4e800bb7d2ab6111903be658fe82dd6657ad283d
[platform/kernel/linux-starfive.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37 #ifdef CONFIG_SYSCTL
38 static struct ctl_table vm_userfaultfd_table[] = {
39         {
40                 .procname       = "unprivileged_userfaultfd",
41                 .data           = &sysctl_unprivileged_userfaultfd,
42                 .maxlen         = sizeof(sysctl_unprivileged_userfaultfd),
43                 .mode           = 0644,
44                 .proc_handler   = proc_dointvec_minmax,
45                 .extra1         = SYSCTL_ZERO,
46                 .extra2         = SYSCTL_ONE,
47         },
48         { }
49 };
50 #endif
51
52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
53
54 /*
55  * Start with fault_pending_wqh and fault_wqh so they're more likely
56  * to be in the same cacheline.
57  *
58  * Locking order:
59  *      fd_wqh.lock
60  *              fault_pending_wqh.lock
61  *                      fault_wqh.lock
62  *              event_wqh.lock
63  *
64  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66  * also taken in IRQ context.
67  */
68 struct userfaultfd_ctx {
69         /* waitqueue head for the pending (i.e. not read) userfaults */
70         wait_queue_head_t fault_pending_wqh;
71         /* waitqueue head for the userfaults */
72         wait_queue_head_t fault_wqh;
73         /* waitqueue head for the pseudo fd to wakeup poll/read */
74         wait_queue_head_t fd_wqh;
75         /* waitqueue head for events */
76         wait_queue_head_t event_wqh;
77         /* a refile sequence protected by fault_pending_wqh lock */
78         seqcount_spinlock_t refile_seq;
79         /* pseudo fd refcounting */
80         refcount_t refcount;
81         /* userfaultfd syscall flags */
82         unsigned int flags;
83         /* features requested from the userspace */
84         unsigned int features;
85         /* released */
86         bool released;
87         /* memory mappings are changing because of non-cooperative event */
88         atomic_t mmap_changing;
89         /* mm with one ore more vmas attached to this userfaultfd_ctx */
90         struct mm_struct *mm;
91 };
92
93 struct userfaultfd_fork_ctx {
94         struct userfaultfd_ctx *orig;
95         struct userfaultfd_ctx *new;
96         struct list_head list;
97 };
98
99 struct userfaultfd_unmap_ctx {
100         struct userfaultfd_ctx *ctx;
101         unsigned long start;
102         unsigned long end;
103         struct list_head list;
104 };
105
106 struct userfaultfd_wait_queue {
107         struct uffd_msg msg;
108         wait_queue_entry_t wq;
109         struct userfaultfd_ctx *ctx;
110         bool waken;
111 };
112
113 struct userfaultfd_wake_range {
114         unsigned long start;
115         unsigned long len;
116 };
117
118 /* internal indication that UFFD_API ioctl was successfully executed */
119 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
120
121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122 {
123         return ctx->features & UFFD_FEATURE_INITIALIZED;
124 }
125
126 /*
127  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
128  * meaningful when userfaultfd_wp()==true on the vma and when it's
129  * anonymous.
130  */
131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
132 {
133         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
134
135         if (!ctx)
136                 return false;
137
138         return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
139 }
140
141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
142                                      vm_flags_t flags)
143 {
144         const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
145
146         vm_flags_reset(vma, flags);
147         /*
148          * For shared mappings, we want to enable writenotify while
149          * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150          * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
151          */
152         if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153                 vma_set_page_prot(vma);
154 }
155
156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
157                                      int wake_flags, void *key)
158 {
159         struct userfaultfd_wake_range *range = key;
160         int ret;
161         struct userfaultfd_wait_queue *uwq;
162         unsigned long start, len;
163
164         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
165         ret = 0;
166         /* len == 0 means wake all */
167         start = range->start;
168         len = range->len;
169         if (len && (start > uwq->msg.arg.pagefault.address ||
170                     start + len <= uwq->msg.arg.pagefault.address))
171                 goto out;
172         WRITE_ONCE(uwq->waken, true);
173         /*
174          * The Program-Order guarantees provided by the scheduler
175          * ensure uwq->waken is visible before the task is woken.
176          */
177         ret = wake_up_state(wq->private, mode);
178         if (ret) {
179                 /*
180                  * Wake only once, autoremove behavior.
181                  *
182                  * After the effect of list_del_init is visible to the other
183                  * CPUs, the waitqueue may disappear from under us, see the
184                  * !list_empty_careful() in handle_userfault().
185                  *
186                  * try_to_wake_up() has an implicit smp_mb(), and the
187                  * wq->private is read before calling the extern function
188                  * "wake_up_state" (which in turns calls try_to_wake_up).
189                  */
190                 list_del_init(&wq->entry);
191         }
192 out:
193         return ret;
194 }
195
196 /**
197  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
198  * context.
199  * @ctx: [in] Pointer to the userfaultfd context.
200  */
201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
202 {
203         refcount_inc(&ctx->refcount);
204 }
205
206 /**
207  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
208  * context.
209  * @ctx: [in] Pointer to userfaultfd context.
210  *
211  * The userfaultfd context reference must have been previously acquired either
212  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
213  */
214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
215 {
216         if (refcount_dec_and_test(&ctx->refcount)) {
217                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
221                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
223                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
225                 mmdrop(ctx->mm);
226                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
227         }
228 }
229
230 static inline void msg_init(struct uffd_msg *msg)
231 {
232         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
233         /*
234          * Must use memset to zero out the paddings or kernel data is
235          * leaked to userland.
236          */
237         memset(msg, 0, sizeof(struct uffd_msg));
238 }
239
240 static inline struct uffd_msg userfault_msg(unsigned long address,
241                                             unsigned long real_address,
242                                             unsigned int flags,
243                                             unsigned long reason,
244                                             unsigned int features)
245 {
246         struct uffd_msg msg;
247
248         msg_init(&msg);
249         msg.event = UFFD_EVENT_PAGEFAULT;
250
251         msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252                                     real_address : address;
253
254         /*
255          * These flags indicate why the userfault occurred:
256          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258          * - Neither of these flags being set indicates a MISSING fault.
259          *
260          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261          * fault. Otherwise, it was a read fault.
262          */
263         if (flags & FAULT_FLAG_WRITE)
264                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
265         if (reason & VM_UFFD_WP)
266                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
267         if (reason & VM_UFFD_MINOR)
268                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
269         if (features & UFFD_FEATURE_THREAD_ID)
270                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
271         return msg;
272 }
273
274 #ifdef CONFIG_HUGETLB_PAGE
275 /*
276  * Same functionality as userfaultfd_must_wait below with modifications for
277  * hugepmd ranges.
278  */
279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
280                                          struct vm_area_struct *vma,
281                                          unsigned long address,
282                                          unsigned long flags,
283                                          unsigned long reason)
284 {
285         pte_t *ptep, pte;
286         bool ret = true;
287
288         mmap_assert_locked(ctx->mm);
289
290         ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma));
291         if (!ptep)
292                 goto out;
293
294         ret = false;
295         pte = huge_ptep_get(ptep);
296
297         /*
298          * Lockless access: we're in a wait_event so it's ok if it
299          * changes under us.  PTE markers should be handled the same as none
300          * ptes here.
301          */
302         if (huge_pte_none_mostly(pte))
303                 ret = true;
304         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
305                 ret = true;
306 out:
307         return ret;
308 }
309 #else
310 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
311                                          struct vm_area_struct *vma,
312                                          unsigned long address,
313                                          unsigned long flags,
314                                          unsigned long reason)
315 {
316         return false;   /* should never get here */
317 }
318 #endif /* CONFIG_HUGETLB_PAGE */
319
320 /*
321  * Verify the pagetables are still not ok after having reigstered into
322  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
323  * userfault that has already been resolved, if userfaultfd_read and
324  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
325  * threads.
