NFSD: Add an NFSD_FILE_GC flag to enable nfsd_file garbage collection
[platform/kernel/linux-starfive.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34
35 int sysctl_unprivileged_userfaultfd __read_mostly;
36
37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
38
39 /*
40  * Start with fault_pending_wqh and fault_wqh so they're more likely
41  * to be in the same cacheline.
42  *
43  * Locking order:
44  *      fd_wqh.lock
45  *              fault_pending_wqh.lock
46  *                      fault_wqh.lock
47  *              event_wqh.lock
48  *
49  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
50  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
51  * also taken in IRQ context.
52  */
53 struct userfaultfd_ctx {
54         /* waitqueue head for the pending (i.e. not read) userfaults */
55         wait_queue_head_t fault_pending_wqh;
56         /* waitqueue head for the userfaults */
57         wait_queue_head_t fault_wqh;
58         /* waitqueue head for the pseudo fd to wakeup poll/read */
59         wait_queue_head_t fd_wqh;
60         /* waitqueue head for events */
61         wait_queue_head_t event_wqh;
62         /* a refile sequence protected by fault_pending_wqh lock */
63         seqcount_spinlock_t refile_seq;
64         /* pseudo fd refcounting */
65         refcount_t refcount;
66         /* userfaultfd syscall flags */
67         unsigned int flags;
68         /* features requested from the userspace */
69         unsigned int features;
70         /* released */
71         bool released;
72         /* memory mappings are changing because of non-cooperative event */
73         atomic_t mmap_changing;
74         /* mm with one ore more vmas attached to this userfaultfd_ctx */
75         struct mm_struct *mm;
76 };
77
78 struct userfaultfd_fork_ctx {
79         struct userfaultfd_ctx *orig;
80         struct userfaultfd_ctx *new;
81         struct list_head list;
82 };
83
84 struct userfaultfd_unmap_ctx {
85         struct userfaultfd_ctx *ctx;
86         unsigned long start;
87         unsigned long end;
88         struct list_head list;
89 };
90
91 struct userfaultfd_wait_queue {
92         struct uffd_msg msg;
93         wait_queue_entry_t wq;
94         struct userfaultfd_ctx *ctx;
95         bool waken;
96 };
97
98 struct userfaultfd_wake_range {
99         unsigned long start;
100         unsigned long len;
101 };
102
103 /* internal indication that UFFD_API ioctl was successfully executed */
104 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
105
106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
107 {
108         return ctx->features & UFFD_FEATURE_INITIALIZED;
109 }
110
111 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
112                                      int wake_flags, void *key)
113 {
114         struct userfaultfd_wake_range *range = key;
115         int ret;
116         struct userfaultfd_wait_queue *uwq;
117         unsigned long start, len;
118
119         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
120         ret = 0;
121         /* len == 0 means wake all */
122         start = range->start;
123         len = range->len;
124         if (len && (start > uwq->msg.arg.pagefault.address ||
125                     start + len <= uwq->msg.arg.pagefault.address))
126                 goto out;
127         WRITE_ONCE(uwq->waken, true);
128         /*
129          * The Program-Order guarantees provided by the scheduler
130          * ensure uwq->waken is visible before the task is woken.
131          */
132         ret = wake_up_state(wq->private, mode);
133         if (ret) {
134                 /*
135                  * Wake only once, autoremove behavior.
136                  *
137                  * After the effect of list_del_init is visible to the other
138                  * CPUs, the waitqueue may disappear from under us, see the
139                  * !list_empty_careful() in handle_userfault().
140                  *
141                  * try_to_wake_up() has an implicit smp_mb(), and the
142                  * wq->private is read before calling the extern function
143                  * "wake_up_state" (which in turns calls try_to_wake_up).
144                  */
145                 list_del_init(&wq->entry);
146         }
147 out:
148         return ret;
149 }
150
151 /**
152  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
153  * context.
154  * @ctx: [in] Pointer to the userfaultfd context.
155  */
156 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
157 {
158         refcount_inc(&ctx->refcount);
159 }
160
161 /**
162  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
163  * context.
164  * @ctx: [in] Pointer to userfaultfd context.
165  *
166  * The userfaultfd context reference must have been previously acquired either
167  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
168  */
169 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
170 {
171         if (refcount_dec_and_test(&ctx->refcount)) {
172                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
173                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
174                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
175                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
176                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
177                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
178                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
179                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
180                 mmdrop(ctx->mm);
181                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
182         }
183 }
184
185 static inline void msg_init(struct uffd_msg *msg)
186 {
187         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
188         /*
189          * Must use memset to zero out the paddings or kernel data is
190          * leaked to userland.
191          */
192         memset(msg, 0, sizeof(struct uffd_msg));
193 }
194
195 static inline struct uffd_msg userfault_msg(unsigned long address,
196                                             unsigned long real_address,
197                                             unsigned int flags,
198                                             unsigned long reason,
199                                             unsigned int features)
200 {
201         struct uffd_msg msg;
202
203         msg_init(&msg);
204         msg.event = UFFD_EVENT_PAGEFAULT;
205
206         msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
207                                     real_address : address;
208
209         /*
210          * These flags indicate why the userfault occurred:
211          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
212          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
213          * - Neither of these flags being set indicates a MISSING fault.
214          *
215          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
216          * fault. Otherwise, it was a read fault.
217          */
218         if (flags & FAULT_FLAG_WRITE)
219                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
220         if (reason & VM_UFFD_WP)
221                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
222         if (reason & VM_UFFD_MINOR)
223                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
224         if (features & UFFD_FEATURE_THREAD_ID)
225                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
226         return msg;
227 }
228
229 #ifdef CONFIG_HUGETLB_PAGE
230 /*
231  * Same functionality as userfaultfd_must_wait below with modifications for
232  * hugepmd ranges.
233  */
234 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
235                                          struct vm_area_struct *vma,
236                                          unsigned long address,
237                                          unsigned long flags,
238                                          unsigned long reason)
239 {
240         struct mm_struct *mm = ctx->mm;
241         pte_t *ptep, pte;
242         bool ret = true;
243
244         mmap_assert_locked(mm);
245
246         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
247
248         if (!ptep)
249                 goto out;
250
251         ret = false;
252         pte = huge_ptep_get(ptep);
253
254         /*
255          * Lockless access: we're in a wait_event so it's ok if it
256          * changes under us.  PTE markers should be handled the same as none
257          * ptes here.
258          */
259         if (huge_pte_none_mostly(pte))
260                 ret = true;
261         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
262                 ret = true;
263 out:
264         return ret;
265 }
266 #else
267 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
268                                          struct vm_area_struct *vma,
269                                          unsigned long address,
270                                          unsigned long flags,
271                                          unsigned long reason)
272 {
273         return false;   /* should never get here */
274 }
275 #endif /* CONFIG_HUGETLB_PAGE */
276
277 /*
278  * Verify the pagetables are still not ok after having reigstered into
279  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
280  * userfault that has already been resolved, if userfaultfd_read and
281  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
282  * threads.
283  */
284 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
285                                          unsigned long address,
286                                          unsigned long flags,
287                                          unsigned long reason)
288 {
289         struct mm_struct *mm = ctx->mm;
290         pgd_t *pgd;
291         p4d_t *p4d;
292         pud_t *pud;
293         pmd_t *pmd, _pmd;
294         pte_t *pte;
295         bool ret = true;
296
297         mmap_assert_locked(mm);
298
299         pgd = pgd_offset(mm, address);
300         if (!pgd_present(*pgd))
301                 goto out;
302         p4d = p4d_offset(pgd, address);
303         if (!p4d_present(*p4d))
304                 goto out;
305         pud = pud_offset(p4d, address);
306         if (!pud_present(*pud))
307                 goto out;
308         pmd = pmd_offset(pud, address);
309         /*
310          * READ_ONCE must function as a barrier with narrower scope
311          * and it must be equivalent to:
312          *      _pmd = *pmd; barrier();
313          *
314          * This is to deal with the instability (as in
315          * pmd_trans_unstable) of the pmd.
