1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 enum userfaultfd_state {
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
46 * fault_pending_wqh.lock
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
54 struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
65 /* pseudo fd refcounting */
67 /* userfaultfd syscall flags */
69 /* features requested from the userspace */
70 unsigned int features;
72 enum userfaultfd_state state;
75 /* memory mappings are changing because of non-cooperative event */
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
81 struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
87 struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
91 struct list_head list;
94 struct userfaultfd_wait_queue {
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
101 struct userfaultfd_wake_range {
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
109 struct userfaultfd_wake_range *range = key;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 /* len == 0 means wake all */
117 start = range->start;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
122 WRITE_ONCE(uwq->waken, true);
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
127 ret = wake_up_state(wq->private, mode);
130 * Wake only once, autoremove behavior.
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
140 list_del_init(&wq->entry);
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * @ctx: [in] Pointer to the userfaultfd context.
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 refcount_inc(&ctx->refcount);
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * @ctx: [in] Pointer to userfaultfd context.
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 if (refcount_dec_and_test(&ctx->refcount)) {
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
180 static inline void msg_init(struct uffd_msg *msg)
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
187 memset(msg, 0, sizeof(struct uffd_msg));
190 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned long reason,
193 unsigned int features)
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
199 if (flags & FAULT_FLAG_WRITE)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 if (reason & VM_UFFD_WP)
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 if (features & UFFD_FEATURE_THREAD_ID)
218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
222 #ifdef CONFIG_HUGETLB_PAGE
224 * Same functionality as userfaultfd_must_wait below with modifications for
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 struct vm_area_struct *vma,
229 unsigned long address,
231 unsigned long reason)
233 struct mm_struct *mm = ctx->mm;
237 mmap_assert_locked(mm);
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
245 pte = huge_ptep_get(ptep);
248 * Lockless access: we're in a wait_event so it's ok if it
251 if (huge_pte_none(pte))
253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 struct vm_area_struct *vma,
261 unsigned long address,
263 unsigned long reason)
265 return false; /* should never get here */
267 #endif /* CONFIG_HUGETLB_PAGE */
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
279 unsigned long reason)
281 struct mm_struct *mm = ctx->mm;
289 mmap_assert_locked(mm);
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
297 pud = pud_offset(p4d, address);
298 if (!pud_present(*pud))
300 pmd = pmd_offset(pud, address);
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
309 _pmd = READ_ONCE(*pmd);
314 if (!pmd_present(_pmd))
317 if (pmd_trans_huge(_pmd)) {
318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325 * and use the standard pte_offset_map() instead of parsing _pmd.
327 pte = pte_offset_map(pmd, address);
329 * Lockless access: we're in a wait_event so it's ok if it
334 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
342 /* Should pair with userfaultfd_signal_pending() */
343 static inline long userfaultfd_get_blocking_state(unsigned int flags)
345 if (flags & FAULT_FLAG_INTERRUPTIBLE)
346 return TASK_INTERRUPTIBLE;
348 if (flags & FAULT_FLAG_KILLABLE)
349 return TASK_KILLABLE;
351 return TASK_UNINTERRUPTIBLE;
354 /* Should pair with userfaultfd_get_blocking_state() */
355 static inline bool userfaultfd_signal_pending(unsigned int flags)
357 if (flags & FAULT_FLAG_INTERRUPTIBLE)
358 return signal_pending(current);
360 if (flags & FAULT_FLAG_KILLABLE)
361 return fatal_signal_pending(current);
367 * The locking rules involved in returning VM_FAULT_RETRY depending on
368 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
369 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
370 * recommendation in __lock_page_or_retry is not an understatement.
372 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
373 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
376 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
377 * set, VM_FAULT_RETRY can still be returned if and only if there are
378 * fatal_signal_pending()s, and the mmap_lock must be released before
381 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
383 struct mm_struct *mm = vmf->vma->vm_mm;
384 struct userfaultfd_ctx *ctx;
385 struct userfaultfd_wait_queue uwq;
386 vm_fault_t ret = VM_FAULT_SIGBUS;
391 * We don't do userfault handling for the final child pid update.
393 * We also don't do userfault handling during
394 * coredumping. hugetlbfs has the special
395 * follow_hugetlb_page() to skip missing pages in the
396 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
397 * the no_page_table() helper in follow_page_mask(), but the
398 * shmem_vm_ops->fault method is invoked even during
399 * coredumping without mmap_lock and it ends up here.
401 if (current->flags & (PF_EXITING|PF_DUMPCORE))
405 * Coredumping runs without mmap_lock so we can only check that
406 * the mmap_lock is held, if PF_DUMPCORE was not set.
408 mmap_assert_locked(mm);
410 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
414 BUG_ON(ctx->mm != mm);
416 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
417 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
419 if (ctx->features & UFFD_FEATURE_SIGBUS)
423 * If it's already released don't get it. This avoids to loop
424 * in __get_user_pages if userfaultfd_release waits on the
425 * caller of handle_userfault to release the mmap_lock.