326  */
327 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
328                                          unsigned long address,
329                                          unsigned long flags,
330                                          unsigned long reason)
331 {
332         struct mm_struct *mm = ctx->mm;
333         pgd_t *pgd;
334         p4d_t *p4d;
335         pud_t *pud;
336         pmd_t *pmd, _pmd;
337         pte_t *pte;
338         bool ret = true;
339
340         mmap_assert_locked(mm);
341
342         pgd = pgd_offset(mm, address);
343         if (!pgd_present(*pgd))
344                 goto out;
345         p4d = p4d_offset(pgd, address);
346         if (!p4d_present(*p4d))
347                 goto out;
348         pud = pud_offset(p4d, address);
349         if (!pud_present(*pud))
350                 goto out;
351         pmd = pmd_offset(pud, address);
352         /*
353          * READ_ONCE must function as a barrier with narrower scope
354          * and it must be equivalent to:
355          *      _pmd = *pmd; barrier();
356          *
357          * This is to deal with the instability (as in
358          * pmd_trans_unstable) of the pmd.
359          */
360         _pmd = READ_ONCE(*pmd);
361         if (pmd_none(_pmd))
362                 goto out;
363
364         ret = false;
365         if (!pmd_present(_pmd))
366                 goto out;
367
368         if (pmd_trans_huge(_pmd)) {
369                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
370                         ret = true;
371                 goto out;
372         }
373
374         /*
375          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
376          * and use the standard pte_offset_map() instead of parsing _pmd.
377          */
378         pte = pte_offset_map(pmd, address);
379         /*
380          * Lockless access: we're in a wait_event so it's ok if it
381          * changes under us.  PTE markers should be handled the same as none
382          * ptes here.
383          */
384         if (pte_none_mostly(*pte))
385                 ret = true;
386         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
387                 ret = true;
388         pte_unmap(pte);
389
390 out:
391         return ret;
392 }
393
394 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
395 {
396         if (flags & FAULT_FLAG_INTERRUPTIBLE)
397                 return TASK_INTERRUPTIBLE;
398
399         if (flags & FAULT_FLAG_KILLABLE)
400                 return TASK_KILLABLE;
401
402         return TASK_UNINTERRUPTIBLE;
403 }
404
405 /*
406  * The locking rules involved in returning VM_FAULT_RETRY depending on
407  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
408  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
409  * recommendation in __lock_page_or_retry is not an understatement.
410  *
411  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
412  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
413  * not set.
414  *
415  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
416  * set, VM_FAULT_RETRY can still be returned if and only if there are
417  * fatal_signal_pending()s, and the mmap_lock must be released before
418  * returning it.
419  */
420 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
421 {
422         struct vm_area_struct *vma = vmf->vma;
423         struct mm_struct *mm = vma->vm_mm;
424         struct userfaultfd_ctx *ctx;
425         struct userfaultfd_wait_queue uwq;
426         vm_fault_t ret = VM_FAULT_SIGBUS;
427         bool must_wait;
428         unsigned int blocking_state;
429
430         /*
431          * We don't do userfault handling for the final child pid update.
432          *
433          * We also don't do userfault handling during
434          * coredumping. hugetlbfs has the special
435          * follow_hugetlb_page() to skip missing pages in the
436          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
437          * the no_page_table() helper in follow_page_mask(), but the
438          * shmem_vm_ops->fault method is invoked even during
439          * coredumping without mmap_lock and it ends up here.
440          */
441         if (current->flags & (PF_EXITING|PF_DUMPCORE))
442                 goto out;
443
444         /*
445          * Coredumping runs without mmap_lock so we can only check that
446          * the mmap_lock is held, if PF_DUMPCORE was not set.
447          */
448         mmap_assert_locked(mm);
449
450         ctx = vma->vm_userfaultfd_ctx.ctx;
451         if (!ctx)
452                 goto out;
453
454         BUG_ON(ctx->mm != mm);
455
456         /* Any unrecognized flag is a bug. */
457         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
458         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
459         VM_BUG_ON(!reason || (reason & (reason - 1)));
460
461         if (ctx->features & UFFD_FEATURE_SIGBUS)
462                 goto out;
463         if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
464                 goto out;
465
466         /*
467          * If it's already released don't get it. This avoids to loop
468          * in __get_user_pages if userfaultfd_release waits on the
469          * caller of handle_userfault to release the mmap_lock.
470          */
471         if (unlikely(READ_ONCE(ctx->released))) {
472                 /*
473                  * Don't return VM_FAULT_SIGBUS in this case, so a non
474                  * cooperative manager can close the uffd after the
475                  * last UFFDIO_COPY, without risking to trigger an
476                  * involuntary SIGBUS if the process was starting the
477                  * userfaultfd while the userfaultfd was still armed
478                  * (but after the last UFFDIO_COPY). If the uffd
479                  * wasn't already closed when the userfault reached
480                  * this point, that would normally be solved by
481                  * userfaultfd_must_wait returning 'false'.
482                  *
483                  * If we were to return VM_FAULT_SIGBUS here, the non
484                  * cooperative manager would be instead forced to
485                  * always call UFFDIO_UNREGISTER before it can safely
486                  * close the uffd.
487                  */
488                 ret = VM_FAULT_NOPAGE;
489                 goto out;
490         }
491
492         /*
493          * Check that we can return VM_FAULT_RETRY.
494          *
495          * NOTE: it should become possible to return VM_FAULT_RETRY
496          * even if FAULT_FLAG_TRIED is set without leading to gup()
497          * -EBUSY failures, if the userfaultfd is to be extended for
498          * VM_UFFD_WP tracking and we intend to arm the userfault
499          * without first stopping userland access to the memory. For
500          * VM_UFFD_MISSING userfaults this is enough for now.
501          */
502         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
503                 /*
504                  * Validate the invariant that nowait must allow retry
505                  * to be sure not to return SIGBUS erroneously on
506                  * nowait invocations.
507                  */
508                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
509 #ifdef CONFIG_DEBUG_VM
510                 if (printk_ratelimit()) {
511                         printk(KERN_WARNING
512                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
513                                vmf->flags);
514                         dump_stack();
515                 }
516 #endif
517                 goto out;
518         }
519
520         /*
521          * Handle nowait, not much to do other than tell it to retry
522          * and wait.
523          */
524         ret = VM_FAULT_RETRY;
525         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
526                 goto out;
527
528         /* take the reference before dropping the mmap_lock */
529         userfaultfd_ctx_get(ctx);
530
531         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
532         uwq.wq.private = current;
533         uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
534                                 reason, ctx->features);
535         uwq.ctx = ctx;
536         uwq.waken = false;
537
538         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
539
540         /*
541          * Take the vma lock now, in order to safely call
542          * userfaultfd_huge_must_wait() later. Since acquiring the
543          * (sleepable) vma lock can modify the current task state, that
544          * must be before explicitly calling set_current_state().
545          */
546         if (is_vm_hugetlb_page(vma))
547                 hugetlb_vma_lock_read(vma);
548
549         spin_lock_irq(&ctx->fault_pending_wqh.lock);
550         /*
551          * After the __add_wait_queue the uwq is visible to userland
552          * through poll/read().
553          */
554         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
555         /*
556          * The smp_mb() after __set_current_state prevents the reads
557          * following the spin_unlock to happen before the list_add in
558          * __add_wait_queue.
559          */
560         set_current_state(blocking_state);
561         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
562
563         if (!is_vm_hugetlb_page(vma))
564                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
565                                                   reason);
566         else
567                 must_wait = userfaultfd_huge_must_wait(ctx, vma,
568                                                        vmf->address,
569                                                        vmf->flags, reason);
570         if (is_vm_hugetlb_page(vma))
571                 hugetlb_vma_unlock_read(vma);
572         mmap_read_unlock(mm);
573
574         if (likely(must_wait && !READ_ONCE(ctx->released))) {
575                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
576                 schedule();
577         }
578
579         __set_current_state(TASK_RUNNING);
580
581         /*
582          * Here we race with the list_del; list_add in
583          * userfaultfd_ctx_read(), however because we don't ever run
584          * list_del_init() to refile across the two lists, the prev
585          * and next pointers will never point to self. list_add also
586          * would never let any of the two pointers to point to
587          * self. So list_empty_careful won't risk to see both pointers
588          * pointing to self at any time during the list refile. The
589          * only case where list_del_init() is called is the full
590          * removal in the wake function and there we don't re-list_add
591          * and it's fine not to block on the spinlock. The uwq on this
592          * kernel stack can be released after the list_del_init.
593          */
594         if (!list_empty_careful(&uwq.wq.entry)) {
595                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
596                 /*
597                  * No need of list_del_init(), the uwq on the stack
598                  * will be freed shortly anyway.