316          */
317         _pmd = READ_ONCE(*pmd);
318         if (pmd_none(_pmd))
319                 goto out;
320
321         ret = false;
322         if (!pmd_present(_pmd))
323                 goto out;
324
325         if (pmd_trans_huge(_pmd)) {
326                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327                         ret = true;
328                 goto out;
329         }
330
331         /*
332          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
333          * and use the standard pte_offset_map() instead of parsing _pmd.
334          */
335         pte = pte_offset_map(pmd, address);
336         /*
337          * Lockless access: we're in a wait_event so it's ok if it
338          * changes under us.  PTE markers should be handled the same as none
339          * ptes here.
340          */
341         if (pte_none_mostly(*pte))
342                 ret = true;
343         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
344                 ret = true;
345         pte_unmap(pte);
346
347 out:
348         return ret;
349 }
350
351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
352 {
353         if (flags & FAULT_FLAG_INTERRUPTIBLE)
354                 return TASK_INTERRUPTIBLE;
355
356         if (flags & FAULT_FLAG_KILLABLE)
357                 return TASK_KILLABLE;
358
359         return TASK_UNINTERRUPTIBLE;
360 }
361
362 /*
363  * The locking rules involved in returning VM_FAULT_RETRY depending on
364  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366  * recommendation in __lock_page_or_retry is not an understatement.
367  *
368  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
369  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
370  * not set.
371  *
372  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373  * set, VM_FAULT_RETRY can still be returned if and only if there are
374  * fatal_signal_pending()s, and the mmap_lock must be released before
375  * returning it.
376  */
377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
378 {
379         struct mm_struct *mm = vmf->vma->vm_mm;
380         struct userfaultfd_ctx *ctx;
381         struct userfaultfd_wait_queue uwq;
382         vm_fault_t ret = VM_FAULT_SIGBUS;
383         bool must_wait;
384         unsigned int blocking_state;
385
386         /*
387          * We don't do userfault handling for the final child pid update.
388          *
389          * We also don't do userfault handling during
390          * coredumping. hugetlbfs has the special
391          * follow_hugetlb_page() to skip missing pages in the
392          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
393          * the no_page_table() helper in follow_page_mask(), but the
394          * shmem_vm_ops->fault method is invoked even during
395          * coredumping without mmap_lock and it ends up here.
396          */
397         if (current->flags & (PF_EXITING|PF_DUMPCORE))
398                 goto out;
399
400         /*
401          * Coredumping runs without mmap_lock so we can only check that
402          * the mmap_lock is held, if PF_DUMPCORE was not set.
403          */
404         mmap_assert_locked(mm);
405
406         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
407         if (!ctx)
408                 goto out;
409
410         BUG_ON(ctx->mm != mm);
411
412         /* Any unrecognized flag is a bug. */
413         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
414         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
415         VM_BUG_ON(!reason || (reason & (reason - 1)));
416
417         if (ctx->features & UFFD_FEATURE_SIGBUS)
418                 goto out;
419         if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
420                 goto out;
421
422         /*
423          * If it's already released don't get it. This avoids to loop
424          * in __get_user_pages if userfaultfd_release waits on the
425          * caller of handle_userfault to release the mmap_lock.
426          */
427         if (unlikely(READ_ONCE(ctx->released))) {
428                 /*
429                  * Don't return VM_FAULT_SIGBUS in this case, so a non
430                  * cooperative manager can close the uffd after the
431                  * last UFFDIO_COPY, without risking to trigger an
432                  * involuntary SIGBUS if the process was starting the
433                  * userfaultfd while the userfaultfd was still armed
434                  * (but after the last UFFDIO_COPY). If the uffd
435                  * wasn't already closed when the userfault reached
436                  * this point, that would normally be solved by
437                  * userfaultfd_must_wait returning 'false'.
438                  *
439                  * If we were to return VM_FAULT_SIGBUS here, the non
440                  * cooperative manager would be instead forced to
441                  * always call UFFDIO_UNREGISTER before it can safely
442                  * close the uffd.
443                  */
444                 ret = VM_FAULT_NOPAGE;
445                 goto out;
446         }
447
448         /*
449          * Check that we can return VM_FAULT_RETRY.
450          *
451          * NOTE: it should become possible to return VM_FAULT_RETRY
452          * even if FAULT_FLAG_TRIED is set without leading to gup()
453          * -EBUSY failures, if the userfaultfd is to be extended for
454          * VM_UFFD_WP tracking and we intend to arm the userfault
455          * without first stopping userland access to the memory. For
456          * VM_UFFD_MISSING userfaults this is enough for now.
457          */
458         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
459                 /*
460                  * Validate the invariant that nowait must allow retry
461                  * to be sure not to return SIGBUS erroneously on
462                  * nowait invocations.
463                  */
464                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
465 #ifdef CONFIG_DEBUG_VM
466                 if (printk_ratelimit()) {
467                         printk(KERN_WARNING
468                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
469                                vmf->flags);
470                         dump_stack();
471                 }
472 #endif
473                 goto out;
474         }
475
476         /*
477          * Handle nowait, not much to do other than tell it to retry
478          * and wait.
479          */
480         ret = VM_FAULT_RETRY;
481         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
482                 goto out;
483
484         /* take the reference before dropping the mmap_lock */
485         userfaultfd_ctx_get(ctx);
486
487         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
488         uwq.wq.private = current;
489         uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
490                                 reason, ctx->features);
491         uwq.ctx = ctx;
492         uwq.waken = false;
493
494         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
495
496         spin_lock_irq(&ctx->fault_pending_wqh.lock);
497         /*
498          * After the __add_wait_queue the uwq is visible to userland
499          * through poll/read().
500          */
501         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
502         /*
503          * The smp_mb() after __set_current_state prevents the reads
504          * following the spin_unlock to happen before the list_add in
505          * __add_wait_queue.
506          */
507         set_current_state(blocking_state);
508         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
509
510         if (!is_vm_hugetlb_page(vmf->vma))
511                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
512                                                   reason);
513         else
514                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
515                                                        vmf->address,
516                                                        vmf->flags, reason);
517         mmap_read_unlock(mm);
518
519         if (likely(must_wait && !READ_ONCE(ctx->released))) {
520                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
521                 schedule();
522         }
523
524         __set_current_state(TASK_RUNNING);
525
526         /*
527          * Here we race with the list_del; list_add in
528          * userfaultfd_ctx_read(), however because we don't ever run
529          * list_del_init() to refile across the two lists, the prev
530          * and next pointers will never point to self. list_add also
531          * would never let any of the two pointers to point to
532          * self. So list_empty_careful won't risk to see both pointers
533          * pointing to self at any time during the list refile. The
534          * only case where list_del_init() is called is the full
535          * removal in the wake function and there we don't re-list_add
536          * and it's fine not to block on the spinlock. The uwq on this
537          * kernel stack can be released after the list_del_init.
538          */
539         if (!list_empty_careful(&uwq.wq.entry)) {
540                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
541                 /*
542                  * No need of list_del_init(), the uwq on the stack
543                  * will be freed shortly anyway.
544                  */
545                 list_del(&uwq.wq.entry);
546                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
547         }
548
549         /*
550          * ctx may go away after this if the userfault pseudo fd is
551          * already released.
552          */
553         userfaultfd_ctx_put(ctx);
554
555 out:
556         return ret;
557 }
558
559 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
560                                               struct userfaultfd_wait_queue *ewq)
561 {
562         struct userfaultfd_ctx *release_new_ctx;
563
564         if (WARN_ON_ONCE(current->flags & PF_EXITING))
565                 goto out;
566
567         ewq->ctx = ctx;
568         init_waitqueue_entry(&ewq->wq, current);
569         release_new_ctx = NULL;
570
571         spin_lock_irq(&ctx->event_wqh.lock);
572         /*
573          * After the __add_wait_queue the uwq is visible to userland
574          * through poll/read().