427 if (unlikely(READ_ONCE(ctx->released))) {
429 * Don't return VM_FAULT_SIGBUS in this case, so a non
430 * cooperative manager can close the uffd after the
431 * last UFFDIO_COPY, without risking to trigger an
432 * involuntary SIGBUS if the process was starting the
433 * userfaultfd while the userfaultfd was still armed
434 * (but after the last UFFDIO_COPY). If the uffd
435 * wasn't already closed when the userfault reached
436 * this point, that would normally be solved by
437 * userfaultfd_must_wait returning 'false'.
439 * If we were to return VM_FAULT_SIGBUS here, the non
440 * cooperative manager would be instead forced to
441 * always call UFFDIO_UNREGISTER before it can safely
444 ret = VM_FAULT_NOPAGE;
449 * Check that we can return VM_FAULT_RETRY.
451 * NOTE: it should become possible to return VM_FAULT_RETRY
452 * even if FAULT_FLAG_TRIED is set without leading to gup()
453 * -EBUSY failures, if the userfaultfd is to be extended for
454 * VM_UFFD_WP tracking and we intend to arm the userfault
455 * without first stopping userland access to the memory. For
456 * VM_UFFD_MISSING userfaults this is enough for now.
458 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
460 * Validate the invariant that nowait must allow retry
461 * to be sure not to return SIGBUS erroneously on
462 * nowait invocations.
464 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
465 #ifdef CONFIG_DEBUG_VM
466 if (printk_ratelimit()) {
468 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
477 * Handle nowait, not much to do other than tell it to retry
480 ret = VM_FAULT_RETRY;
481 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
484 /* take the reference before dropping the mmap_lock */
485 userfaultfd_ctx_get(ctx);
487 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
488 uwq.wq.private = current;
489 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
494 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
496 spin_lock_irq(&ctx->fault_pending_wqh.lock);
498 * After the __add_wait_queue the uwq is visible to userland
499 * through poll/read().
501 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
503 * The smp_mb() after __set_current_state prevents the reads
504 * following the spin_unlock to happen before the list_add in
507 set_current_state(blocking_state);
508 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
510 if (!is_vm_hugetlb_page(vmf->vma))
511 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
514 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
517 mmap_read_unlock(mm);
519 if (likely(must_wait && !READ_ONCE(ctx->released) &&
520 !userfaultfd_signal_pending(vmf->flags))) {
521 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
523 ret |= VM_FAULT_MAJOR;
526 * False wakeups can orginate even from rwsem before
527 * up_read() however userfaults will wait either for a
528 * targeted wakeup on the specific uwq waitqueue from
529 * wake_userfault() or for signals or for uffd
532 while (!READ_ONCE(uwq.waken)) {
534 * This needs the full smp_store_mb()
535 * guarantee as the state write must be
536 * visible to other CPUs before reading
537 * uwq.waken from other CPUs.
539 set_current_state(blocking_state);
540 if (READ_ONCE(uwq.waken) ||
541 READ_ONCE(ctx->released) ||
542 userfaultfd_signal_pending(vmf->flags))
548 __set_current_state(TASK_RUNNING);
551 * Here we race with the list_del; list_add in
552 * userfaultfd_ctx_read(), however because we don't ever run
553 * list_del_init() to refile across the two lists, the prev
554 * and next pointers will never point to self. list_add also
555 * would never let any of the two pointers to point to
556 * self. So list_empty_careful won't risk to see both pointers
557 * pointing to self at any time during the list refile. The
558 * only case where list_del_init() is called is the full
559 * removal in the wake function and there we don't re-list_add
560 * and it's fine not to block on the spinlock. The uwq on this
561 * kernel stack can be released after the list_del_init.
563 if (!list_empty_careful(&uwq.wq.entry)) {
564 spin_lock_irq(&ctx->fault_pending_wqh.lock);
566 * No need of list_del_init(), the uwq on the stack
567 * will be freed shortly anyway.
569 list_del(&uwq.wq.entry);
570 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
574 * ctx may go away after this if the userfault pseudo fd is
577 userfaultfd_ctx_put(ctx);
583 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
584 struct userfaultfd_wait_queue *ewq)
586 struct userfaultfd_ctx *release_new_ctx;
588 if (WARN_ON_ONCE(current->flags & PF_EXITING))
592 init_waitqueue_entry(&ewq->wq, current);
593 release_new_ctx = NULL;
595 spin_lock_irq(&ctx->event_wqh.lock);
597 * After the __add_wait_queue the uwq is visible to userland
598 * through poll/read().
