fs: export sget_dev()
[platform/kernel/linux-rpi.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37 #ifdef CONFIG_SYSCTL
38 static struct ctl_table vm_userfaultfd_table[] = {
39         {
40                 .procname       = "unprivileged_userfaultfd",
41                 .data           = &sysctl_unprivileged_userfaultfd,
42                 .maxlen         = sizeof(sysctl_unprivileged_userfaultfd),
43                 .mode           = 0644,
44                 .proc_handler   = proc_dointvec_minmax,
45                 .extra1         = SYSCTL_ZERO,
46                 .extra2         = SYSCTL_ONE,
47         },
48         { }
49 };
50 #endif
51
52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
53
54 /*
55  * Start with fault_pending_wqh and fault_wqh so they're more likely
56  * to be in the same cacheline.
57  *
58  * Locking order:
59  *      fd_wqh.lock
60  *              fault_pending_wqh.lock
61  *                      fault_wqh.lock
62  *              event_wqh.lock
63  *
64  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66  * also taken in IRQ context.
67  */
68 struct userfaultfd_ctx {
69         /* waitqueue head for the pending (i.e. not read) userfaults */
70         wait_queue_head_t fault_pending_wqh;
71         /* waitqueue head for the userfaults */
72         wait_queue_head_t fault_wqh;
73         /* waitqueue head for the pseudo fd to wakeup poll/read */
74         wait_queue_head_t fd_wqh;
75         /* waitqueue head for events */
76         wait_queue_head_t event_wqh;
77         /* a refile sequence protected by fault_pending_wqh lock */
78         seqcount_spinlock_t refile_seq;
79         /* pseudo fd refcounting */
80         refcount_t refcount;
81         /* userfaultfd syscall flags */
82         unsigned int flags;
83         /* features requested from the userspace */
84         unsigned int features;
85         /* released */
86         bool released;
87         /* memory mappings are changing because of non-cooperative event */
88         atomic_t mmap_changing;
89         /* mm with one ore more vmas attached to this userfaultfd_ctx */
90         struct mm_struct *mm;
91 };
92
93 struct userfaultfd_fork_ctx {
94         struct userfaultfd_ctx *orig;
95         struct userfaultfd_ctx *new;
96         struct list_head list;
97 };
98
99 struct userfaultfd_unmap_ctx {
100         struct userfaultfd_ctx *ctx;
101         unsigned long start;
102         unsigned long end;
103         struct list_head list;
104 };
105
106 struct userfaultfd_wait_queue {
107         struct uffd_msg msg;
108         wait_queue_entry_t wq;
109         struct userfaultfd_ctx *ctx;
110         bool waken;
111 };
112
113 struct userfaultfd_wake_range {
114         unsigned long start;
115         unsigned long len;
116 };
117
118 /* internal indication that UFFD_API ioctl was successfully executed */
119 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
120
121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122 {
123         return ctx->features & UFFD_FEATURE_INITIALIZED;
124 }
125
126 /*
127  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
128  * meaningful when userfaultfd_wp()==true on the vma and when it's
129  * anonymous.
130  */
131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
132 {
133         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
134
135         if (!ctx)
136                 return false;
137
138         return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
139 }
140
141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
142                                      vm_flags_t flags)
143 {
144         const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
145
146         vm_flags_reset(vma, flags);
147         /*
148          * For shared mappings, we want to enable writenotify while
149          * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150          * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
151          */
152         if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153                 vma_set_page_prot(vma);
154 }
155
156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
157                                      int wake_flags, void *key)
158 {
159         struct userfaultfd_wake_range *range = key;
160         int ret;
161         struct userfaultfd_wait_queue *uwq;
162         unsigned long start, len;
163
164         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
165         ret = 0;
166         /* len == 0 means wake all */
167         start = range->start;
168         len = range->len;
169         if (len && (start > uwq->msg.arg.pagefault.address ||
170                     start + len <= uwq->msg.arg.pagefault.address))
171                 goto out;
172         WRITE_ONCE(uwq->waken, true);
173         /*
174          * The Program-Order guarantees provided by the scheduler
175          * ensure uwq->waken is visible before the task is woken.
176          */
177         ret = wake_up_state(wq->private, mode);
178         if (ret) {
179                 /*
180                  * Wake only once, autoremove behavior.
181                  *
182                  * After the effect of list_del_init is visible to the other
183                  * CPUs, the waitqueue may disappear from under us, see the
184                  * !list_empty_careful() in handle_userfault().
185                  *
186                  * try_to_wake_up() has an implicit smp_mb(), and the
187                  * wq->private is read before calling the extern function
188                  * "wake_up_state" (which in turns calls try_to_wake_up).
189                  */
190                 list_del_init(&wq->entry);
191         }
192 out:
193         return ret;
194 }
195
196 /**
197  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
198  * context.
199  * @ctx: [in] Pointer to the userfaultfd context.
200  */
201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
202 {
203         refcount_inc(&ctx->refcount);
204 }
205
206 /**
207  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
208  * context.
209  * @ctx: [in] Pointer to userfaultfd context.
210  *
211  * The userfaultfd context reference must have been previously acquired either
212  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
213  */
214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
215 {
216         if (refcount_dec_and_test(&ctx->refcount)) {
217                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
221                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
223                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
225                 mmdrop(ctx->mm);
226                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
227         }
228 }
229
230 static inline void msg_init(struct uffd_msg *msg)
231 {
232         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
233         /*
234          * Must use memset to zero out the paddings or kernel data is
235          * leaked to userland.
236          */
237         memset(msg, 0, sizeof(struct uffd_msg));
238 }
239
240 static inline struct uffd_msg userfault_msg(unsigned long address,
241                                             unsigned long real_address,
242                                             unsigned int flags,
243                                             unsigned long reason,
244                                             unsigned int features)
245 {
246         struct uffd_msg msg;
247
248         msg_init(&msg);
249         msg.event = UFFD_EVENT_PAGEFAULT;
250
251         msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252                                     real_address : address;
253
254         /*
255          * These flags indicate why the userfault occurred:
256          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258          * - Neither of these flags being set indicates a MISSING fault.
259          *
260          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261          * fault. Otherwise, it was a read fault.
262          */
263         if (flags & FAULT_FLAG_WRITE)
264                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
265         if (reason & VM_UFFD_WP)
266                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
267         if (reason & VM_UFFD_MINOR)
268                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
269         if (features & UFFD_FEATURE_THREAD_ID)
270                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
271         return msg;
272 }
273
274 #ifdef CONFIG_HUGETLB_PAGE
275 /*
276  * Same functionality as userfaultfd_must_wait below with modifications for
277  * hugepmd ranges.
278  */
279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
280                                               struct vm_fault *vmf,
281                                               unsigned long reason)
282 {
283         struct vm_area_struct *vma = vmf->vma;
284         pte_t *ptep, pte;
285         bool ret = true;
286
287         assert_fault_locked(vmf);
288
289         ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
290         if (!ptep)
291                 goto out;
292
293         ret = false;
294         pte = huge_ptep_get(ptep);
295
296         /*
297          * Lockless access: we're in a wait_event so it's ok if it
298          * changes under us.  PTE markers should be handled the same as none
299          * ptes here.
300          */
301         if (huge_pte_none_mostly(pte))
302                 ret = true;
303         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
304                 ret = true;
305 out:
306         return ret;
307 }
308 #else
309 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
310                                               struct vm_fault *vmf,
311                                               unsigned long reason)
312 {
313         return false;   /* should never get here */
314 }
315 #endif /* CONFIG_HUGETLB_PAGE */
316
317 /*
318  * Verify the pagetables are still not ok after having reigstered into
319  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
320  * userfault that has already been resolved, if userfaultfd_read and
321  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
322  * threads.
