ntfs: Correct mark_ntfs_record_dirty() folio conversion
[platform/kernel/linux-starfive.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 int sysctl_unprivileged_userfaultfd __read_mostly;
34
35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
36
37 /*
38  * Start with fault_pending_wqh and fault_wqh so they're more likely
39  * to be in the same cacheline.
40  *
41  * Locking order:
42  *      fd_wqh.lock
43  *              fault_pending_wqh.lock
44  *                      fault_wqh.lock
45  *              event_wqh.lock
46  *
47  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
48  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
49  * also taken in IRQ context.
50  */
51 struct userfaultfd_ctx {
52         /* waitqueue head for the pending (i.e. not read) userfaults */
53         wait_queue_head_t fault_pending_wqh;
54         /* waitqueue head for the userfaults */
55         wait_queue_head_t fault_wqh;
56         /* waitqueue head for the pseudo fd to wakeup poll/read */
57         wait_queue_head_t fd_wqh;
58         /* waitqueue head for events */
59         wait_queue_head_t event_wqh;
60         /* a refile sequence protected by fault_pending_wqh lock */
61         seqcount_spinlock_t refile_seq;
62         /* pseudo fd refcounting */
63         refcount_t refcount;
64         /* userfaultfd syscall flags */
65         unsigned int flags;
66         /* features requested from the userspace */
67         unsigned int features;
68         /* released */
69         bool released;
70         /* memory mappings are changing because of non-cooperative event */
71         atomic_t mmap_changing;
72         /* mm with one ore more vmas attached to this userfaultfd_ctx */
73         struct mm_struct *mm;
74 };
75
76 struct userfaultfd_fork_ctx {
77         struct userfaultfd_ctx *orig;
78         struct userfaultfd_ctx *new;
79         struct list_head list;
80 };
81
82 struct userfaultfd_unmap_ctx {
83         struct userfaultfd_ctx *ctx;
84         unsigned long start;
85         unsigned long end;
86         struct list_head list;
87 };
88
89 struct userfaultfd_wait_queue {
90         struct uffd_msg msg;
91         wait_queue_entry_t wq;
92         struct userfaultfd_ctx *ctx;
93         bool waken;
94 };
95
96 struct userfaultfd_wake_range {
97         unsigned long start;
98         unsigned long len;
99 };
100
101 /* internal indication that UFFD_API ioctl was successfully executed */
102 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
103
104 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
105 {
106         return ctx->features & UFFD_FEATURE_INITIALIZED;
107 }
108
109 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
110                                      int wake_flags, void *key)
111 {
112         struct userfaultfd_wake_range *range = key;
113         int ret;
114         struct userfaultfd_wait_queue *uwq;
115         unsigned long start, len;
116
117         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
118         ret = 0;
119         /* len == 0 means wake all */
120         start = range->start;
121         len = range->len;
122         if (len && (start > uwq->msg.arg.pagefault.address ||
123                     start + len <= uwq->msg.arg.pagefault.address))
124                 goto out;
125         WRITE_ONCE(uwq->waken, true);
126         /*
127          * The Program-Order guarantees provided by the scheduler
128          * ensure uwq->waken is visible before the task is woken.
129          */
130         ret = wake_up_state(wq->private, mode);
131         if (ret) {
132                 /*
133                  * Wake only once, autoremove behavior.
134                  *
135                  * After the effect of list_del_init is visible to the other
136                  * CPUs, the waitqueue may disappear from under us, see the
137                  * !list_empty_careful() in handle_userfault().
138                  *
139                  * try_to_wake_up() has an implicit smp_mb(), and the
140                  * wq->private is read before calling the extern function
141                  * "wake_up_state" (which in turns calls try_to_wake_up).
142                  */
143                 list_del_init(&wq->entry);
144         }
145 out:
146         return ret;
147 }
148
149 /**
150  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
151  * context.
152  * @ctx: [in] Pointer to the userfaultfd context.
153  */
154 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
155 {
156         refcount_inc(&ctx->refcount);
157 }
158
159 /**
160  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
161  * context.
162  * @ctx: [in] Pointer to userfaultfd context.
163  *
164  * The userfaultfd context reference must have been previously acquired either
165  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
166  */
167 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
168 {
169         if (refcount_dec_and_test(&ctx->refcount)) {
170                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
171                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
172                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
173                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
174                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
175                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
176                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
177                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
178                 mmdrop(ctx->mm);
179                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
180         }
181 }
182
183 static inline void msg_init(struct uffd_msg *msg)
184 {
185         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
186         /*
187          * Must use memset to zero out the paddings or kernel data is
188          * leaked to userland.
189          */
190         memset(msg, 0, sizeof(struct uffd_msg));
191 }
192
193 static inline struct uffd_msg userfault_msg(unsigned long address,
194                                             unsigned int flags,
195                                             unsigned long reason,
196                                             unsigned int features)
197 {
198         struct uffd_msg msg;
199         msg_init(&msg);
200         msg.event = UFFD_EVENT_PAGEFAULT;
201
202         if (!(features & UFFD_FEATURE_EXACT_ADDRESS))
203                 address &= PAGE_MASK;
204         msg.arg.pagefault.address = address;
205         /*
206          * These flags indicate why the userfault occurred:
207          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209          * - Neither of these flags being set indicates a MISSING fault.
210          *
211          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212          * fault. Otherwise, it was a read fault.
213          */
214         if (flags & FAULT_FLAG_WRITE)
215                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
216         if (reason & VM_UFFD_WP)
217                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218         if (reason & VM_UFFD_MINOR)
219                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
220         if (features & UFFD_FEATURE_THREAD_ID)
221                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
222         return msg;
223 }
224
225 #ifdef CONFIG_HUGETLB_PAGE
226 /*
227  * Same functionality as userfaultfd_must_wait below with modifications for
228  * hugepmd ranges.
229  */
230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
231                                          struct vm_area_struct *vma,
232                                          unsigned long address,
233                                          unsigned long flags,
234                                          unsigned long reason)
235 {
236         struct mm_struct *mm = ctx->mm;
237         pte_t *ptep, pte;
238         bool ret = true;
239
240         mmap_assert_locked(mm);
241
242         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
243
244         if (!ptep)
245                 goto out;
246
247         ret = false;
248         pte = huge_ptep_get(ptep);
249
250         /*
251          * Lockless access: we're in a wait_event so it's ok if it
252          * changes under us.
253          */
254         if (huge_pte_none(pte))
255                 ret = true;
256         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
257                 ret = true;
258 out:
259         return ret;
260 }
261 #else
262 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
263                                          struct vm_area_struct *vma,
264                                          unsigned long address,
265                                          unsigned long flags,
266                                          unsigned long reason)
267 {
268         return false;   /* should never get here */
269 }
270 #endif /* CONFIG_HUGETLB_PAGE */
271
272 /*
273  * Verify the pagetables are still not ok after having reigstered into
274  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
275  * userfault that has already been resolved, if userfaultfd_read and
276  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
277  * threads.
278  */
279 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
280                                          unsigned long address,
281                                          unsigned long flags,
282                                          unsigned long reason)
283 {
284         struct mm_struct *mm = ctx->mm;
285         pgd_t *pgd;
286         p4d_t *p4d;
287         pud_t *pud;
288         pmd_t *pmd, _pmd;
289         pte_t *pte;
290         bool ret = true;
291
292         mmap_assert_locked(mm);
293
294         pgd = pgd_offset(mm, address);
295         if (!pgd_present(*pgd))
296                 goto out;
297         p4d = p4d_offset(pgd, address);
298         if (!p4d_present(*p4d))
299                 goto out;
300         pud = pud_offset(p4d, address);
301         if (!pud_present(*pud))
302                 goto out;
303         pmd = pmd_offset(pud, address);
304         /*
305          * READ_ONCE must function as a barrier with narrower scope
306          * and it must be equivalent to:
307          *      _pmd = *pmd; barrier();
308          *
309          * This is to deal with the instability (as in
310          * pmd_trans_unstable) of the pmd.
