1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
35 int sysctl_unprivileged_userfaultfd __read_mostly;
37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
40 * Start with fault_pending_wqh and fault_wqh so they're more likely
41 * to be in the same cacheline.
45 * fault_pending_wqh.lock
49 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
50 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
51 * also taken in IRQ context.
53 struct userfaultfd_ctx {
54 /* waitqueue head for the pending (i.e. not read) userfaults */
55 wait_queue_head_t fault_pending_wqh;
56 /* waitqueue head for the userfaults */
57 wait_queue_head_t fault_wqh;
58 /* waitqueue head for the pseudo fd to wakeup poll/read */
59 wait_queue_head_t fd_wqh;
60 /* waitqueue head for events */
61 wait_queue_head_t event_wqh;
62 /* a refile sequence protected by fault_pending_wqh lock */
63 seqcount_spinlock_t refile_seq;
64 /* pseudo fd refcounting */
66 /* userfaultfd syscall flags */
68 /* features requested from the userspace */
69 unsigned int features;
72 /* memory mappings are changing because of non-cooperative event */
73 atomic_t mmap_changing;
74 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct userfaultfd_fork_ctx {
79 struct userfaultfd_ctx *orig;
80 struct userfaultfd_ctx *new;
81 struct list_head list;
84 struct userfaultfd_unmap_ctx {
85 struct userfaultfd_ctx *ctx;
88 struct list_head list;
91 struct userfaultfd_wait_queue {
93 wait_queue_entry_t wq;
94 struct userfaultfd_ctx *ctx;
98 struct userfaultfd_wake_range {
103 /* internal indication that UFFD_API ioctl was successfully executed */
104 #define UFFD_FEATURE_INITIALIZED (1u << 31)
106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
108 return ctx->features & UFFD_FEATURE_INITIALIZED;
111 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
112 int wake_flags, void *key)
114 struct userfaultfd_wake_range *range = key;
116 struct userfaultfd_wait_queue *uwq;
117 unsigned long start, len;
119 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
121 /* len == 0 means wake all */
122 start = range->start;
124 if (len && (start > uwq->msg.arg.pagefault.address ||
125 start + len <= uwq->msg.arg.pagefault.address))
127 WRITE_ONCE(uwq->waken, true);
129 * The Program-Order guarantees provided by the scheduler
130 * ensure uwq->waken is visible before the task is woken.
132 ret = wake_up_state(wq->private, mode);
135 * Wake only once, autoremove behavior.
137 * After the effect of list_del_init is visible to the other
138 * CPUs, the waitqueue may disappear from under us, see the
139 * !list_empty_careful() in handle_userfault().
141 * try_to_wake_up() has an implicit smp_mb(), and the
142 * wq->private is read before calling the extern function
143 * "wake_up_state" (which in turns calls try_to_wake_up).
145 list_del_init(&wq->entry);
152 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
154 * @ctx: [in] Pointer to the userfaultfd context.
156 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
158 refcount_inc(&ctx->refcount);
162 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
164 * @ctx: [in] Pointer to userfaultfd context.
166 * The userfaultfd context reference must have been previously acquired either
167 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
169 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
171 if (refcount_dec_and_test(&ctx->refcount)) {
172 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
176 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
177 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
178 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
179 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
181 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
185 static inline void msg_init(struct uffd_msg *msg)
187 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
189 * Must use memset to zero out the paddings or kernel data is
190 * leaked to userland.
192 memset(msg, 0, sizeof(struct uffd_msg));
195 static inline struct uffd_msg userfault_msg(unsigned long address,
196 unsigned long real_address,
198 unsigned long reason,
199 unsigned int features)
204 msg.event = UFFD_EVENT_PAGEFAULT;
206 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
207 real_address : address;
210 * These flags indicate why the userfault occurred:
211 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
212 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
213 * - Neither of these flags being set indicates a MISSING fault.
215 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
216 * fault. Otherwise, it was a read fault.
218 if (flags & FAULT_FLAG_WRITE)
219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
220 if (reason & VM_UFFD_WP)
221 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
222 if (reason & VM_UFFD_MINOR)
223 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
224 if (features & UFFD_FEATURE_THREAD_ID)
225 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
229 #ifdef CONFIG_HUGETLB_PAGE
231 * Same functionality as userfaultfd_must_wait below with modifications for
234 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
235 struct vm_area_struct *vma,
236 unsigned long address,
238 unsigned long reason)
240 struct mm_struct *mm = ctx->mm;
244 mmap_assert_locked(mm);
246 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
252 pte = huge_ptep_get(ptep);
255 * Lockless access: we're in a wait_event so it's ok if it
256 * changes under us. PTE markers should be handled the same as none
259 if (huge_pte_none_mostly(pte))
261 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
267 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
268 struct vm_area_struct *vma,
269 unsigned long address,
271 unsigned long reason)
273 return false; /* should never get here */
275 #endif /* CONFIG_HUGETLB_PAGE */
278 * Verify the pagetables are still not ok after having reigstered into
279 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
280 * userfault that has already been resolved, if userfaultfd_read and
281 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
284 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
285 unsigned long address,
287 unsigned long reason)
289 struct mm_struct *mm = ctx->mm;
297 mmap_assert_locked(mm);
299 pgd = pgd_offset(mm, address);
300 if (!pgd_present(*pgd))
302 p4d = p4d_offset(pgd, address);
303 if (!p4d_present(*p4d))
305 pud = pud_offset(p4d, address);
306 if (!pud_present(*pud))
308 pmd = pmd_offset(pud, address);
310 * READ_ONCE must function as a barrier with narrower scope
311 * and it must be equivalent to:
312 * _pmd = *pmd; barrier();
314 * This is to deal with the instability (as in
315 * pmd_trans_unstable) of the pmd.