323  */
324 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
325                                          struct vm_fault *vmf,
326                                          unsigned long reason)
327 {
328         struct mm_struct *mm = ctx->mm;
329         unsigned long address = vmf->address;
330         pgd_t *pgd;
331         p4d_t *p4d;
332         pud_t *pud;
333         pmd_t *pmd, _pmd;
334         pte_t *pte;
335         pte_t ptent;
336         bool ret = true;
337
338         assert_fault_locked(vmf);
339
340         pgd = pgd_offset(mm, address);
341         if (!pgd_present(*pgd))
342                 goto out;
343         p4d = p4d_offset(pgd, address);
344         if (!p4d_present(*p4d))
345                 goto out;
346         pud = pud_offset(p4d, address);
347         if (!pud_present(*pud))
348                 goto out;
349         pmd = pmd_offset(pud, address);
350 again:
351         _pmd = pmdp_get_lockless(pmd);
352         if (pmd_none(_pmd))
353                 goto out;
354
355         ret = false;
356         if (!pmd_present(_pmd) || pmd_devmap(_pmd))
357                 goto out;
358
359         if (pmd_trans_huge(_pmd)) {
360                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
361                         ret = true;
362                 goto out;
363         }
364
365         pte = pte_offset_map(pmd, address);
366         if (!pte) {
367                 ret = true;
368                 goto again;
369         }
370         /*
371          * Lockless access: we're in a wait_event so it's ok if it
372          * changes under us.  PTE markers should be handled the same as none
373          * ptes here.
374          */
375         ptent = ptep_get(pte);
376         if (pte_none_mostly(ptent))
377                 ret = true;
378         if (!pte_write(ptent) && (reason & VM_UFFD_WP))
379                 ret = true;
380         pte_unmap(pte);
381
382 out:
383         return ret;
384 }
385
386 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
387 {
388         if (flags & FAULT_FLAG_INTERRUPTIBLE)
389                 return TASK_INTERRUPTIBLE;
390
391         if (flags & FAULT_FLAG_KILLABLE)
392                 return TASK_KILLABLE;
393
394         return TASK_UNINTERRUPTIBLE;
395 }
396
397 /*
398  * The locking rules involved in returning VM_FAULT_RETRY depending on
399  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
400  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
401  * recommendation in __lock_page_or_retry is not an understatement.
402  *
403  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
404  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
405  * not set.
406  *
407  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
408  * set, VM_FAULT_RETRY can still be returned if and only if there are
409  * fatal_signal_pending()s, and the mmap_lock must be released before
410  * returning it.
411  */
412 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
413 {
414         struct vm_area_struct *vma = vmf->vma;
415         struct mm_struct *mm = vma->vm_mm;
416         struct userfaultfd_ctx *ctx;
417         struct userfaultfd_wait_queue uwq;
418         vm_fault_t ret = VM_FAULT_SIGBUS;
419         bool must_wait;
420         unsigned int blocking_state;
421
422         /*
423          * We don't do userfault handling for the final child pid update.
424          *
425          * We also don't do userfault handling during
426          * coredumping. hugetlbfs has the special
427          * hugetlb_follow_page_mask() to skip missing pages in the
428          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
429          * the no_page_table() helper in follow_page_mask(), but the
430          * shmem_vm_ops->fault method is invoked even during
431          * coredumping and it ends up here.
432          */
433         if (current->flags & (PF_EXITING|PF_DUMPCORE))
434                 goto out;
435
436         assert_fault_locked(vmf);
437
438         ctx = vma->vm_userfaultfd_ctx.ctx;
439         if (!ctx)
440                 goto out;
441
442         BUG_ON(ctx->mm != mm);
443
444         /* Any unrecognized flag is a bug. */
445         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
446         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
447         VM_BUG_ON(!reason || (reason & (reason - 1)));
448
449         if (ctx->features & UFFD_FEATURE_SIGBUS)
450                 goto out;
451         if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
452                 goto out;
453
454         /*
455          * If it's already released don't get it. This avoids to loop
456          * in __get_user_pages if userfaultfd_release waits on the
457          * caller of handle_userfault to release the mmap_lock.
458          */
459         if (unlikely(READ_ONCE(ctx->released))) {
460                 /*
461                  * Don't return VM_FAULT_SIGBUS in this case, so a non
462                  * cooperative manager can close the uffd after the
463                  * last UFFDIO_COPY, without risking to trigger an
464                  * involuntary SIGBUS if the process was starting the
465                  * userfaultfd while the userfaultfd was still armed
466                  * (but after the last UFFDIO_COPY). If the uffd
467                  * wasn't already closed when the userfault reached
468                  * this point, that would normally be solved by
469                  * userfaultfd_must_wait returning 'false'.
470                  *
471                  * If we were to return VM_FAULT_SIGBUS here, the non
472                  * cooperative manager would be instead forced to
473                  * always call UFFDIO_UNREGISTER before it can safely
474                  * close the uffd.
475                  */
476                 ret = VM_FAULT_NOPAGE;
477                 goto out;
478         }
479
480         /*
481          * Check that we can return VM_FAULT_RETRY.
482          *
483          * NOTE: it should become possible to return VM_FAULT_RETRY
484          * even if FAULT_FLAG_TRIED is set without leading to gup()
485          * -EBUSY failures, if the userfaultfd is to be extended for
486          * VM_UFFD_WP tracking and we intend to arm the userfault
487          * without first stopping userland access to the memory. For
488          * VM_UFFD_MISSING userfaults this is enough for now.
489          */
490         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
491                 /*
492                  * Validate the invariant that nowait must allow retry
493                  * to be sure not to return SIGBUS erroneously on
494                  * nowait invocations.
495                  */
496                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
497 #ifdef CONFIG_DEBUG_VM
498                 if (printk_ratelimit()) {
499                         printk(KERN_WARNING
500                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
501                                vmf->flags);
502                         dump_stack();
503                 }
504 #endif
505                 goto out;
506         }
507
508         /*
509          * Handle nowait, not much to do other than tell it to retry
510          * and wait.
511          */
512         ret = VM_FAULT_RETRY;
513         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
514                 goto out;
515
516         /* take the reference before dropping the mmap_lock */
517         userfaultfd_ctx_get(ctx);
518
519         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
520         uwq.wq.private = current;
521         uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
522                                 reason, ctx->features);
523         uwq.ctx = ctx;
524         uwq.waken = false;
525
526         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
527
528         /*
529          * Take the vma lock now, in order to safely call
530          * userfaultfd_huge_must_wait() later. Since acquiring the
531          * (sleepable) vma lock can modify the current task state, that
532          * must be before explicitly calling set_current_state().
533          */
534         if (is_vm_hugetlb_page(vma))
535                 hugetlb_vma_lock_read(vma);
536
537         spin_lock_irq(&ctx->fault_pending_wqh.lock);
538         /*
539          * After the __add_wait_queue the uwq is visible to userland
540          * through poll/read().
541          */
542         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
543         /*
544          * The smp_mb() after __set_current_state prevents the reads
545          * following the spin_unlock to happen before the list_add in
546          * __add_wait_queue.
547          */
548         set_current_state(blocking_state);
549         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
550
551         if (!is_vm_hugetlb_page(vma))
552                 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
553         else
554                 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
555         if (is_vm_hugetlb_page(vma))
556                 hugetlb_vma_unlock_read(vma);
557         release_fault_lock(vmf);
558
559         if (likely(must_wait && !READ_ONCE(ctx->released))) {
560                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
561                 schedule();
562         }
563
564         __set_current_state(TASK_RUNNING);
565
566         /*
567          * Here we race with the list_del; list_add in
568          * userfaultfd_ctx_read(), however because we don't ever run
569          * list_del_init() to refile across the two lists, the prev
570          * and next pointers will never point to self. list_add also
571          * would never let any of the two pointers to point to
572          * self. So list_empty_careful won't risk to see both pointers
573          * pointing to self at any time during the list refile. The
574          * only case where list_del_init() is called is the full
575          * removal in the wake function and there we don't re-list_add
576          * and it's fine not to block on the spinlock. The uwq on this
577          * kernel stack can be released after the list_del_init.
578          */
579         if (!list_empty_careful(&uwq.wq.entry)) {
580                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
581                 /*
582                  * No need of list_del_init(), the uwq on the stack
583                  * will be freed shortly anyway.
584                  */
585                 list_del(&uwq.wq.entry);
586                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
587         }
588
589         /*
590          * ctx may go away after this if the userfault pseudo fd is
591          * already released.
592          */
593         userfaultfd_ctx_put(ctx);
594
595 out:
596         return ret;
597 }
598
599 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
600                                               struct userfaultfd_wait_queue *ewq)
601 {
602         struct userfaultfd_ctx *release_new_ctx;
603
604         if (WARN_ON_ONCE(current->flags & PF_EXITING))
605                 goto out;
606
607         ewq->ctx = ctx;
608         init_waitqueue_entry(&ewq->wq, current);
609         release_new_ctx = NULL;
610
611         spin_lock_irq(&ctx->event_wqh.lock);
612         /*
613          * After the __add_wait_queue the uwq is visible to userland
614          * through poll/read().