311          */
312         _pmd = READ_ONCE(*pmd);
313         if (pmd_none(_pmd))
314                 goto out;
315
316         ret = false;
317         if (!pmd_present(_pmd))
318                 goto out;
319
320         if (pmd_trans_huge(_pmd)) {
321                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
322                         ret = true;
323                 goto out;
324         }
325
326         /*
327          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
328          * and use the standard pte_offset_map() instead of parsing _pmd.
329          */
330         pte = pte_offset_map(pmd, address);
331         /*
332          * Lockless access: we're in a wait_event so it's ok if it
333          * changes under us.
334          */
335         if (pte_none(*pte))
336                 ret = true;
337         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
338                 ret = true;
339         pte_unmap(pte);
340
341 out:
342         return ret;
343 }
344
345 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
346 {
347         if (flags & FAULT_FLAG_INTERRUPTIBLE)
348                 return TASK_INTERRUPTIBLE;
349
350         if (flags & FAULT_FLAG_KILLABLE)
351                 return TASK_KILLABLE;
352
353         return TASK_UNINTERRUPTIBLE;
354 }
355
356 /*
357  * The locking rules involved in returning VM_FAULT_RETRY depending on
358  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
359  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
360  * recommendation in __lock_page_or_retry is not an understatement.
361  *
362  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
363  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
364  * not set.
365  *
366  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
367  * set, VM_FAULT_RETRY can still be returned if and only if there are
368  * fatal_signal_pending()s, and the mmap_lock must be released before
369  * returning it.
370  */
371 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
372 {
373         struct mm_struct *mm = vmf->vma->vm_mm;
374         struct userfaultfd_ctx *ctx;
375         struct userfaultfd_wait_queue uwq;
376         vm_fault_t ret = VM_FAULT_SIGBUS;
377         bool must_wait;
378         unsigned int blocking_state;
379
380         /*
381          * We don't do userfault handling for the final child pid update.
382          *
383          * We also don't do userfault handling during
384          * coredumping. hugetlbfs has the special
385          * follow_hugetlb_page() to skip missing pages in the
386          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
387          * the no_page_table() helper in follow_page_mask(), but the
388          * shmem_vm_ops->fault method is invoked even during
389          * coredumping without mmap_lock and it ends up here.
390          */
391         if (current->flags & (PF_EXITING|PF_DUMPCORE))
392                 goto out;
393
394         /*
395          * Coredumping runs without mmap_lock so we can only check that
396          * the mmap_lock is held, if PF_DUMPCORE was not set.
397          */
398         mmap_assert_locked(mm);
399
400         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
401         if (!ctx)
402                 goto out;
403
404         BUG_ON(ctx->mm != mm);
405
406         /* Any unrecognized flag is a bug. */
407         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
408         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
409         VM_BUG_ON(!reason || (reason & (reason - 1)));
410
411         if (ctx->features & UFFD_FEATURE_SIGBUS)
412                 goto out;
413         if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
414             ctx->flags & UFFD_USER_MODE_ONLY) {
415                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
416                         "sysctl knob to 1 if kernel faults must be handled "
417                         "without obtaining CAP_SYS_PTRACE capability\n");
418                 goto out;
419         }
420
421         /*
422          * If it's already released don't get it. This avoids to loop
423          * in __get_user_pages if userfaultfd_release waits on the
424          * caller of handle_userfault to release the mmap_lock.
425          */
426         if (unlikely(READ_ONCE(ctx->released))) {
427                 /*
428                  * Don't return VM_FAULT_SIGBUS in this case, so a non
429                  * cooperative manager can close the uffd after the
430                  * last UFFDIO_COPY, without risking to trigger an
431                  * involuntary SIGBUS if the process was starting the
432                  * userfaultfd while the userfaultfd was still armed
433                  * (but after the last UFFDIO_COPY). If the uffd
434                  * wasn't already closed when the userfault reached
435                  * this point, that would normally be solved by
436                  * userfaultfd_must_wait returning 'false'.
437                  *
438                  * If we were to return VM_FAULT_SIGBUS here, the non
439                  * cooperative manager would be instead forced to
440                  * always call UFFDIO_UNREGISTER before it can safely
441                  * close the uffd.
442                  */
443                 ret = VM_FAULT_NOPAGE;
444                 goto out;
445         }
446
447         /*
448          * Check that we can return VM_FAULT_RETRY.
449          *
450          * NOTE: it should become possible to return VM_FAULT_RETRY
451          * even if FAULT_FLAG_TRIED is set without leading to gup()
452          * -EBUSY failures, if the userfaultfd is to be extended for
453          * VM_UFFD_WP tracking and we intend to arm the userfault
454          * without first stopping userland access to the memory. For
455          * VM_UFFD_MISSING userfaults this is enough for now.
456          */
457         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
458                 /*
459                  * Validate the invariant that nowait must allow retry
460                  * to be sure not to return SIGBUS erroneously on
461                  * nowait invocations.
462                  */
463                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
464 #ifdef CONFIG_DEBUG_VM
465                 if (printk_ratelimit()) {
466                         printk(KERN_WARNING
467                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
468                                vmf->flags);
469                         dump_stack();
470                 }
471 #endif
472                 goto out;
473         }
474
475         /*
476          * Handle nowait, not much to do other than tell it to retry
477          * and wait.
478          */
479         ret = VM_FAULT_RETRY;
480         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
481                 goto out;
482
483         /* take the reference before dropping the mmap_lock */
484         userfaultfd_ctx_get(ctx);
485
486         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
487         uwq.wq.private = current;
488         uwq.msg = userfault_msg(vmf->real_address, vmf->flags, reason,
489                         ctx->features);
490         uwq.ctx = ctx;
491         uwq.waken = false;
492
493         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
494
495         spin_lock_irq(&ctx->fault_pending_wqh.lock);
496         /*
497          * After the __add_wait_queue the uwq is visible to userland
498          * through poll/read().
499          */
500         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
501         /*
502          * The smp_mb() after __set_current_state prevents the reads
503          * following the spin_unlock to happen before the list_add in
504          * __add_wait_queue.
505          */
506         set_current_state(blocking_state);
507         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
508
509         if (!is_vm_hugetlb_page(vmf->vma))
510                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
511                                                   reason);
512         else
513                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
514                                                        vmf->address,
515                                                        vmf->flags, reason);
516         mmap_read_unlock(mm);
517
518         if (likely(must_wait && !READ_ONCE(ctx->released))) {
519                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
520                 schedule();
521         }
522
523         __set_current_state(TASK_RUNNING);
524
525         /*
526          * Here we race with the list_del; list_add in
527          * userfaultfd_ctx_read(), however because we don't ever run
528          * list_del_init() to refile across the two lists, the prev
529          * and next pointers will never point to self. list_add also
530          * would never let any of the two pointers to point to
531          * self. So list_empty_careful won't risk to see both pointers
532          * pointing to self at any time during the list refile. The
533          * only case where list_del_init() is called is the full
534          * removal in the wake function and there we don't re-list_add
535          * and it's fine not to block on the spinlock. The uwq on this
536          * kernel stack can be released after the list_del_init.
537          */
538         if (!list_empty_careful(&uwq.wq.entry)) {
539                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
540                 /*
541                  * No need of list_del_init(), the uwq on the stack
542                  * will be freed shortly anyway.
543                  */
544                 list_del(&uwq.wq.entry);
545                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
546         }
547
548         /*
549          * ctx may go away after this if the userfault pseudo fd is
550          * already released.
