Merge patch series "Add non-coherent DMA support for AX45MP"
[platform/kernel/linux-rpi.git] / fs / ufs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ufs/inode.c
4  *
5  * Copyright (C) 1998
6  * Daniel Pirkl <daniel.pirkl@email.cz>
7  * Charles University, Faculty of Mathematics and Physics
8  *
9  *  from
10  *
11  *  linux/fs/ext2/inode.c
12  *
13  * Copyright (C) 1992, 1993, 1994, 1995
14  * Remy Card (card@masi.ibp.fr)
15  * Laboratoire MASI - Institut Blaise Pascal
16  * Universite Pierre et Marie Curie (Paris VI)
17  *
18  *  from
19  *
20  *  linux/fs/minix/inode.c
21  *
22  *  Copyright (C) 1991, 1992  Linus Torvalds
23  *
24  *  Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
25  *  Big-endian to little-endian byte-swapping/bitmaps by
26  *        David S. Miller (davem@caip.rutgers.edu), 1995
27  */
28
29 #include <linux/uaccess.h>
30
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/stat.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/iversion.h>
40
41 #include "ufs_fs.h"
42 #include "ufs.h"
43 #include "swab.h"
44 #include "util.h"
45
46 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4])
47 {
48         struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
49         int ptrs = uspi->s_apb;
50         int ptrs_bits = uspi->s_apbshift;
51         const long direct_blocks = UFS_NDADDR,
52                 indirect_blocks = ptrs,
53                 double_blocks = (1 << (ptrs_bits * 2));
54         int n = 0;
55
56
57         UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
58         if (i_block < direct_blocks) {
59                 offsets[n++] = i_block;
60         } else if ((i_block -= direct_blocks) < indirect_blocks) {
61                 offsets[n++] = UFS_IND_BLOCK;
62                 offsets[n++] = i_block;
63         } else if ((i_block -= indirect_blocks) < double_blocks) {
64                 offsets[n++] = UFS_DIND_BLOCK;
65                 offsets[n++] = i_block >> ptrs_bits;
66                 offsets[n++] = i_block & (ptrs - 1);
67         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
68                 offsets[n++] = UFS_TIND_BLOCK;
69                 offsets[n++] = i_block >> (ptrs_bits * 2);
70                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
71                 offsets[n++] = i_block & (ptrs - 1);
72         } else {
73                 ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
74         }
75         return n;
76 }
77
78 typedef struct {
79         void    *p;
80         union {
81                 __fs32  key32;
82                 __fs64  key64;
83         };
84         struct buffer_head *bh;
85 } Indirect;
86
87 static inline int grow_chain32(struct ufs_inode_info *ufsi,
88                                struct buffer_head *bh, __fs32 *v,
89                                Indirect *from, Indirect *to)
90 {
91         Indirect *p;
92         unsigned seq;
93         to->bh = bh;
94         do {
95                 seq = read_seqbegin(&ufsi->meta_lock);
96                 to->key32 = *(__fs32 *)(to->p = v);
97                 for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++)
98                         ;
99         } while (read_seqretry(&ufsi->meta_lock, seq));
100         return (p > to);
101 }
102
103 static inline int grow_chain64(struct ufs_inode_info *ufsi,
104                                struct buffer_head *bh, __fs64 *v,
105                                Indirect *from, Indirect *to)
106 {
107         Indirect *p;
108         unsigned seq;
109         to->bh = bh;
110         do {
111                 seq = read_seqbegin(&ufsi->meta_lock);
112                 to->key64 = *(__fs64 *)(to->p = v);
113                 for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++)
114                         ;
115         } while (read_seqretry(&ufsi->meta_lock, seq));
116         return (p > to);
117 }
118
119 /*
120  * Returns the location of the fragment from
121  * the beginning of the filesystem.