600 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
602 set_current_state(TASK_KILLABLE);
603 if (ewq->msg.event == 0)
605 if (READ_ONCE(ctx->released) ||
606 fatal_signal_pending(current)) {
608 * &ewq->wq may be queued in fork_event, but
609 * __remove_wait_queue ignores the head
610 * parameter. It would be a problem if it
613 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
614 if (ewq->msg.event == UFFD_EVENT_FORK) {
615 struct userfaultfd_ctx *new;
617 new = (struct userfaultfd_ctx *)
619 ewq->msg.arg.reserved.reserved1;
620 release_new_ctx = new;
625 spin_unlock_irq(&ctx->event_wqh.lock);
627 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
630 spin_lock_irq(&ctx->event_wqh.lock);
632 __set_current_state(TASK_RUNNING);
633 spin_unlock_irq(&ctx->event_wqh.lock);
635 if (release_new_ctx) {
636 struct vm_area_struct *vma;
637 struct mm_struct *mm = release_new_ctx->mm;
639 /* the various vma->vm_userfaultfd_ctx still points to it */
641 /* no task can run (and in turn coredump) yet */
642 VM_WARN_ON(!mmget_still_valid(mm));
643 for (vma = mm->mmap; vma; vma = vma->vm_next)
644 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
646 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
648 mmap_write_unlock(mm);
650 userfaultfd_ctx_put(release_new_ctx);
654 * ctx may go away after this if the userfault pseudo fd is
658 WRITE_ONCE(ctx->mmap_changing, false);
659 userfaultfd_ctx_put(ctx);
662 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
663 struct userfaultfd_wait_queue *ewq)
666 wake_up_locked(&ctx->event_wqh);
667 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
670 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
672 struct userfaultfd_ctx *ctx = NULL, *octx;
673 struct userfaultfd_fork_ctx *fctx;
675 octx = vma->vm_userfaultfd_ctx.ctx;
676 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
677 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
678 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
682 list_for_each_entry(fctx, fcs, list)
683 if (fctx->orig == octx) {
689 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
693 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
699 refcount_set(&ctx->refcount, 1);
700 ctx->flags = octx->flags;
701 ctx->state = UFFD_STATE_RUNNING;
702 ctx->features = octx->features;
703 ctx->released = false;
704 ctx->mmap_changing = false;
705 ctx->mm = vma->vm_mm;
708 userfaultfd_ctx_get(octx);
709 WRITE_ONCE(octx->mmap_changing, true);
712 list_add_tail(&fctx->list, fcs);
715 vma->vm_userfaultfd_ctx.ctx = ctx;
719 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
721 struct userfaultfd_ctx *ctx = fctx->orig;
722 struct userfaultfd_wait_queue ewq;
726 ewq.msg.event = UFFD_EVENT_FORK;
727 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
729 userfaultfd_event_wait_completion(ctx, &ewq);
732 void dup_userfaultfd_complete(struct list_head *fcs)
734 struct userfaultfd_fork_ctx *fctx, *n;
736 list_for_each_entry_safe(fctx, n, fcs, list) {
738 list_del(&fctx->list);
743 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
744 struct vm_userfaultfd_ctx *vm_ctx)
746 struct userfaultfd_ctx *ctx;
748 ctx = vma->vm_userfaultfd_ctx.ctx;
753 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
755 userfaultfd_ctx_get(ctx);
756 WRITE_ONCE(ctx->mmap_changing, true);
758 /* Drop uffd context if remap feature not enabled */
759 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
760 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
764 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
765 unsigned long from, unsigned long to,
768 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
769 struct userfaultfd_wait_queue ewq;
774 if (to & ~PAGE_MASK) {
775 userfaultfd_ctx_put(ctx);
781 ewq.msg.event = UFFD_EVENT_REMAP;
782 ewq.msg.arg.remap.from = from;
783 ewq.msg.arg.remap.to = to;
784 ewq.msg.arg.remap.len = len;
786 userfaultfd_event_wait_completion(ctx, &ewq);
789 bool userfaultfd_remove(struct vm_area_struct *vma,
790 unsigned long start, unsigned long end)
792 struct mm_struct *mm = vma->vm_mm;
793 struct userfaultfd_ctx *ctx;
794 struct userfaultfd_wait_queue ewq;
796 ctx = vma->vm_userfaultfd_ctx.ctx;
797 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
800 userfaultfd_ctx_get(ctx);
801 WRITE_ONCE(ctx->mmap_changing, true);
802 mmap_read_unlock(mm);
806 ewq.msg.event = UFFD_EVENT_REMOVE;
807 ewq.msg.arg.remove.start = start;
808 ewq.msg.arg.remove.end = end;
810 userfaultfd_event_wait_completion(ctx, &ewq);
815 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
816 unsigned long start, unsigned long end)
818 struct userfaultfd_unmap_ctx *unmap_ctx;
820 list_for_each_entry(unmap_ctx, unmaps, list)
821 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
822 unmap_ctx->end == end)
828 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
829 unsigned long start, unsigned long end,
830 struct list_head *unmaps)
832 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
833 struct userfaultfd_unmap_ctx *unmap_ctx;
834 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
836 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
837 has_unmap_ctx(ctx, unmaps, start, end))
840 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
844 userfaultfd_ctx_get(ctx);
845 WRITE_ONCE(ctx->mmap_changing, true);
846 unmap_ctx->ctx = ctx;
847 unmap_ctx->start = start;
848 unmap_ctx->end = end;
849 list_add_tail(&unmap_ctx->list, unmaps);
855 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
857 struct userfaultfd_unmap_ctx *ctx, *n;
858 struct userfaultfd_wait_queue ewq;
860 list_for_each_entry_safe(ctx, n, uf, list) {
863 ewq.msg.event = UFFD_EVENT_UNMAP;
864 ewq.msg.arg.remove.start = ctx->start;
865 ewq.msg.arg.remove.end = ctx->end;
867 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
869 list_del(&ctx->list);
874 static int userfaultfd_release(struct inode *inode, struct file *file)
876 struct userfaultfd_ctx *ctx = file->private_data;
877 struct mm_struct *mm = ctx->mm;
878 struct vm_area_struct *vma, *prev;
879 /* len == 0 means wake all */
880 struct userfaultfd_wake_range range = { .len = 0, };
881 unsigned long new_flags;
884 WRITE_ONCE(ctx->released, true);
886 if (!mmget_not_zero(mm))
890 * Flush page faults out of all CPUs. NOTE: all page faults
891 * must be retried without returning VM_FAULT_SIGBUS if
892 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
893 * changes while handle_userfault released the mmap_lock. So
894 * it's critical that released is set to true (above), before
895 * taking the mmap_lock for writing.