615          */
616         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
617         for (;;) {
618                 set_current_state(TASK_KILLABLE);
619                 if (ewq->msg.event == 0)
620                         break;
621                 if (READ_ONCE(ctx->released) ||
622                     fatal_signal_pending(current)) {
623                         /*
624                          * &ewq->wq may be queued in fork_event, but
625                          * __remove_wait_queue ignores the head
626                          * parameter. It would be a problem if it
627                          * didn't.
628                          */
629                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
630                         if (ewq->msg.event == UFFD_EVENT_FORK) {
631                                 struct userfaultfd_ctx *new;
632
633                                 new = (struct userfaultfd_ctx *)
634                                         (unsigned long)
635                                         ewq->msg.arg.reserved.reserved1;
636                                 release_new_ctx = new;
637                         }
638                         break;
639                 }
640
641                 spin_unlock_irq(&ctx->event_wqh.lock);
642
643                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
644                 schedule();
645
646                 spin_lock_irq(&ctx->event_wqh.lock);
647         }
648         __set_current_state(TASK_RUNNING);
649         spin_unlock_irq(&ctx->event_wqh.lock);
650
651         if (release_new_ctx) {
652                 struct vm_area_struct *vma;
653                 struct mm_struct *mm = release_new_ctx->mm;
654                 VMA_ITERATOR(vmi, mm, 0);
655
656                 /* the various vma->vm_userfaultfd_ctx still points to it */
657                 mmap_write_lock(mm);
658                 for_each_vma(vmi, vma) {
659                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
660                                 vma_start_write(vma);
661                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
662                                 userfaultfd_set_vm_flags(vma,
663                                                          vma->vm_flags & ~__VM_UFFD_FLAGS);
664                         }
665                 }
666                 mmap_write_unlock(mm);
667
668                 userfaultfd_ctx_put(release_new_ctx);
669         }
670
671         /*
672          * ctx may go away after this if the userfault pseudo fd is
673          * already released.
674          */
675 out:
676         atomic_dec(&ctx->mmap_changing);
677         VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
678         userfaultfd_ctx_put(ctx);
679 }
680
681 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
682                                        struct userfaultfd_wait_queue *ewq)
683 {
684         ewq->msg.event = 0;
685         wake_up_locked(&ctx->event_wqh);
686         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
687 }
688
689 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
690 {
691         struct userfaultfd_ctx *ctx = NULL, *octx;
692         struct userfaultfd_fork_ctx *fctx;
693
694         octx = vma->vm_userfaultfd_ctx.ctx;
695         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
696                 vma_start_write(vma);
697                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
698                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
699                 return 0;
700         }
701
702         list_for_each_entry(fctx, fcs, list)
703                 if (fctx->orig == octx) {
704                         ctx = fctx->new;
705                         break;
706                 }
707
708         if (!ctx) {
709                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
710                 if (!fctx)
711                         return -ENOMEM;
712
713                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
714                 if (!ctx) {
715                         kfree(fctx);
716                         return -ENOMEM;
717                 }
718
719                 refcount_set(&ctx->refcount, 1);
720                 ctx->flags = octx->flags;
721                 ctx->features = octx->features;
722                 ctx->released = false;
723                 atomic_set(&ctx->mmap_changing, 0);
724                 ctx->mm = vma->vm_mm;
725                 mmgrab(ctx->mm);
726
727                 userfaultfd_ctx_get(octx);
728                 atomic_inc(&octx->mmap_changing);
729                 fctx->orig = octx;
730                 fctx->new = ctx;
731                 list_add_tail(&fctx->list, fcs);
732         }
733
734         vma->vm_userfaultfd_ctx.ctx = ctx;
735         return 0;
736 }
737
738 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
739 {
740         struct userfaultfd_ctx *ctx = fctx->orig;
741         struct userfaultfd_wait_queue ewq;
742
743         msg_init(&ewq.msg);
744
745         ewq.msg.event = UFFD_EVENT_FORK;
746         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
747
748         userfaultfd_event_wait_completion(ctx, &ewq);
749 }
750
751 void dup_userfaultfd_complete(struct list_head *fcs)
752 {
753         struct userfaultfd_fork_ctx *fctx, *n;
754
755         list_for_each_entry_safe(fctx, n, fcs, list) {
756                 dup_fctx(fctx);
757                 list_del(&fctx->list);
758                 kfree(fctx);
759         }
760 }
761
762 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
763                              struct vm_userfaultfd_ctx *vm_ctx)
764 {
765         struct userfaultfd_ctx *ctx;
766
767         ctx = vma->vm_userfaultfd_ctx.ctx;
768
769         if (!ctx)
770                 return;
771
772         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
773                 vm_ctx->ctx = ctx;
774                 userfaultfd_ctx_get(ctx);
775                 atomic_inc(&ctx->mmap_changing);
776         } else {
777                 /* Drop uffd context if remap feature not enabled */
778                 vma_start_write(vma);
779                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
780                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
781         }
782 }
783
784 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
785                                  unsigned long from, unsigned long to,
786                                  unsigned long len)
787 {
788         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
789         struct userfaultfd_wait_queue ewq;
790
791         if (!ctx)
792                 return;
793
794         if (to & ~PAGE_MASK) {
795                 userfaultfd_ctx_put(ctx);
796                 return;
797         }
798
799         msg_init(&ewq.msg);
800
801         ewq.msg.event = UFFD_EVENT_REMAP;
802         ewq.msg.arg.remap.from = from;
803         ewq.msg.arg.remap.to = to;
804         ewq.msg.arg.remap.len = len;
805
806         userfaultfd_event_wait_completion(ctx, &ewq);
807 }
808
809 bool userfaultfd_remove(struct vm_area_struct *vma,
810                         unsigned long start, unsigned long end)
811 {
812         struct mm_struct *mm = vma->vm_mm;
813         struct userfaultfd_ctx *ctx;
814         struct userfaultfd_wait_queue ewq;
815
816         ctx = vma->vm_userfaultfd_ctx.ctx;
817         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
818                 return true;
819
820         userfaultfd_ctx_get(ctx);
821         atomic_inc(&ctx->mmap_changing);
822         mmap_read_unlock(mm);
823
824         msg_init(&ewq.msg);
825
826         ewq.msg.event = UFFD_EVENT_REMOVE;
827         ewq.msg.arg.remove.start = start;
828         ewq.msg.arg.remove.end = end;
829
830         userfaultfd_event_wait_completion(ctx, &ewq);
831
832         return false;
833 }
834
835 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
836                           unsigned long start, unsigned long end)
837 {
838         struct userfaultfd_unmap_ctx *unmap_ctx;
839
840         list_for_each_entry(unmap_ctx, unmaps, list)
841                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
842                     unmap_ctx->end == end)
843                         return true;
844
845         return false;
846 }
847
848 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
849                            unsigned long end, struct list_head *unmaps)
850 {
851         struct userfaultfd_unmap_ctx *unmap_ctx;
852         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
853
854         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
855             has_unmap_ctx(ctx, unmaps, start, end))
856                 return 0;
857
858         unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
859         if (!unmap_ctx)
860                 return -ENOMEM;
861
862         userfaultfd_ctx_get(ctx);
863         atomic_inc(&ctx->mmap_changing);
864         unmap_ctx->ctx = ctx;
865         unmap_ctx->start = start;
866         unmap_ctx->end = end;
867         list_add_tail(&unmap_ctx->list, unmaps);
868
869         return 0;
870 }
871
872 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
873 {
874         struct userfaultfd_unmap_ctx *ctx, *n;
875         struct userfaultfd_wait_queue ewq;
876
877         list_for_each_entry_safe(ctx, n, uf, list) {
878                 msg_init(&ewq.msg);
879
880                 ewq.msg.event = UFFD_EVENT_UNMAP;
881                 ewq.msg.arg.remove.start = ctx->start;
882                 ewq.msg.arg.remove.end = ctx->end;
883
884                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
885
886                 list_del(&ctx->list);
887                 kfree(ctx);
888         }
889 }
890
891 static int userfaultfd_release(struct inode *inode, struct file *file)
892 {
893         struct userfaultfd_ctx *ctx = file->private_data;
894         struct mm_struct *mm = ctx->mm;
895         struct vm_area_struct *vma, *prev;
896         /* len == 0 means wake all */
897         struct userfaultfd_wake_range range = { .len = 0, };
898         unsigned long new_flags;
899         VMA_ITERATOR(vmi, mm, 0);
900
901         WRITE_ONCE(ctx->released, true);
902
903         if (!mmget_not_zero(mm))
904                 goto wakeup;
905
906         /*
907          * Flush page faults out of all CPUs. NOTE: all page faults
908          * must be retried without returning VM_FAULT_SIGBUS if
909          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
910          * changes while handle_userfault released the mmap_lock. So
911          * it's critical that released is set to true (above), before
912          * taking the mmap_lock for writing.