122  */
123
124 static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth)
125 {
126         struct ufs_inode_info *ufsi = UFS_I(inode);
127         struct super_block *sb = inode->i_sb;
128         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
129         u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
130         int shift = uspi->s_apbshift-uspi->s_fpbshift;
131         Indirect chain[4], *q = chain;
132         unsigned *p;
133         unsigned flags = UFS_SB(sb)->s_flags;
134         u64 res = 0;
135
136         UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
137                 uspi->s_fpbshift, uspi->s_apbmask,
138                 (unsigned long long)mask);
139
140         if (depth == 0)
141                 goto no_block;
142
143 again:
144         p = offsets;
145
146         if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
147                 goto ufs2;
148
149         if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q))
150                 goto changed;
151         if (!q->key32)
152                 goto no_block;
153         while (--depth) {
154                 __fs32 *ptr;
155                 struct buffer_head *bh;
156                 unsigned n = *p++;
157
158                 bh = sb_bread(sb, uspi->s_sbbase +
159                                   fs32_to_cpu(sb, q->key32) + (n>>shift));
160                 if (!bh)
161                         goto no_block;
162                 ptr = (__fs32 *)bh->b_data + (n & mask);
163                 if (!grow_chain32(ufsi, bh, ptr, chain, ++q))
164                         goto changed;
165                 if (!q->key32)
166                         goto no_block;
167         }
168         res = fs32_to_cpu(sb, q->key32);
169         goto found;
170
171 ufs2:
172         if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q))
173                 goto changed;
174         if (!q->key64)
175                 goto no_block;
176
177         while (--depth) {
178                 __fs64 *ptr;
179                 struct buffer_head *bh;
180                 unsigned n = *p++;
181
182                 bh = sb_bread(sb, uspi->s_sbbase +
183                                   fs64_to_cpu(sb, q->key64) + (n>>shift));
184                 if (!bh)
185                         goto no_block;
186                 ptr = (__fs64 *)bh->b_data + (n & mask);
187                 if (!grow_chain64(ufsi, bh, ptr, chain, ++q))
188                         goto changed;
189                 if (!q->key64)
190                         goto no_block;
191         }
192         res = fs64_to_cpu(sb, q->key64);
193 found:
194         res += uspi->s_sbbase;
195 no_block:
196         while (q > chain) {
197                 brelse(q->bh);
198                 q--;
199         }
200         return res;
201
202 changed:
203         while (q > chain) {
204                 brelse(q->bh);
205                 q--;
206         }
207         goto again;
208 }
209
210 /*
211  * Unpacking tails: we have a file with partial final block and
212  * we had been asked to extend it.  If the fragment being written
213  * is within the same block, we need to extend the tail just to cover
214  * that fragment.  Otherwise the tail is extended to full block.
215  *
216  * Note that we might need to create a _new_ tail, but that will
217  * be handled elsewhere; this is strictly for resizing old
218  * ones.
219  */
220 static bool
221 ufs_extend_tail(struct inode *inode, u64 writes_to,
222                   int *err, struct page *locked_page)
223 {
224         struct ufs_inode_info *ufsi = UFS_I(inode);
225         struct super_block *sb = inode->i_sb;
226         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
227         unsigned lastfrag = ufsi->i_lastfrag;   /* it's a short file, so unsigned is enough */
228         unsigned block = ufs_fragstoblks(lastfrag);
229         unsigned new_size;
230         void *p;
231         u64 tmp;
232
233         if (writes_to < (lastfrag | uspi->s_fpbmask))
234                 new_size = (writes_to & uspi->s_fpbmask) + 1;
235         else
236                 new_size = uspi->s_fpb;
237
238         p = ufs_get_direct_data_ptr(uspi, ufsi, block);
239         tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p),
240                                 new_size - (lastfrag & uspi->s_fpbmask), err,
241                                 locked_page);
242         return tmp != 0;
243 }
244
245 /**
246  * ufs_inode_getfrag() - allocate new fragment(s)
247  * @inode: pointer to inode
248  * @index: number of block pointer within the inode's array.
249  * @new_fragment: number of new allocated fragment(s)
250  * @err: we set it if something wrong
251  * @new: we set it if we allocate new block
252  * @locked_page: for ufs_new_fragments()
253  */
254 static u64
255 ufs_inode_getfrag(struct inode *inode, unsigned index,
256                   sector_t new_fragment, int *err,
257                   int *new, struct page *locked_page)
258 {
259         struct ufs_inode_info *ufsi = UFS_I(inode);
260         struct super_block *sb = inode->i_sb;
261         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
262         u64 tmp, goal, lastfrag;
263         unsigned nfrags = uspi->s_fpb;
264         void *p;
265
266         /* TODO : to be done for write support
267         if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
268              goto ufs2;
269          */
270
271         p = ufs_get_direct_data_ptr(uspi, ufsi, index);
272         tmp = ufs_data_ptr_to_cpu(sb, p);
273         if (tmp)
274                 goto out;
275
276         lastfrag = ufsi->i_lastfrag;
277
278         /* will that be a new tail? */
279         if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag)
280                 nfrags = (new_fragment & uspi->s_fpbmask) + 1;
281
282         goal = 0;
283         if (index) {
284                 goal = ufs_data_ptr_to_cpu(sb,
285                                  ufs_get_direct_data_ptr(uspi, ufsi, index - 1));
286                 if (goal)
287                         goal += uspi->s_fpb;
288         }
289         tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment),
290                                 goal, nfrags, err, locked_page);
291
292         if (!tmp) {
293                 *err = -ENOSPC;
294                 return 0;
295         }
296
297         if (new)
298                 *new = 1;
299         inode_set_ctime_current(inode);
300         if (IS_SYNC(inode))
301                 ufs_sync_inode (inode);
302         mark_inode_dirty(inode);
303 out:
304         return tmp + uspi->s_sbbase;
305
306      /* This part : To be implemented ....