898 still_valid = mmget_still_valid(mm);
900 for (vma = mm->mmap; vma; vma = vma->vm_next) {
902 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
903 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
904 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
908 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
910 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
911 new_flags, vma->anon_vma,
912 vma->vm_file, vma->vm_pgoff,
920 vma->vm_flags = new_flags;
921 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
923 mmap_write_unlock(mm);
927 * After no new page faults can wait on this fault_*wqh, flush
928 * the last page faults that may have been already waiting on
931 spin_lock_irq(&ctx->fault_pending_wqh.lock);
932 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
933 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
934 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
936 /* Flush pending events that may still wait on event_wqh */
937 wake_up_all(&ctx->event_wqh);
939 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
940 userfaultfd_ctx_put(ctx);
944 /* fault_pending_wqh.lock must be hold by the caller */
945 static inline struct userfaultfd_wait_queue *find_userfault_in(
946 wait_queue_head_t *wqh)
948 wait_queue_entry_t *wq;
949 struct userfaultfd_wait_queue *uwq;
951 lockdep_assert_held(&wqh->lock);
954 if (!waitqueue_active(wqh))
956 /* walk in reverse to provide FIFO behavior to read userfaults */
957 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
958 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
963 static inline struct userfaultfd_wait_queue *find_userfault(
964 struct userfaultfd_ctx *ctx)
966 return find_userfault_in(&ctx->fault_pending_wqh);
969 static inline struct userfaultfd_wait_queue *find_userfault_evt(
970 struct userfaultfd_ctx *ctx)
972 return find_userfault_in(&ctx->event_wqh);
975 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
977 struct userfaultfd_ctx *ctx = file->private_data;
980 poll_wait(file, &ctx->fd_wqh, wait);
982 switch (ctx->state) {
983 case UFFD_STATE_WAIT_API:
985 case UFFD_STATE_RUNNING:
987 * poll() never guarantees that read won't block.
988 * userfaults can be waken before they're read().
990 if (unlikely(!(file->f_flags & O_NONBLOCK)))
993 * lockless access to see if there are pending faults
994 * __pollwait last action is the add_wait_queue but
995 * the spin_unlock would allow the waitqueue_active to
996 * pass above the actual list_add inside
997 * add_wait_queue critical section. So use a full
998 * memory barrier to serialize the list_add write of
999 * add_wait_queue() with the waitqueue_active read
1004 if (waitqueue_active(&ctx->fault_pending_wqh))
1006 else if (waitqueue_active(&ctx->event_wqh))
1016 static const struct file_operations userfaultfd_fops;
1018 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1019 struct userfaultfd_ctx *new,
1020 struct uffd_msg *msg)
1024 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1025 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1029 msg->arg.reserved.reserved1 = 0;
1030 msg->arg.fork.ufd = fd;
1034 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1035 struct uffd_msg *msg)
1038 DECLARE_WAITQUEUE(wait, current);
1039 struct userfaultfd_wait_queue *uwq;
1041 * Handling fork event requires sleeping operations, so
1042 * we drop the event_wqh lock, then do these ops, then
1043 * lock it back and wake up the waiter. While the lock is
1044 * dropped the ewq may go away so we keep track of it
1047 LIST_HEAD(fork_event);
1048 struct userfaultfd_ctx *fork_nctx = NULL;
1050 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1051 spin_lock_irq(&ctx->fd_wqh.lock);
1052 __add_wait_queue(&ctx->fd_wqh, &wait);
1054 set_current_state(TASK_INTERRUPTIBLE);
1055 spin_lock(&ctx->fault_pending_wqh.lock);
1056 uwq = find_userfault(ctx);
1059 * Use a seqcount to repeat the lockless check
1060 * in wake_userfault() to avoid missing
1061 * wakeups because during the refile both
1062 * waitqueue could become empty if this is the
1065 write_seqcount_begin(&ctx->refile_seq);
1068 * The fault_pending_wqh.lock prevents the uwq
1069 * to disappear from under us.