551          */
552         userfaultfd_ctx_put(ctx);
553
554 out:
555         return ret;
556 }
557
558 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
559                                               struct userfaultfd_wait_queue *ewq)
560 {
561         struct userfaultfd_ctx *release_new_ctx;
562
563         if (WARN_ON_ONCE(current->flags & PF_EXITING))
564                 goto out;
565
566         ewq->ctx = ctx;
567         init_waitqueue_entry(&ewq->wq, current);
568         release_new_ctx = NULL;
569
570         spin_lock_irq(&ctx->event_wqh.lock);
571         /*
572          * After the __add_wait_queue the uwq is visible to userland
573          * through poll/read().
574          */
575         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
576         for (;;) {
577                 set_current_state(TASK_KILLABLE);
578                 if (ewq->msg.event == 0)
579                         break;
580                 if (READ_ONCE(ctx->released) ||
581                     fatal_signal_pending(current)) {
582                         /*
583                          * &ewq->wq may be queued in fork_event, but
584                          * __remove_wait_queue ignores the head
585                          * parameter. It would be a problem if it
586                          * didn't.
587                          */
588                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
589                         if (ewq->msg.event == UFFD_EVENT_FORK) {
590                                 struct userfaultfd_ctx *new;
591
592                                 new = (struct userfaultfd_ctx *)
593                                         (unsigned long)
594                                         ewq->msg.arg.reserved.reserved1;
595                                 release_new_ctx = new;
596                         }
597                         break;
598                 }
599
600                 spin_unlock_irq(&ctx->event_wqh.lock);
601
602                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
603                 schedule();
604
605                 spin_lock_irq(&ctx->event_wqh.lock);
606         }
607         __set_current_state(TASK_RUNNING);
608         spin_unlock_irq(&ctx->event_wqh.lock);
609
610         if (release_new_ctx) {
611                 struct vm_area_struct *vma;
612                 struct mm_struct *mm = release_new_ctx->mm;
613
614                 /* the various vma->vm_userfaultfd_ctx still points to it */
615                 mmap_write_lock(mm);
616                 for (vma = mm->mmap; vma; vma = vma->vm_next)
617                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
618                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
619                                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
620                         }
621                 mmap_write_unlock(mm);
622
623                 userfaultfd_ctx_put(release_new_ctx);
624         }
625
626         /*
627          * ctx may go away after this if the userfault pseudo fd is
628          * already released.
629          */
630 out:
631         atomic_dec(&ctx->mmap_changing);
632         VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
633         userfaultfd_ctx_put(ctx);
634 }
635
636 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
637                                        struct userfaultfd_wait_queue *ewq)
638 {
639         ewq->msg.event = 0;
640         wake_up_locked(&ctx->event_wqh);
641         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
642 }
643
644 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
645 {
646         struct userfaultfd_ctx *ctx = NULL, *octx;
647         struct userfaultfd_fork_ctx *fctx;
648
649         octx = vma->vm_userfaultfd_ctx.ctx;
650         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
651                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
652                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
653                 return 0;
654         }
655
656         list_for_each_entry(fctx, fcs, list)
657                 if (fctx->orig == octx) {
658                         ctx = fctx->new;
659                         break;
660                 }
661
662         if (!ctx) {
663                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
664                 if (!fctx)
665                         return -ENOMEM;
666
667                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
668                 if (!ctx) {
669                         kfree(fctx);
670                         return -ENOMEM;
671                 }
672
673                 refcount_set(&ctx->refcount, 1);
674                 ctx->flags = octx->flags;
675                 ctx->features = octx->features;
676                 ctx->released = false;
677                 atomic_set(&ctx->mmap_changing, 0);
678                 ctx->mm = vma->vm_mm;
679                 mmgrab(ctx->mm);
680
681                 userfaultfd_ctx_get(octx);
682                 atomic_inc(&octx->mmap_changing);
683                 fctx->orig = octx;
684                 fctx->new = ctx;
685                 list_add_tail(&fctx->list, fcs);
686         }
687
688         vma->vm_userfaultfd_ctx.ctx = ctx;
689         return 0;
690 }
691
692 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
693 {
694         struct userfaultfd_ctx *ctx = fctx->orig;
695         struct userfaultfd_wait_queue ewq;
696
697         msg_init(&ewq.msg);
698
699         ewq.msg.event = UFFD_EVENT_FORK;
700         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
701
702         userfaultfd_event_wait_completion(ctx, &ewq);
703 }
704
705 void dup_userfaultfd_complete(struct list_head *fcs)
706 {
707         struct userfaultfd_fork_ctx *fctx, *n;
708
709         list_for_each_entry_safe(fctx, n, fcs, list) {
710                 dup_fctx(fctx);
711                 list_del(&fctx->list);
712                 kfree(fctx);
713         }
714 }
715
716 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
717                              struct vm_userfaultfd_ctx *vm_ctx)
718 {
719         struct userfaultfd_ctx *ctx;
720
721         ctx = vma->vm_userfaultfd_ctx.ctx;
722
723         if (!ctx)
724                 return;
725
726         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
727                 vm_ctx->ctx = ctx;
728                 userfaultfd_ctx_get(ctx);
729                 atomic_inc(&ctx->mmap_changing);
730         } else {
731                 /* Drop uffd context if remap feature not enabled */
732                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
733                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
734         }
735 }
736
737 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
738                                  unsigned long from, unsigned long to,
739                                  unsigned long len)
740 {
741         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
742         struct userfaultfd_wait_queue ewq;
743
744         if (!ctx)
745                 return;
746
747         if (to & ~PAGE_MASK) {
748                 userfaultfd_ctx_put(ctx);
749                 return;
750         }
751
752         msg_init(&ewq.msg);
753
754         ewq.msg.event = UFFD_EVENT_REMAP;
755         ewq.msg.arg.remap.from = from;
756         ewq.msg.arg.remap.to = to;
757         ewq.msg.arg.remap.len = len;
758
759         userfaultfd_event_wait_completion(ctx, &ewq);
760 }
761
762 bool userfaultfd_remove(struct vm_area_struct *vma,
763                         unsigned long start, unsigned long end)
764 {
765         struct mm_struct *mm = vma->vm_mm;
766         struct userfaultfd_ctx *ctx;
767         struct userfaultfd_wait_queue ewq;
768
769         ctx = vma->vm_userfaultfd_ctx.ctx;
770         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
771                 return true;
772
773         userfaultfd_ctx_get(ctx);
774         atomic_inc(&ctx->mmap_changing);
775         mmap_read_unlock(mm);
776
777         msg_init(&ewq.msg);
778
779         ewq.msg.event = UFFD_EVENT_REMOVE;
780         ewq.msg.arg.remove.start = start;
781         ewq.msg.arg.remove.end = end;
782
783         userfaultfd_event_wait_completion(ctx, &ewq);
784
785         return false;
786 }
787
788 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
789                           unsigned long start, unsigned long end)
790 {
791         struct userfaultfd_unmap_ctx *unmap_ctx;
792
793         list_for_each_entry(unmap_ctx, unmaps, list)
794                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
795                     unmap_ctx->end == end)
796                         return true;
797
798         return false;
799 }
800
801 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
802                            unsigned long start, unsigned long end,
803                            struct list_head *unmaps)
804 {
805         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
806                 struct userfaultfd_unmap_ctx *unmap_ctx;
807                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
808
809                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
810                     has_unmap_ctx(ctx, unmaps, start, end))
811                         continue;
812
813                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
814                 if (!unmap_ctx)
815                         return -ENOMEM;
816
817                 userfaultfd_ctx_get(ctx);
818                 atomic_inc(&ctx->mmap_changing);
819                 unmap_ctx->ctx = ctx;
820                 unmap_ctx->start = start;
821                 unmap_ctx->end = end;
822                 list_add_tail(&unmap_ctx->list, unmaps);
823         }
824
825         return 0;
826 }
827
828 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
829 {
830         struct userfaultfd_unmap_ctx *ctx, *n;
831         struct userfaultfd_wait_queue ewq;
832
833         list_for_each_entry_safe(ctx, n, uf, list) {
834                 msg_init(&ewq.msg);
835
836                 ewq.msg.event = UFFD_EVENT_UNMAP;
837                 ewq.msg.arg.remove.start = ctx->start;
838                 ewq.msg.arg.remove.end = ctx->end;
839
840                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
841
842                 list_del(&ctx->list);
843                 kfree(ctx);
844         }
845 }
846
847 static int userfaultfd_release(struct inode *inode, struct file *file)
848 {
849         struct userfaultfd_ctx *ctx = file->private_data;
850         struct mm_struct *mm = ctx->mm;
851         struct vm_area_struct *vma, *prev;
852         /* len == 0 means wake all */
853         struct userfaultfd_wake_range range = { .len = 0, };
854         unsigned long new_flags;
855
856         WRITE_ONCE(ctx->released, true);
857
858         if (!mmget_not_zero(mm))
859                 goto wakeup;
860
861         /*
862          * Flush page faults out of all CPUs. NOTE: all page faults
863          * must be retried without returning VM_FAULT_SIGBUS if
864          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
865          * changes while handle_userfault released the mmap_lock. So
866          * it's critical that released is set to true (above), before
867          * taking the mmap_lock for writing.