307         Required only for writing, not required for READ-ONLY.
308 ufs2:
309
310         u2_block = ufs_fragstoblks(fragment);
311         u2_blockoff = ufs_fragnum(fragment);
312         p = ufsi->i_u1.u2_i_data + block;
313         goal = 0;
314
315 repeat2:
316         tmp = fs32_to_cpu(sb, *p);
317         lastfrag = ufsi->i_lastfrag;
318
319      */
320 }
321
322 /**
323  * ufs_inode_getblock() - allocate new block
324  * @inode: pointer to inode
325  * @ind_block: block number of the indirect block
326  * @index: number of pointer within the indirect block
327  * @new_fragment: number of new allocated fragment
328  *  (block will hold this fragment and also uspi->s_fpb-1)
329  * @err: see ufs_inode_getfrag()
330  * @new: see ufs_inode_getfrag()
331  * @locked_page: see ufs_inode_getfrag()
332  */
333 static u64
334 ufs_inode_getblock(struct inode *inode, u64 ind_block,
335                   unsigned index, sector_t new_fragment, int *err,
336                   int *new, struct page *locked_page)
337 {
338         struct super_block *sb = inode->i_sb;
339         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
340         int shift = uspi->s_apbshift - uspi->s_fpbshift;
341         u64 tmp = 0, goal;
342         struct buffer_head *bh;
343         void *p;
344
345         if (!ind_block)
346                 return 0;
347
348         bh = sb_bread(sb, ind_block + (index >> shift));
349         if (unlikely(!bh)) {
350                 *err = -EIO;
351                 return 0;
352         }
353
354         index &= uspi->s_apbmask >> uspi->s_fpbshift;
355         if (uspi->fs_magic == UFS2_MAGIC)
356                 p = (__fs64 *)bh->b_data + index;
357         else
358                 p = (__fs32 *)bh->b_data + index;
359
360         tmp = ufs_data_ptr_to_cpu(sb, p);
361         if (tmp)
362                 goto out;
363
364         if (index && (uspi->fs_magic == UFS2_MAGIC ?
365                       (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) :
366                       (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1]))))
367                 goal = tmp + uspi->s_fpb;
368         else
369                 goal = bh->b_blocknr + uspi->s_fpb;
370         tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
371                                 uspi->s_fpb, err, locked_page);
372         if (!tmp)
373                 goto out;
374
375         if (new)
376                 *new = 1;
377
378         mark_buffer_dirty(bh);
379         if (IS_SYNC(inode))
380                 sync_dirty_buffer(bh);
381         inode_set_ctime_current(inode);
382         mark_inode_dirty(inode);
383 out:
384         brelse (bh);
385         UFSD("EXIT\n");
386         if (tmp)
387                 tmp += uspi->s_sbbase;
388         return tmp;
389 }
390
391 /**
392  * ufs_getfrag_block() - `get_block_t' function, interface between UFS and
393  * read_folio, writepage and so on
394  */
395
396 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
397 {
398         struct super_block *sb = inode->i_sb;
399         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
400         int err = 0, new = 0;
401         unsigned offsets[4];
402         int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets);
403         u64 phys64 = 0;
404         unsigned frag = fragment & uspi->s_fpbmask;
405
406         phys64 = ufs_frag_map(inode, offsets, depth);
407         if (!create)
408                 goto done;
409
410         if (phys64) {
411                 if (fragment >= UFS_NDIR_FRAGMENT)
412                         goto done;
413                 read_seqlock_excl(&UFS_I(inode)->meta_lock);
414                 if (fragment < UFS_I(inode)->i_lastfrag) {
415                         read_sequnlock_excl(&UFS_I(inode)->meta_lock);
416                         goto done;
417                 }
418                 read_sequnlock_excl(&UFS_I(inode)->meta_lock);
419         }
420         /* This code entered only while writing ....? */
421
422         mutex_lock(&UFS_I(inode)->truncate_mutex);
423
424         UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
425         if (unlikely(!depth)) {
426                 ufs_warning(sb, "ufs_get_block", "block > big");
427                 err = -EIO;
428                 goto out;
429         }
430
431         if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) {
432                 unsigned lastfrag = UFS_I(inode)->i_lastfrag;
433                 unsigned tailfrags = lastfrag & uspi->s_fpbmask;
434                 if (tailfrags && fragment >= lastfrag) {
435                         if (!ufs_extend_tail(inode, fragment,
436                                              &err, bh_result->b_page))
437                                 goto out;
438                 }
439         }
440
441         if (depth == 1) {
442                 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
443                                            &err, &new, bh_result->b_page);
444         } else {
445                 int i;
446                 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
447                                            &err, NULL, NULL);
448                 for (i = 1; i < depth - 1; i++)
449                         phys64 = ufs_inode_getblock(inode, phys64, offsets[i],
450                                                 fragment, &err, NULL, NULL);
451                 phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1],
452                                         fragment, &err, &new, bh_result->b_page);
453         }
454 out:
455         if (phys64) {
456                 phys64 += frag;
457                 map_bh(bh_result, sb, phys64);
458                 if (new)
459                         set_buffer_new(bh_result);
460         }
461         mutex_unlock(&UFS_I(inode)->truncate_mutex);
462         return err;
463
464 done:
465         if (phys64)
466                 map_bh(bh_result, sb, phys64 + frag);
467         return 0;
468 }
469
470 static int ufs_writepage(struct page *page, struct writeback_control *wbc)
471 {
472         return block_write_full_page(page,ufs_getfrag_block,wbc);
473 }
474
475 static int ufs_read_folio(struct file *file, struct folio *folio)
476 {
477         return block_read_full_folio(folio, ufs_getfrag_block);
478 }
479
480 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len)
481 {
482         return __block_write_begin(page, pos, len, ufs_getfrag_block);
483 }
484
485 static void ufs_truncate_blocks(struct inode *);
486
487 static void ufs_write_failed(struct address_space *mapping, loff_t to)
488 {
489         struct inode *inode = mapping->host;
490
491         if (to > inode->i_size) {
492                 truncate_pagecache(inode, inode->i_size);
493                 ufs_truncate_blocks(inode);
494         }
495 }
496
497 static int ufs_write_begin(struct file *file, struct address_space *mapping,
498                         loff_t pos, unsigned len,
499                         struct page **pagep, void **fsdata)
500 {
501         int ret;
502
503         ret = block_write_begin(mapping, pos, len, pagep, ufs_getfrag_block);
504         if (unlikely(ret))
505                 ufs_write_failed(mapping, pos + len);
506
507         return ret;
508 }
509
510 static int ufs_write_end(struct file *file, struct address_space *mapping,
511                         loff_t pos, unsigned len, unsigned copied,
512                         struct page *page, void *fsdata)
513 {
514         int ret;
515
516         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
517         if (ret < len)
518                 ufs_write_failed(mapping, pos + len);
519         return ret;
520 }
521
522 static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
523 {
524         return generic_block_bmap(mapping,block,ufs_getfrag_block);
525 }
526
527 const struct address_space_operations ufs_aops = {
528         .dirty_folio = block_dirty_folio,
529         .invalidate_folio = block_invalidate_folio,
530         .read_folio = ufs_read_folio,
531         .writepage = ufs_writepage,
532         .write_begin = ufs_write_begin,
533         .write_end = ufs_write_end,
534         .bmap = ufs_bmap
535 };
536
537 static void ufs_set_inode_ops(struct inode *inode)
538 {
539         if (S_ISREG(inode->i_mode)) {
540                 inode->i_op = &ufs_file_inode_operations;
541                 inode->i_fop = &ufs_file_operations;
542                 inode->i_mapping->a_ops = &ufs_aops;
543         } else if (S_ISDIR(inode->i_mode)) {
544                 inode->i_op = &ufs_dir_inode_operations;
545                 inode->i_fop = &ufs_dir_operations;
546                 inode->i_mapping->a_ops = &ufs_aops;
547         } else if (S_ISLNK(inode->i_mode)) {
548                 if (!inode->i_blocks) {
549                         inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink;
550                         inode->i_op = &simple_symlink_inode_operations;
551                 } else {
552                         inode->i_mapping->a_ops = &ufs_aops;
553                         inode->i_op = &page_symlink_inode_operations;
554                         inode_nohighmem(inode);
555                 }
556         } else
557                 init_special_inode(inode, inode->i_mode,
558                                    ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
559 }
560
561 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
562 {
563         struct ufs_inode_info *ufsi = UFS_I(inode);
564         struct super_block *sb = inode->i_sb;
565         umode_t mode;
566
567         /*
568          * Copy data to the in-core inode.
569          */
570         inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
571         set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink));
572         if (inode->i_nlink == 0)
573                 return -ESTALE;
574
575         /*
576          * Linux now has 32-bit uid and gid, so we can support EFT.
577          */
578         i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode));
579         i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode));
580
581         inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
582         inode->i_atime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
583         inode_set_ctime(inode,
584                         (signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec),
585                         0);
586         inode->i_mtime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
587         inode->i_mtime.tv_nsec = 0;
588         inode->i_atime.tv_nsec = 0;
589         inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
590         inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
591         ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
592         ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
593         ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
594
595
596         if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
597                 memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
598                        sizeof(ufs_inode->ui_u2.ui_addr));
599         } else {
600                 memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
601                        sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
602                 ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
603         }
604         return 0;
605 }
606
607 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
608 {
609         struct ufs_inode_info *ufsi = UFS_I(inode);
610         struct super_block *sb = inode->i_sb;
611         umode_t mode;
612
613         UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
614         /*
615          * Copy data to the in-core inode.