317 _pmd = READ_ONCE(*pmd);
322 if (!pmd_present(_pmd))
325 if (pmd_trans_huge(_pmd)) {
326 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
332 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
333 * and use the standard pte_offset_map() instead of parsing _pmd.
335 pte = pte_offset_map(pmd, address);
337 * Lockless access: we're in a wait_event so it's ok if it
338 * changes under us. PTE markers should be handled the same as none
341 if (pte_none_mostly(*pte))
343 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
353 if (flags & FAULT_FLAG_INTERRUPTIBLE)
354 return TASK_INTERRUPTIBLE;
356 if (flags & FAULT_FLAG_KILLABLE)
357 return TASK_KILLABLE;
359 return TASK_UNINTERRUPTIBLE;
363 * The locking rules involved in returning VM_FAULT_RETRY depending on
364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366 * recommendation in __lock_page_or_retry is not an understatement.
368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373 * set, VM_FAULT_RETRY can still be returned if and only if there are
374 * fatal_signal_pending()s, and the mmap_lock must be released before
377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
379 struct mm_struct *mm = vmf->vma->vm_mm;
380 struct userfaultfd_ctx *ctx;
381 struct userfaultfd_wait_queue uwq;
382 vm_fault_t ret = VM_FAULT_SIGBUS;
384 unsigned int blocking_state;
387 * We don't do userfault handling for the final child pid update.
389 * We also don't do userfault handling during
390 * coredumping. hugetlbfs has the special
391 * follow_hugetlb_page() to skip missing pages in the
392 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
393 * the no_page_table() helper in follow_page_mask(), but the
394 * shmem_vm_ops->fault method is invoked even during
395 * coredumping without mmap_lock and it ends up here.
397 if (current->flags & (PF_EXITING|PF_DUMPCORE))
401 * Coredumping runs without mmap_lock so we can only check that
402 * the mmap_lock is held, if PF_DUMPCORE was not set.
404 mmap_assert_locked(mm);
406 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
410 BUG_ON(ctx->mm != mm);
412 /* Any unrecognized flag is a bug. */
413 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
414 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
415 VM_BUG_ON(!reason || (reason & (reason - 1)));
417 if (ctx->features & UFFD_FEATURE_SIGBUS)
419 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
423 * If it's already released don't get it. This avoids to loop
424 * in __get_user_pages if userfaultfd_release waits on the
425 * caller of handle_userfault to release the mmap_lock.
427 if (unlikely(READ_ONCE(ctx->released))) {
429 * Don't return VM_FAULT_SIGBUS in this case, so a non
430 * cooperative manager can close the uffd after the
431 * last UFFDIO_COPY, without risking to trigger an
432 * involuntary SIGBUS if the process was starting the
433 * userfaultfd while the userfaultfd was still armed
434 * (but after the last UFFDIO_COPY). If the uffd
435 * wasn't already closed when the userfault reached
436 * this point, that would normally be solved by
437 * userfaultfd_must_wait returning 'false'.
439 * If we were to return VM_FAULT_SIGBUS here, the non
440 * cooperative manager would be instead forced to
441 * always call UFFDIO_UNREGISTER before it can safely
444 ret = VM_FAULT_NOPAGE;
449 * Check that we can return VM_FAULT_RETRY.
451 * NOTE: it should become possible to return VM_FAULT_RETRY
452 * even if FAULT_FLAG_TRIED is set without leading to gup()
453 * -EBUSY failures, if the userfaultfd is to be extended for
454 * VM_UFFD_WP tracking and we intend to arm the userfault
455 * without first stopping userland access to the memory. For
456 * VM_UFFD_MISSING userfaults this is enough for now.
458 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
460 * Validate the invariant that nowait must allow retry
461 * to be sure not to return SIGBUS erroneously on
462 * nowait invocations.
464 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
465 #ifdef CONFIG_DEBUG_VM
466 if (printk_ratelimit()) {
468 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
477 * Handle nowait, not much to do other than tell it to retry
480 ret = VM_FAULT_RETRY;
481 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
484 /* take the reference before dropping the mmap_lock */
485 userfaultfd_ctx_get(ctx);
487 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
488 uwq.wq.private = current;
489 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
490 reason, ctx->features);
494 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
496 spin_lock_irq(&ctx->fault_pending_wqh.lock);
498 * After the __add_wait_queue the uwq is visible to userland
499 * through poll/read().
501 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
503 * The smp_mb() after __set_current_state prevents the reads
504 * following the spin_unlock to happen before the list_add in
507 set_current_state(blocking_state);
508 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
510 if (!is_vm_hugetlb_page(vmf->vma))
511 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
514 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
517 mmap_read_unlock(mm);
519 if (likely(must_wait && !READ_ONCE(ctx->released))) {
520 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
524 __set_current_state(TASK_RUNNING);
527 * Here we race with the list_del; list_add in
528 * userfaultfd_ctx_read(), however because we don't ever run
529 * list_del_init() to refile across the two lists, the prev
530 * and next pointers will never point to self. list_add also
531 * would never let any of the two pointers to point to
532 * self. So list_empty_careful won't risk to see both pointers
533 * pointing to self at any time during the list refile. The
534 * only case where list_del_init() is called is the full
535 * removal in the wake function and there we don't re-list_add
536 * and it's fine not to block on the spinlock. The uwq on this
537 * kernel stack can be released after the list_del_init.
539 if (!list_empty_careful(&uwq.wq.entry)) {
540 spin_lock_irq(&ctx->fault_pending_wqh.lock);
542 * No need of list_del_init(), the uwq on the stack
543 * will be freed shortly anyway.