868          */
869         mmap_write_lock(mm);
870         prev = NULL;
871         for (vma = mm->mmap; vma; vma = vma->vm_next) {
872                 cond_resched();
873                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
874                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
875                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
876                         prev = vma;
877                         continue;
878                 }
879                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
880                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
881                                  new_flags, vma->anon_vma,
882                                  vma->vm_file, vma->vm_pgoff,
883                                  vma_policy(vma),
884                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
885                 if (prev)
886                         vma = prev;
887                 else
888                         prev = vma;
889                 vma->vm_flags = new_flags;
890                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
891         }
892         mmap_write_unlock(mm);
893         mmput(mm);
894 wakeup:
895         /*
896          * After no new page faults can wait on this fault_*wqh, flush
897          * the last page faults that may have been already waiting on
898          * the fault_*wqh.
899          */
900         spin_lock_irq(&ctx->fault_pending_wqh.lock);
901         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
902         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
903         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
904
905         /* Flush pending events that may still wait on event_wqh */
906         wake_up_all(&ctx->event_wqh);
907
908         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
909         userfaultfd_ctx_put(ctx);
910         return 0;
911 }
912
913 /* fault_pending_wqh.lock must be hold by the caller */
914 static inline struct userfaultfd_wait_queue *find_userfault_in(
915                 wait_queue_head_t *wqh)
916 {
917         wait_queue_entry_t *wq;
918         struct userfaultfd_wait_queue *uwq;
919
920         lockdep_assert_held(&wqh->lock);
921
922         uwq = NULL;
923         if (!waitqueue_active(wqh))
924                 goto out;
925         /* walk in reverse to provide FIFO behavior to read userfaults */
926         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
927         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
928 out:
929         return uwq;
930 }
931
932 static inline struct userfaultfd_wait_queue *find_userfault(
933                 struct userfaultfd_ctx *ctx)
934 {
935         return find_userfault_in(&ctx->fault_pending_wqh);
936 }
937
938 static inline struct userfaultfd_wait_queue *find_userfault_evt(
939                 struct userfaultfd_ctx *ctx)
940 {
941         return find_userfault_in(&ctx->event_wqh);
942 }
943
944 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
945 {
946         struct userfaultfd_ctx *ctx = file->private_data;
947         __poll_t ret;
948
949         poll_wait(file, &ctx->fd_wqh, wait);
950
951         if (!userfaultfd_is_initialized(ctx))
952                 return EPOLLERR;
953
954         /*
955          * poll() never guarantees that read won't block.
956          * userfaults can be waken before they're read().
957          */
958         if (unlikely(!(file->f_flags & O_NONBLOCK)))
959                 return EPOLLERR;
960         /*
961          * lockless access to see if there are pending faults
962          * __pollwait last action is the add_wait_queue but
963          * the spin_unlock would allow the waitqueue_active to
964          * pass above the actual list_add inside
965          * add_wait_queue critical section. So use a full
966          * memory barrier to serialize the list_add write of
967          * add_wait_queue() with the waitqueue_active read
968          * below.
969          */
970         ret = 0;
971         smp_mb();
972         if (waitqueue_active(&ctx->fault_pending_wqh))
973                 ret = EPOLLIN;
974         else if (waitqueue_active(&ctx->event_wqh))
975                 ret = EPOLLIN;
976
977         return ret;
978 }
979
980 static const struct file_operations userfaultfd_fops;
981
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983                                   struct inode *inode,
984                                   struct uffd_msg *msg)
985 {
986         int fd;
987
988         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989                         O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
990         if (fd < 0)
991                 return fd;
992
993         msg->arg.reserved.reserved1 = 0;
994         msg->arg.fork.ufd = fd;
995         return 0;
996 }
997
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999                                     struct uffd_msg *msg, struct inode *inode)
1000 {
1001         ssize_t ret;
1002         DECLARE_WAITQUEUE(wait, current);
1003         struct userfaultfd_wait_queue *uwq;
1004         /*
1005          * Handling fork event requires sleeping operations, so
1006          * we drop the event_wqh lock, then do these ops, then
1007          * lock it back and wake up the waiter. While the lock is
1008          * dropped the ewq may go away so we keep track of it
1009          * carefully.
1010          */
1011         LIST_HEAD(fork_event);
1012         struct userfaultfd_ctx *fork_nctx = NULL;
1013
1014         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1015         spin_lock_irq(&ctx->fd_wqh.lock);
1016         __add_wait_queue(&ctx->fd_wqh, &wait);
1017         for (;;) {
1018                 set_current_state(TASK_INTERRUPTIBLE);
1019                 spin_lock(&ctx->fault_pending_wqh.lock);
1020                 uwq = find_userfault(ctx);
1021                 if (uwq) {
1022                         /*
1023                          * Use a seqcount to repeat the lockless check
1024                          * in wake_userfault() to avoid missing
1025                          * wakeups because during the refile both
1026                          * waitqueue could become empty if this is the
1027                          * only userfault.
1028                          */
1029                         write_seqcount_begin(&ctx->refile_seq);
1030
1031                         /*
1032                          * The fault_pending_wqh.lock prevents the uwq
1033                          * to disappear from under us.
1034                          *
1035                          * Refile this userfault from
1036                          * fault_pending_wqh to fault_wqh, it's not
1037                          * pending anymore after we read it.
1038                          *
1039                          * Use list_del() by hand (as
1040                          * userfaultfd_wake_function also uses
1041                          * list_del_init() by hand) to be sure nobody
1042                          * changes __remove_wait_queue() to use
1043                          * list_del_init() in turn breaking the
1044                          * !list_empty_careful() check in
1045                          * handle_userfault(). The uwq->wq.head list
1046                          * must never be empty at any time during the
1047                          * refile, or the waitqueue could disappear
1048                          * from under us. The "wait_queue_head_t"
1049                          * parameter of __remove_wait_queue() is unused
1050                          * anyway.
