userfaultfd. We can't allow more than one
1397 * userfaultfd to own a single vma simultaneously or we
1398 * wouldn't know which one to deliver the userfaults to.
1401 if (cur->vm_userfaultfd_ctx.ctx &&
1402 cur->vm_userfaultfd_ctx.ctx != ctx)
1406 * Note vmas containing huge pages
1408 if (is_vm_hugetlb_page(cur))
1409 basic_ioctls = true;
1415 if (vma->vm_start < start)
1422 BUG_ON(!vma_can_userfault(vma, vm_flags));
1423 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1424 vma->vm_userfaultfd_ctx.ctx != ctx);
1425 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1428 * Nothing to do: this vma is already registered into this
1429 * userfaultfd and with the right tracking mode too.
1431 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1432 (vma->vm_flags & vm_flags) == vm_flags)
1435 if (vma->vm_start > start)
1436 start = vma->vm_start;
1437 vma_end = min(end, vma->vm_end);
1439 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1440 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1441 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1443 ((struct vm_userfaultfd_ctx){ ctx }),
1444 anon_vma_name(vma));
1449 if (vma->vm_start < start) {
1450 ret = split_vma(mm, vma, start, 1);
1454 if (vma->vm_end > end) {
1455 ret = split_vma(mm, vma, end, 0);
1461 * In the vma_merge() successful mprotect-like case 8:
1462 * the next vma was merged into the current one and
1463 * the current one has not been updated yet.
1465 vma->vm_flags = new_flags;
1466 vma->vm_userfaultfd_ctx.ctx = ctx;
1468 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1469 hugetlb_unshare_all_pmds(vma);
1473 start = vma->vm_end;
1475 } while (vma && vma->vm_start < end);
1477 mmap_write_unlock(mm);
1482 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1483 UFFD_API_RANGE_IOCTLS;
1486 * Declare the WP ioctl only if the WP mode is
1487 * specified and all checks passed with the range
1489 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1490 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1492 /* CONTINUE ioctl is only supported for MINOR ranges. */
1493 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1494 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1497 * Now that we scanned all vmas we can already tell
1498 * userland which ioctls methods are guaranteed to
1499 * succeed on this range.
1501 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1508 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1511 struct mm_struct *mm = ctx->mm;
1512 struct vm_area_struct *vma, *prev, *cur;
1514 struct uffdio_range uffdio_unregister;
1515 unsigned long new_flags;
1517 unsigned long start, end, vma_end;
1518 const void __user *buf = (void __user *)arg;
1521 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1524 ret = validate_range(mm, uffdio_unregister.start,
1525 uffdio_unregister.len);
1529 start = uffdio_unregister.start;
1530 end = start + uffdio_unregister.len;
1533 if (!mmget_not_zero(mm))
1536 mmap_write_lock(mm);
1537 vma = find_vma_prev(mm, start, &prev);
1541 /* check that there's at least one vma in the range */
1543 if (vma->vm_start >= end)
1547 * If the first vma contains huge pages, make sure start address
1548 * is aligned to huge page size.
1550 if (is_vm_hugetlb_page(vma)) {
1551 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1553 if (start & (vma_hpagesize - 1))
1558 * Search for not compatible vmas.
1562 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1565 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1566 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1569 * Check not compatible vmas, not strictly required
1570 * here as not compatible vmas cannot have an
1571 * userfaultfd_ctx registered on them, but this
1572 * provides for more strict behavior to notice
1573 * unregistration errors.
1575 if (!vma_can_userfault(cur, cur->vm_flags))
1582 if (vma->vm_start < start)
1589 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1592 * Nothing to do: this vma is already registered into this
1593 * userfaultfd and with the right tracking mode too.
1595 if (!vma->vm_userfaultfd_ctx.ctx)
1598 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1600 if (vma->vm_start > start)
1601 start = vma->vm_start;
1602 vma_end = min(end, vma->vm_end);
1604 if (userfaultfd_missing(vma)) {
1606 * Wake any concurrent pending userfault while
1607 * we unregister, so they will not hang
1608 * permanently and it avoids userland to call
1609 * UFFDIO_WAKE explicitly.