575          */
576         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
577         for (;;) {
578                 set_current_state(TASK_KILLABLE);
579                 if (ewq->msg.event == 0)
580                         break;
581                 if (READ_ONCE(ctx->released) ||
582                     fatal_signal_pending(current)) {
583                         /*
584                          * &ewq->wq may be queued in fork_event, but
585                          * __remove_wait_queue ignores the head
586                          * parameter. It would be a problem if it
587                          * didn't.
588                          */
589                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
590                         if (ewq->msg.event == UFFD_EVENT_FORK) {
591                                 struct userfaultfd_ctx *new;
592
593                                 new = (struct userfaultfd_ctx *)
594                                         (unsigned long)
595                                         ewq->msg.arg.reserved.reserved1;
596                                 release_new_ctx = new;
597                         }
598                         break;
599                 }
600
601                 spin_unlock_irq(&ctx->event_wqh.lock);
602
603                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
604                 schedule();
605
606                 spin_lock_irq(&ctx->event_wqh.lock);
607         }
608         __set_current_state(TASK_RUNNING);
609         spin_unlock_irq(&ctx->event_wqh.lock);
610
611         if (release_new_ctx) {
612                 struct vm_area_struct *vma;
613                 struct mm_struct *mm = release_new_ctx->mm;
614                 VMA_ITERATOR(vmi, mm, 0);
615
616                 /* the various vma->vm_userfaultfd_ctx still points to it */
617                 mmap_write_lock(mm);
618                 for_each_vma(vmi, vma) {
619                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
620                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
621                                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
622                         }
623                 }
624                 mmap_write_unlock(mm);
625
626                 userfaultfd_ctx_put(release_new_ctx);
627         }
628
629         /*
630          * ctx may go away after this if the userfault pseudo fd is
631          * already released.
632          */
633 out:
634         atomic_dec(&ctx->mmap_changing);
635         VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
636         userfaultfd_ctx_put(ctx);
637 }
638
639 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
640                                        struct userfaultfd_wait_queue *ewq)
641 {
642         ewq->msg.event = 0;
643         wake_up_locked(&ctx->event_wqh);
644         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
645 }
646
647 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
648 {
649         struct userfaultfd_ctx *ctx = NULL, *octx;
650         struct userfaultfd_fork_ctx *fctx;
651
652         octx = vma->vm_userfaultfd_ctx.ctx;
653         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
654                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
655                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
656                 return 0;
657         }
658
659         list_for_each_entry(fctx, fcs, list)
660                 if (fctx->orig == octx) {
661                         ctx = fctx->new;
662                         break;
663                 }
664
665         if (!ctx) {
666                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
667                 if (!fctx)
668                         return -ENOMEM;
669
670                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
671                 if (!ctx) {
672                         kfree(fctx);
673                         return -ENOMEM;
674                 }
675
676                 refcount_set(&ctx->refcount, 1);
677                 ctx->flags = octx->flags;
678                 ctx->features = octx->features;
679                 ctx->released = false;
680                 atomic_set(&ctx->mmap_changing, 0);
681                 ctx->mm = vma->vm_mm;
682                 mmgrab(ctx->mm);
683
684                 userfaultfd_ctx_get(octx);
685                 atomic_inc(&octx->mmap_changing);
686                 fctx->orig = octx;
687                 fctx->new = ctx;
688                 list_add_tail(&fctx->list, fcs);
689         }
690
691         vma->vm_userfaultfd_ctx.ctx = ctx;
692         return 0;
693 }
694
695 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
696 {
697         struct userfaultfd_ctx *ctx = fctx->orig;
698         struct userfaultfd_wait_queue ewq;
699
700         msg_init(&ewq.msg);
701
702         ewq.msg.event = UFFD_EVENT_FORK;
703         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
704
705         userfaultfd_event_wait_completion(ctx, &ewq);
706 }
707
708 void dup_userfaultfd_complete(struct list_head *fcs)
709 {
710         struct userfaultfd_fork_ctx *fctx, *n;
711
712         list_for_each_entry_safe(fctx, n, fcs, list) {
713                 dup_fctx(fctx);
714                 list_del(&fctx->list);
715                 kfree(fctx);
716         }
717 }
718
719 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
720                              struct vm_userfaultfd_ctx *vm_ctx)
721 {
722         struct userfaultfd_ctx *ctx;
723
724         ctx = vma->vm_userfaultfd_ctx.ctx;
725
726         if (!ctx)
727                 return;
728
729         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
730                 vm_ctx->ctx = ctx;
731                 userfaultfd_ctx_get(ctx);
732                 atomic_inc(&ctx->mmap_changing);
733         } else {
734                 /* Drop uffd context if remap feature not enabled */
735                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
736                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
737         }
738 }
739
740 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
741                                  unsigned long from, unsigned long to,
742                                  unsigned long len)
743 {
744         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
745         struct userfaultfd_wait_queue ewq;
746
747         if (!ctx)
748                 return;
749
750         if (to & ~PAGE_MASK) {
751                 userfaultfd_ctx_put(ctx);
752                 return;
753         }
754
755         msg_init(&ewq.msg);
756
757         ewq.msg.event = UFFD_EVENT_REMAP;
758         ewq.msg.arg.remap.from = from;
759         ewq.msg.arg.remap.to = to;
760         ewq.msg.arg.remap.len = len;
761
762         userfaultfd_event_wait_completion(ctx, &ewq);
763 }
764
765 bool userfaultfd_remove(struct vm_area_struct *vma,
766                         unsigned long start, unsigned long end)
767 {
768         struct mm_struct *mm = vma->vm_mm;
769         struct userfaultfd_ctx *ctx;
770         struct userfaultfd_wait_queue ewq;
771
772         ctx = vma->vm_userfaultfd_ctx.ctx;
773         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
774                 return true;
775
776         userfaultfd_ctx_get(ctx);
777         atomic_inc(&ctx->mmap_changing);
778         mmap_read_unlock(mm);
779
780         msg_init(&ewq.msg);
781
782         ewq.msg.event = UFFD_EVENT_REMOVE;
783         ewq.msg.arg.remove.start = start;
784         ewq.msg.arg.remove.end = end;
785
786         userfaultfd_event_wait_completion(ctx, &ewq);
787
788         return false;
789 }
790
791 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
792                           unsigned long start, unsigned long end)
793 {
794         struct userfaultfd_unmap_ctx *unmap_ctx;
795
796         list_for_each_entry(unmap_ctx, unmaps, list)
797                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
798                     unmap_ctx->end == end)
799                         return true;
800
801         return false;
802 }
803
804 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start,
805                            unsigned long end, struct list_head *unmaps)
806 {
807         VMA_ITERATOR(vmi, mm, start);
808         struct vm_area_struct *vma;
809
810         for_each_vma_range(vmi, vma, end) {
811                 struct userfaultfd_unmap_ctx *unmap_ctx;
812                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
813
814                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
815                     has_unmap_ctx(ctx, unmaps, start, end))
816                         continue;
817
818                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
819                 if (!unmap_ctx)
820                         return -ENOMEM;
821
822                 userfaultfd_ctx_get(ctx);
823                 atomic_inc(&ctx->mmap_changing);
824                 unmap_ctx->ctx = ctx;
825                 unmap_ctx->start = start;
826                 unmap_ctx->end = end;
827                 list_add_tail(&unmap_ctx->list, unmaps);
828         }
829
830         return 0;
831 }
832
833 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
834 {
835         struct userfaultfd_unmap_ctx *ctx, *n;
836         struct userfaultfd_wait_queue ewq;
837
838         list_for_each_entry_safe(ctx, n, uf, list) {
839                 msg_init(&ewq.msg);
840
841                 ewq.msg.event = UFFD_EVENT_UNMAP;
842                 ewq.msg.arg.remove.start = ctx->start;
843                 ewq.msg.arg.remove.end = ctx->end;
844
845                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
846
847                 list_del(&ctx->list);
848                 kfree(ctx);
849         }
850 }
851
852 static int userfaultfd_release(struct inode *inode, struct file *file)
853 {
854         struct userfaultfd_ctx *ctx = file->private_data;
855         struct mm_struct *mm = ctx->mm;
856         struct vm_area_struct *vma, *prev;
857         /* len == 0 means wake all */
858         struct userfaultfd_wake_range range = { .len = 0, };
859         unsigned long new_flags;
860         MA_STATE(mas, &mm->mm_mt, 0, 0);
861
862         WRITE_ONCE(ctx->released, true);
863
864         if (!mmget_not_zero(mm))
865                 goto wakeup;
866
867         /*
868          * Flush page faults out of all CPUs. NOTE: all page faults
869          * must be retried without returning VM_FAULT_SIGBUS if
870          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
871          * changes while handle_userfault released the mmap_lock. So
872          * it's critical that released is set to true (above), before
873          * taking the mmap_lock for writing.