545 list_del(&uwq.wq.entry);
546 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
550 * ctx may go away after this if the userfault pseudo fd is
553 userfaultfd_ctx_put(ctx);
559 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
560 struct userfaultfd_wait_queue *ewq)
562 struct userfaultfd_ctx *release_new_ctx;
564 if (WARN_ON_ONCE(current->flags & PF_EXITING))
568 init_waitqueue_entry(&ewq->wq, current);
569 release_new_ctx = NULL;
571 spin_lock_irq(&ctx->event_wqh.lock);
573 * After the __add_wait_queue the uwq is visible to userland
574 * through poll/read().
576 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
578 set_current_state(TASK_KILLABLE);
579 if (ewq->msg.event == 0)
581 if (READ_ONCE(ctx->released) ||
582 fatal_signal_pending(current)) {
584 * &ewq->wq may be queued in fork_event, but
585 * __remove_wait_queue ignores the head
586 * parameter. It would be a problem if it
589 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
590 if (ewq->msg.event == UFFD_EVENT_FORK) {
591 struct userfaultfd_ctx *new;
593 new = (struct userfaultfd_ctx *)
595 ewq->msg.arg.reserved.reserved1;
596 release_new_ctx = new;
601 spin_unlock_irq(&ctx->event_wqh.lock);
603 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
606 spin_lock_irq(&ctx->event_wqh.lock);
608 __set_current_state(TASK_RUNNING);
609 spin_unlock_irq(&ctx->event_wqh.lock);
611 if (release_new_ctx) {
612 struct vm_area_struct *vma;
613 struct mm_struct *mm = release_new_ctx->mm;
614 VMA_ITERATOR(vmi, mm, 0);
616 /* the various vma->vm_userfaultfd_ctx still points to it */
618 for_each_vma(vmi, vma) {
619 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
620 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
621 vma->vm_flags &= ~__VM_UFFD_FLAGS;
624 mmap_write_unlock(mm);
626 userfaultfd_ctx_put(release_new_ctx);
630 * ctx may go away after this if the userfault pseudo fd is
634 atomic_dec(&ctx->mmap_changing);
635 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
636 userfaultfd_ctx_put(ctx);
639 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
640 struct userfaultfd_wait_queue *ewq)
643 wake_up_locked(&ctx->event_wqh);
644 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
647 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
649 struct userfaultfd_ctx *ctx = NULL, *octx;
650 struct userfaultfd_fork_ctx *fctx;
652 octx = vma->vm_userfaultfd_ctx.ctx;
653 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
654 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
655 vma->vm_flags &= ~__VM_UFFD_FLAGS;
659 list_for_each_entry(fctx, fcs, list)
660 if (fctx->orig == octx) {
666 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
670 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
676 refcount_set(&ctx->refcount, 1);
677 ctx->flags = octx->flags;
678 ctx->features = octx->features;
679 ctx->released = false;
680 atomic_set(&ctx->mmap_changing, 0);
681 ctx->mm = vma->vm_mm;
684 userfaultfd_ctx_get(octx);
685 atomic_inc(&octx->mmap_changing);
688 list_add_tail(&fctx->list, fcs);
691 vma->vm_userfaultfd_ctx.ctx = ctx;
695 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
697 struct userfaultfd_ctx *ctx = fctx->orig;
698 struct userfaultfd_wait_queue ewq;
702 ewq.msg.event = UFFD_EVENT_FORK;
703 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
705 userfaultfd_event_wait_completion(ctx, &ewq);
708 void dup_userfaultfd_complete(struct list_head *fcs)
710 struct userfaultfd_fork_ctx *fctx, *n;
712 list_for_each_entry_safe(fctx, n, fcs, list) {
714 list_del(&fctx->list);
719 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
720 struct vm_userfaultfd_ctx *vm_ctx)
722 struct userfaultfd_ctx *ctx;
724 ctx = vma->vm_userfaultfd_ctx.ctx;
729 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
731 userfaultfd_ctx_get(ctx);
732 atomic_inc(&ctx->mmap_changing);
734 /* Drop uffd context if remap feature not enabled */
735 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
736 vma->vm_flags &= ~__VM_UFFD_FLAGS;
740 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
741 unsigned long from, unsigned long to,
744 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
745 struct userfaultfd_wait_queue ewq;
750 if (to & ~PAGE_MASK) {
751 userfaultfd_ctx_put(ctx);
757 ewq.msg.event = UFFD_EVENT_REMAP;
758 ewq.msg.arg.remap.from = from;
759 ewq.msg.arg.remap.to = to;
760 ewq.msg.arg.remap.len = len;
762 userfaultfd_event_wait_completion(ctx, &ewq);
765 bool userfaultfd_remove(struct vm_area_struct *vma,
766 unsigned long start, unsigned long end)
768 struct mm_struct *mm = vma->vm_mm;
769 struct userfaultfd_ctx *ctx;
770 struct userfaultfd_wait_queue ewq;
772 ctx = vma->vm_userfaultfd_ctx.ctx;
773 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
776 userfaultfd_ctx_get(ctx);
777 atomic_inc(&ctx->mmap_changing);
778 mmap_read_unlock(mm);
782 ewq.msg.event = UFFD_EVENT_REMOVE;
783 ewq.msg.arg.remove.start = start;
784 ewq.msg.arg.remove.end = end;
786 userfaultfd_event_wait_completion(ctx, &ewq);
791 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
792 unsigned long start, unsigned long end)
794 struct userfaultfd_unmap_ctx *unmap_ctx;
796 list_for_each_entry(unmap_ctx, unmaps, list)
797 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
798 unmap_ctx->end == end)
804 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start,
805 unsigned long end, struct list_head *unmaps)
807 VMA_ITERATOR(vmi, mm, start);
808 struct vm_area_struct *vma;
810 for_each_vma_range(vmi, vma, end) {
811 struct userfaultfd_unmap_ctx *unmap_ctx;
812 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