1611 struct userfaultfd_wake_range range;
1612 range.start = start;
1613 range.len = vma_end - start;
1614 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1617 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1618 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1619 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1621 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1626 if (vma->vm_start < start) {
1627 ret = split_vma(mm, vma, start, 1);
1631 if (vma->vm_end > end) {
1632 ret = split_vma(mm, vma, end, 0);
1638 * In the vma_merge() successful mprotect-like case 8:
1639 * the next vma was merged into the current one and
1640 * the current one has not been updated yet.
1642 vma->vm_flags = new_flags;
1643 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1647 start = vma->vm_end;
1649 } while (vma && vma->vm_start < end);
1651 mmap_write_unlock(mm);
1658 * userfaultfd_wake may be used in combination with the
1659 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1661 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1665 struct uffdio_range uffdio_wake;
1666 struct userfaultfd_wake_range range;
1667 const void __user *buf = (void __user *)arg;
1670 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1673 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1677 range.start = uffdio_wake.start;
1678 range.len = uffdio_wake.len;
1681 * len == 0 means wake all and we don't want to wake all here,
1682 * so check it again to be sure.
1684 VM_BUG_ON(!range.len);
1686 wake_userfault(ctx, &range);
1693 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1697 struct uffdio_copy uffdio_copy;
1698 struct uffdio_copy __user *user_uffdio_copy;
1699 struct userfaultfd_wake_range range;
1701 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1704 if (atomic_read(&ctx->mmap_changing))
1708 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1709 /* don't copy "copy" last field */
1710 sizeof(uffdio_copy)-sizeof(__s64)))
1713 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1717 * double check for wraparound just in case. copy_from_user()
1718 * will later check uffdio_copy.src + uffdio_copy.len to fit
1719 * in the userland range.
1722 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1726 if (mmget_not_zero(ctx->mm)) {
1727 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1728 uffdio_copy.len, &ctx->mmap_changing,
1734 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1739 /* len == 0 would wake all */
1741 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1742 range.start = uffdio_copy.dst;
1743 wake_userfault(ctx, &range);
1745 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1750 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1754 struct uffdio_zeropage uffdio_zeropage;
1755 struct uffdio_zeropage __user *user_uffdio_zeropage;
1756 struct userfaultfd_wake_range range;
1758 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1761 if (atomic_read(&ctx->mmap_changing))
1765 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1766 /* don't copy "zeropage" last field */
1767 sizeof(uffdio_zeropage)-sizeof(__s64)))
1770 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1771 uffdio_zeropage.range.len);
1775 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1778 if (mmget_not_zero(ctx->mm)) {
1779 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1780 uffdio_zeropage.range.len,
1781 &ctx->mmap_changing);
1786 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1790 /* len == 0 would wake all */
1793 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794 range.start = uffdio_zeropage.range.start;
1795 wake_userfault(ctx, &range);
1797 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1802 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1806 struct uffdio_writeprotect uffdio_wp;
1807 struct uffdio_writeprotect __user *user_uffdio_wp;
1808 struct userfaultfd_wake_range range;
1809 bool mode_wp, mode_dontwake;
1811 if (atomic_read(&ctx->mmap_changing))
1814 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1816 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817 sizeof(struct uffdio_writeprotect)))
1820 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1821 uffdio_wp.range.len);
1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826 UFFDIO_WRITEPROTECT_MODE_WP))
1829 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1832 if (mode_wp && mode_dontwake)
1835 if (mmget_not_zero(ctx->mm)) {
1836 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1837 uffdio_wp.range.len, mode_wp,
1838 &ctx->mmap_changing);
1847 if (!mode_wp && !mode_dontwake) {
1848 range.start = uffdio_wp.range.start;
1849 range.len = uffdio_wp.range.len;
1850 wake_userfault(ctx, &range);
1855 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1858 struct uffdio_continue uffdio_continue;
1859 struct uffdio_continue __user *user_uffdio_continue;
1860 struct userfaultfd_wake_range range;
1862 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1865 if (atomic_read(&ctx->mmap_changing))
1869 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1870 /* don't copy the output fields */
1871 sizeof(uffdio_continue) - (sizeof(__s64))))
1874 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1875 uffdio_continue.range.len);
1880 /* double check for wraparound just in case. */
1881 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1882 uffdio_continue.range.start) {
1885 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1888 if (mmget_not_zero(ctx->mm)) {
1889 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1890 uffdio_continue.range.len,
1891 &ctx->mmap_changing);
1897 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1902 /* len == 0 would wake all */
1905 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1906 range.start = uffdio_continue.range.start;
1907 wake_userfault(ctx, &range);
1909 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1915 static inline unsigned int uffd_ctx_features(__u64 user_features)
1918 * For the current set of features the bits just coincide. Set
1919 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1921 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1925 * userland asks for a certain API version and we return which bits
1926 * and ioctl commands are implemented in this kernel for such API
1927 * version or -EINVAL if unknown.