874          */
875         mmap_write_lock(mm);
876         prev = NULL;
877         mas_for_each(&mas, vma, ULONG_MAX) {
878                 cond_resched();
879                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
880                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
881                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
882                         prev = vma;
883                         continue;
884                 }
885                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
886                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
887                                  new_flags, vma->anon_vma,
888                                  vma->vm_file, vma->vm_pgoff,
889                                  vma_policy(vma),
890                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
891                 if (prev) {
892                         mas_pause(&mas);
893                         vma = prev;
894                 } else {
895                         prev = vma;
896                 }
897
898                 vma->vm_flags = new_flags;
899                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
900         }
901         mmap_write_unlock(mm);
902         mmput(mm);
903 wakeup:
904         /*
905          * After no new page faults can wait on this fault_*wqh, flush
906          * the last page faults that may have been already waiting on
907          * the fault_*wqh.
908          */
909         spin_lock_irq(&ctx->fault_pending_wqh.lock);
910         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
911         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
912         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
913
914         /* Flush pending events that may still wait on event_wqh */
915         wake_up_all(&ctx->event_wqh);
916
917         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
918         userfaultfd_ctx_put(ctx);
919         return 0;
920 }
921
922 /* fault_pending_wqh.lock must be hold by the caller */
923 static inline struct userfaultfd_wait_queue *find_userfault_in(
924                 wait_queue_head_t *wqh)
925 {
926         wait_queue_entry_t *wq;
927         struct userfaultfd_wait_queue *uwq;
928
929         lockdep_assert_held(&wqh->lock);
930
931         uwq = NULL;
932         if (!waitqueue_active(wqh))
933                 goto out;
934         /* walk in reverse to provide FIFO behavior to read userfaults */
935         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
936         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
937 out:
938         return uwq;
939 }
940
941 static inline struct userfaultfd_wait_queue *find_userfault(
942                 struct userfaultfd_ctx *ctx)
943 {
944         return find_userfault_in(&ctx->fault_pending_wqh);
945 }
946
947 static inline struct userfaultfd_wait_queue *find_userfault_evt(
948                 struct userfaultfd_ctx *ctx)
949 {
950         return find_userfault_in(&ctx->event_wqh);
951 }
952
953 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
954 {
955         struct userfaultfd_ctx *ctx = file->private_data;
956         __poll_t ret;
957
958         poll_wait(file, &ctx->fd_wqh, wait);
959
960         if (!userfaultfd_is_initialized(ctx))
961                 return EPOLLERR;
962
963         /*
964          * poll() never guarantees that read won't block.
965          * userfaults can be waken before they're read().
966          */
967         if (unlikely(!(file->f_flags & O_NONBLOCK)))
968                 return EPOLLERR;
969         /*
970          * lockless access to see if there are pending faults
971          * __pollwait last action is the add_wait_queue but
972          * the spin_unlock would allow the waitqueue_active to
973          * pass above the actual list_add inside
974          * add_wait_queue critical section. So use a full
975          * memory barrier to serialize the list_add write of
976          * add_wait_queue() with the waitqueue_active read
977          * below.
978          */
979         ret = 0;
980         smp_mb();
981         if (waitqueue_active(&ctx->fault_pending_wqh))
982                 ret = EPOLLIN;
983         else if (waitqueue_active(&ctx->event_wqh))
984                 ret = EPOLLIN;
985
986         return ret;
987 }
988
989 static const struct file_operations userfaultfd_fops;
990
991 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
992                                   struct inode *inode,
993                                   struct uffd_msg *msg)
994 {
995         int fd;
996
997         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
998                         O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
999         if (fd < 0)
1000                 return fd;
1001
1002         msg->arg.reserved.reserved1 = 0;
1003         msg->arg.fork.ufd = fd;
1004         return 0;
1005 }
1006
1007 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1008                                     struct uffd_msg *msg, struct inode *inode)
1009 {
1010         ssize_t ret;
1011         DECLARE_WAITQUEUE(wait, current);
1012         struct userfaultfd_wait_queue *uwq;
1013         /*
1014          * Handling fork event requires sleeping operations, so
1015          * we drop the event_wqh lock, then do these ops, then
1016          * lock it back and wake up the waiter. While the lock is
1017          * dropped the ewq may go away so we keep track of it
1018          * carefully.
1019          */
1020         LIST_HEAD(fork_event);
1021         struct userfaultfd_ctx *fork_nctx = NULL;
1022
1023         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1024         spin_lock_irq(&ctx->fd_wqh.lock);
1025         __add_wait_queue(&ctx->fd_wqh, &wait);
1026         for (;;) {
1027                 set_current_state(TASK_INTERRUPTIBLE);
1028                 spin_lock(&ctx->fault_pending_wqh.lock);
1029                 uwq = find_userfault(ctx);
1030                 if (uwq) {
1031                         /*
1032                          * Use a seqcount to repeat the lockless check
1033                          * in wake_userfault() to avoid missing
1034                          * wakeups because during the refile both
1035                          * waitqueue could become empty if this is the
1036                          * only userfault.
1037                          */
1038                         write_seqcount_begin(&ctx->refile_seq);
1039
1040                         /*
1041                          * The fault_pending_wqh.lock prevents the uwq
1042                          * to disappear from under us.
1043                          *
1044                          * Refile this userfault from
1045                          * fault_pending_wqh to fault_wqh, it's not
1046                          * pending anymore after we read it.
1047                          *
1048                          * Use list_del() by hand (as
1049                          * userfaultfd_wake_function also uses
1050                          * list_del_init() by hand) to be sure nobody
1051                          * changes __remove_wait_queue() to use
1052                          * list_del_init() in turn breaking the
1053                          * !list_empty_careful() check in
1054                          * handle_userfault(). The uwq->wq.head list
1055                          * must never be empty at any time during the
1056                          * refile, or the waitqueue could disappear
1057                          * from under us. The "wait_queue_head_t"
1058                          * parameter of __remove_wait_queue() is unused
1059                          * anyway.
1060                          */
1061                         list_del(&uwq->wq.entry);
1062                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1063
1064                         write_seqcount_end(&ctx->refile_seq);
1065
1066                         /* careful to always initialize msg if ret == 0 */
1067                         *msg = uwq->msg;
1068                         spin_unlock(&ctx->fault_pending_wqh.lock);
1069                         ret = 0;
1070                         break;
1071                 }
1072                 spin_unlock(&ctx->fault_pending_wqh.lock);
1073
1074                 spin_lock(&ctx->event_wqh.lock);
1075                 uwq = find_userfault_evt(ctx);
1076                 if (uwq) {
1077                         *msg = uwq->msg;
1078
1079                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1080                                 fork_nctx = (struct userfaultfd_ctx *)
1081                                         (unsigned long)
1082                                         uwq->msg.arg.reserved.reserved1;
1083                                 list_move(&uwq->wq.entry, &fork_event);
1084                                 /*
1085                                  * fork_nctx can be freed as soon as
1086                                  * we drop the lock, unless we take a
1087                                  * reference on it.