1071 * Refile this userfault from
1072 * fault_pending_wqh to fault_wqh, it's not
1073 * pending anymore after we read it.
1075 * Use list_del() by hand (as
1076 * userfaultfd_wake_function also uses
1077 * list_del_init() by hand) to be sure nobody
1078 * changes __remove_wait_queue() to use
1079 * list_del_init() in turn breaking the
1080 * !list_empty_careful() check in
1081 * handle_userfault(). The uwq->wq.head list
1082 * must never be empty at any time during the
1083 * refile, or the waitqueue could disappear
1084 * from under us. The "wait_queue_head_t"
1085 * parameter of __remove_wait_queue() is unused
1088 list_del(&uwq->wq.entry);
1089 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1091 write_seqcount_end(&ctx->refile_seq);
1093 /* careful to always initialize msg if ret == 0 */
1095 spin_unlock(&ctx->fault_pending_wqh.lock);
1099 spin_unlock(&ctx->fault_pending_wqh.lock);
1101 spin_lock(&ctx->event_wqh.lock);
1102 uwq = find_userfault_evt(ctx);
1106 if (uwq->msg.event == UFFD_EVENT_FORK) {
1107 fork_nctx = (struct userfaultfd_ctx *)
1109 uwq->msg.arg.reserved.reserved1;
1110 list_move(&uwq->wq.entry, &fork_event);
1112 * fork_nctx can be freed as soon as
1113 * we drop the lock, unless we take a
1116 userfaultfd_ctx_get(fork_nctx);
1117 spin_unlock(&ctx->event_wqh.lock);
1122 userfaultfd_event_complete(ctx, uwq);
1123 spin_unlock(&ctx->event_wqh.lock);
1127 spin_unlock(&ctx->event_wqh.lock);
1129 if (signal_pending(current)) {
1137 spin_unlock_irq(&ctx->fd_wqh.lock);
1139 spin_lock_irq(&ctx->fd_wqh.lock);
1141 __remove_wait_queue(&ctx->fd_wqh, &wait);
1142 __set_current_state(TASK_RUNNING);
1143 spin_unlock_irq(&ctx->fd_wqh.lock);
1145 if (!ret && msg->event == UFFD_EVENT_FORK) {
1146 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1147 spin_lock_irq(&ctx->event_wqh.lock);
1148 if (!list_empty(&fork_event)) {
1150 * The fork thread didn't abort, so we can
1151 * drop the temporary refcount.
1153 userfaultfd_ctx_put(fork_nctx);
1155 uwq = list_first_entry(&fork_event,
1159 * If fork_event list wasn't empty and in turn
1160 * the event wasn't already released by fork
1161 * (the event is allocated on fork kernel
1162 * stack), put the event back to its place in
1163 * the event_wq. fork_event head will be freed
1164 * as soon as we return so the event cannot
1165 * stay queued there no matter the current
1168 list_del(&uwq->wq.entry);
1169 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1172 * Leave the event in the waitqueue and report
1173 * error to userland if we failed to resolve
1174 * the userfault fork.
1177 userfaultfd_event_complete(ctx, uwq);
1180 * Here the fork thread aborted and the
1181 * refcount from the fork thread on fork_nctx
1182 * has already been released. We still hold
1183 * the reference we took before releasing the
1184 * lock above. If resolve_userfault_fork
1185 * failed we've to drop it because the
1186 * fork_nctx has to be freed in such case. If
1187 * it succeeded we'll hold it because the new
1188 * uffd references it.
1191 userfaultfd_ctx_put(fork_nctx);
1193 spin_unlock_irq(&ctx->event_wqh.lock);
1199 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1200 size_t count, loff_t *ppos)
1202 struct userfaultfd_ctx *ctx = file->private_data;
1203 ssize_t _ret, ret = 0;
1204 struct uffd_msg msg;
1205 int no_wait = file->f_flags & O_NONBLOCK;
1207 if (ctx->state == UFFD_STATE_WAIT_API)
1211 if (count < sizeof(msg))
1212 return ret ? ret : -EINVAL;
1213 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1215 return ret ? ret : _ret;
1216 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1217 return ret ? ret : -EFAULT;
1220 count -= sizeof(msg);
1222 * Allow to read more than one fault at time but only
1223 * block if waiting for the very first one.
1225 no_wait = O_NONBLOCK;
1229 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1230 struct userfaultfd_wake_range *range)
1232 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1233 /* wake all in the range and autoremove */
1234 if (waitqueue_active(&ctx->fault_pending_wqh))
1235 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1237 if (waitqueue_active(&ctx->fault_wqh))
1238 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1239 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1242 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1243 struct userfaultfd_wake_range *range)
1249 * To be sure waitqueue_active() is not reordered by the CPU
1250 * before the pagetable update, use an explicit SMP memory
1251 * barrier here. PT lock release or mmap_read_unlock(mm) still
1252 * have release semantics that can allow the
1253 * waitqueue_active() to be reordered before the pte update.