599                  */
600                 list_del(&uwq.wq.entry);
601                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
602         }
603
604         /*
605          * ctx may go away after this if the userfault pseudo fd is
606          * already released.
607          */
608         userfaultfd_ctx_put(ctx);
609
610 out:
611         return ret;
612 }
613
614 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
615                                               struct userfaultfd_wait_queue *ewq)
616 {
617         struct userfaultfd_ctx *release_new_ctx;
618
619         if (WARN_ON_ONCE(current->flags & PF_EXITING))
620                 goto out;
621
622         ewq->ctx = ctx;
623         init_waitqueue_entry(&ewq->wq, current);
624         release_new_ctx = NULL;
625
626         spin_lock_irq(&ctx->event_wqh.lock);
627         /*
628          * After the __add_wait_queue the uwq is visible to userland
629          * through poll/read().
630          */
631         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
632         for (;;) {
633                 set_current_state(TASK_KILLABLE);
634                 if (ewq->msg.event == 0)
635                         break;
636                 if (READ_ONCE(ctx->released) ||
637                     fatal_signal_pending(current)) {
638                         /*
639                          * &ewq->wq may be queued in fork_event, but
640                          * __remove_wait_queue ignores the head
641                          * parameter. It would be a problem if it
642                          * didn't.
643                          */
644                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
645                         if (ewq->msg.event == UFFD_EVENT_FORK) {
646                                 struct userfaultfd_ctx *new;
647
648                                 new = (struct userfaultfd_ctx *)
649                                         (unsigned long)
650                                         ewq->msg.arg.reserved.reserved1;
651                                 release_new_ctx = new;
652                         }
653                         break;
654                 }
655
656                 spin_unlock_irq(&ctx->event_wqh.lock);
657
658                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
659                 schedule();
660
661                 spin_lock_irq(&ctx->event_wqh.lock);
662         }
663         __set_current_state(TASK_RUNNING);
664         spin_unlock_irq(&ctx->event_wqh.lock);
665
666         if (release_new_ctx) {
667                 struct vm_area_struct *vma;
668                 struct mm_struct *mm = release_new_ctx->mm;
669                 VMA_ITERATOR(vmi, mm, 0);
670
671                 /* the various vma->vm_userfaultfd_ctx still points to it */
672                 mmap_write_lock(mm);
673                 for_each_vma(vmi, vma) {
674                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
675                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
676                                 userfaultfd_set_vm_flags(vma,
677                                                          vma->vm_flags & ~__VM_UFFD_FLAGS);
678                         }
679                 }
680                 mmap_write_unlock(mm);
681
682                 userfaultfd_ctx_put(release_new_ctx);
683         }
684
685         /*
686          * ctx may go away after this if the userfault pseudo fd is
687          * already released.
688          */
689 out:
690         atomic_dec(&ctx->mmap_changing);
691         VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
692         userfaultfd_ctx_put(ctx);
693 }
694
695 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
696                                        struct userfaultfd_wait_queue *ewq)
697 {
698         ewq->msg.event = 0;
699         wake_up_locked(&ctx->event_wqh);
700         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
701 }
702
703 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
704 {
705         struct userfaultfd_ctx *ctx = NULL, *octx;
706         struct userfaultfd_fork_ctx *fctx;
707
708         octx = vma->vm_userfaultfd_ctx.ctx;
709         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
710                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
711                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
712                 return 0;
713         }
714
715         list_for_each_entry(fctx, fcs, list)
716                 if (fctx->orig == octx) {
717                         ctx = fctx->new;
718                         break;
719                 }
720
721         if (!ctx) {
722                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
723                 if (!fctx)
724                         return -ENOMEM;
725
726                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
727                 if (!ctx) {
728                         kfree(fctx);
729                         return -ENOMEM;
730                 }
731
732                 refcount_set(&ctx->refcount, 1);
733                 ctx->flags = octx->flags;
734                 ctx->features = octx->features;
735                 ctx->released = false;
736                 atomic_set(&ctx->mmap_changing, 0);
737                 ctx->mm = vma->vm_mm;
738                 mmgrab(ctx->mm);
739
740                 userfaultfd_ctx_get(octx);
741                 atomic_inc(&octx->mmap_changing);
742                 fctx->orig = octx;
743                 fctx->new = ctx;
744                 list_add_tail(&fctx->list, fcs);
745         }
746
747         vma->vm_userfaultfd_ctx.ctx = ctx;
748         return 0;
749 }
750
751 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
752 {
753         struct userfaultfd_ctx *ctx = fctx->orig;
754         struct userfaultfd_wait_queue ewq;
755
756         msg_init(&ewq.msg);
757
758         ewq.msg.event = UFFD_EVENT_FORK;
759         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
760
761         userfaultfd_event_wait_completion(ctx, &ewq);
762 }
763
764 void dup_userfaultfd_complete(struct list_head *fcs)
765 {
766         struct userfaultfd_fork_ctx *fctx, *n;
767
768         list_for_each_entry_safe(fctx, n, fcs, list) {
769                 dup_fctx(fctx);
770                 list_del(&fctx->list);
771                 kfree(fctx);
772         }
773 }
774
775 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
776                              struct vm_userfaultfd_ctx *vm_ctx)
777 {
778         struct userfaultfd_ctx *ctx;
779
780         ctx = vma->vm_userfaultfd_ctx.ctx;
781
782         if (!ctx)
783                 return;
784
785         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
786                 vm_ctx->ctx = ctx;
787                 userfaultfd_ctx_get(ctx);
788                 atomic_inc(&ctx->mmap_changing);
789         } else {
790                 /* Drop uffd context if remap feature not enabled */
791                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
792                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
793         }
794 }
795
796 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
797                                  unsigned long from, unsigned long to,
798                                  unsigned long len)
799 {
800         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
801         struct userfaultfd_wait_queue ewq;
802
803         if (!ctx)
804                 return;
805
806         if (to & ~PAGE_MASK) {
807                 userfaultfd_ctx_put(ctx);
808                 return;
809         }
810
811         msg_init(&ewq.msg);
812
813         ewq.msg.event = UFFD_EVENT_REMAP;
814         ewq.msg.arg.remap.from = from;
815         ewq.msg.arg.remap.to = to;
816         ewq.msg.arg.remap.len = len;
817
818         userfaultfd_event_wait_completion(ctx, &ewq);
819 }
820
821 bool userfaultfd_remove(struct vm_area_struct *vma,
822                         unsigned long start, unsigned long end)
823 {
824         struct mm_struct *mm = vma->vm_mm;
825         struct userfaultfd_ctx *ctx;
826         struct userfaultfd_wait_queue ewq;
827
828         ctx = vma->vm_userfaultfd_ctx.ctx;
829         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
830                 return true;
831
832         userfaultfd_ctx_get(ctx);
833         atomic_inc(&ctx->mmap_changing);
834         mmap_read_unlock(mm);
835
836         msg_init(&ewq.msg);
837
838         ewq.msg.event = UFFD_EVENT_REMOVE;
839         ewq.msg.arg.remove.start = start;
840         ewq.msg.arg.remove.end = end;
841
842         userfaultfd_event_wait_completion(ctx, &ewq);
843
844         return false;
845 }
846
847 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
848                           unsigned long start, unsigned long end)
849 {
850         struct userfaultfd_unmap_ctx *unmap_ctx;
851
852         list_for_each_entry(unmap_ctx, unmaps, list)
853                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
854                     unmap_ctx->end == end)
855                         return true;
856
857         return false;
858 }
859
860 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start,
861                            unsigned long end, struct list_head *unmaps)
862 {
863         VMA_ITERATOR(vmi, mm, start);
864         struct vm_area_struct *vma;
865
866         for_each_vma_range(vmi, vma, end) {
867                 struct userfaultfd_unmap_ctx *unmap_ctx;
868                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
869
870                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
871                     has_unmap_ctx(ctx, unmaps, start, end))
872                         continue;
873
874                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
875                 if (!unmap_ctx)
876                         return -ENOMEM;
877
878                 userfaultfd_ctx_get(ctx);
879                 atomic_inc(&ctx->mmap_changing);
880                 unmap_ctx->ctx = ctx;
881                 unmap_ctx->start = start;
882                 unmap_ctx->end = end;
883                 list_add_tail(&unmap_ctx->list, unmaps);
884         }
885
886         return 0;
887 }
888
889 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
890 {
891         struct userfaultfd_unmap_ctx *ctx, *n;
892         struct userfaultfd_wait_queue ewq;
893
894         list_for_each_entry_safe(ctx, n, uf, list) {
895                 msg_init(&ewq.msg);
896
897                 ewq.msg.event = UFFD_EVENT_UNMAP;
898                 ewq.msg.arg.remove.start = ctx->start;
899                 ewq.msg.arg.remove.end = ctx->end;
900
901                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
902
903                 list_del(&ctx->list);
904                 kfree(ctx);
905         }
906 }
907
908 static int userfaultfd_release(struct inode *inode, struct file *file)
909 {
910         struct userfaultfd_ctx *ctx = file->private_data;
911         struct mm_struct *mm = ctx->mm;
912         struct vm_area_struct *vma, *prev;
913         /* len == 0 means wake all */
914         struct userfaultfd_wake_range range = { .len = 0, };
915         unsigned long new_flags;
916         VMA_ITERATOR(vmi, mm, 0);
917
918         WRITE_ONCE(ctx->released, true);
919
920         if (!mmget_not_zero(mm))
921                 goto wakeup;
922
923         /*
924          * Flush page faults out of all CPUs. NOTE: all page faults
925          * must be retried without returning VM_FAULT_SIGBUS if
926          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
927          * changes while handle_userfault released the mmap_lock. So
928          * it's critical that released is set to true (above), before
929          * taking the mmap_lock for writing.