1088                                  */
1089                                 userfaultfd_ctx_get(fork_nctx);
1090                                 spin_unlock(&ctx->event_wqh.lock);
1091                                 ret = 0;
1092                                 break;
1093                         }
1094
1095                         userfaultfd_event_complete(ctx, uwq);
1096                         spin_unlock(&ctx->event_wqh.lock);
1097                         ret = 0;
1098                         break;
1099                 }
1100                 spin_unlock(&ctx->event_wqh.lock);
1101
1102                 if (signal_pending(current)) {
1103                         ret = -ERESTARTSYS;
1104                         break;
1105                 }
1106                 if (no_wait) {
1107                         ret = -EAGAIN;
1108                         break;
1109                 }
1110                 spin_unlock_irq(&ctx->fd_wqh.lock);
1111                 schedule();
1112                 spin_lock_irq(&ctx->fd_wqh.lock);
1113         }
1114         __remove_wait_queue(&ctx->fd_wqh, &wait);
1115         __set_current_state(TASK_RUNNING);
1116         spin_unlock_irq(&ctx->fd_wqh.lock);
1117
1118         if (!ret && msg->event == UFFD_EVENT_FORK) {
1119                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1120                 spin_lock_irq(&ctx->event_wqh.lock);
1121                 if (!list_empty(&fork_event)) {
1122                         /*
1123                          * The fork thread didn't abort, so we can
1124                          * drop the temporary refcount.
1125                          */
1126                         userfaultfd_ctx_put(fork_nctx);
1127
1128                         uwq = list_first_entry(&fork_event,
1129                                                typeof(*uwq),
1130                                                wq.entry);
1131                         /*
1132                          * If fork_event list wasn't empty and in turn
1133                          * the event wasn't already released by fork
1134                          * (the event is allocated on fork kernel
1135                          * stack), put the event back to its place in
1136                          * the event_wq. fork_event head will be freed
1137                          * as soon as we return so the event cannot
1138                          * stay queued there no matter the current
1139                          * "ret" value.
1140                          */
1141                         list_del(&uwq->wq.entry);
1142                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1143
1144                         /*
1145                          * Leave the event in the waitqueue and report
1146                          * error to userland if we failed to resolve
1147                          * the userfault fork.
1148                          */
1149                         if (likely(!ret))
1150                                 userfaultfd_event_complete(ctx, uwq);
1151                 } else {
1152                         /*
1153                          * Here the fork thread aborted and the
1154                          * refcount from the fork thread on fork_nctx
1155                          * has already been released. We still hold
1156                          * the reference we took before releasing the
1157                          * lock above. If resolve_userfault_fork
1158                          * failed we've to drop it because the
1159                          * fork_nctx has to be freed in such case. If
1160                          * it succeeded we'll hold it because the new
1161                          * uffd references it.
1162                          */
1163                         if (ret)
1164                                 userfaultfd_ctx_put(fork_nctx);
1165                 }
1166                 spin_unlock_irq(&ctx->event_wqh.lock);
1167         }
1168
1169         return ret;
1170 }
1171
1172 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1173                                 size_t count, loff_t *ppos)
1174 {
1175         struct userfaultfd_ctx *ctx = file->private_data;
1176         ssize_t _ret, ret = 0;
1177         struct uffd_msg msg;
1178         int no_wait = file->f_flags & O_NONBLOCK;
1179         struct inode *inode = file_inode(file);
1180
1181         if (!userfaultfd_is_initialized(ctx))
1182                 return -EINVAL;
1183
1184         for (;;) {
1185                 if (count < sizeof(msg))
1186                         return ret ? ret : -EINVAL;
1187                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1188                 if (_ret < 0)
1189                         return ret ? ret : _ret;
1190                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1191                         return ret ? ret : -EFAULT;
1192                 ret += sizeof(msg);
1193                 buf += sizeof(msg);
1194                 count -= sizeof(msg);
1195                 /*
1196                  * Allow to read more than one fault at time but only
1197                  * block if waiting for the very first one.
1198                  */
1199                 no_wait = O_NONBLOCK;
1200         }
1201 }
1202
1203 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1204                              struct userfaultfd_wake_range *range)
1205 {
1206         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1207         /* wake all in the range and autoremove */
1208         if (waitqueue_active(&ctx->fault_pending_wqh))
1209                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1210                                      range);
1211         if (waitqueue_active(&ctx->fault_wqh))
1212                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1213         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1214 }
1215
1216 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1217                                            struct userfaultfd_wake_range *range)
1218 {
1219         unsigned seq;
1220         bool need_wakeup;
1221
1222         /*
1223          * To be sure waitqueue_active() is not reordered by the CPU
1224          * before the pagetable update, use an explicit SMP memory
1225          * barrier here. PT lock release or mmap_read_unlock(mm) still
1226          * have release semantics that can allow the
1227          * waitqueue_active() to be reordered before the pte update.
1228          */
1229         smp_mb();
1230
1231         /*
1232          * Use waitqueue_active because it's very frequent to
1233          * change the address space atomically even if there are no
1234          * userfaults yet. So we take the spinlock only when we're
1235          * sure we've userfaults to wake.
1236          */
1237         do {
1238                 seq = read_seqcount_begin(&ctx->refile_seq);
1239                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1240                         waitqueue_active(&ctx->fault_wqh);
1241                 cond_resched();
1242         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1243         if (need_wakeup)
1244                 __wake_userfault(ctx, range);
1245 }
1246
1247 static __always_inline int validate_range(struct mm_struct *mm,
1248                                           __u64 start, __u64 len)
1249 {
1250         __u64 task_size = mm->task_size;
1251
1252         if (start & ~PAGE_MASK)
1253                 return -EINVAL;
1254         if (len & ~PAGE_MASK)
1255                 return -EINVAL;
1256         if (!len)
1257                 return -EINVAL;
1258         if (start < mmap_min_addr)
1259                 return -EINVAL;
1260         if (start >= task_size)
1261                 return -EINVAL;
1262         if (len > task_size - start)
1263                 return -EINVAL;
1264         return 0;
1265 }
1266
1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1268                                 unsigned long arg)
1269 {
1270         struct mm_struct *mm = ctx->mm;
1271         struct vm_area_struct *vma, *prev, *cur;
1272         int ret;
1273         struct uffdio_register uffdio_register;
1274         struct uffdio_register __user *user_uffdio_register;
1275         unsigned long vm_flags, new_flags;
1276         bool found;
1277         bool basic_ioctls;
1278         unsigned long start, end, vma_end;
1279         MA_STATE(mas, &mm->mm_mt, 0, 0);
1280
1281         user_uffdio_register = (struct uffdio_register __user *) arg;
1282
1283         ret = -EFAULT;
1284         if (copy_from_user(&uffdio_register, user_uffdio_register,
1285                            sizeof(uffdio_register)-sizeof(__u64)))
1286                 goto out;
1287
1288         ret = -EINVAL;
1289         if (!uffdio_register.mode)
1290                 goto out;
1291         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1292                 goto out;
1293         vm_flags = 0;
1294         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1295                 vm_flags |= VM_UFFD_MISSING;
1296         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1297 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1298                 goto out;
1299 #endif
1300                 vm_flags |= VM_UFFD_WP;
1301         }
1302         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1303 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1304                 goto out;
1305 #endif
1306                 vm_flags |= VM_UFFD_MINOR;
1307         }
1308
1309         ret = validate_range(mm, uffdio_register.range.start,
1310                              uffdio_register.range.len);
1311         if (ret)
1312                 goto out;
1313
1314         start = uffdio_register.range.start;
1315         end = start + uffdio_register.range.len;
1316
1317         ret = -ENOMEM;
1318         if (!mmget_not_zero(mm))
1319                 goto out;
1320
1321         mmap_write_lock(mm);
1322         mas_set(&mas, start);
1323         vma = mas_find(&mas, ULONG_MAX);
1324         if (!vma)
1325                 goto out_unlock;
1326
1327         /* check that there's at least one vma in the range */
1328         ret = -EINVAL;
1329         if (vma->vm_start >= end)
1330                 goto out_unlock;
1331
1332         /*
1333          * If the first vma contains huge pages, make sure start address
1334          * is aligned to huge page size.
1335          */
1336         if (is_vm_hugetlb_page(vma)) {
1337                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1338
1339                 if (start & (vma_hpagesize - 1))
1340                         goto out_unlock;
1341         }
1342
1343         /*
1344          * Search for not compatible vmas.