1051                          */
1052                         list_del(&uwq->wq.entry);
1053                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1054
1055                         write_seqcount_end(&ctx->refile_seq);
1056
1057                         /* careful to always initialize msg if ret == 0 */
1058                         *msg = uwq->msg;
1059                         spin_unlock(&ctx->fault_pending_wqh.lock);
1060                         ret = 0;
1061                         break;
1062                 }
1063                 spin_unlock(&ctx->fault_pending_wqh.lock);
1064
1065                 spin_lock(&ctx->event_wqh.lock);
1066                 uwq = find_userfault_evt(ctx);
1067                 if (uwq) {
1068                         *msg = uwq->msg;
1069
1070                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1071                                 fork_nctx = (struct userfaultfd_ctx *)
1072                                         (unsigned long)
1073                                         uwq->msg.arg.reserved.reserved1;
1074                                 list_move(&uwq->wq.entry, &fork_event);
1075                                 /*
1076                                  * fork_nctx can be freed as soon as
1077                                  * we drop the lock, unless we take a
1078                                  * reference on it.
1079                                  */
1080                                 userfaultfd_ctx_get(fork_nctx);
1081                                 spin_unlock(&ctx->event_wqh.lock);
1082                                 ret = 0;
1083                                 break;
1084                         }
1085
1086                         userfaultfd_event_complete(ctx, uwq);
1087                         spin_unlock(&ctx->event_wqh.lock);
1088                         ret = 0;
1089                         break;
1090                 }
1091                 spin_unlock(&ctx->event_wqh.lock);
1092
1093                 if (signal_pending(current)) {
1094                         ret = -ERESTARTSYS;
1095                         break;
1096                 }
1097                 if (no_wait) {
1098                         ret = -EAGAIN;
1099                         break;
1100                 }
1101                 spin_unlock_irq(&ctx->fd_wqh.lock);
1102                 schedule();
1103                 spin_lock_irq(&ctx->fd_wqh.lock);
1104         }
1105         __remove_wait_queue(&ctx->fd_wqh, &wait);
1106         __set_current_state(TASK_RUNNING);
1107         spin_unlock_irq(&ctx->fd_wqh.lock);
1108
1109         if (!ret && msg->event == UFFD_EVENT_FORK) {
1110                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111                 spin_lock_irq(&ctx->event_wqh.lock);
1112                 if (!list_empty(&fork_event)) {
1113                         /*
1114                          * The fork thread didn't abort, so we can
1115                          * drop the temporary refcount.
1116                          */
1117                         userfaultfd_ctx_put(fork_nctx);
1118
1119                         uwq = list_first_entry(&fork_event,
1120                                                typeof(*uwq),
1121                                                wq.entry);
1122                         /*
1123                          * If fork_event list wasn't empty and in turn
1124                          * the event wasn't already released by fork
1125                          * (the event is allocated on fork kernel
1126                          * stack), put the event back to its place in
1127                          * the event_wq. fork_event head will be freed
1128                          * as soon as we return so the event cannot
1129                          * stay queued there no matter the current
1130                          * "ret" value.
1131                          */
1132                         list_del(&uwq->wq.entry);
1133                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1134
1135                         /*
1136                          * Leave the event in the waitqueue and report
1137                          * error to userland if we failed to resolve
1138                          * the userfault fork.
1139                          */
1140                         if (likely(!ret))
1141                                 userfaultfd_event_complete(ctx, uwq);
1142                 } else {
1143                         /*
1144                          * Here the fork thread aborted and the
1145                          * refcount from the fork thread on fork_nctx
1146                          * has already been released. We still hold
1147                          * the reference we took before releasing the
1148                          * lock above. If resolve_userfault_fork
1149                          * failed we've to drop it because the
1150                          * fork_nctx has to be freed in such case. If
1151                          * it succeeded we'll hold it because the new
1152                          * uffd references it.
1153                          */
1154                         if (ret)
1155                                 userfaultfd_ctx_put(fork_nctx);
1156                 }
1157                 spin_unlock_irq(&ctx->event_wqh.lock);
1158         }
1159
1160         return ret;
1161 }
1162
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164                                 size_t count, loff_t *ppos)
1165 {
1166         struct userfaultfd_ctx *ctx = file->private_data;
1167         ssize_t _ret, ret = 0;
1168         struct uffd_msg msg;
1169         int no_wait = file->f_flags & O_NONBLOCK;
1170         struct inode *inode = file_inode(file);
1171
1172         if (!userfaultfd_is_initialized(ctx))
1173                 return -EINVAL;
1174
1175         for (;;) {
1176                 if (count < sizeof(msg))
1177                         return ret ? ret : -EINVAL;
1178                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1179                 if (_ret < 0)
1180                         return ret ? ret : _ret;
1181                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182                         return ret ? ret : -EFAULT;
1183                 ret += sizeof(msg);
1184                 buf += sizeof(msg);
1185                 count -= sizeof(msg);
1186                 /*
1187                  * Allow to read more than one fault at time but only
1188                  * block if waiting for the very first one.
1189                  */
1190                 no_wait = O_NONBLOCK;
1191         }
1192 }
1193
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195                              struct userfaultfd_wake_range *range)
1196 {
1197         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198         /* wake all in the range and autoremove */
1199         if (waitqueue_active(&ctx->fault_pending_wqh))
1200                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1201                                      range);
1202         if (waitqueue_active(&ctx->fault_wqh))
1203                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1205 }
1206
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208                                            struct userfaultfd_wake_range *range)
1209 {
1210         unsigned seq;
1211         bool need_wakeup;
1212
1213         /*
1214          * To be sure waitqueue_active() is not reordered by the CPU
1215          * before the pagetable update, use an explicit SMP memory
1216          * barrier here. PT lock release or mmap_read_unlock(mm) still
1217          * have release semantics that can allow the
1218          * waitqueue_active() to be reordered before the pte update.
1219          */
1220         smp_mb();
1221
1222         /*
1223          * Use waitqueue_active because it's very frequent to
1224          * change the address space atomically even if there are no
1225          * userfaults yet. So we take the spinlock only when we're
1226          * sure we've userfaults to wake.
1227          */
1228         do {
1229                 seq = read_seqcount_begin(&ctx->refile_seq);
1230                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231                         waitqueue_active(&ctx->fault_wqh);
1232                 cond_resched();
1233         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1234         if (need_wakeup)
1235                 __wake_userfault(ctx, range);
1236 }
1237
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239                                           __u64 start, __u64 len)
1240 {
1241         __u64 task_size = mm->task_size;
1242
1243         if (start & ~PAGE_MASK)
1244                 return -EINVAL;
1245         if (len & ~PAGE_MASK)
1246                 return -EINVAL;
1247         if (!len)
1248                 return -EINVAL;
1249         if (start < mmap_min_addr)
1250                 return -EINVAL;
1251         if (start >= task_size)
1252                 return -EINVAL;
1253         if (len > task_size - start)
1254                 return -EINVAL;
1255         return 0;
1256 }
1257
1258 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259                                      unsigned long vm_flags)
1260 {
1261         /* FIXME: add WP support to hugetlbfs and shmem */
1262         if (vm_flags & VM_UFFD_WP) {
1263                 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1264                         return false;
1265         }
1266
1267         if (vm_flags & VM_UFFD_MINOR) {
1268                 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1269                         return false;
1270         }
1271
1272         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1273                vma_is_shmem(vma);
1274 }
1275
1276 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1277                                 unsigned long arg)
1278 {
1279         struct mm_struct *mm = ctx->mm;
1280         struct vm_area_struct *vma, *prev, *cur;
1281         int ret;
1282         struct uffdio_register uffdio_register;
1283         struct uffdio_register __user *user_uffdio_register;
1284         unsigned long vm_flags, new_flags;
1285         bool found;
1286         bool basic_ioctls;
1287         unsigned long start, end, vma_end;
1288
1289         user_uffdio_register = (struct uffdio_register __user *) arg;
1290
1291         ret = -EFAULT;
1292         if (copy_from_user(&uffdio_register, user_uffdio_register,
1293                            sizeof(uffdio_register)-sizeof(__u64)))
1294                 goto out;
1295
1296         ret = -EINVAL;
1297         if (!uffdio_register.mode)
1298                 goto out;
1299         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1300                 goto out;
1301         vm_flags = 0;
1302         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303                 vm_flags |= VM_UFFD_MISSING;
1304         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1306                 goto out;
1307 #endif
1308                 vm_flags |= VM_UFFD_WP;
1309         }
1310         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1311 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1312                 goto out;
1313 #endif
1314                 vm_flags |= VM_UFFD_MINOR;
1315         }
1316
1317         ret = validate_range(mm, uffdio_register.range.start,
1318                              uffdio_register.range.len);
1319         if (ret)
1320                 goto out;
1321
1322         start = uffdio_register.range.start;
1323         end = start + uffdio_register.range.len;
1324
1325         ret = -ENOMEM;
1326         if (!mmget_not_zero(mm))
1327                 goto out;
1328
1329         mmap_write_lock(mm);
1330         vma = find_vma_prev(mm, start, &prev);
1331         if (!vma)
1332                 goto out_unlock;
1333
1334         /* check that there's at least one vma in the range */
1335         ret = -EINVAL;
1336         if (vma->vm_start >= end)
1337                 goto out_unlock;
1338
1339         /*
1340          * If the first vma contains huge pages, make sure start address
1341          * is aligned to huge page size.