930          */
931         mmap_write_lock(mm);
932         prev = NULL;
933         for_each_vma(vmi, vma) {
934                 cond_resched();
935                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
936                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
937                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
938                         prev = vma;
939                         continue;
940                 }
941                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
942                 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
943                                  new_flags, vma->anon_vma,
944                                  vma->vm_file, vma->vm_pgoff,
945                                  vma_policy(vma),
946                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
947                 if (prev) {
948                         vma = prev;
949                 } else {
950                         prev = vma;
951                 }
952
953                 userfaultfd_set_vm_flags(vma, new_flags);
954                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
955         }
956         mmap_write_unlock(mm);
957         mmput(mm);
958 wakeup:
959         /*
960          * After no new page faults can wait on this fault_*wqh, flush
961          * the last page faults that may have been already waiting on
962          * the fault_*wqh.
963          */
964         spin_lock_irq(&ctx->fault_pending_wqh.lock);
965         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
966         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
967         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
968
969         /* Flush pending events that may still wait on event_wqh */
970         wake_up_all(&ctx->event_wqh);
971
972         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
973         userfaultfd_ctx_put(ctx);
974         return 0;
975 }
976
977 /* fault_pending_wqh.lock must be hold by the caller */
978 static inline struct userfaultfd_wait_queue *find_userfault_in(
979                 wait_queue_head_t *wqh)
980 {
981         wait_queue_entry_t *wq;
982         struct userfaultfd_wait_queue *uwq;
983
984         lockdep_assert_held(&wqh->lock);
985
986         uwq = NULL;
987         if (!waitqueue_active(wqh))
988                 goto out;
989         /* walk in reverse to provide FIFO behavior to read userfaults */
990         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
991         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
992 out:
993         return uwq;
994 }
995
996 static inline struct userfaultfd_wait_queue *find_userfault(
997                 struct userfaultfd_ctx *ctx)
998 {
999         return find_userfault_in(&ctx->fault_pending_wqh);
1000 }
1001
1002 static inline struct userfaultfd_wait_queue *find_userfault_evt(
1003                 struct userfaultfd_ctx *ctx)
1004 {
1005         return find_userfault_in(&ctx->event_wqh);
1006 }
1007
1008 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
1009 {
1010         struct userfaultfd_ctx *ctx = file->private_data;
1011         __poll_t ret;
1012
1013         poll_wait(file, &ctx->fd_wqh, wait);
1014
1015         if (!userfaultfd_is_initialized(ctx))
1016                 return EPOLLERR;
1017
1018         /*
1019          * poll() never guarantees that read won't block.
1020          * userfaults can be waken before they're read().
1021          */
1022         if (unlikely(!(file->f_flags & O_NONBLOCK)))
1023                 return EPOLLERR;
1024         /*
1025          * lockless access to see if there are pending faults
1026          * __pollwait last action is the add_wait_queue but
1027          * the spin_unlock would allow the waitqueue_active to
1028          * pass above the actual list_add inside
1029          * add_wait_queue critical section. So use a full
1030          * memory barrier to serialize the list_add write of
1031          * add_wait_queue() with the waitqueue_active read
1032          * below.
1033          */
1034         ret = 0;
1035         smp_mb();
1036         if (waitqueue_active(&ctx->fault_pending_wqh))
1037                 ret = EPOLLIN;
1038         else if (waitqueue_active(&ctx->event_wqh))
1039                 ret = EPOLLIN;
1040
1041         return ret;
1042 }
1043
1044 static const struct file_operations userfaultfd_fops;
1045
1046 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1047                                   struct inode *inode,
1048                                   struct uffd_msg *msg)
1049 {
1050         int fd;
1051
1052         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1053                         O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1054         if (fd < 0)
1055                 return fd;
1056
1057         msg->arg.reserved.reserved1 = 0;
1058         msg->arg.fork.ufd = fd;
1059         return 0;
1060 }
1061
1062 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1063                                     struct uffd_msg *msg, struct inode *inode)
1064 {
1065         ssize_t ret;
1066         DECLARE_WAITQUEUE(wait, current);
1067         struct userfaultfd_wait_queue *uwq;
1068         /*
1069          * Handling fork event requires sleeping operations, so
1070          * we drop the event_wqh lock, then do these ops, then
1071          * lock it back and wake up the waiter. While the lock is
1072          * dropped the ewq may go away so we keep track of it
1073          * carefully.
1074          */
1075         LIST_HEAD(fork_event);
1076         struct userfaultfd_ctx *fork_nctx = NULL;
1077
1078         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1079         spin_lock_irq(&ctx->fd_wqh.lock);
1080         __add_wait_queue(&ctx->fd_wqh, &wait);
1081         for (;;) {
1082                 set_current_state(TASK_INTERRUPTIBLE);
1083                 spin_lock(&ctx->fault_pending_wqh.lock);
1084                 uwq = find_userfault(ctx);
1085                 if (uwq) {
1086                         /*
1087                          * Use a seqcount to repeat the lockless check
1088                          * in wake_userfault() to avoid missing
1089                          * wakeups because during the refile both
1090                          * waitqueue could become empty if this is the
1091                          * only userfault.
1092                          */
1093                         write_seqcount_begin(&ctx->refile_seq);
1094
1095                         /*
1096                          * The fault_pending_wqh.lock prevents the uwq
1097                          * to disappear from under us.
1098                          *
1099                          * Refile this userfault from
1100                          * fault_pending_wqh to fault_wqh, it's not
1101                          * pending anymore after we read it.
1102                          *
1103                          * Use list_del() by hand (as
1104                          * userfaultfd_wake_function also uses
1105                          * list_del_init() by hand) to be sure nobody
1106                          * changes __remove_wait_queue() to use
1107                          * list_del_init() in turn breaking the
1108                          * !list_empty_careful() check in
1109                          * handle_userfault(). The uwq->wq.head list
1110                          * must never be empty at any time during the
1111                          * refile, or the waitqueue could disappear
1112                          * from under us. The "wait_queue_head_t"
1113                          * parameter of __remove_wait_queue() is unused
1114                          * anyway.
1115                          */
1116                         list_del(&uwq->wq.entry);
1117                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1118
1119                         write_seqcount_end(&ctx->refile_seq);
1120
1121                         /* careful to always initialize msg if ret == 0 */
1122                         *msg = uwq->msg;
1123                         spin_unlock(&ctx->fault_pending_wqh.lock);
1124                         ret = 0;
1125                         break;
1126                 }
1127                 spin_unlock(&ctx->fault_pending_wqh.lock);
1128
1129                 spin_lock(&ctx->event_wqh.lock);
1130                 uwq = find_userfault_evt(ctx);
1131                 if (uwq) {
1132                         *msg = uwq->msg;
1133
1134                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1135                                 fork_nctx = (struct userfaultfd_ctx *)
1136                                         (unsigned long)
1137                                         uwq->msg.arg.reserved.reserved1;
1138                                 list_move(&uwq->wq.entry, &fork_event);
1139                                 /*
1140                                  * fork_nctx can be freed as soon as
1141                                  * we drop the lock, unless we take a
1142                                  * reference on it.