913          */
914         mmap_write_lock(mm);
915         prev = NULL;
916         for_each_vma(vmi, vma) {
917                 cond_resched();
918                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
919                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
920                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
921                         prev = vma;
922                         continue;
923                 }
924                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
925                 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
926                                  new_flags, vma->anon_vma,
927                                  vma->vm_file, vma->vm_pgoff,
928                                  vma_policy(vma),
929                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
930                 if (prev) {
931                         vma = prev;
932                 } else {
933                         prev = vma;
934                 }
935
936                 vma_start_write(vma);
937                 userfaultfd_set_vm_flags(vma, new_flags);
938                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
939         }
940         mmap_write_unlock(mm);
941         mmput(mm);
942 wakeup:
943         /*
944          * After no new page faults can wait on this fault_*wqh, flush
945          * the last page faults that may have been already waiting on
946          * the fault_*wqh.
947          */
948         spin_lock_irq(&ctx->fault_pending_wqh.lock);
949         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
950         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
951         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
952
953         /* Flush pending events that may still wait on event_wqh */
954         wake_up_all(&ctx->event_wqh);
955
956         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
957         userfaultfd_ctx_put(ctx);
958         return 0;
959 }
960
961 /* fault_pending_wqh.lock must be hold by the caller */
962 static inline struct userfaultfd_wait_queue *find_userfault_in(
963                 wait_queue_head_t *wqh)
964 {
965         wait_queue_entry_t *wq;
966         struct userfaultfd_wait_queue *uwq;
967
968         lockdep_assert_held(&wqh->lock);
969
970         uwq = NULL;
971         if (!waitqueue_active(wqh))
972                 goto out;
973         /* walk in reverse to provide FIFO behavior to read userfaults */
974         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
975         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
976 out:
977         return uwq;
978 }
979
980 static inline struct userfaultfd_wait_queue *find_userfault(
981                 struct userfaultfd_ctx *ctx)
982 {
983         return find_userfault_in(&ctx->fault_pending_wqh);
984 }
985
986 static inline struct userfaultfd_wait_queue *find_userfault_evt(
987                 struct userfaultfd_ctx *ctx)
988 {
989         return find_userfault_in(&ctx->event_wqh);
990 }
991
992 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
993 {
994         struct userfaultfd_ctx *ctx = file->private_data;
995         __poll_t ret;
996
997         poll_wait(file, &ctx->fd_wqh, wait);
998
999         if (!userfaultfd_is_initialized(ctx))
1000                 return EPOLLERR;
1001
1002         /*
1003          * poll() never guarantees that read won't block.
1004          * userfaults can be waken before they're read().
1005          */
1006         if (unlikely(!(file->f_flags & O_NONBLOCK)))
1007                 return EPOLLERR;
1008         /*
1009          * lockless access to see if there are pending faults
1010          * __pollwait last action is the add_wait_queue but
1011          * the spin_unlock would allow the waitqueue_active to
1012          * pass above the actual list_add inside
1013          * add_wait_queue critical section. So use a full
1014          * memory barrier to serialize the list_add write of
1015          * add_wait_queue() with the waitqueue_active read
1016          * below.
1017          */
1018         ret = 0;
1019         smp_mb();
1020         if (waitqueue_active(&ctx->fault_pending_wqh))
1021                 ret = EPOLLIN;
1022         else if (waitqueue_active(&ctx->event_wqh))
1023                 ret = EPOLLIN;
1024
1025         return ret;
1026 }
1027
1028 static const struct file_operations userfaultfd_fops;
1029
1030 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1031                                   struct inode *inode,
1032                                   struct uffd_msg *msg)
1033 {
1034         int fd;
1035
1036         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1037                         O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1038         if (fd < 0)
1039                 return fd;
1040
1041         msg->arg.reserved.reserved1 = 0;
1042         msg->arg.fork.ufd = fd;
1043         return 0;
1044 }
1045
1046 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1047                                     struct uffd_msg *msg, struct inode *inode)
1048 {
1049         ssize_t ret;
1050         DECLARE_WAITQUEUE(wait, current);
1051         struct userfaultfd_wait_queue *uwq;
1052         /*
1053          * Handling fork event requires sleeping operations, so
1054          * we drop the event_wqh lock, then do these ops, then
1055          * lock it back and wake up the waiter. While the lock is
1056          * dropped the ewq may go away so we keep track of it
1057          * carefully.
1058          */
1059         LIST_HEAD(fork_event);
1060         struct userfaultfd_ctx *fork_nctx = NULL;
1061
1062         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1063         spin_lock_irq(&ctx->fd_wqh.lock);
1064         __add_wait_queue(&ctx->fd_wqh, &wait);
1065         for (;;) {
1066                 set_current_state(TASK_INTERRUPTIBLE);
1067                 spin_lock(&ctx->fault_pending_wqh.lock);
1068                 uwq = find_userfault(ctx);
1069                 if (uwq) {
1070                         /*
1071                          * Use a seqcount to repeat the lockless check
1072                          * in wake_userfault() to avoid missing
1073                          * wakeups because during the refile both
1074                          * waitqueue could become empty if this is the
1075                          * only userfault.
1076                          */
1077                         write_seqcount_begin(&ctx->refile_seq);
1078
1079                         /*
1080                          * The fault_pending_wqh.lock prevents the uwq
1081                          * to disappear from under us.
1082                          *
1083                          * Refile this userfault from
1084                          * fault_pending_wqh to fault_wqh, it's not
1085                          * pending anymore after we read it.
1086                          *
1087                          * Use list_del() by hand (as
1088                          * userfaultfd_wake_function also uses
1089                          * list_del_init() by hand) to be sure nobody
1090                          * changes __remove_wait_queue() to use
1091                          * list_del_init() in turn breaking the
1092                          * !list_empty_careful() check in
1093                          * handle_userfault(). The uwq->wq.head list
1094                          * must never be empty at any time during the
1095                          * refile, or the waitqueue could disappear
1096                          * from under us. The "wait_queue_head_t"
1097                          * parameter of __remove_wait_queue() is unused
1098                          * anyway.
1099                          */
1100                         list_del(&uwq->wq.entry);
1101                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1102
1103                         write_seqcount_end(&ctx->refile_seq);
1104
1105                         /* careful to always initialize msg if ret == 0 */
1106                         *msg = uwq->msg;
1107                         spin_unlock(&ctx->fault_pending_wqh.lock);
1108                         ret = 0;
1109                         break;
1110                 }
1111                 spin_unlock(&ctx->fault_pending_wqh.lock);
1112
1113                 spin_lock(&ctx->event_wqh.lock);
1114                 uwq = find_userfault_evt(ctx);
1115                 if (uwq) {
1116                         *msg = uwq->msg;
1117
1118                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1119                                 fork_nctx = (struct userfaultfd_ctx *)
1120                                         (unsigned long)
1121                                         uwq->msg.arg.reserved.reserved1;
1122                                 list_move(&uwq->wq.entry, &fork_event);
1123                                 /*
1124                                  * fork_nctx can be freed as soon as
1125                                  * we drop the lock, unless we take a
1126                                  * reference on it.
1127                                  */
1128                                 userfaultfd_ctx_get(fork_nctx);
1129                                 spin_unlock(&ctx->event_wqh.lock);
1130                                 ret = 0;
1131                                 break;
1132                         }
1133
1134                         userfaultfd_event_complete(ctx, uwq);
1135                         spin_unlock(&ctx->event_wqh.lock);
1136                         ret = 0;
1137                         break;
1138                 }
1139                 spin_unlock(&ctx->event_wqh.lock);
1140
1141                 if (signal_pending(current)) {
1142                         ret = -ERESTARTSYS;
1143                         break;
1144                 }
1145                 if (no_wait) {
1146                         ret = -EAGAIN;
1147                         break;
1148                 }
1149                 spin_unlock_irq(&ctx->fd_wqh.lock);
1150                 schedule();
1151                 spin_lock_irq(&ctx->fd_wqh.lock);
1152         }
1153         __remove_wait_queue(&ctx->fd_wqh, &wait);
1154         __set_current_state(TASK_RUNNING);
1155         spin_unlock_irq(&ctx->fd_wqh.lock);
1156
1157         if (!ret && msg->event == UFFD_EVENT_FORK) {
1158                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1159                 spin_lock_irq(&ctx->event_wqh.lock);
1160                 if (!list_empty(&fork_event)) {
1161                         /*
1162                          * The fork thread didn't abort, so we can
1163                          * drop the temporary refcount.