1258 * Use waitqueue_active because it's very frequent to
1259 * change the address space atomically even if there are no
1260 * userfaults yet. So we take the spinlock only when we're
1261 * sure we've userfaults to wake.
1264 seq = read_seqcount_begin(&ctx->refile_seq);
1265 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1266 waitqueue_active(&ctx->fault_wqh);
1268 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1270 __wake_userfault(ctx, range);
1273 static __always_inline int validate_range(struct mm_struct *mm,
1274 __u64 *start, __u64 len)
1276 __u64 task_size = mm->task_size;
1278 *start = untagged_addr(*start);
1280 if (*start & ~PAGE_MASK)
1282 if (len & ~PAGE_MASK)
1286 if (*start < mmap_min_addr)
1288 if (*start >= task_size)
1290 if (len > task_size - *start)
1295 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1296 unsigned long vm_flags)
1298 /* FIXME: add WP support to hugetlbfs and shmem */
1299 return vma_is_anonymous(vma) ||
1300 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1301 !(vm_flags & VM_UFFD_WP));
1304 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1307 struct mm_struct *mm = ctx->mm;
1308 struct vm_area_struct *vma, *prev, *cur;
1310 struct uffdio_register uffdio_register;
1311 struct uffdio_register __user *user_uffdio_register;
1312 unsigned long vm_flags, new_flags;
1315 unsigned long start, end, vma_end;
1317 user_uffdio_register = (struct uffdio_register __user *) arg;
1320 if (copy_from_user(&uffdio_register, user_uffdio_register,
1321 sizeof(uffdio_register)-sizeof(__u64)))
1325 if (!uffdio_register.mode)
1327 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1328 UFFDIO_REGISTER_MODE_WP))
1331 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1332 vm_flags |= VM_UFFD_MISSING;
1333 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1334 vm_flags |= VM_UFFD_WP;
1336 ret = validate_range(mm, &uffdio_register.range.start,
1337 uffdio_register.range.len);
1341 start = uffdio_register.range.start;
1342 end = start + uffdio_register.range.len;
1345 if (!mmget_not_zero(mm))
1348 mmap_write_lock(mm);
1349 if (!mmget_still_valid(mm))
1351 vma = find_vma_prev(mm, start, &prev);
1355 /* check that there's at least one vma in the range */
1357 if (vma->vm_start >= end)
1361 * If the first vma contains huge pages, make sure start address
1362 * is aligned to huge page size.
1364 if (is_vm_hugetlb_page(vma)) {
1365 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1367 if (start & (vma_hpagesize - 1))
1372 * Search for not compatible vmas.
1375 basic_ioctls = false;
1376 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1379 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1380 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1382 /* check not compatible vmas */
1384 if (!vma_can_userfault(cur, vm_flags))
1388 * UFFDIO_COPY will fill file holes even without
1389 * PROT_WRITE. This check enforces that if this is a
1390 * MAP_SHARED, the process has write permission to the backing
1391 * file. If VM_MAYWRITE is set it also enforces that on a
1392 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1393 * F_WRITE_SEAL can be taken until the vma is destroyed.
1396 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1400 * If this vma contains ending address, and huge pages
1403 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1404 end > cur->vm_start) {
1405 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1409 if (end & (vma_hpagesize - 1))
1412 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1416 * Check that this vma isn't already owned by a
1417 * different userfaultfd. We can't allow more than one
1418 * userfaultfd to own a single vma simultaneously or we
1419 * wouldn't know which one to deliver the userfaults to.
1422 if (cur->vm_userfaultfd_ctx.ctx &&
1423 cur->vm_userfaultfd_ctx.ctx != ctx)
1427 * Note vmas containing huge pages
1429 if (is_vm_hugetlb_page(cur))
1430 basic_ioctls = true;
1436 if (vma->vm_start < start)
1443 BUG_ON(!vma_can_userfault(vma, vm_flags));
1444 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1445 vma->vm_userfaultfd_ctx.ctx != ctx);
1446 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1449 * Nothing to do: this vma is already registered into this
1450 * userfaultfd and with the right tracking mode too.
1452 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1453 (vma->vm_flags & vm_flags) == vm_flags)
1456 if (vma->vm_start > start)
1457 start = vma->vm_start;
1458 vma_end = min(end, vma->vm_end);
1460 new_flags = (vma->vm_flags &
1461 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1462 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1463 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1465 ((struct vm_userfaultfd_ctx){ ctx }));
1470 if (vma->vm_start < start) {
1471 ret = split_vma(mm, vma, start, 1);
1475 if (vma->vm_end > end) {
1476 ret = split_vma(mm, vma, end, 0);
1482 * In the vma_merge() successful mprotect-like case 8:
1483 * the next vma was merged into the current one and
1484 * the current one has not been updated yet.