1143                                  */
1144                                 userfaultfd_ctx_get(fork_nctx);
1145                                 spin_unlock(&ctx->event_wqh.lock);
1146                                 ret = 0;
1147                                 break;
1148                         }
1149
1150                         userfaultfd_event_complete(ctx, uwq);
1151                         spin_unlock(&ctx->event_wqh.lock);
1152                         ret = 0;
1153                         break;
1154                 }
1155                 spin_unlock(&ctx->event_wqh.lock);
1156
1157                 if (signal_pending(current)) {
1158                         ret = -ERESTARTSYS;
1159                         break;
1160                 }
1161                 if (no_wait) {
1162                         ret = -EAGAIN;
1163                         break;
1164                 }
1165                 spin_unlock_irq(&ctx->fd_wqh.lock);
1166                 schedule();
1167                 spin_lock_irq(&ctx->fd_wqh.lock);
1168         }
1169         __remove_wait_queue(&ctx->fd_wqh, &wait);
1170         __set_current_state(TASK_RUNNING);
1171         spin_unlock_irq(&ctx->fd_wqh.lock);
1172
1173         if (!ret && msg->event == UFFD_EVENT_FORK) {
1174                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1175                 spin_lock_irq(&ctx->event_wqh.lock);
1176                 if (!list_empty(&fork_event)) {
1177                         /*
1178                          * The fork thread didn't abort, so we can
1179                          * drop the temporary refcount.
1180                          */
1181                         userfaultfd_ctx_put(fork_nctx);
1182
1183                         uwq = list_first_entry(&fork_event,
1184                                                typeof(*uwq),
1185                                                wq.entry);
1186                         /*
1187                          * If fork_event list wasn't empty and in turn
1188                          * the event wasn't already released by fork
1189                          * (the event is allocated on fork kernel
1190                          * stack), put the event back to its place in
1191                          * the event_wq. fork_event head will be freed
1192                          * as soon as we return so the event cannot
1193                          * stay queued there no matter the current
1194                          * "ret" value.
1195                          */
1196                         list_del(&uwq->wq.entry);
1197                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1198
1199                         /*
1200                          * Leave the event in the waitqueue and report
1201                          * error to userland if we failed to resolve
1202                          * the userfault fork.
1203                          */
1204                         if (likely(!ret))
1205                                 userfaultfd_event_complete(ctx, uwq);
1206                 } else {
1207                         /*
1208                          * Here the fork thread aborted and the
1209                          * refcount from the fork thread on fork_nctx
1210                          * has already been released. We still hold
1211                          * the reference we took before releasing the
1212                          * lock above. If resolve_userfault_fork
1213                          * failed we've to drop it because the
1214                          * fork_nctx has to be freed in such case. If
1215                          * it succeeded we'll hold it because the new
1216                          * uffd references it.
1217                          */
1218                         if (ret)
1219                                 userfaultfd_ctx_put(fork_nctx);
1220                 }
1221                 spin_unlock_irq(&ctx->event_wqh.lock);
1222         }
1223
1224         return ret;
1225 }
1226
1227 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1228                                 size_t count, loff_t *ppos)
1229 {
1230         struct userfaultfd_ctx *ctx = file->private_data;
1231         ssize_t _ret, ret = 0;
1232         struct uffd_msg msg;
1233         int no_wait = file->f_flags & O_NONBLOCK;
1234         struct inode *inode = file_inode(file);
1235
1236         if (!userfaultfd_is_initialized(ctx))
1237                 return -EINVAL;
1238
1239         for (;;) {
1240                 if (count < sizeof(msg))
1241                         return ret ? ret : -EINVAL;
1242                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1243                 if (_ret < 0)
1244                         return ret ? ret : _ret;
1245                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1246                         return ret ? ret : -EFAULT;
1247                 ret += sizeof(msg);
1248                 buf += sizeof(msg);
1249                 count -= sizeof(msg);
1250                 /*
1251                  * Allow to read more than one fault at time but only
1252                  * block if waiting for the very first one.
1253                  */
1254                 no_wait = O_NONBLOCK;
1255         }
1256 }
1257
1258 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1259                              struct userfaultfd_wake_range *range)
1260 {
1261         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1262         /* wake all in the range and autoremove */
1263         if (waitqueue_active(&ctx->fault_pending_wqh))
1264                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1265                                      range);
1266         if (waitqueue_active(&ctx->fault_wqh))
1267                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1268         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1269 }
1270
1271 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1272                                            struct userfaultfd_wake_range *range)
1273 {
1274         unsigned seq;
1275         bool need_wakeup;
1276
1277         /*
1278          * To be sure waitqueue_active() is not reordered by the CPU
1279          * before the pagetable update, use an explicit SMP memory
1280          * barrier here. PT lock release or mmap_read_unlock(mm) still
1281          * have release semantics that can allow the
1282          * waitqueue_active() to be reordered before the pte update.
1283          */
1284         smp_mb();
1285
1286         /*
1287          * Use waitqueue_active because it's very frequent to
1288          * change the address space atomically even if there are no
1289          * userfaults yet. So we take the spinlock only when we're
1290          * sure we've userfaults to wake.
1291          */
1292         do {
1293                 seq = read_seqcount_begin(&ctx->refile_seq);
1294                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1295                         waitqueue_active(&ctx->fault_wqh);
1296                 cond_resched();
1297         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1298         if (need_wakeup)
1299                 __wake_userfault(ctx, range);
1300 }
1301
1302 static __always_inline int validate_range(struct mm_struct *mm,
1303                                           __u64 start, __u64 len)
1304 {
1305         __u64 task_size = mm->task_size;
1306
1307         if (start & ~PAGE_MASK)
1308                 return -EINVAL;
1309         if (len & ~PAGE_MASK)
1310                 return -EINVAL;
1311         if (!len)
1312                 return -EINVAL;
1313         if (start < mmap_min_addr)
1314                 return -EINVAL;
1315         if (start >= task_size)
1316                 return -EINVAL;
1317         if (len > task_size - start)
1318                 return -EINVAL;
1319         return 0;
1320 }
1321
1322 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1323                                 unsigned long arg)
1324 {
1325         struct mm_struct *mm = ctx->mm;
1326         struct vm_area_struct *vma, *prev, *cur;
1327         int ret;
1328         struct uffdio_register uffdio_register;
1329         struct uffdio_register __user *user_uffdio_register;
1330         unsigned long vm_flags, new_flags;
1331         bool found;
1332         bool basic_ioctls;
1333         unsigned long start, end, vma_end;
1334         struct vma_iterator vmi;
1335         pgoff_t pgoff;
1336
1337         user_uffdio_register = (struct uffdio_register __user *) arg;
1338
1339         ret = -EFAULT;
1340         if (copy_from_user(&uffdio_register, user_uffdio_register,
1341                            sizeof(uffdio_register)-sizeof(__u64)))
1342                 goto out;
1343
1344         ret = -EINVAL;
1345         if (!uffdio_register.mode)
1346                 goto out;
1347         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1348                 goto out;
1349         vm_flags = 0;
1350         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1351                 vm_flags |= VM_UFFD_MISSING;
1352         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1353 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1354                 goto out;
1355 #endif
1356                 vm_flags |= VM_UFFD_WP;
1357         }
1358         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1359 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1360                 goto out;
1361 #endif
1362                 vm_flags |= VM_UFFD_MINOR;
1363         }
1364
1365         ret = validate_range(mm, uffdio_register.range.start,
1366                              uffdio_register.range.len);
1367         if (ret)
1368                 goto out;
1369
1370         start = uffdio_register.range.start;
1371         end = start + uffdio_register.range.len;
1372
1373         ret = -ENOMEM;
1374         if (!mmget_not_zero(mm))
1375                 goto out;
1376
1377         ret = -EINVAL;
1378         mmap_write_lock(mm);
1379         vma_iter_init(&vmi, mm, start);
1380         vma = vma_find(&vmi, end);
1381         if (!vma)
1382                 goto out_unlock;
1383
1384         /*
1385          * If the first vma contains huge pages, make sure start address
1386          * is aligned to huge page size.