814 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
815 has_unmap_ctx(ctx, unmaps, start, end))
818 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
822 userfaultfd_ctx_get(ctx);
823 atomic_inc(&ctx->mmap_changing);
824 unmap_ctx->ctx = ctx;
825 unmap_ctx->start = start;
826 unmap_ctx->end = end;
827 list_add_tail(&unmap_ctx->list, unmaps);
833 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
835 struct userfaultfd_unmap_ctx *ctx, *n;
836 struct userfaultfd_wait_queue ewq;
838 list_for_each_entry_safe(ctx, n, uf, list) {
841 ewq.msg.event = UFFD_EVENT_UNMAP;
842 ewq.msg.arg.remove.start = ctx->start;
843 ewq.msg.arg.remove.end = ctx->end;
845 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
847 list_del(&ctx->list);
852 static int userfaultfd_release(struct inode *inode, struct file *file)
854 struct userfaultfd_ctx *ctx = file->private_data;
855 struct mm_struct *mm = ctx->mm;
856 struct vm_area_struct *vma, *prev;
857 /* len == 0 means wake all */
858 struct userfaultfd_wake_range range = { .len = 0, };
859 unsigned long new_flags;
860 MA_STATE(mas, &mm->mm_mt, 0, 0);
862 WRITE_ONCE(ctx->released, true);
864 if (!mmget_not_zero(mm))
868 * Flush page faults out of all CPUs. NOTE: all page faults
869 * must be retried without returning VM_FAULT_SIGBUS if
870 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
871 * changes while handle_userfault released the mmap_lock. So
872 * it's critical that released is set to true (above), before
873 * taking the mmap_lock for writing.
877 mas_for_each(&mas, vma, ULONG_MAX) {
879 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
880 !!(vma->vm_flags & __VM_UFFD_FLAGS));
881 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
885 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
886 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
887 new_flags, vma->anon_vma,
888 vma->vm_file, vma->vm_pgoff,
890 NULL_VM_UFFD_CTX, anon_vma_name(vma));
898 vma->vm_flags = new_flags;
899 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
901 mmap_write_unlock(mm);
905 * After no new page faults can wait on this fault_*wqh, flush
906 * the last page faults that may have been already waiting on
909 spin_lock_irq(&ctx->fault_pending_wqh.lock);
910 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
911 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
912 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
914 /* Flush pending events that may still wait on event_wqh */
915 wake_up_all(&ctx->event_wqh);
917 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
918 userfaultfd_ctx_put(ctx);
922 /* fault_pending_wqh.lock must be hold by the caller */
923 static inline struct userfaultfd_wait_queue *find_userfault_in(
924 wait_queue_head_t *wqh)
926 wait_queue_entry_t *wq;
927 struct userfaultfd_wait_queue *uwq;
929 lockdep_assert_held(&wqh->lock);
932 if (!waitqueue_active(wqh))
934 /* walk in reverse to provide FIFO behavior to read userfaults */
935 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
936 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
941 static inline struct userfaultfd_wait_queue *find_userfault(
942 struct userfaultfd_ctx *ctx)
944 return find_userfault_in(&ctx->fault_pending_wqh);
947 static inline struct userfaultfd_wait_queue *find_userfault_evt(
948 struct userfaultfd_ctx *ctx)
950 return find_userfault_in(&ctx->event_wqh);
953 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
955 struct userfaultfd_ctx *ctx = file->private_data;
958 poll_wait(file, &ctx->fd_wqh, wait);
960 if (!userfaultfd_is_initialized(ctx))
964 * poll() never guarantees that read won't block.
965 * userfaults can be waken before they're read().
967 if (unlikely(!(file->f_flags & O_NONBLOCK)))
970 * lockless access to see if there are pending faults
971 * __pollwait last action is the add_wait_queue but
972 * the spin_unlock would allow the waitqueue_active to
973 * pass above the actual list_add inside
974 * add_wait_queue critical section. So use a full
975 * memory barrier to serialize the list_add write of
976 * add_wait_queue() with the waitqueue_active read
981 if (waitqueue_active(&ctx->fault_pending_wqh))
983 else if (waitqueue_active(&ctx->event_wqh))
989 static const struct file_operations userfaultfd_fops;
991 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
993 struct uffd_msg *msg)
997 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
998 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1002 msg->arg.reserved.reserved1 = 0;
1003 msg->arg.fork.ufd = fd;
1007 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1008 struct uffd_msg *msg, struct inode *inode)
1011 DECLARE_WAITQUEUE(wait, current);
1012 struct userfaultfd_wait_queue *uwq;
1014 * Handling fork event requires sleeping operations, so
1015 * we drop the event_wqh lock, then do these ops, then
1016 * lock it back and wake up the waiter. While the lock is
1017 * dropped the ewq may go away so we keep track of it
1020 LIST_HEAD(fork_event);
1021 struct userfaultfd_ctx *fork_nctx = NULL;
1023 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1024 spin_lock_irq(&ctx->fd_wqh.lock);
1025 __add_wait_queue(&ctx->fd_wqh, &wait);
1027 set_current_state(TASK_INTERRUPTIBLE);
1028 spin_lock(&ctx->fault_pending_wqh.lock);
1029 uwq = find_userfault(ctx);
1032 * Use a seqcount to repeat the lockless check
1033 * in wake_userfault() to avoid missing
1034 * wakeups because during the refile both
1035 * waitqueue could become empty if this is the
1038 write_seqcount_begin(&ctx->refile_seq);
1041 * The fault_pending_wqh.lock prevents the uwq
1042 * to disappear from under us.