1164                          */
1165                         userfaultfd_ctx_put(fork_nctx);
1166
1167                         uwq = list_first_entry(&fork_event,
1168                                                typeof(*uwq),
1169                                                wq.entry);
1170                         /*
1171                          * If fork_event list wasn't empty and in turn
1172                          * the event wasn't already released by fork
1173                          * (the event is allocated on fork kernel
1174                          * stack), put the event back to its place in
1175                          * the event_wq. fork_event head will be freed
1176                          * as soon as we return so the event cannot
1177                          * stay queued there no matter the current
1178                          * "ret" value.
1179                          */
1180                         list_del(&uwq->wq.entry);
1181                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1182
1183                         /*
1184                          * Leave the event in the waitqueue and report
1185                          * error to userland if we failed to resolve
1186                          * the userfault fork.
1187                          */
1188                         if (likely(!ret))
1189                                 userfaultfd_event_complete(ctx, uwq);
1190                 } else {
1191                         /*
1192                          * Here the fork thread aborted and the
1193                          * refcount from the fork thread on fork_nctx
1194                          * has already been released. We still hold
1195                          * the reference we took before releasing the
1196                          * lock above. If resolve_userfault_fork
1197                          * failed we've to drop it because the
1198                          * fork_nctx has to be freed in such case. If
1199                          * it succeeded we'll hold it because the new
1200                          * uffd references it.
1201                          */
1202                         if (ret)
1203                                 userfaultfd_ctx_put(fork_nctx);
1204                 }
1205                 spin_unlock_irq(&ctx->event_wqh.lock);
1206         }
1207
1208         return ret;
1209 }
1210
1211 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1212                                 size_t count, loff_t *ppos)
1213 {
1214         struct userfaultfd_ctx *ctx = file->private_data;
1215         ssize_t _ret, ret = 0;
1216         struct uffd_msg msg;
1217         int no_wait = file->f_flags & O_NONBLOCK;
1218         struct inode *inode = file_inode(file);
1219
1220         if (!userfaultfd_is_initialized(ctx))
1221                 return -EINVAL;
1222
1223         for (;;) {
1224                 if (count < sizeof(msg))
1225                         return ret ? ret : -EINVAL;
1226                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1227                 if (_ret < 0)
1228                         return ret ? ret : _ret;
1229                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1230                         return ret ? ret : -EFAULT;
1231                 ret += sizeof(msg);
1232                 buf += sizeof(msg);
1233                 count -= sizeof(msg);
1234                 /*
1235                  * Allow to read more than one fault at time but only
1236                  * block if waiting for the very first one.
1237                  */
1238                 no_wait = O_NONBLOCK;
1239         }
1240 }
1241
1242 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1243                              struct userfaultfd_wake_range *range)
1244 {
1245         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1246         /* wake all in the range and autoremove */
1247         if (waitqueue_active(&ctx->fault_pending_wqh))
1248                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1249                                      range);
1250         if (waitqueue_active(&ctx->fault_wqh))
1251                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1252         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1253 }
1254
1255 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1256                                            struct userfaultfd_wake_range *range)
1257 {
1258         unsigned seq;
1259         bool need_wakeup;
1260
1261         /*
1262          * To be sure waitqueue_active() is not reordered by the CPU
1263          * before the pagetable update, use an explicit SMP memory
1264          * barrier here. PT lock release or mmap_read_unlock(mm) still
1265          * have release semantics that can allow the
1266          * waitqueue_active() to be reordered before the pte update.
1267          */
1268         smp_mb();
1269
1270         /*
1271          * Use waitqueue_active because it's very frequent to
1272          * change the address space atomically even if there are no
1273          * userfaults yet. So we take the spinlock only when we're
1274          * sure we've userfaults to wake.
1275          */
1276         do {
1277                 seq = read_seqcount_begin(&ctx->refile_seq);
1278                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1279                         waitqueue_active(&ctx->fault_wqh);
1280                 cond_resched();
1281         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1282         if (need_wakeup)
1283                 __wake_userfault(ctx, range);
1284 }
1285
1286 static __always_inline int validate_unaligned_range(
1287         struct mm_struct *mm, __u64 start, __u64 len)
1288 {
1289         __u64 task_size = mm->task_size;
1290
1291         if (len & ~PAGE_MASK)
1292                 return -EINVAL;
1293         if (!len)
1294                 return -EINVAL;
1295         if (start < mmap_min_addr)
1296                 return -EINVAL;
1297         if (start >= task_size)
1298                 return -EINVAL;
1299         if (len > task_size - start)
1300                 return -EINVAL;
1301         if (start + len <= start)
1302                 return -EINVAL;
1303         return 0;
1304 }
1305
1306 static __always_inline int validate_range(struct mm_struct *mm,
1307                                           __u64 start, __u64 len)
1308 {
1309         if (start & ~PAGE_MASK)
1310                 return -EINVAL;
1311
1312         return validate_unaligned_range(mm, start, len);
1313 }
1314
1315 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1316                                 unsigned long arg)
1317 {
1318         struct mm_struct *mm = ctx->mm;
1319         struct vm_area_struct *vma, *prev, *cur;
1320         int ret;
1321         struct uffdio_register uffdio_register;
1322         struct uffdio_register __user *user_uffdio_register;
1323         unsigned long vm_flags, new_flags;
1324         bool found;
1325         bool basic_ioctls;
1326         unsigned long start, end, vma_end;
1327         struct vma_iterator vmi;
1328         pgoff_t pgoff;
1329
1330         user_uffdio_register = (struct uffdio_register __user *) arg;
1331
1332         ret = -EFAULT;
1333         if (copy_from_user(&uffdio_register, user_uffdio_register,
1334                            sizeof(uffdio_register)-sizeof(__u64)))
1335                 goto out;
1336
1337         ret = -EINVAL;
1338         if (!uffdio_register.mode)
1339                 goto out;
1340         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1341                 goto out;
1342         vm_flags = 0;
1343         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1344                 vm_flags |= VM_UFFD_MISSING;
1345         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1346 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1347                 goto out;
1348 #endif
1349                 vm_flags |= VM_UFFD_WP;
1350         }
1351         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1352 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1353                 goto out;
1354 #endif
1355                 vm_flags |= VM_UFFD_MINOR;
1356         }
1357
1358         ret = validate_range(mm, uffdio_register.range.start,
1359                              uffdio_register.range.len);
1360         if (ret)
1361                 goto out;
1362
1363         start = uffdio_register.range.start;
1364         end = start + uffdio_register.range.len;
1365
1366         ret = -ENOMEM;
1367         if (!mmget_not_zero(mm))
1368                 goto out;
1369
1370         ret = -EINVAL;
1371         mmap_write_lock(mm);
1372         vma_iter_init(&vmi, mm, start);
1373         vma = vma_find(&vmi, end);
1374         if (!vma)
1375                 goto out_unlock;
1376
1377         /*
1378          * If the first vma contains huge pages, make sure start address
1379          * is aligned to huge page size.
1380          */
1381         if (is_vm_hugetlb_page(vma)) {
1382                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1383
1384                 if (start & (vma_hpagesize - 1))
1385                         goto out_unlock;
1386         }
1387
1388         /*
1389          * Search for not compatible vmas.
1390          */
1391         found = false;
1392         basic_ioctls = false;
1393         cur = vma;
1394         do {
1395                 cond_resched();
1396
1397                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1398                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1399
1400                 /* check not compatible vmas */
1401                 ret = -EINVAL;
1402                 if (!vma_can_userfault(cur, vm_flags))
1403                         goto out_unlock;
1404
1405                 /*
1406                  * UFFDIO_COPY will fill file holes even without
1407                  * PROT_WRITE. This check enforces that if this is a
1408                  * MAP_SHARED, the process has write permission to the backing
1409                  * file. If VM_MAYWRITE is set it also enforces that on a
1410                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1411                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1412                  */
1413                 ret = -EPERM;
1414                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1415                         goto out_unlock;
1416
1417                 /*
1418                  * If this vma contains ending address, and huge pages
1419                  * check alignment.