1486 vma->vm_flags = new_flags;
1487 vma->vm_userfaultfd_ctx.ctx = ctx;
1491 start = vma->vm_end;
1493 } while (vma && vma->vm_start < end);
1495 mmap_write_unlock(mm);
1500 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1501 UFFD_API_RANGE_IOCTLS;
1504 * Declare the WP ioctl only if the WP mode is
1505 * specified and all checks passed with the range
1507 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1508 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1511 * Now that we scanned all vmas we can already tell
1512 * userland which ioctls methods are guaranteed to
1513 * succeed on this range.
1515 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1522 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1525 struct mm_struct *mm = ctx->mm;
1526 struct vm_area_struct *vma, *prev, *cur;
1528 struct uffdio_range uffdio_unregister;
1529 unsigned long new_flags;
1531 unsigned long start, end, vma_end;
1532 const void __user *buf = (void __user *)arg;
1535 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1538 ret = validate_range(mm, &uffdio_unregister.start,
1539 uffdio_unregister.len);
1543 start = uffdio_unregister.start;
1544 end = start + uffdio_unregister.len;
1547 if (!mmget_not_zero(mm))
1550 mmap_write_lock(mm);
1551 if (!mmget_still_valid(mm))
1553 vma = find_vma_prev(mm, start, &prev);
1557 /* check that there's at least one vma in the range */
1559 if (vma->vm_start >= end)
1563 * If the first vma contains huge pages, make sure start address
1564 * is aligned to huge page size.
1566 if (is_vm_hugetlb_page(vma)) {
1567 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1569 if (start & (vma_hpagesize - 1))
1574 * Search for not compatible vmas.
1578 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1581 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1582 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1585 * Check not compatible vmas, not strictly required
1586 * here as not compatible vmas cannot have an
1587 * userfaultfd_ctx registered on them, but this
1588 * provides for more strict behavior to notice
1589 * unregistration errors.
1591 if (!vma_can_userfault(cur, cur->vm_flags))
1598 if (vma->vm_start < start)
1605 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1608 * Nothing to do: this vma is already registered into this
1609 * userfaultfd and with the right tracking mode too.
1611 if (!vma->vm_userfaultfd_ctx.ctx)
1614 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1616 if (vma->vm_start > start)
1617 start = vma->vm_start;
1618 vma_end = min(end, vma->vm_end);
1620 if (userfaultfd_missing(vma)) {
1622 * Wake any concurrent pending userfault while
1623 * we unregister, so they will not hang
1624 * permanently and it avoids userland to call
1625 * UFFDIO_WAKE explicitly.
1627 struct userfaultfd_wake_range range;
1628 range.start = start;
1629 range.len = vma_end - start;
1630 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1633 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1634 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1635 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1642 if (vma->vm_start < start) {
1643 ret = split_vma(mm, vma, start, 1);
1647 if (vma->vm_end > end) {
1648 ret = split_vma(mm, vma, end, 0);
1654 * In the vma_merge() successful mprotect-like case 8:
1655 * the next vma was merged into the current one and
1656 * the current one has not been updated yet.
1658 vma->vm_flags = new_flags;
1659 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1663 start = vma->vm_end;
1665 } while (vma && vma->vm_start < end);
1667 mmap_write_unlock(mm);
1674 * userfaultfd_wake may be used in combination with the
1675 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1677 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1681 struct uffdio_range uffdio_wake;
1682 struct userfaultfd_wake_range range;
1683 const void __user *buf = (void __user *)arg;
1686 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1689 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1693 range.start = uffdio_wake.start;
1694 range.len = uffdio_wake.len;
1697 * len == 0 means wake all and we don't want to wake all here,
1698 * so check it again to be sure.
1700 VM_BUG_ON(!range.len);
1702 wake_userfault(ctx, &range);
1709 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1713 struct uffdio_copy uffdio_copy;
1714 struct uffdio_copy __user *user_uffdio_copy;
1715 struct userfaultfd_wake_range range;
1717 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1720 if (READ_ONCE(ctx->mmap_changing))
1724 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1725 /* don't copy "copy" last field */
1726 sizeof(uffdio_copy)-sizeof(__s64)))
1729 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1733 * double check for wraparound just in case. copy_from_user()
1734 * will later check uffdio_copy.src + uffdio_copy.len to fit
1735 * in the userland range.