1044 * Refile this userfault from
1045 * fault_pending_wqh to fault_wqh, it's not
1046 * pending anymore after we read it.
1048 * Use list_del() by hand (as
1049 * userfaultfd_wake_function also uses
1050 * list_del_init() by hand) to be sure nobody
1051 * changes __remove_wait_queue() to use
1052 * list_del_init() in turn breaking the
1053 * !list_empty_careful() check in
1054 * handle_userfault(). The uwq->wq.head list
1055 * must never be empty at any time during the
1056 * refile, or the waitqueue could disappear
1057 * from under us. The "wait_queue_head_t"
1058 * parameter of __remove_wait_queue() is unused
1061 list_del(&uwq->wq.entry);
1062 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1064 write_seqcount_end(&ctx->refile_seq);
1066 /* careful to always initialize msg if ret == 0 */
1068 spin_unlock(&ctx->fault_pending_wqh.lock);
1072 spin_unlock(&ctx->fault_pending_wqh.lock);
1074 spin_lock(&ctx->event_wqh.lock);
1075 uwq = find_userfault_evt(ctx);
1079 if (uwq->msg.event == UFFD_EVENT_FORK) {
1080 fork_nctx = (struct userfaultfd_ctx *)
1082 uwq->msg.arg.reserved.reserved1;
1083 list_move(&uwq->wq.entry, &fork_event);
1085 * fork_nctx can be freed as soon as
1086 * we drop the lock, unless we take a
1089 userfaultfd_ctx_get(fork_nctx);
1090 spin_unlock(&ctx->event_wqh.lock);
1095 userfaultfd_event_complete(ctx, uwq);
1096 spin_unlock(&ctx->event_wqh.lock);
1100 spin_unlock(&ctx->event_wqh.lock);
1102 if (signal_pending(current)) {
1110 spin_unlock_irq(&ctx->fd_wqh.lock);
1112 spin_lock_irq(&ctx->fd_wqh.lock);
1114 __remove_wait_queue(&ctx->fd_wqh, &wait);
1115 __set_current_state(TASK_RUNNING);
1116 spin_unlock_irq(&ctx->fd_wqh.lock);
1118 if (!ret && msg->event == UFFD_EVENT_FORK) {
1119 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1120 spin_lock_irq(&ctx->event_wqh.lock);
1121 if (!list_empty(&fork_event)) {
1123 * The fork thread didn't abort, so we can
1124 * drop the temporary refcount.
1126 userfaultfd_ctx_put(fork_nctx);
1128 uwq = list_first_entry(&fork_event,
1132 * If fork_event list wasn't empty and in turn
1133 * the event wasn't already released by fork
1134 * (the event is allocated on fork kernel
1135 * stack), put the event back to its place in
1136 * the event_wq. fork_event head will be freed
1137 * as soon as we return so the event cannot
1138 * stay queued there no matter the current
1141 list_del(&uwq->wq.entry);
1142 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1145 * Leave the event in the waitqueue and report
1146 * error to userland if we failed to resolve
1147 * the userfault fork.
1150 userfaultfd_event_complete(ctx, uwq);
1153 * Here the fork thread aborted and the
1154 * refcount from the fork thread on fork_nctx
1155 * has already been released. We still hold
1156 * the reference we took before releasing the
1157 * lock above. If resolve_userfault_fork
1158 * failed we've to drop it because the
1159 * fork_nctx has to be freed in such case. If
1160 * it succeeded we'll hold it because the new
1161 * uffd references it.
1164 userfaultfd_ctx_put(fork_nctx);
1166 spin_unlock_irq(&ctx->event_wqh.lock);
1172 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1173 size_t count, loff_t *ppos)
1175 struct userfaultfd_ctx *ctx = file->private_data;
1176 ssize_t _ret, ret = 0;
1177 struct uffd_msg msg;
1178 int no_wait = file->f_flags & O_NONBLOCK;
1179 struct inode *inode = file_inode(file);
1181 if (!userfaultfd_is_initialized(ctx))
1185 if (count < sizeof(msg))
1186 return ret ? ret : -EINVAL;
1187 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1189 return ret ? ret : _ret;
1190 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1191 return ret ? ret : -EFAULT;
1194 count -= sizeof(msg);
1196 * Allow to read more than one fault at time but only
1197 * block if waiting for the very first one.
1199 no_wait = O_NONBLOCK;
1203 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1204 struct userfaultfd_wake_range *range)
1206 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1207 /* wake all in the range and autoremove */
1208 if (waitqueue_active(&ctx->fault_pending_wqh))
1209 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1211 if (waitqueue_active(&ctx->fault_wqh))
1212 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1213 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1216 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1217 struct userfaultfd_wake_range *range)
1223 * To be sure waitqueue_active() is not reordered by the CPU
1224 * before the pagetable update, use an explicit SMP memory
1225 * barrier here. PT lock release or mmap_read_unlock(mm) still
1226 * have release semantics that can allow the
1227 * waitqueue_active() to be reordered before the pte update.
1232 * Use waitqueue_active because it's very frequent to
1233 * change the address space atomically even if there are no
1234 * userfaults yet. So we take the spinlock only when we're
1235 * sure we've userfaults to wake.