616          */
617         inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
618         set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink));
619         if (inode->i_nlink == 0)
620                 return -ESTALE;
621
622         /*
623          * Linux now has 32-bit uid and gid, so we can support EFT.
624          */
625         i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid));
626         i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid));
627
628         inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
629         inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
630         inode_set_ctime(inode, fs64_to_cpu(sb, ufs2_inode->ui_ctime),
631                         fs32_to_cpu(sb, ufs2_inode->ui_ctimensec));
632         inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
633         inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
634         inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
635         inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
636         inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
637         ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
638         /*
639         ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
640         ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
641         */
642
643         if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
644                 memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
645                        sizeof(ufs2_inode->ui_u2.ui_addr));
646         } else {
647                 memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
648                        sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
649                 ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
650         }
651         return 0;
652 }
653
654 struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
655 {
656         struct ufs_inode_info *ufsi;
657         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
658         struct buffer_head * bh;
659         struct inode *inode;
660         int err = -EIO;
661
662         UFSD("ENTER, ino %lu\n", ino);
663
664         if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
665                 ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
666                             ino);
667                 return ERR_PTR(-EIO);
668         }
669
670         inode = iget_locked(sb, ino);
671         if (!inode)
672                 return ERR_PTR(-ENOMEM);
673         if (!(inode->i_state & I_NEW))
674                 return inode;
675
676         ufsi = UFS_I(inode);
677
678         bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
679         if (!bh) {
680                 ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
681                             inode->i_ino);
682                 goto bad_inode;
683         }
684         if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
685                 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
686
687                 err = ufs2_read_inode(inode,
688                                       ufs2_inode + ufs_inotofsbo(inode->i_ino));
689         } else {
690                 struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
691
692                 err = ufs1_read_inode(inode,
693                                       ufs_inode + ufs_inotofsbo(inode->i_ino));
694         }
695         brelse(bh);
696         if (err)
697                 goto bad_inode;
698
699         inode_inc_iversion(inode);
700         ufsi->i_lastfrag =
701                 (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
702         ufsi->i_dir_start_lookup = 0;
703         ufsi->i_osync = 0;
704
705         ufs_set_inode_ops(inode);
706
707         UFSD("EXIT\n");
708         unlock_new_inode(inode);
709         return inode;
710
711 bad_inode:
712         iget_failed(inode);
713         return ERR_PTR(err);
714 }
715
716 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
717 {
718         struct super_block *sb = inode->i_sb;
719         struct ufs_inode_info *ufsi = UFS_I(inode);
720
721         ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
722         ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
723
724         ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode));
725         ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode));
726
727         ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
728         ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
729         ufs_inode->ui_atime.tv_usec = 0;
730         ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb,
731                                                  inode_get_ctime(inode).tv_sec);
732         ufs_inode->ui_ctime.tv_usec = 0;
733         ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
734         ufs_inode->ui_mtime.tv_usec = 0;
735         ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
736         ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
737         ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
738
739         if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
740                 ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
741                 ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
742         }
743
744         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
745                 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
746                 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
747         } else if (inode->i_blocks) {
748                 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
749                        sizeof(ufs_inode->ui_u2.ui_addr));
750         }
751         else {
752                 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
753                        sizeof(ufs_inode->ui_u2.ui_symlink));
754         }
755
756         if (!inode->i_nlink)
757                 memset (ufs_inode, 0, sizeof(struct ufs_inode));
758 }
759
760 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
761 {