1387          */
1388         if (is_vm_hugetlb_page(vma)) {
1389                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1390
1391                 if (start & (vma_hpagesize - 1))
1392                         goto out_unlock;
1393         }
1394
1395         /*
1396          * Search for not compatible vmas.
1397          */
1398         found = false;
1399         basic_ioctls = false;
1400         cur = vma;
1401         do {
1402                 cond_resched();
1403
1404                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1405                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1406
1407                 /* check not compatible vmas */
1408                 ret = -EINVAL;
1409                 if (!vma_can_userfault(cur, vm_flags))
1410                         goto out_unlock;
1411
1412                 /*
1413                  * UFFDIO_COPY will fill file holes even without
1414                  * PROT_WRITE. This check enforces that if this is a
1415                  * MAP_SHARED, the process has write permission to the backing
1416                  * file. If VM_MAYWRITE is set it also enforces that on a
1417                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1418                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1419                  */
1420                 ret = -EPERM;
1421                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1422                         goto out_unlock;
1423
1424                 /*
1425                  * If this vma contains ending address, and huge pages
1426                  * check alignment.
1427                  */
1428                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1429                     end > cur->vm_start) {
1430                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1431
1432                         ret = -EINVAL;
1433
1434                         if (end & (vma_hpagesize - 1))
1435                                 goto out_unlock;
1436                 }
1437                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1438                         goto out_unlock;
1439
1440                 /*
1441                  * Check that this vma isn't already owned by a
1442                  * different userfaultfd. We can't allow more than one
1443                  * userfaultfd to own a single vma simultaneously or we
1444                  * wouldn't know which one to deliver the userfaults to.
1445                  */
1446                 ret = -EBUSY;
1447                 if (cur->vm_userfaultfd_ctx.ctx &&
1448                     cur->vm_userfaultfd_ctx.ctx != ctx)
1449                         goto out_unlock;
1450
1451                 /*
1452                  * Note vmas containing huge pages
1453                  */
1454                 if (is_vm_hugetlb_page(cur))
1455                         basic_ioctls = true;
1456
1457                 found = true;
1458         } for_each_vma_range(vmi, cur, end);
1459         BUG_ON(!found);
1460
1461         vma_iter_set(&vmi, start);
1462         prev = vma_prev(&vmi);
1463         if (vma->vm_start < start)
1464                 prev = vma;
1465
1466         ret = 0;
1467         for_each_vma_range(vmi, vma, end) {
1468                 cond_resched();
1469
1470                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1471                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1472                        vma->vm_userfaultfd_ctx.ctx != ctx);
1473                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1474
1475                 /*
1476                  * Nothing to do: this vma is already registered into this
1477                  * userfaultfd and with the right tracking mode too.
1478                  */
1479                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1480                     (vma->vm_flags & vm_flags) == vm_flags)
1481                         goto skip;
1482
1483                 if (vma->vm_start > start)
1484                         start = vma->vm_start;
1485                 vma_end = min(end, vma->vm_end);
1486
1487                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1488                 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1489                 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1490                                  vma->anon_vma, vma->vm_file, pgoff,
1491                                  vma_policy(vma),
1492                                  ((struct vm_userfaultfd_ctx){ ctx }),
1493                                  anon_vma_name(vma));
1494                 if (prev) {
1495                         /* vma_merge() invalidated the mas */
1496                         vma = prev;
1497                         goto next;
1498                 }
1499                 if (vma->vm_start < start) {
1500                         ret = split_vma(&vmi, vma, start, 1);
1501                         if (ret)
1502                                 break;
1503                 }
1504                 if (vma->vm_end > end) {
1505                         ret = split_vma(&vmi, vma, end, 0);
1506                         if (ret)
1507                                 break;
1508                 }
1509         next:
1510                 /*
1511                  * In the vma_merge() successful mprotect-like case 8:
1512                  * the next vma was merged into the current one and
1513                  * the current one has not been updated yet.
1514                  */
1515                 userfaultfd_set_vm_flags(vma, new_flags);
1516                 vma->vm_userfaultfd_ctx.ctx = ctx;
1517
1518                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1519                         hugetlb_unshare_all_pmds(vma);
1520
1521         skip:
1522                 prev = vma;
1523                 start = vma->vm_end;
1524         }
1525
1526 out_unlock:
1527         mmap_write_unlock(mm);
1528         mmput(mm);
1529         if (!ret) {
1530                 __u64 ioctls_out;
1531
1532                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1533                     UFFD_API_RANGE_IOCTLS;
1534
1535                 /*
1536                  * Declare the WP ioctl only if the WP mode is
1537                  * specified and all checks passed with the range
1538                  */
1539                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1540                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1541
1542                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1543                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1544                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1545
1546                 /*
1547                  * Now that we scanned all vmas we can already tell
1548                  * userland which ioctls methods are guaranteed to
1549                  * succeed on this range.
1550                  */
1551                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1552                         ret = -EFAULT;
1553         }
1554 out:
1555         return ret;
1556 }
1557
1558 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1559                                   unsigned long arg)
1560 {
1561         struct mm_struct *mm = ctx->mm;
1562         struct vm_area_struct *vma, *prev, *cur;
1563         int ret;
1564         struct uffdio_range uffdio_unregister;
1565         unsigned long new_flags;
1566         bool found;
1567         unsigned long start, end, vma_end;
1568         const void __user *buf = (void __user *)arg;
1569         struct vma_iterator vmi;
1570         pgoff_t pgoff;
1571
1572         ret = -EFAULT;
1573         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1574                 goto out;
1575
1576         ret = validate_range(mm, uffdio_unregister.start,
1577                              uffdio_unregister.len);
1578         if (ret)
1579                 goto out;
1580
1581         start = uffdio_unregister.start;
1582         end = start + uffdio_unregister.len;
1583
1584         ret = -ENOMEM;
1585         if (!mmget_not_zero(mm))
1586                 goto out;
1587
1588         mmap_write_lock(mm);
1589         ret = -EINVAL;
1590         vma_iter_init(&vmi, mm, start);
1591         vma = vma_find(&vmi, end);
1592         if (!vma)
1593                 goto out_unlock;
1594
1595         /*
1596          * If the first vma contains huge pages, make sure start address
1597          * is aligned to huge page size.
1598          */
1599         if (is_vm_hugetlb_page(vma)) {
1600                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1601
1602                 if (start & (vma_hpagesize - 1))
1603                         goto out_unlock;
1604         }
1605
1606         /*
1607          * Search for not compatible vmas.
1608          */
1609         found = false;
1610         cur = vma;
1611         do {
1612                 cond_resched();
1613
1614                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1615                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1616
1617                 /*
1618                  * Check not compatible vmas, not strictly required
1619                  * here as not compatible vmas cannot have an
1620                  * userfaultfd_ctx registered on them, but this
1621                  * provides for more strict behavior to notice
1622                  * unregistration errors.
1623                  */
1624                 if (!vma_can_userfault(cur, cur->vm_flags))
1625                         goto out_unlock;
1626
1627                 found = true;
1628         } for_each_vma_range(vmi, cur, end);
1629         BUG_ON(!found);
1630
1631         vma_iter_set(&vmi, start);
1632         prev = vma_prev(&vmi);
1633         if (vma->vm_start < start)
1634                 prev = vma;
1635
1636         ret = 0;
1637         for_each_vma_range(vmi, vma, end) {
1638                 cond_resched();
1639
1640                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1641
1642                 /*
1643                  * Nothing to do: this vma is already registered into this
1644                  * userfaultfd and with the right tracking mode too.
1645                  */
1646                 if (!vma->vm_userfaultfd_ctx.ctx)
1647                         goto skip;
1648
1649                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1650
1651                 if (vma->vm_start > start)
1652                         start = vma->vm_start;
1653                 vma_end = min(end, vma->vm_end);
1654
1655                 if (userfaultfd_missing(vma)) {
1656                         /*
1657                          * Wake any concurrent pending userfault while
1658                          * we unregister, so they will not hang
1659                          * permanently and it avoids userland to call
1660                          * UFFDIO_WAKE explicitly.