1738 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1740 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1742 if (mmget_not_zero(ctx->mm)) {
1743 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1744 uffdio_copy.len, &ctx->mmap_changing,
1750 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1755 /* len == 0 would wake all */
1757 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1758 range.start = uffdio_copy.dst;
1759 wake_userfault(ctx, &range);
1761 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1766 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1770 struct uffdio_zeropage uffdio_zeropage;
1771 struct uffdio_zeropage __user *user_uffdio_zeropage;
1772 struct userfaultfd_wake_range range;
1774 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1777 if (READ_ONCE(ctx->mmap_changing))
1781 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1782 /* don't copy "zeropage" last field */
1783 sizeof(uffdio_zeropage)-sizeof(__s64)))
1786 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1787 uffdio_zeropage.range.len);
1791 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1794 if (mmget_not_zero(ctx->mm)) {
1795 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1796 uffdio_zeropage.range.len,
1797 &ctx->mmap_changing);
1802 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1806 /* len == 0 would wake all */
1809 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1810 range.start = uffdio_zeropage.range.start;
1811 wake_userfault(ctx, &range);
1813 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1818 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1822 struct uffdio_writeprotect uffdio_wp;
1823 struct uffdio_writeprotect __user *user_uffdio_wp;
1824 struct userfaultfd_wake_range range;
1825 bool mode_wp, mode_dontwake;
1827 if (READ_ONCE(ctx->mmap_changing))
1830 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1832 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1833 sizeof(struct uffdio_writeprotect)))
1836 ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1837 uffdio_wp.range.len);
1841 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1842 UFFDIO_WRITEPROTECT_MODE_WP))
1845 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1846 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1848 if (mode_wp && mode_dontwake)
1851 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1852 uffdio_wp.range.len, mode_wp,
1853 &ctx->mmap_changing);
1857 if (!mode_wp && !mode_dontwake) {
1858 range.start = uffdio_wp.range.start;
1859 range.len = uffdio_wp.range.len;
1860 wake_userfault(ctx, &range);
1865 static inline unsigned int uffd_ctx_features(__u64 user_features)
1868 * For the current set of features the bits just coincide
1870 return (unsigned int)user_features;
1874 * userland asks for a certain API version and we return which bits
1875 * and ioctl commands are implemented in this kernel for such API
1876 * version or -EINVAL if unknown.
1878 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1881 struct uffdio_api uffdio_api;
1882 void __user *buf = (void __user *)arg;
1887 if (ctx->state != UFFD_STATE_WAIT_API)
1890 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1892 features = uffdio_api.features;
1894 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1897 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1899 /* report all available features and ioctls to userland */
1900 uffdio_api.features = UFFD_API_FEATURES;
1901 uffdio_api.ioctls = UFFD_API_IOCTLS;
1903 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1905 ctx->state = UFFD_STATE_RUNNING;
1906 /* only enable the requested features for this uffd context */
1907 ctx->features = uffd_ctx_features(features);
1912 memset(&uffdio_api, 0, sizeof(uffdio_api));
1913 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1918 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1922 struct userfaultfd_ctx *ctx = file->private_data;
1924 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1929 ret = userfaultfd_api(ctx, arg);
1931 case UFFDIO_REGISTER:
1932 ret = userfaultfd_register(ctx, arg);
1934 case UFFDIO_UNREGISTER:
1935 ret = userfaultfd_unregister(ctx, arg);
1938 ret = userfaultfd_wake(ctx, arg);
1941 ret = userfaultfd_copy(ctx, arg);
1943 case UFFDIO_ZEROPAGE:
1944 ret = userfaultfd_zeropage(ctx, arg);
1946 case UFFDIO_WRITEPROTECT:
1947 ret = userfaultfd_writeprotect(ctx, arg);
1953 #ifdef CONFIG_PROC_FS
1954 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1956 struct userfaultfd_ctx *ctx = f->private_data;
1957 wait_queue_entry_t *wq;
1958 unsigned long pending = 0, total = 0;
1960 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1961 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1965 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1968 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1971 * If more protocols will be added, there will be all shown
1972 * separated by a space. Like this:
1973 * protocols: aa:... bb:...
1975 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1976 pending, total, UFFD_API, ctx->features,
1977 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1981 static const struct file_operations userfaultfd_fops = {
1982 #ifdef CONFIG_PROC_FS
1983 .show_fdinfo = userfaultfd_show_fdinfo,
1985 .release = userfaultfd_release,
1986 .poll = userfaultfd_poll,
1987 .read = userfaultfd_read,
1988 .unlocked_ioctl = userfaultfd_ioctl,
1989 .compat_ioctl = compat_ptr_ioctl,
1990 .llseek = noop_llseek,
1993 static void init_once_userfaultfd_ctx(void *mem)
1995 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1997 init_waitqueue_head(&ctx->fault_pending_wqh);
1998 init_waitqueue_head(&ctx->fault_wqh);
1999 init_waitqueue_head(&ctx->event_wqh);
2000 init_waitqueue_head(&ctx->fd_wqh);
2001 seqcount_init(&ctx->refile_seq);
2004 SYSCALL_DEFINE1(userfaultfd, int, flags)
2006 struct userfaultfd_ctx *ctx;
2009 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
2012 BUG_ON(!current->mm);
2014 /* Check the UFFD_* constants for consistency. */
2015 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2016 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2018 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
2021 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2025 refcount_set(&ctx->refcount, 1);
2028 ctx->state = UFFD_STATE_WAIT_API;
2029 ctx->released = false;
2030 ctx->mmap_changing = false;
2031 ctx->mm = current->mm;
2032 /* prevent the mm struct to be freed */
2035 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2036 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
2039 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2044 static int __init userfaultfd_init(void)
2046 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2047 sizeof(struct userfaultfd_ctx),
2049 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2050 init_once_userfaultfd_ctx);
2053 __initcall(userfaultfd_init);