1420                  */
1421                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1422                     end > cur->vm_start) {
1423                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1424
1425                         ret = -EINVAL;
1426
1427                         if (end & (vma_hpagesize - 1))
1428                                 goto out_unlock;
1429                 }
1430                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1431                         goto out_unlock;
1432
1433                 /*
1434                  * Check that this vma isn't already owned by a
1435                  * different userfaultfd. We can't allow more than one
1436                  * userfaultfd to own a single vma simultaneously or we
1437                  * wouldn't know which one to deliver the userfaults to.
1438                  */
1439                 ret = -EBUSY;
1440                 if (cur->vm_userfaultfd_ctx.ctx &&
1441                     cur->vm_userfaultfd_ctx.ctx != ctx)
1442                         goto out_unlock;
1443
1444                 /*
1445                  * Note vmas containing huge pages
1446                  */
1447                 if (is_vm_hugetlb_page(cur))
1448                         basic_ioctls = true;
1449
1450                 found = true;
1451         } for_each_vma_range(vmi, cur, end);
1452         BUG_ON(!found);
1453
1454         vma_iter_set(&vmi, start);
1455         prev = vma_prev(&vmi);
1456         if (vma->vm_start < start)
1457                 prev = vma;
1458
1459         ret = 0;
1460         for_each_vma_range(vmi, vma, end) {
1461                 cond_resched();
1462
1463                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1464                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1465                        vma->vm_userfaultfd_ctx.ctx != ctx);
1466                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1467
1468                 /*
1469                  * Nothing to do: this vma is already registered into this
1470                  * userfaultfd and with the right tracking mode too.
1471                  */
1472                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1473                     (vma->vm_flags & vm_flags) == vm_flags)
1474                         goto skip;
1475
1476                 if (vma->vm_start > start)
1477                         start = vma->vm_start;
1478                 vma_end = min(end, vma->vm_end);
1479
1480                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1481                 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1482                 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1483                                  vma->anon_vma, vma->vm_file, pgoff,
1484                                  vma_policy(vma),
1485                                  ((struct vm_userfaultfd_ctx){ ctx }),
1486                                  anon_vma_name(vma));
1487                 if (prev) {
1488                         /* vma_merge() invalidated the mas */
1489                         vma = prev;
1490                         goto next;
1491                 }
1492                 if (vma->vm_start < start) {
1493                         ret = split_vma(&vmi, vma, start, 1);
1494                         if (ret)
1495                                 break;
1496                 }
1497                 if (vma->vm_end > end) {
1498                         ret = split_vma(&vmi, vma, end, 0);
1499                         if (ret)
1500                                 break;
1501                 }
1502         next:
1503                 /*
1504                  * In the vma_merge() successful mprotect-like case 8:
1505                  * the next vma was merged into the current one and
1506                  * the current one has not been updated yet.
1507                  */
1508                 vma_start_write(vma);
1509                 userfaultfd_set_vm_flags(vma, new_flags);
1510                 vma->vm_userfaultfd_ctx.ctx = ctx;
1511
1512                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1513                         hugetlb_unshare_all_pmds(vma);
1514
1515         skip:
1516                 prev = vma;
1517                 start = vma->vm_end;
1518         }
1519
1520 out_unlock:
1521         mmap_write_unlock(mm);
1522         mmput(mm);
1523         if (!ret) {
1524                 __u64 ioctls_out;
1525
1526                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1527                     UFFD_API_RANGE_IOCTLS;
1528
1529                 /*
1530                  * Declare the WP ioctl only if the WP mode is
1531                  * specified and all checks passed with the range
1532                  */
1533                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1534                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1535
1536                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1537                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1538                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1539
1540                 /*
1541                  * Now that we scanned all vmas we can already tell
1542                  * userland which ioctls methods are guaranteed to
1543                  * succeed on this range.
1544                  */
1545                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1546                         ret = -EFAULT;
1547         }
1548 out:
1549         return ret;
1550 }
1551
1552 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1553                                   unsigned long arg)
1554 {
1555         struct mm_struct *mm = ctx->mm;
1556         struct vm_area_struct *vma, *prev, *cur;
1557         int ret;
1558         struct uffdio_range uffdio_unregister;
1559         unsigned long new_flags;
1560         bool found;
1561         unsigned long start, end, vma_end;
1562         const void __user *buf = (void __user *)arg;
1563         struct vma_iterator vmi;
1564         pgoff_t pgoff;
1565
1566         ret = -EFAULT;
1567         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1568                 goto out;
1569
1570         ret = validate_range(mm, uffdio_unregister.start,
1571                              uffdio_unregister.len);
1572         if (ret)
1573                 goto out;
1574
1575         start = uffdio_unregister.start;
1576         end = start + uffdio_unregister.len;
1577
1578         ret = -ENOMEM;
1579         if (!mmget_not_zero(mm))
1580                 goto out;
1581
1582         mmap_write_lock(mm);
1583         ret = -EINVAL;
1584         vma_iter_init(&vmi, mm, start);
1585         vma = vma_find(&vmi, end);
1586         if (!vma)
1587                 goto out_unlock;
1588
1589         /*
1590          * If the first vma contains huge pages, make sure start address
1591          * is aligned to huge page size.
1592          */
1593         if (is_vm_hugetlb_page(vma)) {
1594                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1595
1596                 if (start & (vma_hpagesize - 1))
1597                         goto out_unlock;
1598         }
1599
1600         /*
1601          * Search for not compatible vmas.
1602          */
1603         found = false;
1604         cur = vma;
1605         do {
1606                 cond_resched();
1607
1608                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1609                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1610
1611                 /*
1612                  * Check not compatible vmas, not strictly required
1613                  * here as not compatible vmas cannot have an
1614                  * userfaultfd_ctx registered on them, but this
1615                  * provides for more strict behavior to notice
1616                  * unregistration errors.
1617                  */
1618                 if (!vma_can_userfault(cur, cur->vm_flags))
1619                         goto out_unlock;
1620
1621                 found = true;
1622         } for_each_vma_range(vmi, cur, end);
1623         BUG_ON(!found);
1624
1625         vma_iter_set(&vmi, start);
1626         prev = vma_prev(&vmi);
1627         if (vma->vm_start < start)
1628                 prev = vma;
1629
1630         ret = 0;
1631         for_each_vma_range(vmi, vma, end) {
1632                 cond_resched();
1633
1634                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1635
1636                 /*
1637                  * Nothing to do: this vma is already registered into this
1638                  * userfaultfd and with the right tracking mode too.
1639                  */
1640                 if (!vma->vm_userfaultfd_ctx.ctx)
1641                         goto skip;
1642
1643                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1644
1645                 if (vma->vm_start > start)
1646                         start = vma->vm_start;
1647                 vma_end = min(end, vma->vm_end);
1648
1649                 if (userfaultfd_missing(vma)) {
1650                         /*
1651                          * Wake any concurrent pending userfault while
1652                          * we unregister, so they will not hang
1653                          * permanently and it avoids userland to call
1654                          * UFFDIO_WAKE explicitly.
1655                          */
1656                         struct userfaultfd_wake_range range;
1657                         range.start = start;
1658                         range.len = vma_end - start;
1659                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1660                 }
1661
1662                 /* Reset ptes for the whole vma range if wr-protected */
1663                 if (userfaultfd_wp(vma))
1664                         uffd_wp_range(vma, start, vma_end - start, false);
1665
1666                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1667                 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1668                 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1669                                  vma->anon_vma, vma->vm_file, pgoff,
1670                                  vma_policy(vma),
1671                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
1672                 if (prev) {
1673                         vma = prev;
1674                         goto next;
1675                 }
1676                 if (vma->vm_start < start) {
1677                         ret = split_vma(&vmi, vma, start, 1);
1678                         if (ret)
1679                                 break;
1680                 }
1681                 if (vma->vm_end > end) {
1682                         ret = split_vma(&vmi, vma, end, 0);
1683                         if (ret)
1684                                 break;
1685                 }
1686         next:
1687                 /*
1688                  * In the vma_merge() successful mprotect-like case 8:
1689                  * the next vma was merged into the current one and
1690                  * the current one has not been updated yet.