762         struct super_block *sb = inode->i_sb;
763         struct ufs_inode_info *ufsi = UFS_I(inode);
764
765         UFSD("ENTER\n");
766         ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
767         ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
768
769         ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode));
770         ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode));
771
772         ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
773         ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
774         ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
775         ufs_inode->ui_ctime = cpu_to_fs64(sb, inode_get_ctime(inode).tv_sec);
776         ufs_inode->ui_ctimensec = cpu_to_fs32(sb,
777                                               inode_get_ctime(inode).tv_nsec);
778         ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
779         ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
780
781         ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
782         ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
783         ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
784
785         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
786                 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
787                 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
788         } else if (inode->i_blocks) {
789                 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
790                        sizeof(ufs_inode->ui_u2.ui_addr));
791         } else {
792                 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
793                        sizeof(ufs_inode->ui_u2.ui_symlink));
794         }
795
796         if (!inode->i_nlink)
797                 memset (ufs_inode, 0, sizeof(struct ufs2_inode));
798         UFSD("EXIT\n");
799 }
800
801 static int ufs_update_inode(struct inode * inode, int do_sync)
802 {
803         struct super_block *sb = inode->i_sb;
804         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
805         struct buffer_head * bh;
806
807         UFSD("ENTER, ino %lu\n", inode->i_ino);
808
809         if (inode->i_ino < UFS_ROOTINO ||
810             inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
811                 ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
812                 return -1;
813         }
814
815         bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
816         if (!bh) {
817                 ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
818                 return -1;
819         }
820         if (uspi->fs_magic == UFS2_MAGIC) {
821                 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
822
823                 ufs2_update_inode(inode,
824                                   ufs2_inode + ufs_inotofsbo(inode->i_ino));
825         } else {
826                 struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
827
828                 ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
829         }
830
831         mark_buffer_dirty(bh);
832         if (do_sync)
833                 sync_dirty_buffer(bh);
834         brelse (bh);
835
836         UFSD("EXIT\n");
837         return 0;
838 }
839
840 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
841 {
842         return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
843 }
844
845 int ufs_sync_inode (struct inode *inode)
846 {
847         return ufs_update_inode (inode, 1);
848 }
849
850 void ufs_evict_inode(struct inode * inode)
851 {
852         int want_delete = 0;
853
854         if (!inode->i_nlink && !is_bad_inode(inode))
855                 want_delete = 1;
856
857         truncate_inode_pages_final(&inode->i_data);
858         if (want_delete) {
859                 inode->i_size = 0;
860                 if (inode->i_blocks &&
861                     (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
862                      S_ISLNK(inode->i_mode)))
863                         ufs_truncate_blocks(inode);
864                 ufs_update_inode(inode, inode_needs_sync(inode));
865         }
866
867         invalidate_inode_buffers(inode);
868         clear_inode(inode);
869
870         if (want_delete)
871                 ufs_free_inode(inode);
872 }
873
874 struct to_free {
875         struct inode *inode;
876         u64 to;
877         unsigned count;
878 };
879
880 static inline void free_data(struct to_free *ctx, u64 from, unsigned count)
881 {
882         if (ctx->count && ctx->to != from) {
883                 ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count);
884                 ctx->count = 0;
885         }
886         ctx->count += count;
887         ctx->to = from + count;
888 }
889
890 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
891
892 static void ufs_trunc_direct(struct inode *inode)
893 {
894         struct ufs_inode_info *ufsi = UFS_I(inode);
895         struct super_block * sb;
896         struct ufs_sb_private_info * uspi;
897         void *p;
898         u64 frag1, frag2, frag3, frag4, block1, block2;
899         struct to_free ctx = {.inode = inode};
900         unsigned i, tmp;
901
902         UFSD("ENTER: ino %lu\n", inode->i_ino);
903
904         sb = inode->i_sb;
905         uspi = UFS_SB(sb)->s_uspi;
906
907         frag1 = DIRECT_FRAGMENT;
908         frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
909         frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
910         frag3 = frag4 & ~uspi->s_fpbmask;
911         block1 = block2 = 0;
912         if (frag2 > frag3) {
913                 frag2 = frag4;
914                 frag3 = frag4 = 0;
915         } else if (frag2 < frag3) {
916                 block1 = ufs_fragstoblks (frag2);
917                 block2 = ufs_fragstoblks (frag3);
918         }
919
920         UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu,"
921              " frag3 %llu, frag4 %llu\n", inode->i_ino,
922              (unsigned long long)frag1, (unsigned long long)frag2,
923              (unsigned long long)block1, (unsigned long long)block2,