1342          */
1343         if (is_vm_hugetlb_page(vma)) {
1344                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1345
1346                 if (start & (vma_hpagesize - 1))
1347                         goto out_unlock;
1348         }
1349
1350         /*
1351          * Search for not compatible vmas.
1352          */
1353         found = false;
1354         basic_ioctls = false;
1355         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1356                 cond_resched();
1357
1358                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1359                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1360
1361                 /* check not compatible vmas */
1362                 ret = -EINVAL;
1363                 if (!vma_can_userfault(cur, vm_flags))
1364                         goto out_unlock;
1365
1366                 /*
1367                  * UFFDIO_COPY will fill file holes even without
1368                  * PROT_WRITE. This check enforces that if this is a
1369                  * MAP_SHARED, the process has write permission to the backing
1370                  * file. If VM_MAYWRITE is set it also enforces that on a
1371                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1373                  */
1374                 ret = -EPERM;
1375                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1376                         goto out_unlock;
1377
1378                 /*
1379                  * If this vma contains ending address, and huge pages
1380                  * check alignment.
1381                  */
1382                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383                     end > cur->vm_start) {
1384                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1385
1386                         ret = -EINVAL;
1387
1388                         if (end & (vma_hpagesize - 1))
1389                                 goto out_unlock;
1390                 }
1391                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1392                         goto out_unlock;
1393
1394                 /*
1395                  * Check that this vma isn't already owned by a
1396                  * different userfaultfd. We can't allow more than one
1397                  * userfaultfd to own a single vma simultaneously or we
1398                  * wouldn't know which one to deliver the userfaults to.
1399                  */
1400                 ret = -EBUSY;
1401                 if (cur->vm_userfaultfd_ctx.ctx &&
1402                     cur->vm_userfaultfd_ctx.ctx != ctx)
1403                         goto out_unlock;
1404
1405                 /*
1406                  * Note vmas containing huge pages
1407                  */
1408                 if (is_vm_hugetlb_page(cur))
1409                         basic_ioctls = true;
1410
1411                 found = true;
1412         }
1413         BUG_ON(!found);
1414
1415         if (vma->vm_start < start)
1416                 prev = vma;
1417
1418         ret = 0;
1419         do {
1420                 cond_resched();
1421
1422                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1423                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1424                        vma->vm_userfaultfd_ctx.ctx != ctx);
1425                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1426
1427                 /*
1428                  * Nothing to do: this vma is already registered into this
1429                  * userfaultfd and with the right tracking mode too.
1430                  */
1431                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1432                     (vma->vm_flags & vm_flags) == vm_flags)
1433                         goto skip;
1434
1435                 if (vma->vm_start > start)
1436                         start = vma->vm_start;
1437                 vma_end = min(end, vma->vm_end);
1438
1439                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1440                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1441                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1442                                  vma_policy(vma),
1443                                  ((struct vm_userfaultfd_ctx){ ctx }),
1444                                  anon_vma_name(vma));
1445                 if (prev) {
1446                         vma = prev;
1447                         goto next;
1448                 }
1449                 if (vma->vm_start < start) {
1450                         ret = split_vma(mm, vma, start, 1);
1451                         if (ret)
1452                                 break;
1453                 }
1454                 if (vma->vm_end > end) {
1455                         ret = split_vma(mm, vma, end, 0);
1456                         if (ret)
1457                                 break;
1458                 }
1459         next:
1460                 /*
1461                  * In the vma_merge() successful mprotect-like case 8:
1462                  * the next vma was merged into the current one and
1463                  * the current one has not been updated yet.
1464                  */
1465                 vma->vm_flags = new_flags;
1466                 vma->vm_userfaultfd_ctx.ctx = ctx;
1467
1468                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1469                         hugetlb_unshare_all_pmds(vma);
1470
1471         skip:
1472                 prev = vma;
1473                 start = vma->vm_end;
1474                 vma = vma->vm_next;
1475         } while (vma && vma->vm_start < end);
1476 out_unlock:
1477         mmap_write_unlock(mm);
1478         mmput(mm);
1479         if (!ret) {
1480                 __u64 ioctls_out;
1481
1482                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1483                     UFFD_API_RANGE_IOCTLS;
1484
1485                 /*
1486                  * Declare the WP ioctl only if the WP mode is
1487                  * specified and all checks passed with the range
1488                  */
1489                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1490                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1491
1492                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1493                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1494                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1495
1496                 /*
1497                  * Now that we scanned all vmas we can already tell
1498                  * userland which ioctls methods are guaranteed to
1499                  * succeed on this range.
1500                  */
1501                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1502                         ret = -EFAULT;
1503         }
1504 out:
1505         return ret;
1506 }
1507
1508 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1509                                   unsigned long arg)
1510 {
1511         struct mm_struct *mm = ctx->mm;
1512         struct vm_area_struct *vma, *prev, *cur;
1513         int ret;
1514         struct uffdio_range uffdio_unregister;
1515         unsigned long new_flags;
1516         bool found;
1517         unsigned long start, end, vma_end;
1518         const void __user *buf = (void __user *)arg;
1519
1520         ret = -EFAULT;
1521         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1522                 goto out;
1523
1524         ret = validate_range(mm, uffdio_unregister.start,
1525                              uffdio_unregister.len);
1526         if (ret)
1527                 goto out;
1528
1529         start = uffdio_unregister.start;
1530         end = start + uffdio_unregister.len;
1531
1532         ret = -ENOMEM;
1533         if (!mmget_not_zero(mm))
1534                 goto out;
1535
1536         mmap_write_lock(mm);
1537         vma = find_vma_prev(mm, start, &prev);
1538         if (!vma)
1539                 goto out_unlock;
1540
1541         /* check that there's at least one vma in the range */
1542         ret = -EINVAL;
1543         if (vma->vm_start >= end)
1544                 goto out_unlock;
1545
1546         /*
1547          * If the first vma contains huge pages, make sure start address
1548          * is aligned to huge page size.
1549          */
1550         if (is_vm_hugetlb_page(vma)) {
1551                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1552
1553                 if (start & (vma_hpagesize - 1))
1554                         goto out_unlock;
1555         }
1556
1557         /*
1558          * Search for not compatible vmas.
1559          */
1560         found = false;
1561         ret = -EINVAL;
1562         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1563                 cond_resched();
1564
1565                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1566                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1567
1568                 /*
1569                  * Check not compatible vmas, not strictly required
1570                  * here as not compatible vmas cannot have an
1571                  * userfaultfd_ctx registered on them, but this
1572                  * provides for more strict behavior to notice
1573                  * unregistration errors.