1661                          */
1662                         struct userfaultfd_wake_range range;
1663                         range.start = start;
1664                         range.len = vma_end - start;
1665                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1666                 }
1667
1668                 /* Reset ptes for the whole vma range if wr-protected */
1669                 if (userfaultfd_wp(vma))
1670                         uffd_wp_range(vma, start, vma_end - start, false);
1671
1672                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1673                 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1674                 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1675                                  vma->anon_vma, vma->vm_file, pgoff,
1676                                  vma_policy(vma),
1677                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
1678                 if (prev) {
1679                         vma = prev;
1680                         goto next;
1681                 }
1682                 if (vma->vm_start < start) {
1683                         ret = split_vma(&vmi, vma, start, 1);
1684                         if (ret)
1685                                 break;
1686                 }
1687                 if (vma->vm_end > end) {
1688                         ret = split_vma(&vmi, vma, end, 0);
1689                         if (ret)
1690                                 break;
1691                 }
1692         next:
1693                 /*
1694                  * In the vma_merge() successful mprotect-like case 8:
1695                  * the next vma was merged into the current one and
1696                  * the current one has not been updated yet.
1697                  */
1698                 userfaultfd_set_vm_flags(vma, new_flags);
1699                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1700
1701         skip:
1702                 prev = vma;
1703                 start = vma->vm_end;
1704         }
1705
1706 out_unlock:
1707         mmap_write_unlock(mm);
1708         mmput(mm);
1709 out:
1710         return ret;
1711 }
1712
1713 /*
1714  * userfaultfd_wake may be used in combination with the
1715  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1716  */
1717 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1718                             unsigned long arg)
1719 {
1720         int ret;
1721         struct uffdio_range uffdio_wake;
1722         struct userfaultfd_wake_range range;
1723         const void __user *buf = (void __user *)arg;
1724
1725         ret = -EFAULT;
1726         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1727                 goto out;
1728
1729         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1730         if (ret)
1731                 goto out;
1732
1733         range.start = uffdio_wake.start;
1734         range.len = uffdio_wake.len;
1735
1736         /*
1737          * len == 0 means wake all and we don't want to wake all here,
1738          * so check it again to be sure.
1739          */
1740         VM_BUG_ON(!range.len);
1741
1742         wake_userfault(ctx, &range);
1743         ret = 0;
1744
1745 out:
1746         return ret;
1747 }
1748
1749 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1750                             unsigned long arg)
1751 {
1752         __s64 ret;
1753         struct uffdio_copy uffdio_copy;
1754         struct uffdio_copy __user *user_uffdio_copy;
1755         struct userfaultfd_wake_range range;
1756         uffd_flags_t flags = 0;
1757
1758         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1759
1760         ret = -EAGAIN;
1761         if (atomic_read(&ctx->mmap_changing))
1762                 goto out;
1763
1764         ret = -EFAULT;
1765         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1766                            /* don't copy "copy" last field */
1767                            sizeof(uffdio_copy)-sizeof(__s64)))
1768                 goto out;
1769
1770         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1771         if (ret)
1772                 goto out;
1773         /*
1774          * double check for wraparound just in case. copy_from_user()
1775          * will later check uffdio_copy.src + uffdio_copy.len to fit
1776          * in the userland range.
1777          */
1778         ret = -EINVAL;
1779         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1780                 goto out;
1781         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1782                 goto out;
1783         if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1784                 flags |= MFILL_ATOMIC_WP;
1785         if (mmget_not_zero(ctx->mm)) {
1786                 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1787                                         uffdio_copy.len, &ctx->mmap_changing,
1788                                         flags);
1789                 mmput(ctx->mm);
1790         } else {
1791                 return -ESRCH;
1792         }
1793         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1794                 return -EFAULT;
1795         if (ret < 0)
1796                 goto out;
1797         BUG_ON(!ret);
1798         /* len == 0 would wake all */
1799         range.len = ret;
1800         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1801                 range.start = uffdio_copy.dst;
1802                 wake_userfault(ctx, &range);
1803         }
1804         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1805 out:
1806         return ret;
1807 }
1808
1809 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1810                                 unsigned long arg)
1811 {
1812         __s64 ret;
1813         struct uffdio_zeropage uffdio_zeropage;
1814         struct uffdio_zeropage __user *user_uffdio_zeropage;
1815         struct userfaultfd_wake_range range;
1816
1817         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1818
1819         ret = -EAGAIN;
1820         if (atomic_read(&ctx->mmap_changing))
1821                 goto out;
1822
1823         ret = -EFAULT;
1824         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1825                            /* don't copy "zeropage" last field */
1826                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1827                 goto out;
1828
1829         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1830                              uffdio_zeropage.range.len);
1831         if (ret)
1832                 goto out;
1833         ret = -EINVAL;
1834         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1835                 goto out;
1836
1837         if (mmget_not_zero(ctx->mm)) {
1838                 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1839                                            uffdio_zeropage.range.len,
1840                                            &ctx->mmap_changing);
1841                 mmput(ctx->mm);
1842         } else {
1843                 return -ESRCH;
1844         }
1845         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1846                 return -EFAULT;
1847         if (ret < 0)
1848                 goto out;
1849         /* len == 0 would wake all */
1850         BUG_ON(!ret);
1851         range.len = ret;
1852         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1853                 range.start = uffdio_zeropage.range.start;
1854                 wake_userfault(ctx, &range);
1855         }
1856         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1857 out:
1858         return ret;
1859 }
1860
1861 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1862                                     unsigned long arg)
1863 {
1864         int ret;
1865         struct uffdio_writeprotect uffdio_wp;
1866         struct uffdio_writeprotect __user *user_uffdio_wp;
1867         struct userfaultfd_wake_range range;
1868         bool mode_wp, mode_dontwake;
1869
1870         if (atomic_read(&ctx->mmap_changing))
1871                 return -EAGAIN;
1872
1873         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1874
1875         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1876                            sizeof(struct uffdio_writeprotect)))
1877                 return -EFAULT;
1878
1879         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1880                              uffdio_wp.range.len);
1881         if (ret)
1882                 return ret;
1883
1884         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1885                                UFFDIO_WRITEPROTECT_MODE_WP))
1886                 return -EINVAL;
1887
1888         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1889         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1890
1891         if (mode_wp && mode_dontwake)
1892                 return -EINVAL;
1893
1894         if (mmget_not_zero(ctx->mm)) {
1895                 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1896                                           uffdio_wp.range.len, mode_wp,
1897                                           &ctx->mmap_changing);
1898                 mmput(ctx->mm);
1899         } else {
1900                 return -ESRCH;
1901         }
1902
1903         if (ret)
1904                 return ret;
1905
1906         if (!mode_wp && !mode_dontwake) {
1907                 range.start = uffdio_wp.range.start;
1908                 range.len = uffdio_wp.range.len;
1909                 wake_userfault(ctx, &range);
1910         }
1911         return ret;
1912 }
1913
1914 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1915 {
1916         __s64 ret;
1917         struct uffdio_continue uffdio_continue;
1918         struct uffdio_continue __user *user_uffdio_continue;
1919         struct userfaultfd_wake_range range;
1920         uffd_flags_t flags = 0;
1921
1922         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1923
1924         ret = -EAGAIN;
1925         if (atomic_read(&ctx->mmap_changing))
1926                 goto out;
1927
1928         ret = -EFAULT;
1929         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1930                            /* don't copy the output fields */
1931                            sizeof(uffdio_continue) - (sizeof(__s64))))
1932                 goto out;
1933
1934         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1935                              uffdio_continue.range.len);
1936         if (ret)
1937                 goto out;
1938
1939         ret = -EINVAL;
1940         /* double check for wraparound just in case. */
1941         if (uffdio_continue.range.start + uffdio_continue.range.len <=
1942             uffdio_continue.range.start) {
1943                 goto out;
1944         }
1945         if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1946                                      UFFDIO_CONTINUE_MODE_WP))
1947                 goto out;
1948         if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1949                 flags |= MFILL_ATOMIC_WP;
1950
1951         if (mmget_not_zero(ctx->mm)) {
1952                 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1953                                             uffdio_continue.range.len,
1954                                             &ctx->mmap_changing, flags);
1955                 mmput(ctx->mm);
1956         } else {
1957                 return -ESRCH;
1958         }
1959
1960         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1961                 return -EFAULT;
1962         if (ret < 0)
1963                 goto out;
1964
1965         /* len == 0 would wake all */
1966         BUG_ON(!ret);
1967         range.len = ret;
1968         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1969                 range.start = uffdio_continue.range.start;
1970                 wake_userfault(ctx, &range);
1971         }
1972         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1973
1974 out:
1975         return ret;
1976 }
1977
1978 static inline unsigned int uffd_ctx_features(__u64 user_features)
1979 {
1980         /*
1981          * For the current set of features the bits just coincide. Set
1982          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1983          */
1984         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1985 }
1986
1987 /*
1988  * userland asks for a certain API version and we return which bits
1989  * and ioctl commands are implemented in this kernel for such API
1990  * version or -EINVAL if unknown.