1691                  */
1692                 vma_start_write(vma);
1693                 userfaultfd_set_vm_flags(vma, new_flags);
1694                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1695
1696         skip:
1697                 prev = vma;
1698                 start = vma->vm_end;
1699         }
1700
1701 out_unlock:
1702         mmap_write_unlock(mm);
1703         mmput(mm);
1704 out:
1705         return ret;
1706 }
1707
1708 /*
1709  * userfaultfd_wake may be used in combination with the
1710  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1711  */
1712 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1713                             unsigned long arg)
1714 {
1715         int ret;
1716         struct uffdio_range uffdio_wake;
1717         struct userfaultfd_wake_range range;
1718         const void __user *buf = (void __user *)arg;
1719
1720         ret = -EFAULT;
1721         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1722                 goto out;
1723
1724         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1725         if (ret)
1726                 goto out;
1727
1728         range.start = uffdio_wake.start;
1729         range.len = uffdio_wake.len;
1730
1731         /*
1732          * len == 0 means wake all and we don't want to wake all here,
1733          * so check it again to be sure.
1734          */
1735         VM_BUG_ON(!range.len);
1736
1737         wake_userfault(ctx, &range);
1738         ret = 0;
1739
1740 out:
1741         return ret;
1742 }
1743
1744 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1745                             unsigned long arg)
1746 {
1747         __s64 ret;
1748         struct uffdio_copy uffdio_copy;
1749         struct uffdio_copy __user *user_uffdio_copy;
1750         struct userfaultfd_wake_range range;
1751         uffd_flags_t flags = 0;
1752
1753         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1754
1755         ret = -EAGAIN;
1756         if (atomic_read(&ctx->mmap_changing))
1757                 goto out;
1758
1759         ret = -EFAULT;
1760         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1761                            /* don't copy "copy" last field */
1762                            sizeof(uffdio_copy)-sizeof(__s64)))
1763                 goto out;
1764
1765         ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1766                                        uffdio_copy.len);
1767         if (ret)
1768                 goto out;
1769         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1770         if (ret)
1771                 goto out;
1772
1773         ret = -EINVAL;
1774         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1775                 goto out;
1776         if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1777                 flags |= MFILL_ATOMIC_WP;
1778         if (mmget_not_zero(ctx->mm)) {
1779                 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1780                                         uffdio_copy.len, &ctx->mmap_changing,
1781                                         flags);
1782                 mmput(ctx->mm);
1783         } else {
1784                 return -ESRCH;
1785         }
1786         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1787                 return -EFAULT;
1788         if (ret < 0)
1789                 goto out;
1790         BUG_ON(!ret);
1791         /* len == 0 would wake all */
1792         range.len = ret;
1793         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1794                 range.start = uffdio_copy.dst;
1795                 wake_userfault(ctx, &range);
1796         }
1797         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1798 out:
1799         return ret;
1800 }
1801
1802 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1803                                 unsigned long arg)
1804 {
1805         __s64 ret;
1806         struct uffdio_zeropage uffdio_zeropage;
1807         struct uffdio_zeropage __user *user_uffdio_zeropage;
1808         struct userfaultfd_wake_range range;
1809
1810         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1811
1812         ret = -EAGAIN;
1813         if (atomic_read(&ctx->mmap_changing))
1814                 goto out;
1815
1816         ret = -EFAULT;
1817         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1818                            /* don't copy "zeropage" last field */
1819                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1820                 goto out;
1821
1822         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1823                              uffdio_zeropage.range.len);
1824         if (ret)
1825                 goto out;
1826         ret = -EINVAL;
1827         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1828                 goto out;
1829
1830         if (mmget_not_zero(ctx->mm)) {
1831                 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1832                                            uffdio_zeropage.range.len,
1833                                            &ctx->mmap_changing);
1834                 mmput(ctx->mm);
1835         } else {
1836                 return -ESRCH;
1837         }
1838         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1839                 return -EFAULT;
1840         if (ret < 0)
1841                 goto out;
1842         /* len == 0 would wake all */
1843         BUG_ON(!ret);
1844         range.len = ret;
1845         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1846                 range.start = uffdio_zeropage.range.start;
1847                 wake_userfault(ctx, &range);
1848         }
1849         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1850 out:
1851         return ret;
1852 }
1853
1854 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1855                                     unsigned long arg)
1856 {
1857         int ret;
1858         struct uffdio_writeprotect uffdio_wp;
1859         struct uffdio_writeprotect __user *user_uffdio_wp;
1860         struct userfaultfd_wake_range range;
1861         bool mode_wp, mode_dontwake;
1862
1863         if (atomic_read(&ctx->mmap_changing))
1864                 return -EAGAIN;
1865
1866         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1867
1868         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1869                            sizeof(struct uffdio_writeprotect)))
1870                 return -EFAULT;
1871
1872         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1873                              uffdio_wp.range.len);
1874         if (ret)
1875                 return ret;
1876
1877         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1878                                UFFDIO_WRITEPROTECT_MODE_WP))
1879                 return -EINVAL;
1880
1881         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1882         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1883
1884         if (mode_wp && mode_dontwake)
1885                 return -EINVAL;
1886
1887         if (mmget_not_zero(ctx->mm)) {
1888                 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1889                                           uffdio_wp.range.len, mode_wp,
1890                                           &ctx->mmap_changing);
1891                 mmput(ctx->mm);
1892         } else {
1893                 return -ESRCH;
1894         }
1895
1896         if (ret)
1897                 return ret;
1898
1899         if (!mode_wp && !mode_dontwake) {
1900                 range.start = uffdio_wp.range.start;
1901                 range.len = uffdio_wp.range.len;
1902                 wake_userfault(ctx, &range);
1903         }
1904         return ret;
1905 }
1906
1907 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1908 {
1909         __s64 ret;
1910         struct uffdio_continue uffdio_continue;
1911         struct uffdio_continue __user *user_uffdio_continue;
1912         struct userfaultfd_wake_range range;
1913         uffd_flags_t flags = 0;
1914
1915         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1916
1917         ret = -EAGAIN;
1918         if (atomic_read(&ctx->mmap_changing))
1919                 goto out;
1920
1921         ret = -EFAULT;
1922         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1923                            /* don't copy the output fields */
1924                            sizeof(uffdio_continue) - (sizeof(__s64))))
1925                 goto out;
1926
1927         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1928                              uffdio_continue.range.len);
1929         if (ret)
1930                 goto out;
1931
1932         ret = -EINVAL;
1933         if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1934                                      UFFDIO_CONTINUE_MODE_WP))
1935                 goto out;
1936         if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1937                 flags |= MFILL_ATOMIC_WP;
1938
1939         if (mmget_not_zero(ctx->mm)) {
1940                 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1941                                             uffdio_continue.range.len,
1942                                             &ctx->mmap_changing, flags);
1943                 mmput(ctx->mm);
1944         } else {
1945                 return -ESRCH;
1946         }
1947
1948         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1949                 return -EFAULT;
1950         if (ret < 0)
1951                 goto out;
1952
1953         /* len == 0 would wake all */
1954         BUG_ON(!ret);
1955         range.len = ret;
1956         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1957                 range.start = uffdio_continue.range.start;
1958                 wake_userfault(ctx, &range);
1959         }
1960         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1961
1962 out:
1963         return ret;
1964 }
1965
1966 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1967 {
1968         __s64 ret;
1969         struct uffdio_poison uffdio_poison;
1970         struct uffdio_poison __user *user_uffdio_poison;
1971         struct userfaultfd_wake_range range;
1972
1973         user_uffdio_poison = (struct uffdio_poison __user *)arg;
1974
1975         ret = -EAGAIN;
1976         if (atomic_read(&ctx->mmap_changing))
1977                 goto out;
1978
1979         ret = -EFAULT;
1980         if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1981                            /* don't copy the output fields */
1982                            sizeof(uffdio_poison) - (sizeof(__s64))))
1983                 goto out;
1984
1985         ret = validate_range(ctx->mm, uffdio_poison.range.start,
1986                              uffdio_poison.range.len);
1987         if (ret)
1988                 goto out;
1989
1990         ret = -EINVAL;
1991         if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1992                 goto out;
1993
1994         if (mmget_not_zero(ctx->mm)) {
1995                 ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start,
1996                                           uffdio_poison.range.len,
1997                                           &ctx->mmap_changing, 0);
1998                 mmput(ctx->mm);
1999         } else {
2000                 return -ESRCH;
2001         }
2002
2003         if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
2004                 return -EFAULT;
2005         if (ret < 0)
2006                 goto out;
2007
2008         /* len == 0 would wake all */
2009         BUG_ON(!ret);
2010         range.len = ret;
2011         if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
2012                 range.start = uffdio_poison.range.start;
2013                 wake_userfault(ctx, &range);
2014         }
2015         ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
2016
2017 out:
2018         return ret;
2019 }
2020
2021 static inline unsigned int uffd_ctx_features(__u64 user_features)
2022 {
2023         /*
2024          * For the current set of features the bits just coincide. Set
2025          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
2026          */
2027         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
2028 }
2029
2030 /*
2031  * userland asks for a certain API version and we return which bits
2032  * and ioctl commands are implemented in this kernel for such API
2033  * version or -EINVAL if unknown.