1574                  */
1575                 if (!vma_can_userfault(cur, cur->vm_flags))
1576                         goto out_unlock;
1577
1578                 found = true;
1579         }
1580         BUG_ON(!found);
1581
1582         if (vma->vm_start < start)
1583                 prev = vma;
1584
1585         ret = 0;
1586         do {
1587                 cond_resched();
1588
1589                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1590
1591                 /*
1592                  * Nothing to do: this vma is already registered into this
1593                  * userfaultfd and with the right tracking mode too.
1594                  */
1595                 if (!vma->vm_userfaultfd_ctx.ctx)
1596                         goto skip;
1597
1598                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1599
1600                 if (vma->vm_start > start)
1601                         start = vma->vm_start;
1602                 vma_end = min(end, vma->vm_end);
1603
1604                 if (userfaultfd_missing(vma)) {
1605                         /*
1606                          * Wake any concurrent pending userfault while
1607                          * we unregister, so they will not hang
1608                          * permanently and it avoids userland to call
1609                          * UFFDIO_WAKE explicitly.
1610                          */
1611                         struct userfaultfd_wake_range range;
1612                         range.start = start;
1613                         range.len = vma_end - start;
1614                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1615                 }
1616
1617                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1618                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1619                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1620                                  vma_policy(vma),
1621                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
1622                 if (prev) {
1623                         vma = prev;
1624                         goto next;
1625                 }
1626                 if (vma->vm_start < start) {
1627                         ret = split_vma(mm, vma, start, 1);
1628                         if (ret)
1629                                 break;
1630                 }
1631                 if (vma->vm_end > end) {
1632                         ret = split_vma(mm, vma, end, 0);
1633                         if (ret)
1634                                 break;
1635                 }
1636         next:
1637                 /*
1638                  * In the vma_merge() successful mprotect-like case 8:
1639                  * the next vma was merged into the current one and
1640                  * the current one has not been updated yet.
1641                  */
1642                 vma->vm_flags = new_flags;
1643                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1644
1645         skip:
1646                 prev = vma;
1647                 start = vma->vm_end;
1648                 vma = vma->vm_next;
1649         } while (vma && vma->vm_start < end);
1650 out_unlock:
1651         mmap_write_unlock(mm);
1652         mmput(mm);
1653 out:
1654         return ret;
1655 }
1656
1657 /*
1658  * userfaultfd_wake may be used in combination with the
1659  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1660  */
1661 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1662                             unsigned long arg)
1663 {
1664         int ret;
1665         struct uffdio_range uffdio_wake;
1666         struct userfaultfd_wake_range range;
1667         const void __user *buf = (void __user *)arg;
1668
1669         ret = -EFAULT;
1670         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1671                 goto out;
1672
1673         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1674         if (ret)
1675                 goto out;
1676
1677         range.start = uffdio_wake.start;
1678         range.len = uffdio_wake.len;
1679
1680         /*
1681          * len == 0 means wake all and we don't want to wake all here,
1682          * so check it again to be sure.
1683          */
1684         VM_BUG_ON(!range.len);
1685
1686         wake_userfault(ctx, &range);
1687         ret = 0;
1688
1689 out:
1690         return ret;
1691 }
1692
1693 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1694                             unsigned long arg)
1695 {
1696         __s64 ret;
1697         struct uffdio_copy uffdio_copy;
1698         struct uffdio_copy __user *user_uffdio_copy;
1699         struct userfaultfd_wake_range range;
1700
1701         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1702
1703         ret = -EAGAIN;
1704         if (atomic_read(&ctx->mmap_changing))
1705                 goto out;
1706
1707         ret = -EFAULT;
1708         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1709                            /* don't copy "copy" last field */
1710                            sizeof(uffdio_copy)-sizeof(__s64)))
1711                 goto out;
1712
1713         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1714         if (ret)
1715                 goto out;
1716         /*
1717          * double check for wraparound just in case. copy_from_user()
1718          * will later check uffdio_copy.src + uffdio_copy.len to fit
1719          * in the userland range.
1720          */
1721         ret = -EINVAL;
1722         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1723                 goto out;
1724         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1725                 goto out;
1726         if (mmget_not_zero(ctx->mm)) {
1727                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1728                                    uffdio_copy.len, &ctx->mmap_changing,
1729                                    uffdio_copy.mode);
1730                 mmput(ctx->mm);
1731         } else {
1732                 return -ESRCH;
1733         }
1734         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1735                 return -EFAULT;
1736         if (ret < 0)
1737                 goto out;
1738         BUG_ON(!ret);
1739         /* len == 0 would wake all */
1740         range.len = ret;
1741         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1742                 range.start = uffdio_copy.dst;
1743                 wake_userfault(ctx, &range);
1744         }
1745         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1746 out:
1747         return ret;
1748 }
1749
1750 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1751                                 unsigned long arg)
1752 {
1753         __s64 ret;
1754         struct uffdio_zeropage uffdio_zeropage;
1755         struct uffdio_zeropage __user *user_uffdio_zeropage;
1756         struct userfaultfd_wake_range range;
1757
1758         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1759
1760         ret = -EAGAIN;
1761         if (atomic_read(&ctx->mmap_changing))
1762                 goto out;
1763
1764         ret = -EFAULT;
1765         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1766                            /* don't copy "zeropage" last field */
1767                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1768                 goto out;
1769
1770         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1771                              uffdio_zeropage.range.len);
1772         if (ret)
1773                 goto out;
1774         ret = -EINVAL;
1775         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1776                 goto out;
1777
1778         if (mmget_not_zero(ctx->mm)) {
1779                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1780                                      uffdio_zeropage.range.len,
1781                                      &ctx->mmap_changing);
1782                 mmput(ctx->mm);
1783         } else {
1784                 return -ESRCH;
1785         }
1786         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787                 return -EFAULT;
1788         if (ret < 0)
1789                 goto out;
1790         /* len == 0 would wake all */
1791         BUG_ON(!ret);
1792         range.len = ret;
1793         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794                 range.start = uffdio_zeropage.range.start;
1795                 wake_userfault(ctx, &range);
1796         }
1797         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798 out:
1799         return ret;
1800 }
1801
1802 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1803                                     unsigned long arg)
1804 {
1805         int ret;
1806         struct uffdio_writeprotect uffdio_wp;
1807         struct uffdio_writeprotect __user *user_uffdio_wp;
1808         struct userfaultfd_wake_range range;
1809         bool mode_wp, mode_dontwake;
1810
1811         if (atomic_read(&ctx->mmap_changing))
1812                 return -EAGAIN;
1813
1814         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1815
1816         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817                            sizeof(struct uffdio_writeprotect)))
1818                 return -EFAULT;
1819
1820         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1821                              uffdio_wp.range.len);
1822         if (ret)
1823                 return ret;
1824
1825         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826                                UFFDIO_WRITEPROTECT_MODE_WP))
1827                 return -EINVAL;
1828
1829         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1831
1832         if (mode_wp && mode_dontwake)
1833                 return -EINVAL;
1834
1835         if (mmget_not_zero(ctx->mm)) {
1836                 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1837                                           uffdio_wp.range.len, mode_wp,
1838                                           &ctx->mmap_changing);
1839                 mmput(ctx->mm);
1840         } else {
1841                 return -ESRCH;
1842         }
1843
1844         if (ret)
1845                 return ret;
1846
1847         if (!mode_wp && !mode_dontwake) {
1848                 range.start = uffdio_wp.range.start;
1849                 range.len = uffdio_wp.range.len;
1850                 wake_userfault(ctx, &range);
1851         }
1852         return ret;
1853 }
1854
1855 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1856 {
1857         __s64 ret;
1858         struct uffdio_continue uffdio_continue;
1859         struct uffdio_continue __user *user_uffdio_continue;
1860         struct userfaultfd_wake_range range;
1861
1862         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1863
1864         ret = -EAGAIN;
1865         if (atomic_read(&ctx->mmap_changing))
1866                 goto out;
1867
1868         ret = -EFAULT;
1869         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1870                            /* don't copy the output fields */
1871                            sizeof(uffdio_continue) - (sizeof(__s64))))
1872                 goto out;
1873
1874         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1875                              uffdio_continue.range.len);
1876         if (ret)
1877                 goto out;
1878
1879         ret = -EINVAL;
1880         /* double check for wraparound just in case. */
1881         if (uffdio_continue.range.start + uffdio_continue.range.len <=
1882             uffdio_continue.range.start) {
1883                 goto out;
1884         }
1885         if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1886                 goto out;
1887
1888         if (mmget_not_zero(ctx->mm)) {
1889                 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1890                                      uffdio_continue.range.len,
1891                                      &ctx->mmap_changing);
1892                 mmput(ctx->mm);
1893         } else {
1894                 return -ESRCH;
1895         }
1896
1897         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1898                 return -EFAULT;
1899         if (ret < 0)
1900                 goto out;
1901
1902         /* len == 0 would wake all */
1903         BUG_ON(!ret);
1904         range.len = ret;
1905         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1906                 range.start = uffdio_continue.range.start;
1907                 wake_userfault(ctx, &range);
1908         }
1909         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1910
1911 out:
1912         return ret;
1913 }
1914
1915 static inline unsigned int uffd_ctx_features(__u64 user_features)
1916 {
1917         /*
1918          * For the current set of features the bits just coincide. Set
1919          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1920          */
1921         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1922 }
1923
1924 /*
1925  * userland asks for a certain API version and we return which bits
1926  * and ioctl commands are implemented in this kernel for such API
1927  * version or -EINVAL if unknown.