1238 seq = read_seqcount_begin(&ctx->refile_seq);
1239 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1240 waitqueue_active(&ctx->fault_wqh);
1242 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1244 __wake_userfault(ctx, range);
1247 static __always_inline int validate_range(struct mm_struct *mm,
1248 __u64 start, __u64 len)
1250 __u64 task_size = mm->task_size;
1252 if (start & ~PAGE_MASK)
1254 if (len & ~PAGE_MASK)
1258 if (start < mmap_min_addr)
1260 if (start >= task_size)
1262 if (len > task_size - start)
1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1270 struct mm_struct *mm = ctx->mm;
1271 struct vm_area_struct *vma, *prev, *cur;
1273 struct uffdio_register uffdio_register;
1274 struct uffdio_register __user *user_uffdio_register;
1275 unsigned long vm_flags, new_flags;
1278 unsigned long start, end, vma_end;
1279 MA_STATE(mas, &mm->mm_mt, 0, 0);
1281 user_uffdio_register = (struct uffdio_register __user *) arg;
1284 if (copy_from_user(&uffdio_register, user_uffdio_register,
1285 sizeof(uffdio_register)-sizeof(__u64)))
1289 if (!uffdio_register.mode)
1291 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1294 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1295 vm_flags |= VM_UFFD_MISSING;
1296 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1297 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1300 vm_flags |= VM_UFFD_WP;
1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1303 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1306 vm_flags |= VM_UFFD_MINOR;
1309 ret = validate_range(mm, uffdio_register.range.start,
1310 uffdio_register.range.len);
1314 start = uffdio_register.range.start;
1315 end = start + uffdio_register.range.len;
1318 if (!mmget_not_zero(mm))
1321 mmap_write_lock(mm);
1322 mas_set(&mas, start);
1323 vma = mas_find(&mas, ULONG_MAX);
1327 /* check that there's at least one vma in the range */
1329 if (vma->vm_start >= end)
1333 * If the first vma contains huge pages, make sure start address
1334 * is aligned to huge page size.
1336 if (is_vm_hugetlb_page(vma)) {
1337 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1339 if (start & (vma_hpagesize - 1))
1344 * Search for not compatible vmas.
1347 basic_ioctls = false;
1348 for (cur = vma; cur; cur = mas_next(&mas, end - 1)) {
1351 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1352 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1354 /* check not compatible vmas */
1356 if (!vma_can_userfault(cur, vm_flags))
1360 * UFFDIO_COPY will fill file holes even without
1361 * PROT_WRITE. This check enforces that if this is a
1362 * MAP_SHARED, the process has write permission to the backing
1363 * file. If VM_MAYWRITE is set it also enforces that on a
1364 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1365 * F_WRITE_SEAL can be taken until the vma is destroyed.
1368 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1372 * If this vma contains ending address, and huge pages
1375 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1376 end > cur->vm_start) {
1377 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1381 if (end & (vma_hpagesize - 1))
1384 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1388 * Check that this vma isn't already owned by a
1389 * different userfaultfd. We can't allow more than one
1390 * userfaultfd to own a single vma simultaneously or we
1391 * wouldn't know which one to deliver the userfaults to.
1394 if (cur->vm_userfaultfd_ctx.ctx &&
1395 cur->vm_userfaultfd_ctx.ctx != ctx)
1399 * Note vmas containing huge pages
1401 if (is_vm_hugetlb_page(cur))
1402 basic_ioctls = true;
1408 mas_set(&mas, start);
1409 prev = mas_prev(&mas, 0);
1411 mas_next(&mas, ULONG_MAX);
1417 BUG_ON(!vma_can_userfault(vma, vm_flags));
1418 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1419 vma->vm_userfaultfd_ctx.ctx != ctx);
1420 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1423 * Nothing to do: this vma is already registered into this
1424 * userfaultfd and with the right tracking mode too.
1426 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1427 (vma->vm_flags & vm_flags) == vm_flags)
1430 if (vma->vm_start > start)
1431 start = vma->vm_start;
1432 vma_end = min(end, vma->vm_end);
1434 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1435 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1436 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1438 ((struct vm_userfaultfd_ctx){ ctx }),
1439 anon_vma_name(vma));
1441 /* vma_merge() invalidated the mas */
1446 if (vma->vm_start < start) {
1447 ret = split_vma(mm, vma, start, 1);
1450 /* split_vma() invalidated the mas */
1453 if (vma->vm_end > end) {
1454 ret = split_vma(mm, vma, end, 0);
1457 /* split_vma() invalidated the mas */
1462 * In the vma_merge() successful mprotect-like case 8:
1463 * the next vma was merged into the current one and
1464 * the current one has not been updated yet.
1466 vma->vm_flags = new_flags;
1467 vma->vm_userfaultfd_ctx.ctx = ctx;
1469 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1470 hugetlb_unshare_all_pmds(vma);
1474 start = vma->vm_end;
1475 vma = mas_next(&mas, end - 1);
1478 mmap_write_unlock(mm);
1483 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1484 UFFD_API_RANGE_IOCTLS;
1487 * Declare the WP ioctl only if the WP mode is
1488 * specified and all checks passed with the range
1490 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1491 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1493 /* CONTINUE ioctl is only supported for MINOR ranges. */
1494 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1495 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1498 * Now that we scanned all vmas we can already tell
1499 * userland which ioctls methods are guaranteed to
1500 * succeed on this range.
1502 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1509 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1512 struct mm_struct *mm = ctx->mm;
1513 struct vm_area_struct *vma, *prev, *cur;
1515 struct uffdio_range uffdio_unregister;
1516 unsigned long new_flags;
1518 unsigned long start, end, vma_end;
1519 const void __user *buf = (void __user *)arg;
1520 MA_STATE(mas, &mm->mm_mt, 0, 0);
1523 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1526 ret = validate_range(mm, uffdio_unregister.start,
1527 uffdio_unregister.len);
1531 start = uffdio_unregister.start;
1532 end = start + uffdio_unregister.len;
1535 if (!mmget_not_zero(mm))
1538 mmap_write_lock(mm);
1539 mas_set(&mas, start);
1540 vma = mas_find(&mas, ULONG_MAX);
1544 /* check that there's at least one vma in the range */
1546 if (vma->vm_start >= end)
1550 * If the first vma contains huge pages, make sure start address
1551 * is aligned to huge page size.