924              (unsigned long long)frag3, (unsigned long long)frag4);
925
926         if (frag1 >= frag2)
927                 goto next1;
928
929         /*
930          * Free first free fragments
931          */
932         p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1));
933         tmp = ufs_data_ptr_to_cpu(sb, p);
934         if (!tmp )
935                 ufs_panic (sb, "ufs_trunc_direct", "internal error");
936         frag2 -= frag1;
937         frag1 = ufs_fragnum (frag1);
938
939         ufs_free_fragments(inode, tmp + frag1, frag2);
940
941 next1:
942         /*
943          * Free whole blocks
944          */
945         for (i = block1 ; i < block2; i++) {
946                 p = ufs_get_direct_data_ptr(uspi, ufsi, i);
947                 tmp = ufs_data_ptr_to_cpu(sb, p);
948                 if (!tmp)
949                         continue;
950                 write_seqlock(&ufsi->meta_lock);
951                 ufs_data_ptr_clear(uspi, p);
952                 write_sequnlock(&ufsi->meta_lock);
953
954                 free_data(&ctx, tmp, uspi->s_fpb);
955         }
956
957         free_data(&ctx, 0, 0);
958
959         if (frag3 >= frag4)
960                 goto next3;
961
962         /*
963          * Free last free fragments
964          */
965         p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3));
966         tmp = ufs_data_ptr_to_cpu(sb, p);
967         if (!tmp )
968                 ufs_panic(sb, "ufs_truncate_direct", "internal error");
969         frag4 = ufs_fragnum (frag4);
970         write_seqlock(&ufsi->meta_lock);
971         ufs_data_ptr_clear(uspi, p);
972         write_sequnlock(&ufsi->meta_lock);
973
974         ufs_free_fragments (inode, tmp, frag4);
975  next3:
976
977         UFSD("EXIT: ino %lu\n", inode->i_ino);
978 }
979
980 static void free_full_branch(struct inode *inode, u64 ind_block, int depth)
981 {
982         struct super_block *sb = inode->i_sb;
983         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
984         struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize);
985         unsigned i;
986
987         if (!ubh)
988                 return;
989
990         if (--depth) {
991                 for (i = 0; i < uspi->s_apb; i++) {
992                         void *p = ubh_get_data_ptr(uspi, ubh, i);
993                         u64 block = ufs_data_ptr_to_cpu(sb, p);
994                         if (block)
995                                 free_full_branch(inode, block, depth);
996                 }
997         } else {
998                 struct to_free ctx = {.inode = inode};
999
1000                 for (i = 0; i < uspi->s_apb; i++) {
1001                         void *p = ubh_get_data_ptr(uspi, ubh, i);
1002                         u64 block = ufs_data_ptr_to_cpu(sb, p);
1003                         if (block)
1004                                 free_data(&ctx, block, uspi->s_fpb);
1005                 }
1006                 free_data(&ctx, 0, 0);
1007         }
1008
1009         ubh_bforget(ubh);
1010         ufs_free_blocks(inode, ind_block, uspi->s_fpb);
1011 }
1012
1013 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth)
1014 {
1015         struct super_block *sb = inode->i_sb;
1016         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1017         unsigned i;
1018
1019         if (--depth) {
1020                 for (i = from; i < uspi->s_apb ; i++) {
1021                         void *p = ubh_get_data_ptr(uspi, ubh, i);
1022                         u64 block = ufs_data_ptr_to_cpu(sb, p);
1023                         if (block) {
1024                                 write_seqlock(&UFS_I(inode)->meta_lock);
1025                                 ufs_data_ptr_clear(uspi, p);
1026                                 write_sequnlock(&UFS_I(inode)->meta_lock);
1027                                 ubh_mark_buffer_dirty(ubh);
1028                                 free_full_branch(inode, block, depth);
1029                         }
1030                 }
1031         } else {
1032                 struct to_free ctx = {.inode = inode};
1033
1034                 for (i = from; i < uspi->s_apb; i++) {
1035                         void *p = ubh_get_data_ptr(uspi, ubh, i);
1036                         u64 block = ufs_data_ptr_to_cpu(sb, p);
1037                         if (block) {
1038                                 write_seqlock(&UFS_I(inode)->meta_lock);
1039                                 ufs_data_ptr_clear(uspi, p);
1040                                 write_sequnlock(&UFS_I(inode)->meta_lock);
1041                                 ubh_mark_buffer_dirty(ubh);
1042                                 free_data(&ctx, block, uspi->s_fpb);
1043                         }
1044                 }
1045                 free_data(&ctx, 0, 0);
1046         }
1047         if (IS_SYNC(inode) && ubh_buffer_dirty(ubh))
1048                 ubh_sync_block(ubh);
1049         ubh_brelse(ubh);
1050 }
1051
1052 static int ufs_alloc_lastblock(struct inode *inode, loff_t size)
1053 {
1054         int err = 0;
1055         struct super_block *sb = inode->i_sb;
1056         struct address_space *mapping = inode->i_mapping;
1057         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1058         unsigned i, end;
1059         sector_t lastfrag;
1060         struct page *lastpage;
1061         struct buffer_head *bh;
1062         u64 phys64;
1063
1064         lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
1065
1066         if (!lastfrag)
1067                 goto out;
1068
1069         lastfrag--;
1070
1071         lastpage = ufs_get_locked_page(mapping, lastfrag >>
1072                                        (PAGE_SHIFT - inode->i_blkbits));
1073        if (IS_ERR(lastpage)) {
1074                err = -EIO;
1075                goto out;
1076        }
1077
1078        end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1);
1079        bh = page_buffers(lastpage);
1080        for (i = 0; i < end; ++i)
1081                bh = bh->b_this_page;
1082
1083
1084        err = ufs_getfrag_block(inode, lastfrag, bh, 1);