1929 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1932 struct uffdio_api uffdio_api;
1933 void __user *buf = (void __user *)arg;
1934 unsigned int ctx_features;
1939 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1941 features = uffdio_api.features;
1943 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1946 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1948 /* report all available features and ioctls to userland */
1949 uffdio_api.features = UFFD_API_FEATURES;
1950 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1951 uffdio_api.features &=
1952 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1954 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1955 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1957 uffdio_api.ioctls = UFFD_API_IOCTLS;
1959 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1962 /* only enable the requested features for this uffd context */
1963 ctx_features = uffd_ctx_features(features);
1965 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1972 memset(&uffdio_api, 0, sizeof(uffdio_api));
1973 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1978 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1982 struct userfaultfd_ctx *ctx = file->private_data;
1984 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1989 ret = userfaultfd_api(ctx, arg);
1991 case UFFDIO_REGISTER:
1992 ret = userfaultfd_register(ctx, arg);
1994 case UFFDIO_UNREGISTER:
1995 ret = userfaultfd_unregister(ctx, arg);
1998 ret = userfaultfd_wake(ctx, arg);
2001 ret = userfaultfd_copy(ctx, arg);
2003 case UFFDIO_ZEROPAGE:
2004 ret = userfaultfd_zeropage(ctx, arg);
2006 case UFFDIO_WRITEPROTECT:
2007 ret = userfaultfd_writeprotect(ctx, arg);
2009 case UFFDIO_CONTINUE:
2010 ret = userfaultfd_continue(ctx, arg);
2016 #ifdef CONFIG_PROC_FS
2017 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2019 struct userfaultfd_ctx *ctx = f->private_data;
2020 wait_queue_entry_t *wq;
2021 unsigned long pending = 0, total = 0;
2023 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2024 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2028 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2031 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2034 * If more protocols will be added, there will be all shown
2035 * separated by a space. Like this:
2036 * protocols: aa:... bb:...
2038 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2039 pending, total, UFFD_API, ctx->features,
2040 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2044 static const struct file_operations userfaultfd_fops = {
2045 #ifdef CONFIG_PROC_FS
2046 .show_fdinfo = userfaultfd_show_fdinfo,
2048 .release = userfaultfd_release,
2049 .poll = userfaultfd_poll,
2050 .read = userfaultfd_read,
2051 .unlocked_ioctl = userfaultfd_ioctl,
2052 .compat_ioctl = compat_ptr_ioctl,
2053 .llseek = noop_llseek,
2056 static void init_once_userfaultfd_ctx(void *mem)
2058 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2060 init_waitqueue_head(&ctx->fault_pending_wqh);
2061 init_waitqueue_head(&ctx->fault_wqh);
2062 init_waitqueue_head(&ctx->event_wqh);
2063 init_waitqueue_head(&ctx->fd_wqh);
2064 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2067 SYSCALL_DEFINE1(userfaultfd, int, flags)
2069 struct userfaultfd_ctx *ctx;
2072 if (!sysctl_unprivileged_userfaultfd &&
2073 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2074 !capable(CAP_SYS_PTRACE)) {
2075 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2076 "sysctl knob to 1 if kernel faults must be handled "
2077 "without obtaining CAP_SYS_PTRACE capability\n");
2081 BUG_ON(!current->mm);
2083 /* Check the UFFD_* constants for consistency. */
2084 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2085 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2086 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2088 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2091 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2095 refcount_set(&ctx->refcount, 1);
2098 ctx->released = false;
2099 atomic_set(&ctx->mmap_changing, 0);
2100 ctx->mm = current->mm;
2101 /* prevent the mm struct to be freed */
2104 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2105 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2108 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2113 static int __init userfaultfd_init(void)
2115 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2116 sizeof(struct userfaultfd_ctx),
2118 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2119 init_once_userfaultfd_ctx);
2122 __initcall(userfaultfd_init);