1553 if (is_vm_hugetlb_page(vma)) {
1554 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1556 if (start & (vma_hpagesize - 1))
1561 * Search for not compatible vmas.
1565 for (cur = vma; cur; cur = mas_next(&mas, end - 1)) {
1568 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1569 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1572 * Check not compatible vmas, not strictly required
1573 * here as not compatible vmas cannot have an
1574 * userfaultfd_ctx registered on them, but this
1575 * provides for more strict behavior to notice
1576 * unregistration errors.
1578 if (!vma_can_userfault(cur, cur->vm_flags))
1585 mas_set(&mas, start);
1586 prev = mas_prev(&mas, 0);
1588 mas_next(&mas, ULONG_MAX);
1594 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1597 * Nothing to do: this vma is already registered into this
1598 * userfaultfd and with the right tracking mode too.
1600 if (!vma->vm_userfaultfd_ctx.ctx)
1603 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1605 if (vma->vm_start > start)
1606 start = vma->vm_start;
1607 vma_end = min(end, vma->vm_end);
1609 if (userfaultfd_missing(vma)) {
1611 * Wake any concurrent pending userfault while
1612 * we unregister, so they will not hang
1613 * permanently and it avoids userland to call
1614 * UFFDIO_WAKE explicitly.
1616 struct userfaultfd_wake_range range;
1617 range.start = start;
1618 range.len = vma_end - start;
1619 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1622 /* Reset ptes for the whole vma range if wr-protected */
1623 if (userfaultfd_wp(vma))
1624 uffd_wp_range(mm, vma, start, vma_end - start, false);
1626 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1627 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1628 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1630 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1636 if (vma->vm_start < start) {
1637 ret = split_vma(mm, vma, start, 1);
1642 if (vma->vm_end > end) {
1643 ret = split_vma(mm, vma, end, 0);
1650 * In the vma_merge() successful mprotect-like case 8:
1651 * the next vma was merged into the current one and
1652 * the current one has not been updated yet.
1654 vma->vm_flags = new_flags;
1655 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1659 start = vma->vm_end;
1660 vma = mas_next(&mas, end - 1);
1663 mmap_write_unlock(mm);
1670 * userfaultfd_wake may be used in combination with the
1671 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1673 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1677 struct uffdio_range uffdio_wake;
1678 struct userfaultfd_wake_range range;
1679 const void __user *buf = (void __user *)arg;
1682 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1685 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1689 range.start = uffdio_wake.start;
1690 range.len = uffdio_wake.len;
1693 * len == 0 means wake all and we don't want to wake all here,
1694 * so check it again to be sure.
1696 VM_BUG_ON(!range.len);
1698 wake_userfault(ctx, &range);
1705 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1709 struct uffdio_copy uffdio_copy;
1710 struct uffdio_copy __user *user_uffdio_copy;
1711 struct userfaultfd_wake_range range;
1713 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1716 if (atomic_read(&ctx->mmap_changing))
1720 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1721 /* don't copy "copy" last field */
1722 sizeof(uffdio_copy)-sizeof(__s64)))
1725 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1729 * double check for wraparound just in case. copy_from_user()
1730 * will later check uffdio_copy.src + uffdio_copy.len to fit
1731 * in the userland range.
1734 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1736 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1738 if (mmget_not_zero(ctx->mm)) {
1739 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1740 uffdio_copy.len, &ctx->mmap_changing,
1746 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1751 /* len == 0 would wake all */
1753 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1754 range.start = uffdio_copy.dst;
1755 wake_userfault(ctx, &range);
1757 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1762 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1766 struct uffdio_zeropage uffdio_zeropage;
1767 struct uffdio_zeropage __user *user_uffdio_zeropage;
1768 struct userfaultfd_wake_range range;
1770 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1773 if (atomic_read(&ctx->mmap_changing))
1777 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1778 /* don't copy "zeropage" last field */
1779 sizeof(uffdio_zeropage)-sizeof(__s64)))
1782 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1783 uffdio_zeropage.range.len);
1787 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1790 if (mmget_not_zero(ctx->mm)) {
1791 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1792 uffdio_zeropage.range.len,
1793 &ctx->mmap_changing);
1798 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1802 /* len == 0 would wake all */
1805 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1806 range.start = uffdio_zeropage.range.start;
1807 wake_userfault(ctx, &range);
1809 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1814 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1818 struct uffdio_writeprotect uffdio_wp;
1819 struct uffdio_writeprotect __user *user_uffdio_wp;
1820 struct userfaultfd_wake_range range;
1821 bool mode_wp, mode_dontwake;
1823 if (atomic_read(&ctx->mmap_changing))
1826 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1828 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1829 sizeof(struct uffdio_writeprotect)))
1832 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1833 uffdio_wp.range.len);
1837 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1838 UFFDIO_WRITEPROTECT_MODE_WP))
1841 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1842 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1844 if (mode_wp && mode_dontwake)
1847 if (mmget_not_zero(ctx->mm)) {
1848 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1849 uffdio_wp.range.len, mode_wp,
1850 &ctx->mmap_changing);
1859 if (!mode_wp && !mode_dontwake) {
1860 range.start = uffdio_wp.range.start;
1861 range.len = uffdio_wp.range.len;
1862 wake_userfault(ctx, &range);
1867 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1870 struct uffdio_continue uffdio_continue;
1871 struct uffdio_continue __user *user_uffdio_continue;
1872 struct userfaultfd_wake_range range;
1874 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1877 if (atomic_read(&ctx->mmap_changing))
1881 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1882 /* don't copy the output fields */
1883 sizeof(uffdio_continue) - (sizeof(__s64))))
1886 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1887 uffdio_continue.range.len);
1892 /* double check for wraparound just in case. */
1893 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1894 uffdio_continue.range.start) {
1897 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1900 if (mmget_not_zero(ctx->mm)) {
1901 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1902 uffdio_continue.range.len,
1903 &ctx->mmap_changing);
1909 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1914 /* len == 0 would wake all */
1917 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1918 range.start = uffdio_continue.range.start;
1919 wake_userfault(ctx, &range);
1921 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1927 static inline unsigned int uffd_ctx_features(__u64 user_features)
1930 * For the current set of features the bits just coincide. Set
1931 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1933 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1937 * userland asks for a certain API version and we return which bits
1938 * and ioctl commands are implemented in this kernel for such API
1939 * version or -EINVAL if unknown.