1085
1086        if (unlikely(err))
1087                goto out_unlock;
1088
1089        if (buffer_new(bh)) {
1090                clear_buffer_new(bh);
1091                clean_bdev_bh_alias(bh);
1092                /*
1093                 * we do not zeroize fragment, because of
1094                 * if it maped to hole, it already contains zeroes
1095                 */
1096                set_buffer_uptodate(bh);
1097                mark_buffer_dirty(bh);
1098                set_page_dirty(lastpage);
1099        }
1100
1101        if (lastfrag >= UFS_IND_FRAGMENT) {
1102                end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1;
1103                phys64 = bh->b_blocknr + 1;
1104                for (i = 0; i < end; ++i) {
1105                        bh = sb_getblk(sb, i + phys64);
1106                        lock_buffer(bh);
1107                        memset(bh->b_data, 0, sb->s_blocksize);
1108                        set_buffer_uptodate(bh);
1109                        mark_buffer_dirty(bh);
1110                        unlock_buffer(bh);
1111                        sync_dirty_buffer(bh);
1112                        brelse(bh);
1113                }
1114        }
1115 out_unlock:
1116        ufs_put_locked_page(lastpage);
1117 out:
1118        return err;
1119 }
1120
1121 static void ufs_truncate_blocks(struct inode *inode)
1122 {
1123         struct ufs_inode_info *ufsi = UFS_I(inode);
1124         struct super_block *sb = inode->i_sb;
1125         struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1126         unsigned offsets[4];
1127         int depth;
1128         int depth2;
1129         unsigned i;
1130         struct ufs_buffer_head *ubh[3];
1131         void *p;
1132         u64 block;
1133
1134         if (inode->i_size) {
1135                 sector_t last = (inode->i_size - 1) >> uspi->s_bshift;
1136                 depth = ufs_block_to_path(inode, last, offsets);
1137                 if (!depth)
1138                         return;
1139         } else {
1140                 depth = 1;
1141         }
1142
1143         for (depth2 = depth - 1; depth2; depth2--)
1144                 if (offsets[depth2] != uspi->s_apb - 1)
1145                         break;
1146
1147         mutex_lock(&ufsi->truncate_mutex);
1148         if (depth == 1) {
1149                 ufs_trunc_direct(inode);
1150                 offsets[0] = UFS_IND_BLOCK;
1151         } else {
1152                 /* get the blocks that should be partially emptied */
1153                 p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++);
1154                 for (i = 0; i < depth2; i++) {
1155                         block = ufs_data_ptr_to_cpu(sb, p);
1156                         if (!block)
1157                                 break;
1158                         ubh[i] = ubh_bread(sb, block, uspi->s_bsize);
1159                         if (!ubh[i]) {
1160                                 write_seqlock(&ufsi->meta_lock);
1161                                 ufs_data_ptr_clear(uspi, p);
1162                                 write_sequnlock(&ufsi->meta_lock);
1163                                 break;
1164                         }
1165                         p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++);
1166                 }
1167                 while (i--)
1168                         free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1);
1169         }
1170         for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) {
1171                 p = ufs_get_direct_data_ptr(uspi, ufsi, i);
1172                 block = ufs_data_ptr_to_cpu(sb, p);
1173                 if (block) {
1174                         write_seqlock(&ufsi->meta_lock);
1175                         ufs_data_ptr_clear(uspi, p);
1176                         write_sequnlock(&ufsi->meta_lock);
1177                         free_full_branch(inode, block, i - UFS_IND_BLOCK + 1);
1178                 }
1179         }
1180         read_seqlock_excl(&ufsi->meta_lock);
1181         ufsi->i_lastfrag = DIRECT_FRAGMENT;
1182         read_sequnlock_excl(&ufsi->meta_lock);
1183         mark_inode_dirty(inode);
1184         mutex_unlock(&ufsi->truncate_mutex);
1185 }
1186
1187 static int ufs_truncate(struct inode *inode, loff_t size)
1188 {
1189         int err = 0;
1190
1191         UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n",
1192              inode->i_ino, (unsigned long long)size,
1193              (unsigned long long)i_size_read(inode));
1194
1195         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1196               S_ISLNK(inode->i_mode)))
1197                 return -EINVAL;
1198         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1199                 return -EPERM;
1200
1201         err = ufs_alloc_lastblock(inode, size);
1202
1203         if (err)
1204                 goto out;
1205
1206         block_truncate_page(inode->i_mapping, size, ufs_getfrag_block);
1207
1208         truncate_setsize(inode, size);
1209
1210         ufs_truncate_blocks(inode);
1211         inode->i_mtime = inode_set_ctime_current(inode);
1212         mark_inode_dirty(inode);
1213 out:
1214         UFSD("EXIT: err %d\n", err);
1215         return err;
1216 }
1217
1218 int ufs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1219                 struct iattr *attr)
1220 {
1221         struct inode *inode = d_inode(dentry);
1222         unsigned int ia_valid = attr->ia_valid;
1223         int error;
1224
1225         error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1226         if (error)
1227                 return error;
1228
1229         if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
1230                 error = ufs_truncate(inode, attr->ia_size);
1231                 if (error)
1232                         return error;
1233         }
1234
1235         setattr_copy(&nop_mnt_idmap, inode, attr);
1236         mark_inode_dirty(inode);
1237         return 0;
1238 }
1239
1240 const struct inode_operations ufs_file_inode_operations = {
1241         .setattr = ufs_setattr,
1242 };