1345          */
1346         found = false;
1347         basic_ioctls = false;
1348         for (cur = vma; cur; cur = mas_next(&mas, end - 1)) {
1349                 cond_resched();
1350
1351                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1352                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1353
1354                 /* check not compatible vmas */
1355                 ret = -EINVAL;
1356                 if (!vma_can_userfault(cur, vm_flags))
1357                         goto out_unlock;
1358
1359                 /*
1360                  * UFFDIO_COPY will fill file holes even without
1361                  * PROT_WRITE. This check enforces that if this is a
1362                  * MAP_SHARED, the process has write permission to the backing
1363                  * file. If VM_MAYWRITE is set it also enforces that on a
1364                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1365                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1366                  */
1367                 ret = -EPERM;
1368                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1369                         goto out_unlock;
1370
1371                 /*
1372                  * If this vma contains ending address, and huge pages
1373                  * check alignment.
1374                  */
1375                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1376                     end > cur->vm_start) {
1377                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1378
1379                         ret = -EINVAL;
1380
1381                         if (end & (vma_hpagesize - 1))
1382                                 goto out_unlock;
1383                 }
1384                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1385                         goto out_unlock;
1386
1387                 /*
1388                  * Check that this vma isn't already owned by a
1389                  * different userfaultfd. We can't allow more than one
1390                  * userfaultfd to own a single vma simultaneously or we
1391                  * wouldn't know which one to deliver the userfaults to.
1392                  */
1393                 ret = -EBUSY;
1394                 if (cur->vm_userfaultfd_ctx.ctx &&
1395                     cur->vm_userfaultfd_ctx.ctx != ctx)
1396                         goto out_unlock;
1397
1398                 /*
1399                  * Note vmas containing huge pages
1400                  */
1401                 if (is_vm_hugetlb_page(cur))
1402                         basic_ioctls = true;
1403
1404                 found = true;
1405         }
1406         BUG_ON(!found);
1407
1408         mas_set(&mas, start);
1409         prev = mas_prev(&mas, 0);
1410         if (prev != vma)
1411                 mas_next(&mas, ULONG_MAX);
1412
1413         ret = 0;
1414         do {
1415                 cond_resched();
1416
1417                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1418                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1419                        vma->vm_userfaultfd_ctx.ctx != ctx);
1420                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1421
1422                 /*
1423                  * Nothing to do: this vma is already registered into this
1424                  * userfaultfd and with the right tracking mode too.
1425                  */
1426                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1427                     (vma->vm_flags & vm_flags) == vm_flags)
1428                         goto skip;
1429
1430                 if (vma->vm_start > start)
1431                         start = vma->vm_start;
1432                 vma_end = min(end, vma->vm_end);
1433
1434                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1435                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1436                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1437                                  vma_policy(vma),
1438                                  ((struct vm_userfaultfd_ctx){ ctx }),
1439                                  anon_vma_name(vma));
1440                 if (prev) {
1441                         /* vma_merge() invalidated the mas */
1442                         mas_pause(&mas);
1443                         vma = prev;
1444                         goto next;
1445                 }
1446                 if (vma->vm_start < start) {
1447                         ret = split_vma(mm, vma, start, 1);
1448                         if (ret)
1449                                 break;
1450                         /* split_vma() invalidated the mas */
1451                         mas_pause(&mas);
1452                 }
1453                 if (vma->vm_end > end) {
1454                         ret = split_vma(mm, vma, end, 0);
1455                         if (ret)
1456                                 break;
1457                         /* split_vma() invalidated the mas */
1458                         mas_pause(&mas);
1459                 }
1460         next:
1461                 /*
1462                  * In the vma_merge() successful mprotect-like case 8:
1463                  * the next vma was merged into the current one and
1464                  * the current one has not been updated yet.
1465                  */
1466                 vma->vm_flags = new_flags;
1467                 vma->vm_userfaultfd_ctx.ctx = ctx;
1468
1469                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1470                         hugetlb_unshare_all_pmds(vma);
1471
1472         skip:
1473                 prev = vma;
1474                 start = vma->vm_end;
1475                 vma = mas_next(&mas, end - 1);
1476         } while (vma);
1477 out_unlock:
1478         mmap_write_unlock(mm);
1479         mmput(mm);
1480         if (!ret) {
1481                 __u64 ioctls_out;
1482
1483                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1484                     UFFD_API_RANGE_IOCTLS;
1485
1486                 /*
1487                  * Declare the WP ioctl only if the WP mode is
1488                  * specified and all checks passed with the range
1489                  */
1490                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1491                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1492
1493                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1494                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1495                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1496
1497                 /*
1498                  * Now that we scanned all vmas we can already tell
1499                  * userland which ioctls methods are guaranteed to
1500                  * succeed on this range.
1501                  */
1502                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1503                         ret = -EFAULT;
1504         }
1505 out:
1506         return ret;
1507 }
1508
1509 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1510                                   unsigned long arg)
1511 {
1512         struct mm_struct *mm = ctx->mm;
1513         struct vm_area_struct *vma, *prev, *cur;
1514         int ret;
1515         struct uffdio_range uffdio_unregister;
1516         unsigned long new_flags;
1517         bool found;
1518         unsigned long start, end, vma_end;
1519         const void __user *buf = (void __user *)arg;
1520         MA_STATE(mas, &mm->mm_mt, 0, 0);
1521
1522         ret = -EFAULT;
1523         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1524                 goto out;
1525
1526         ret = validate_range(mm, uffdio_unregister.start,
1527                              uffdio_unregister.len);
1528         if (ret)
1529                 goto out;
1530
1531         start = uffdio_unregister.start;
1532         end = start + uffdio_unregister.len;
1533
1534         ret = -ENOMEM;
1535         if (!mmget_not_zero(mm))
1536                 goto out;
1537
1538         mmap_write_lock(mm);
1539         mas_set(&mas, start);
1540         vma = mas_find(&mas, ULONG_MAX);
1541         if (!vma)
1542                 goto out_unlock;
1543
1544         /* check that there's at least one vma in the range */
1545         ret = -EINVAL;
1546         if (vma->vm_start >= end)
1547                 goto out_unlock;
1548
1549         /*
1550          * If the first vma contains huge pages, make sure start address
1551          * is aligned to huge page size.
1552          */
1553         if (is_vm_hugetlb_page(vma)) {
1554                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1555
1556                 if (start & (vma_hpagesize - 1))
1557                         goto out_unlock;
1558         }
1559
1560         /*
1561          * Search for not compatible vmas.
1562          */
1563         found = false;
1564         ret = -EINVAL;
1565         for (cur = vma; cur; cur = mas_next(&mas, end - 1)) {
1566                 cond_resched();
1567
1568                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1569                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1570
1571                 /*
1572                  * Check not compatible vmas, not strictly required
1573                  * here as not compatible vmas cannot have an
1574                  * userfaultfd_ctx registered on them, but this
1575                  * provides for more strict behavior to notice
1576                  * unregistration errors.
1577                  */
1578                 if (!vma_can_userfault(cur, cur->vm_flags))
1579                         goto out_unlock;
1580
1581                 found = true;
1582         }
1583         BUG_ON(!found);
1584
1585         mas_set(&mas, start);
1586         prev = mas_prev(&mas, 0);
1587         if (prev != vma)
1588                 mas_next(&mas, ULONG_MAX);
1589
1590         ret = 0;
1591         do {
1592                 cond_resched();
1593
1594                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1595
1596                 /*
1597                  * Nothing to do: this vma is already registered into this
1598                  * userfaultfd and with the right tracking mode too.
1599                  */
1600                 if (!vma->vm_userfaultfd_ctx.ctx)
1601                         goto skip;
1602
1603                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1604
1605                 if (vma->vm_start > start)
1606                         start = vma->vm_start;
1607                 vma_end = min(end, vma->vm_end);
1608
1609                 if (userfaultfd_missing(vma)) {
1610                         /*
1611                          * Wake any concurrent pending userfault while
1612                          * we unregister, so they will not hang
1613                          * permanently and it avoids userland to call
1614                          * UFFDIO_WAKE explicitly.