1941 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1944 struct uffdio_api uffdio_api;
1945 void __user *buf = (void __user *)arg;
1946 unsigned int ctx_features;
1951 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1953 /* Ignore unsupported features (userspace built against newer kernel) */
1954 features = uffdio_api.features & UFFD_API_FEATURES;
1956 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1958 /* report all available features and ioctls to userland */
1959 uffdio_api.features = UFFD_API_FEATURES;
1960 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1961 uffdio_api.features &=
1962 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1964 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1965 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1967 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1968 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1970 uffdio_api.ioctls = UFFD_API_IOCTLS;
1972 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1975 /* only enable the requested features for this uffd context */
1976 ctx_features = uffd_ctx_features(features);
1978 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1985 memset(&uffdio_api, 0, sizeof(uffdio_api));
1986 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1991 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1995 struct userfaultfd_ctx *ctx = file->private_data;
1997 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2002 ret = userfaultfd_api(ctx, arg);
2004 case UFFDIO_REGISTER:
2005 ret = userfaultfd_register(ctx, arg);
2007 case UFFDIO_UNREGISTER:
2008 ret = userfaultfd_unregister(ctx, arg);
2011 ret = userfaultfd_wake(ctx, arg);
2014 ret = userfaultfd_copy(ctx, arg);
2016 case UFFDIO_ZEROPAGE:
2017 ret = userfaultfd_zeropage(ctx, arg);
2019 case UFFDIO_WRITEPROTECT:
2020 ret = userfaultfd_writeprotect(ctx, arg);
2022 case UFFDIO_CONTINUE:
2023 ret = userfaultfd_continue(ctx, arg);
2029 #ifdef CONFIG_PROC_FS
2030 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2032 struct userfaultfd_ctx *ctx = f->private_data;
2033 wait_queue_entry_t *wq;
2034 unsigned long pending = 0, total = 0;
2036 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2037 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2041 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2044 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2047 * If more protocols will be added, there will be all shown
2048 * separated by a space. Like this:
2049 * protocols: aa:... bb:...
2051 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2052 pending, total, UFFD_API, ctx->features,
2053 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2057 static const struct file_operations userfaultfd_fops = {
2058 #ifdef CONFIG_PROC_FS
2059 .show_fdinfo = userfaultfd_show_fdinfo,
2061 .release = userfaultfd_release,
2062 .poll = userfaultfd_poll,
2063 .read = userfaultfd_read,
2064 .unlocked_ioctl = userfaultfd_ioctl,
2065 .compat_ioctl = compat_ptr_ioctl,
2066 .llseek = noop_llseek,
2069 static void init_once_userfaultfd_ctx(void *mem)
2071 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2073 init_waitqueue_head(&ctx->fault_pending_wqh);
2074 init_waitqueue_head(&ctx->fault_wqh);
2075 init_waitqueue_head(&ctx->event_wqh);
2076 init_waitqueue_head(&ctx->fd_wqh);
2077 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2080 static int new_userfaultfd(int flags)
2082 struct userfaultfd_ctx *ctx;
2085 BUG_ON(!current->mm);
2087 /* Check the UFFD_* constants for consistency. */
2088 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2089 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2090 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2092 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2095 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2099 refcount_set(&ctx->refcount, 1);
2102 ctx->released = false;
2103 atomic_set(&ctx->mmap_changing, 0);
2104 ctx->mm = current->mm;
2105 /* prevent the mm struct to be freed */
2108 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2109 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2112 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2117 static inline bool userfaultfd_syscall_allowed(int flags)
2119 /* Userspace-only page faults are always allowed */
2120 if (flags & UFFD_USER_MODE_ONLY)
2124 * The user is requesting a userfaultfd which can handle kernel faults.
2125 * Privileged users are always allowed to do this.
2127 if (capable(CAP_SYS_PTRACE))
2130 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2131 return sysctl_unprivileged_userfaultfd;
2134 SYSCALL_DEFINE1(userfaultfd, int, flags)
2136 if (!userfaultfd_syscall_allowed(flags))
2139 return new_userfaultfd(flags);
2142 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2144 if (cmd != USERFAULTFD_IOC_NEW)
2147 return new_userfaultfd(flags);
2150 static const struct file_operations userfaultfd_dev_fops = {
2151 .unlocked_ioctl = userfaultfd_dev_ioctl,
2152 .compat_ioctl = userfaultfd_dev_ioctl,
2153 .owner = THIS_MODULE,
2154 .llseek = noop_llseek,
2157 static struct miscdevice userfaultfd_misc = {
2158 .minor = MISC_DYNAMIC_MINOR,
2159 .name = "userfaultfd",
2160 .fops = &userfaultfd_dev_fops
2163 static int __init userfaultfd_init(void)
2167 ret = misc_register(&userfaultfd_misc);
2171 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2172 sizeof(struct userfaultfd_ctx),
2174 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2175 init_once_userfaultfd_ctx);
2178 __initcall(userfaultfd_init);