2034  */
2035 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2036                            unsigned long arg)
2037 {
2038         struct uffdio_api uffdio_api;
2039         void __user *buf = (void __user *)arg;
2040         unsigned int ctx_features;
2041         int ret;
2042         __u64 features;
2043
2044         ret = -EFAULT;
2045         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2046                 goto out;
2047         features = uffdio_api.features;
2048         ret = -EINVAL;
2049         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2050                 goto err_out;
2051         ret = -EPERM;
2052         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2053                 goto err_out;
2054         /* report all available features and ioctls to userland */
2055         uffdio_api.features = UFFD_API_FEATURES;
2056 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2057         uffdio_api.features &=
2058                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2059 #endif
2060 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2061         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2062 #endif
2063 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2064         uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2065         uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2066 #endif
2067         uffdio_api.ioctls = UFFD_API_IOCTLS;
2068         ret = -EFAULT;
2069         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2070                 goto out;
2071
2072         /* only enable the requested features for this uffd context */
2073         ctx_features = uffd_ctx_features(features);
2074         ret = -EINVAL;
2075         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2076                 goto err_out;
2077
2078         ret = 0;
2079 out:
2080         return ret;
2081 err_out:
2082         memset(&uffdio_api, 0, sizeof(uffdio_api));
2083         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2084                 ret = -EFAULT;
2085         goto out;
2086 }
2087
2088 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2089                               unsigned long arg)
2090 {
2091         int ret = -EINVAL;
2092         struct userfaultfd_ctx *ctx = file->private_data;
2093
2094         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2095                 return -EINVAL;
2096
2097         switch(cmd) {
2098         case UFFDIO_API:
2099                 ret = userfaultfd_api(ctx, arg);
2100                 break;
2101         case UFFDIO_REGISTER:
2102                 ret = userfaultfd_register(ctx, arg);
2103                 break;
2104         case UFFDIO_UNREGISTER:
2105                 ret = userfaultfd_unregister(ctx, arg);
2106                 break;
2107         case UFFDIO_WAKE:
2108                 ret = userfaultfd_wake(ctx, arg);
2109                 break;
2110         case UFFDIO_COPY:
2111                 ret = userfaultfd_copy(ctx, arg);
2112                 break;
2113         case UFFDIO_ZEROPAGE:
2114                 ret = userfaultfd_zeropage(ctx, arg);
2115                 break;
2116         case UFFDIO_WRITEPROTECT:
2117                 ret = userfaultfd_writeprotect(ctx, arg);
2118                 break;
2119         case UFFDIO_CONTINUE:
2120                 ret = userfaultfd_continue(ctx, arg);
2121                 break;
2122         case UFFDIO_POISON:
2123                 ret = userfaultfd_poison(ctx, arg);
2124                 break;
2125         }
2126         return ret;
2127 }
2128
2129 #ifdef CONFIG_PROC_FS
2130 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2131 {
2132         struct userfaultfd_ctx *ctx = f->private_data;
2133         wait_queue_entry_t *wq;
2134         unsigned long pending = 0, total = 0;
2135
2136         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2137         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2138                 pending++;
2139                 total++;
2140         }
2141         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2142                 total++;
2143         }
2144         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2145
2146         /*
2147          * If more protocols will be added, there will be all shown
2148          * separated by a space. Like this:
2149          *      protocols: aa:... bb:...
2150          */
2151         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2152                    pending, total, UFFD_API, ctx->features,
2153                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2154 }
2155 #endif
2156
2157 static const struct file_operations userfaultfd_fops = {
2158 #ifdef CONFIG_PROC_FS
2159         .show_fdinfo    = userfaultfd_show_fdinfo,
2160 #endif
2161         .release        = userfaultfd_release,
2162         .poll           = userfaultfd_poll,
2163         .read           = userfaultfd_read,
2164         .unlocked_ioctl = userfaultfd_ioctl,
2165         .compat_ioctl   = compat_ptr_ioctl,
2166         .llseek         = noop_llseek,
2167 };
2168
2169 static void init_once_userfaultfd_ctx(void *mem)
2170 {
2171         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2172
2173         init_waitqueue_head(&ctx->fault_pending_wqh);
2174         init_waitqueue_head(&ctx->fault_wqh);
2175         init_waitqueue_head(&ctx->event_wqh);
2176         init_waitqueue_head(&ctx->fd_wqh);
2177         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2178 }
2179
2180 static int new_userfaultfd(int flags)
2181 {
2182         struct userfaultfd_ctx *ctx;
2183         int fd;
2184
2185         BUG_ON(!current->mm);
2186
2187         /* Check the UFFD_* constants for consistency.  */
2188         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2189         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2190         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2191
2192         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2193                 return -EINVAL;
2194
2195         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2196         if (!ctx)
2197                 return -ENOMEM;
2198
2199         refcount_set(&ctx->refcount, 1);
2200         ctx->flags = flags;
2201         ctx->features = 0;
2202         ctx->released = false;
2203         atomic_set(&ctx->mmap_changing, 0);
2204         ctx->mm = current->mm;
2205         /* prevent the mm struct to be freed */
2206         mmgrab(ctx->mm);
2207
2208         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2209                         O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2210         if (fd < 0) {
2211                 mmdrop(ctx->mm);
2212                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2213         }
2214         return fd;
2215 }
2216
2217 static inline bool userfaultfd_syscall_allowed(int flags)
2218 {
2219         /* Userspace-only page faults are always allowed */
2220         if (flags & UFFD_USER_MODE_ONLY)
2221                 return true;
2222
2223         /*
2224          * The user is requesting a userfaultfd which can handle kernel faults.
2225          * Privileged users are always allowed to do this.
2226          */
2227         if (capable(CAP_SYS_PTRACE))
2228                 return true;
2229
2230         /* Otherwise, access to kernel fault handling is sysctl controlled. */
2231         return sysctl_unprivileged_userfaultfd;
2232 }
2233
2234 SYSCALL_DEFINE1(userfaultfd, int, flags)
2235 {
2236         if (!userfaultfd_syscall_allowed(flags))
2237                 return -EPERM;
2238
2239         return new_userfaultfd(flags);
2240 }
2241
2242 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2243 {
2244         if (cmd != USERFAULTFD_IOC_NEW)
2245                 return -EINVAL;
2246
2247         return new_userfaultfd(flags);
2248 }
2249
2250 static const struct file_operations userfaultfd_dev_fops = {
2251         .unlocked_ioctl = userfaultfd_dev_ioctl,
2252         .compat_ioctl = userfaultfd_dev_ioctl,
2253         .owner = THIS_MODULE,
2254         .llseek = noop_llseek,
2255 };
2256
2257 static struct miscdevice userfaultfd_misc = {
2258         .minor = MISC_DYNAMIC_MINOR,
2259         .name = "userfaultfd",
2260         .fops = &userfaultfd_dev_fops
2261 };
2262
2263 static int __init userfaultfd_init(void)
2264 {
2265         int ret;
2266
2267         ret = misc_register(&userfaultfd_misc);
2268         if (ret)
2269                 return ret;
2270
2271         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2272                                                 sizeof(struct userfaultfd_ctx),
2273                                                 0,
2274                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2275                                                 init_once_userfaultfd_ctx);
2276 #ifdef CONFIG_SYSCTL
2277         register_sysctl_init("vm", vm_userfaultfd_table);
2278 #endif
2279         return 0;
2280 }
2281 __initcall(userfaultfd_init);