1615                          */
1616                         struct userfaultfd_wake_range range;
1617                         range.start = start;
1618                         range.len = vma_end - start;
1619                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1620                 }
1621
1622                 /* Reset ptes for the whole vma range if wr-protected */
1623                 if (userfaultfd_wp(vma))
1624                         uffd_wp_range(mm, vma, start, vma_end - start, false);
1625
1626                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1627                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1628                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1629                                  vma_policy(vma),
1630                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
1631                 if (prev) {
1632                         vma = prev;
1633                         mas_pause(&mas);
1634                         goto next;
1635                 }
1636                 if (vma->vm_start < start) {
1637                         ret = split_vma(mm, vma, start, 1);
1638                         if (ret)
1639                                 break;
1640                         mas_pause(&mas);
1641                 }
1642                 if (vma->vm_end > end) {
1643                         ret = split_vma(mm, vma, end, 0);
1644                         if (ret)
1645                                 break;
1646                         mas_pause(&mas);
1647                 }
1648         next:
1649                 /*
1650                  * In the vma_merge() successful mprotect-like case 8:
1651                  * the next vma was merged into the current one and
1652                  * the current one has not been updated yet.
1653                  */
1654                 vma->vm_flags = new_flags;
1655                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1656
1657         skip:
1658                 prev = vma;
1659                 start = vma->vm_end;
1660                 vma = mas_next(&mas, end - 1);
1661         } while (vma);
1662 out_unlock:
1663         mmap_write_unlock(mm);
1664         mmput(mm);
1665 out:
1666         return ret;
1667 }
1668
1669 /*
1670  * userfaultfd_wake may be used in combination with the
1671  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1672  */
1673 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1674                             unsigned long arg)
1675 {
1676         int ret;
1677         struct uffdio_range uffdio_wake;
1678         struct userfaultfd_wake_range range;
1679         const void __user *buf = (void __user *)arg;
1680
1681         ret = -EFAULT;
1682         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1683                 goto out;
1684
1685         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1686         if (ret)
1687                 goto out;
1688
1689         range.start = uffdio_wake.start;
1690         range.len = uffdio_wake.len;
1691
1692         /*
1693          * len == 0 means wake all and we don't want to wake all here,
1694          * so check it again to be sure.
1695          */
1696         VM_BUG_ON(!range.len);
1697
1698         wake_userfault(ctx, &range);
1699         ret = 0;
1700
1701 out:
1702         return ret;
1703 }
1704
1705 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1706                             unsigned long arg)
1707 {
1708         __s64 ret;
1709         struct uffdio_copy uffdio_copy;
1710         struct uffdio_copy __user *user_uffdio_copy;
1711         struct userfaultfd_wake_range range;
1712
1713         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1714
1715         ret = -EAGAIN;
1716         if (atomic_read(&ctx->mmap_changing))
1717                 goto out;
1718
1719         ret = -EFAULT;
1720         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1721                            /* don't copy "copy" last field */
1722                            sizeof(uffdio_copy)-sizeof(__s64)))
1723                 goto out;
1724
1725         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1726         if (ret)
1727                 goto out;
1728         /*
1729          * double check for wraparound just in case. copy_from_user()
1730          * will later check uffdio_copy.src + uffdio_copy.len to fit
1731          * in the userland range.
1732          */
1733         ret = -EINVAL;
1734         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1735                 goto out;
1736         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1737                 goto out;
1738         if (mmget_not_zero(ctx->mm)) {
1739                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1740                                    uffdio_copy.len, &ctx->mmap_changing,
1741                                    uffdio_copy.mode);
1742                 mmput(ctx->mm);
1743         } else {
1744                 return -ESRCH;
1745         }
1746         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1747                 return -EFAULT;
1748         if (ret < 0)
1749                 goto out;
1750         BUG_ON(!ret);
1751         /* len == 0 would wake all */
1752         range.len = ret;
1753         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1754                 range.start = uffdio_copy.dst;
1755                 wake_userfault(ctx, &range);
1756         }
1757         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1758 out:
1759         return ret;
1760 }
1761
1762 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1763                                 unsigned long arg)
1764 {
1765         __s64 ret;
1766         struct uffdio_zeropage uffdio_zeropage;
1767         struct uffdio_zeropage __user *user_uffdio_zeropage;
1768         struct userfaultfd_wake_range range;
1769
1770         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1771
1772         ret = -EAGAIN;
1773         if (atomic_read(&ctx->mmap_changing))
1774                 goto out;
1775
1776         ret = -EFAULT;
1777         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1778                            /* don't copy "zeropage" last field */
1779                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1780                 goto out;
1781
1782         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1783                              uffdio_zeropage.range.len);
1784         if (ret)
1785                 goto out;
1786         ret = -EINVAL;
1787         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1788                 goto out;
1789
1790         if (mmget_not_zero(ctx->mm)) {
1791                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1792                                      uffdio_zeropage.range.len,
1793                                      &ctx->mmap_changing);
1794                 mmput(ctx->mm);
1795         } else {
1796                 return -ESRCH;
1797         }
1798         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1799                 return -EFAULT;
1800         if (ret < 0)
1801                 goto out;
1802         /* len == 0 would wake all */
1803         BUG_ON(!ret);
1804         range.len = ret;
1805         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1806                 range.start = uffdio_zeropage.range.start;
1807                 wake_userfault(ctx, &range);
1808         }
1809         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1810 out:
1811         return ret;
1812 }
1813
1814 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1815                                     unsigned long arg)
1816 {
1817         int ret;
1818         struct uffdio_writeprotect uffdio_wp;
1819         struct uffdio_writeprotect __user *user_uffdio_wp;
1820         struct userfaultfd_wake_range range;
1821         bool mode_wp, mode_dontwake;
1822
1823         if (atomic_read(&ctx->mmap_changing))
1824                 return -EAGAIN;
1825
1826         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1827
1828         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1829                            sizeof(struct uffdio_writeprotect)))
1830                 return -EFAULT;
1831
1832         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1833                              uffdio_wp.range.len);
1834         if (ret)
1835                 return ret;
1836
1837         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1838                                UFFDIO_WRITEPROTECT_MODE_WP))
1839                 return -EINVAL;
1840
1841         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1842         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1843
1844         if (mode_wp && mode_dontwake)
1845                 return -EINVAL;
1846
1847         if (mmget_not_zero(ctx->mm)) {
1848                 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1849                                           uffdio_wp.range.len, mode_wp,
1850                                           &ctx->mmap_changing);
1851                 mmput(ctx->mm);
1852         } else {
1853                 return -ESRCH;
1854         }
1855
1856         if (ret)
1857                 return ret;
1858
1859         if (!mode_wp && !mode_dontwake) {
1860                 range.start = uffdio_wp.range.start;
1861                 range.len = uffdio_wp.range.len;
1862                 wake_userfault(ctx, &range);
1863         }
1864         return ret;
1865 }
1866
1867 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1868 {
1869         __s64 ret;
1870         struct uffdio_continue uffdio_continue;
1871         struct uffdio_continue __user *user_uffdio_continue;
1872         struct userfaultfd_wake_range range;
1873
1874         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1875
1876         ret = -EAGAIN;
1877         if (atomic_read(&ctx->mmap_changing))
1878                 goto out;
1879
1880         ret = -EFAULT;
1881         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1882                            /* don't copy the output fields */
1883                            sizeof(uffdio_continue) - (sizeof(__s64))))
1884                 goto out;
1885
1886         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1887                              uffdio_continue.range.len);
1888         if (ret)
1889                 goto out;
1890
1891         ret = -EINVAL;
1892         /* double check for wraparound just in case. */
1893         if (uffdio_continue.range.start + uffdio_continue.range.len <=
1894             uffdio_continue.range.start) {
1895                 goto out;
1896         }
1897         if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1898                 goto out;
1899
1900         if (mmget_not_zero(ctx->mm)) {
1901                 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1902                                      uffdio_continue.range.len,
1903                                      &ctx->mmap_changing);
1904                 mmput(ctx->mm);
1905         } else {
1906                 return -ESRCH;
1907         }
1908
1909         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1910                 return -EFAULT;
1911         if (ret < 0)
1912                 goto out;
1913
1914         /* len == 0 would wake all */
1915         BUG_ON(!ret);
1916         range.len = ret;
1917         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1918                 range.start = uffdio_continue.range.start;
1919                 wake_userfault(ctx, &range);
1920         }
1921         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1922
1923 out:
1924         return ret;
1925 }
1926
1927 static inline unsigned int uffd_ctx_features(__u64 user_features)
1928 {
1929         /*
1930          * For the current set of features the bits just coincide. Set
1931          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1932          */
1933         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1934 }
1935
1936 /*
1937  * userland asks for a certain API version and we return which bits
1938  * and ioctl commands are implemented in this kernel for such API
1939  * version or -EINVAL if unknown.