1991  */
1992 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1993                            unsigned long arg)
1994 {
1995         struct uffdio_api uffdio_api;
1996         void __user *buf = (void __user *)arg;
1997         unsigned int ctx_features;
1998         int ret;
1999         __u64 features;
2000
2001         ret = -EFAULT;
2002         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2003                 goto out;
2004         features = uffdio_api.features;
2005         ret = -EINVAL;
2006         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2007                 goto err_out;
2008         ret = -EPERM;
2009         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2010                 goto err_out;
2011         /* report all available features and ioctls to userland */
2012         uffdio_api.features = UFFD_API_FEATURES;
2013 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2014         uffdio_api.features &=
2015                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2016 #endif
2017 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2018         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2019 #endif
2020 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2021         uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2022         uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2023 #endif
2024         uffdio_api.ioctls = UFFD_API_IOCTLS;
2025         ret = -EFAULT;
2026         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2027                 goto out;
2028
2029         /* only enable the requested features for this uffd context */
2030         ctx_features = uffd_ctx_features(features);
2031         ret = -EINVAL;
2032         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2033                 goto err_out;
2034
2035         ret = 0;
2036 out:
2037         return ret;
2038 err_out:
2039         memset(&uffdio_api, 0, sizeof(uffdio_api));
2040         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2041                 ret = -EFAULT;
2042         goto out;
2043 }
2044
2045 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2046                               unsigned long arg)
2047 {
2048         int ret = -EINVAL;
2049         struct userfaultfd_ctx *ctx = file->private_data;
2050
2051         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2052                 return -EINVAL;
2053
2054         switch(cmd) {
2055         case UFFDIO_API:
2056                 ret = userfaultfd_api(ctx, arg);
2057                 break;
2058         case UFFDIO_REGISTER:
2059                 ret = userfaultfd_register(ctx, arg);
2060                 break;
2061         case UFFDIO_UNREGISTER:
2062                 ret = userfaultfd_unregister(ctx, arg);
2063                 break;
2064         case UFFDIO_WAKE:
2065                 ret = userfaultfd_wake(ctx, arg);
2066                 break;
2067         case UFFDIO_COPY:
2068                 ret = userfaultfd_copy(ctx, arg);
2069                 break;
2070         case UFFDIO_ZEROPAGE:
2071                 ret = userfaultfd_zeropage(ctx, arg);
2072                 break;
2073         case UFFDIO_WRITEPROTECT:
2074                 ret = userfaultfd_writeprotect(ctx, arg);
2075                 break;
2076         case UFFDIO_CONTINUE:
2077                 ret = userfaultfd_continue(ctx, arg);
2078                 break;
2079         }
2080         return ret;
2081 }
2082
2083 #ifdef CONFIG_PROC_FS
2084 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2085 {
2086         struct userfaultfd_ctx *ctx = f->private_data;
2087         wait_queue_entry_t *wq;
2088         unsigned long pending = 0, total = 0;
2089
2090         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2091         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2092                 pending++;
2093                 total++;
2094         }
2095         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2096                 total++;
2097         }
2098         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2099
2100         /*
2101          * If more protocols will be added, there will be all shown
2102          * separated by a space. Like this:
2103          *      protocols: aa:... bb:...
2104          */
2105         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2106                    pending, total, UFFD_API, ctx->features,
2107                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2108 }
2109 #endif
2110
2111 static const struct file_operations userfaultfd_fops = {
2112 #ifdef CONFIG_PROC_FS
2113         .show_fdinfo    = userfaultfd_show_fdinfo,
2114 #endif
2115         .release        = userfaultfd_release,
2116         .poll           = userfaultfd_poll,
2117         .read           = userfaultfd_read,
2118         .unlocked_ioctl = userfaultfd_ioctl,
2119         .compat_ioctl   = compat_ptr_ioctl,
2120         .llseek         = noop_llseek,
2121 };
2122
2123 static void init_once_userfaultfd_ctx(void *mem)
2124 {
2125         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2126
2127         init_waitqueue_head(&ctx->fault_pending_wqh);
2128         init_waitqueue_head(&ctx->fault_wqh);
2129         init_waitqueue_head(&ctx->event_wqh);
2130         init_waitqueue_head(&ctx->fd_wqh);
2131         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2132 }
2133
2134 static int new_userfaultfd(int flags)
2135 {
2136         struct userfaultfd_ctx *ctx;
2137         int fd;
2138
2139         BUG_ON(!current->mm);
2140
2141         /* Check the UFFD_* constants for consistency.  */
2142         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2143         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2144         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2145
2146         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2147                 return -EINVAL;
2148
2149         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2150         if (!ctx)
2151                 return -ENOMEM;
2152
2153         refcount_set(&ctx->refcount, 1);
2154         ctx->flags = flags;
2155         ctx->features = 0;
2156         ctx->released = false;
2157         atomic_set(&ctx->mmap_changing, 0);
2158         ctx->mm = current->mm;
2159         /* prevent the mm struct to be freed */
2160         mmgrab(ctx->mm);
2161
2162         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2163                         O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2164         if (fd < 0) {
2165                 mmdrop(ctx->mm);
2166                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2167         }
2168         return fd;
2169 }
2170
2171 static inline bool userfaultfd_syscall_allowed(int flags)
2172 {
2173         /* Userspace-only page faults are always allowed */
2174         if (flags & UFFD_USER_MODE_ONLY)
2175                 return true;
2176
2177         /*
2178          * The user is requesting a userfaultfd which can handle kernel faults.
2179          * Privileged users are always allowed to do this.
2180          */
2181         if (capable(CAP_SYS_PTRACE))
2182                 return true;
2183
2184         /* Otherwise, access to kernel fault handling is sysctl controlled. */
2185         return sysctl_unprivileged_userfaultfd;
2186 }
2187
2188 SYSCALL_DEFINE1(userfaultfd, int, flags)
2189 {
2190         if (!userfaultfd_syscall_allowed(flags))
2191                 return -EPERM;
2192
2193         return new_userfaultfd(flags);
2194 }
2195
2196 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2197 {
2198         if (cmd != USERFAULTFD_IOC_NEW)
2199                 return -EINVAL;
2200
2201         return new_userfaultfd(flags);
2202 }
2203
2204 static const struct file_operations userfaultfd_dev_fops = {
2205         .unlocked_ioctl = userfaultfd_dev_ioctl,
2206         .compat_ioctl = userfaultfd_dev_ioctl,
2207         .owner = THIS_MODULE,
2208         .llseek = noop_llseek,
2209 };
2210
2211 static struct miscdevice userfaultfd_misc = {
2212         .minor = MISC_DYNAMIC_MINOR,
2213         .name = "userfaultfd",
2214         .fops = &userfaultfd_dev_fops
2215 };
2216
2217 static int __init userfaultfd_init(void)
2218 {
2219         int ret;
2220
2221         ret = misc_register(&userfaultfd_misc);
2222         if (ret)
2223                 return ret;
2224
2225         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2226                                                 sizeof(struct userfaultfd_ctx),
2227                                                 0,
2228                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2229                                                 init_once_userfaultfd_ctx);
2230 #ifdef CONFIG_SYSCTL
2231         register_sysctl_init("vm", vm_userfaultfd_table);
2232 #endif
2233         return 0;
2234 }
2235 __initcall(userfaultfd_init);