1928  */
1929 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1930                            unsigned long arg)
1931 {
1932         struct uffdio_api uffdio_api;
1933         void __user *buf = (void __user *)arg;
1934         unsigned int ctx_features;
1935         int ret;
1936         __u64 features;
1937
1938         ret = -EFAULT;
1939         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1940                 goto out;
1941         features = uffdio_api.features;
1942         ret = -EINVAL;
1943         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1944                 goto err_out;
1945         ret = -EPERM;
1946         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1947                 goto err_out;
1948         /* report all available features and ioctls to userland */
1949         uffdio_api.features = UFFD_API_FEATURES;
1950 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1951         uffdio_api.features &=
1952                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1953 #endif
1954 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1955         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1956 #endif
1957         uffdio_api.ioctls = UFFD_API_IOCTLS;
1958         ret = -EFAULT;
1959         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1960                 goto out;
1961
1962         /* only enable the requested features for this uffd context */
1963         ctx_features = uffd_ctx_features(features);
1964         ret = -EINVAL;
1965         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1966                 goto err_out;
1967
1968         ret = 0;
1969 out:
1970         return ret;
1971 err_out:
1972         memset(&uffdio_api, 0, sizeof(uffdio_api));
1973         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1974                 ret = -EFAULT;
1975         goto out;
1976 }
1977
1978 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1979                               unsigned long arg)
1980 {
1981         int ret = -EINVAL;
1982         struct userfaultfd_ctx *ctx = file->private_data;
1983
1984         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1985                 return -EINVAL;
1986
1987         switch(cmd) {
1988         case UFFDIO_API:
1989                 ret = userfaultfd_api(ctx, arg);
1990                 break;
1991         case UFFDIO_REGISTER:
1992                 ret = userfaultfd_register(ctx, arg);
1993                 break;
1994         case UFFDIO_UNREGISTER:
1995                 ret = userfaultfd_unregister(ctx, arg);
1996                 break;
1997         case UFFDIO_WAKE:
1998                 ret = userfaultfd_wake(ctx, arg);
1999                 break;
2000         case UFFDIO_COPY:
2001                 ret = userfaultfd_copy(ctx, arg);
2002                 break;
2003         case UFFDIO_ZEROPAGE:
2004                 ret = userfaultfd_zeropage(ctx, arg);
2005                 break;
2006         case UFFDIO_WRITEPROTECT:
2007                 ret = userfaultfd_writeprotect(ctx, arg);
2008                 break;
2009         case UFFDIO_CONTINUE:
2010                 ret = userfaultfd_continue(ctx, arg);
2011                 break;
2012         }
2013         return ret;
2014 }
2015
2016 #ifdef CONFIG_PROC_FS
2017 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2018 {
2019         struct userfaultfd_ctx *ctx = f->private_data;
2020         wait_queue_entry_t *wq;
2021         unsigned long pending = 0, total = 0;
2022
2023         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2024         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2025                 pending++;
2026                 total++;
2027         }
2028         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2029                 total++;
2030         }
2031         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2032
2033         /*
2034          * If more protocols will be added, there will be all shown
2035          * separated by a space. Like this:
2036          *      protocols: aa:... bb:...
2037          */
2038         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2039                    pending, total, UFFD_API, ctx->features,
2040                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2041 }
2042 #endif
2043
2044 static const struct file_operations userfaultfd_fops = {
2045 #ifdef CONFIG_PROC_FS
2046         .show_fdinfo    = userfaultfd_show_fdinfo,
2047 #endif
2048         .release        = userfaultfd_release,
2049         .poll           = userfaultfd_poll,
2050         .read           = userfaultfd_read,
2051         .unlocked_ioctl = userfaultfd_ioctl,
2052         .compat_ioctl   = compat_ptr_ioctl,
2053         .llseek         = noop_llseek,
2054 };
2055
2056 static void init_once_userfaultfd_ctx(void *mem)
2057 {
2058         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2059
2060         init_waitqueue_head(&ctx->fault_pending_wqh);
2061         init_waitqueue_head(&ctx->fault_wqh);
2062         init_waitqueue_head(&ctx->event_wqh);
2063         init_waitqueue_head(&ctx->fd_wqh);
2064         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2065 }
2066
2067 SYSCALL_DEFINE1(userfaultfd, int, flags)
2068 {
2069         struct userfaultfd_ctx *ctx;
2070         int fd;
2071
2072         if (!sysctl_unprivileged_userfaultfd &&
2073             (flags & UFFD_USER_MODE_ONLY) == 0 &&
2074             !capable(CAP_SYS_PTRACE)) {
2075                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2076                         "sysctl knob to 1 if kernel faults must be handled "
2077                         "without obtaining CAP_SYS_PTRACE capability\n");
2078                 return -EPERM;
2079         }
2080
2081         BUG_ON(!current->mm);
2082
2083         /* Check the UFFD_* constants for consistency.  */
2084         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2085         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2086         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2087
2088         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2089                 return -EINVAL;
2090
2091         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2092         if (!ctx)
2093                 return -ENOMEM;
2094
2095         refcount_set(&ctx->refcount, 1);
2096         ctx->flags = flags;
2097         ctx->features = 0;
2098         ctx->released = false;
2099         atomic_set(&ctx->mmap_changing, 0);
2100         ctx->mm = current->mm;
2101         /* prevent the mm struct to be freed */
2102         mmgrab(ctx->mm);
2103
2104         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2105                         O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2106         if (fd < 0) {
2107                 mmdrop(ctx->mm);
2108                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2109         }
2110         return fd;
2111 }
2112
2113 static int __init userfaultfd_init(void)
2114 {
2115         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2116                                                 sizeof(struct userfaultfd_ctx),
2117                                                 0,
2118                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2119                                                 init_once_userfaultfd_ctx);
2120         return 0;
2121 }
2122 __initcall(userfaultfd_init);