1940  */
1941 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1942                            unsigned long arg)
1943 {
1944         struct uffdio_api uffdio_api;
1945         void __user *buf = (void __user *)arg;
1946         unsigned int ctx_features;
1947         int ret;
1948         __u64 features;
1949
1950         ret = -EFAULT;
1951         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1952                 goto out;
1953         /* Ignore unsupported features (userspace built against newer kernel) */
1954         features = uffdio_api.features & UFFD_API_FEATURES;
1955         ret = -EPERM;
1956         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1957                 goto err_out;
1958         /* report all available features and ioctls to userland */
1959         uffdio_api.features = UFFD_API_FEATURES;
1960 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1961         uffdio_api.features &=
1962                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1963 #endif
1964 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1965         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1966 #endif
1967 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1968         uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1969 #endif
1970         uffdio_api.ioctls = UFFD_API_IOCTLS;
1971         ret = -EFAULT;
1972         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1973                 goto out;
1974
1975         /* only enable the requested features for this uffd context */
1976         ctx_features = uffd_ctx_features(features);
1977         ret = -EINVAL;
1978         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1979                 goto err_out;
1980
1981         ret = 0;
1982 out:
1983         return ret;
1984 err_out:
1985         memset(&uffdio_api, 0, sizeof(uffdio_api));
1986         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1987                 ret = -EFAULT;
1988         goto out;
1989 }
1990
1991 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1992                               unsigned long arg)
1993 {
1994         int ret = -EINVAL;
1995         struct userfaultfd_ctx *ctx = file->private_data;
1996
1997         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1998                 return -EINVAL;
1999
2000         switch(cmd) {
2001         case UFFDIO_API:
2002                 ret = userfaultfd_api(ctx, arg);
2003                 break;
2004         case UFFDIO_REGISTER:
2005                 ret = userfaultfd_register(ctx, arg);
2006                 break;
2007         case UFFDIO_UNREGISTER:
2008                 ret = userfaultfd_unregister(ctx, arg);
2009                 break;
2010         case UFFDIO_WAKE:
2011                 ret = userfaultfd_wake(ctx, arg);
2012                 break;
2013         case UFFDIO_COPY:
2014                 ret = userfaultfd_copy(ctx, arg);
2015                 break;
2016         case UFFDIO_ZEROPAGE:
2017                 ret = userfaultfd_zeropage(ctx, arg);
2018                 break;
2019         case UFFDIO_WRITEPROTECT:
2020                 ret = userfaultfd_writeprotect(ctx, arg);
2021                 break;
2022         case UFFDIO_CONTINUE:
2023                 ret = userfaultfd_continue(ctx, arg);
2024                 break;
2025         }
2026         return ret;
2027 }
2028
2029 #ifdef CONFIG_PROC_FS
2030 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2031 {
2032         struct userfaultfd_ctx *ctx = f->private_data;
2033         wait_queue_entry_t *wq;
2034         unsigned long pending = 0, total = 0;
2035
2036         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2037         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2038                 pending++;
2039                 total++;
2040         }
2041         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2042                 total++;
2043         }
2044         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2045
2046         /*
2047          * If more protocols will be added, there will be all shown
2048          * separated by a space. Like this:
2049          *      protocols: aa:... bb:...
2050          */
2051         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2052                    pending, total, UFFD_API, ctx->features,
2053                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2054 }
2055 #endif
2056
2057 static const struct file_operations userfaultfd_fops = {
2058 #ifdef CONFIG_PROC_FS
2059         .show_fdinfo    = userfaultfd_show_fdinfo,
2060 #endif
2061         .release        = userfaultfd_release,
2062         .poll           = userfaultfd_poll,
2063         .read           = userfaultfd_read,
2064         .unlocked_ioctl = userfaultfd_ioctl,
2065         .compat_ioctl   = compat_ptr_ioctl,
2066         .llseek         = noop_llseek,
2067 };
2068
2069 static void init_once_userfaultfd_ctx(void *mem)
2070 {
2071         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2072
2073         init_waitqueue_head(&ctx->fault_pending_wqh);
2074         init_waitqueue_head(&ctx->fault_wqh);
2075         init_waitqueue_head(&ctx->event_wqh);
2076         init_waitqueue_head(&ctx->fd_wqh);
2077         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2078 }
2079
2080 static int new_userfaultfd(int flags)
2081 {
2082         struct userfaultfd_ctx *ctx;
2083         int fd;
2084
2085         BUG_ON(!current->mm);
2086
2087         /* Check the UFFD_* constants for consistency.  */
2088         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2089         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2090         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2091
2092         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2093                 return -EINVAL;
2094
2095         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2096         if (!ctx)
2097                 return -ENOMEM;
2098
2099         refcount_set(&ctx->refcount, 1);
2100         ctx->flags = flags;
2101         ctx->features = 0;
2102         ctx->released = false;
2103         atomic_set(&ctx->mmap_changing, 0);
2104         ctx->mm = current->mm;
2105         /* prevent the mm struct to be freed */
2106         mmgrab(ctx->mm);
2107
2108         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2109                         O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2110         if (fd < 0) {
2111                 mmdrop(ctx->mm);
2112                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2113         }
2114         return fd;
2115 }
2116
2117 static inline bool userfaultfd_syscall_allowed(int flags)
2118 {
2119         /* Userspace-only page faults are always allowed */
2120         if (flags & UFFD_USER_MODE_ONLY)
2121                 return true;
2122
2123         /*
2124          * The user is requesting a userfaultfd which can handle kernel faults.
2125          * Privileged users are always allowed to do this.
2126          */
2127         if (capable(CAP_SYS_PTRACE))
2128                 return true;
2129
2130         /* Otherwise, access to kernel fault handling is sysctl controlled. */
2131         return sysctl_unprivileged_userfaultfd;
2132 }
2133
2134 SYSCALL_DEFINE1(userfaultfd, int, flags)
2135 {
2136         if (!userfaultfd_syscall_allowed(flags))
2137                 return -EPERM;
2138
2139         return new_userfaultfd(flags);
2140 }
2141
2142 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2143 {
2144         if (cmd != USERFAULTFD_IOC_NEW)
2145                 return -EINVAL;
2146
2147         return new_userfaultfd(flags);
2148 }
2149
2150 static const struct file_operations userfaultfd_dev_fops = {
2151         .unlocked_ioctl = userfaultfd_dev_ioctl,
2152         .compat_ioctl = userfaultfd_dev_ioctl,
2153         .owner = THIS_MODULE,
2154         .llseek = noop_llseek,
2155 };
2156
2157 static struct miscdevice userfaultfd_misc = {
2158         .minor = MISC_DYNAMIC_MINOR,
2159         .name = "userfaultfd",
2160         .fops = &userfaultfd_dev_fops
2161 };
2162
2163 static int __init userfaultfd_init(void)
2164 {
2165         int ret;
2166
2167         ret = misc_register(&userfaultfd_misc);
2168         if (ret)
2169                 return ret;
2170
2171         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2172                                                 sizeof(struct userfaultfd_ctx),
2173                                                 0,
2174                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2175                                                 init_once_userfaultfd_ctx);
2176         return 0;
2177 }
2178 __initcall(userfaultfd_init);