Merge tag 'md/3.13' of git://neil.brown.name/md
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 #define VSD_FIRST_SECTOR_OFFSET         32768
80 #define VSD_MAX_SECTOR_OFFSET           0x800000
81
82 enum { UDF_MAX_LINKS = 0xffff };
83
84 /* These are the "meat" - everything else is stuffing */
85 static int udf_fill_super(struct super_block *, void *, int);
86 static void udf_put_super(struct super_block *);
87 static int udf_sync_fs(struct super_block *, int);
88 static int udf_remount_fs(struct super_block *, int *, char *);
89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91                             struct kernel_lb_addr *);
92 static void udf_load_fileset(struct super_block *, struct buffer_head *,
93                              struct kernel_lb_addr *);
94 static void udf_open_lvid(struct super_block *);
95 static void udf_close_lvid(struct super_block *);
96 static unsigned int udf_count_free(struct super_block *);
97 static int udf_statfs(struct dentry *, struct kstatfs *);
98 static int udf_show_options(struct seq_file *, struct dentry *);
99
100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101 {
102         struct logicalVolIntegrityDesc *lvid;
103         unsigned int partnum;
104         unsigned int offset;
105
106         if (!UDF_SB(sb)->s_lvid_bh)
107                 return NULL;
108         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109         partnum = le32_to_cpu(lvid->numOfPartitions);
110         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111              offsetof(struct logicalVolIntegrityDesc, impUse)) /
112              (2 * sizeof(uint32_t)) < partnum) {
113                 udf_err(sb, "Logical volume integrity descriptor corrupted "
114                         "(numOfPartitions = %u)!\n", partnum);
115                 return NULL;
116         }
117         /* The offset is to skip freeSpaceTable and sizeTable arrays */
118         offset = partnum * 2 * sizeof(uint32_t);
119         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120 }
121
122 /* UDF filesystem type */
123 static struct dentry *udf_mount(struct file_system_type *fs_type,
124                       int flags, const char *dev_name, void *data)
125 {
126         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127 }
128
129 static struct file_system_type udf_fstype = {
130         .owner          = THIS_MODULE,
131         .name           = "udf",
132         .mount          = udf_mount,
133         .kill_sb        = kill_block_super,
134         .fs_flags       = FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("udf");
137
138 static struct kmem_cache *udf_inode_cachep;
139
140 static struct inode *udf_alloc_inode(struct super_block *sb)
141 {
142         struct udf_inode_info *ei;
143         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144         if (!ei)
145                 return NULL;
146
147         ei->i_unique = 0;
148         ei->i_lenExtents = 0;
149         ei->i_next_alloc_block = 0;
150         ei->i_next_alloc_goal = 0;
151         ei->i_strat4096 = 0;
152         init_rwsem(&ei->i_data_sem);
153         ei->cached_extent.lstart = -1;
154         spin_lock_init(&ei->i_extent_cache_lock);
155
156         return &ei->vfs_inode;
157 }
158
159 static void udf_i_callback(struct rcu_head *head)
160 {
161         struct inode *inode = container_of(head, struct inode, i_rcu);
162         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163 }
164
165 static void udf_destroy_inode(struct inode *inode)
166 {
167         call_rcu(&inode->i_rcu, udf_i_callback);
168 }
169
170 static void init_once(void *foo)
171 {
172         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173
174         ei->i_ext.i_data = NULL;
175         inode_init_once(&ei->vfs_inode);
176 }
177
178 static int init_inodecache(void)
179 {
180         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181                                              sizeof(struct udf_inode_info),
182                                              0, (SLAB_RECLAIM_ACCOUNT |
183                                                  SLAB_MEM_SPREAD),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .destroy_inode  = udf_destroy_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int volume;
220         unsigned short partition;
221         unsigned int fileset;
222         unsigned int rootdir;
223         unsigned int flags;
224         umode_t umask;
225         kgid_t gid;
226         kuid_t uid;
227         umode_t fmode;
228         umode_t dmode;
229         struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234         int err;
235
236         err = init_inodecache();
237         if (err)
238                 goto out1;
239         err = register_filesystem(&udf_fstype);
240         if (err)
241                 goto out;
242
243         return 0;
244
245 out:
246         destroy_inodecache();
247
248 out1:
249         return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254         unregister_filesystem(&udf_fstype);
255         destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263         struct udf_sb_info *sbi = UDF_SB(sb);
264
265         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266                                   GFP_KERNEL);
267         if (!sbi->s_partmaps) {
268                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269                         count);
270                 sbi->s_partitions = 0;
271                 return -ENOMEM;
272         }
273
274         sbi->s_partitions = count;
275         return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280         int i;
281         int nr_groups = bitmap->s_nr_groups;
282         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283                                                 nr_groups);
284
285         for (i = 0; i < nr_groups; i++)
286                 if (bitmap->s_block_bitmap[i])
287                         brelse(bitmap->s_block_bitmap[i]);
288
289         if (size <= PAGE_SIZE)
290                 kfree(bitmap);
291         else
292                 vfree(bitmap);
293 }
294
295 static void udf_free_partition(struct udf_part_map *map)
296 {
297         int i;
298         struct udf_meta_data *mdata;
299
300         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301                 iput(map->s_uspace.s_table);
302         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303                 iput(map->s_fspace.s_table);
304         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308         if (map->s_partition_type == UDF_SPARABLE_MAP15)
309                 for (i = 0; i < 4; i++)
310                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311         else if (map->s_partition_type == UDF_METADATA_MAP25) {
312                 mdata = &map->s_type_specific.s_metadata;
313                 iput(mdata->s_metadata_fe);
314                 mdata->s_metadata_fe = NULL;
315
316                 iput(mdata->s_mirror_fe);
317                 mdata->s_mirror_fe = NULL;
318
319                 iput(mdata->s_bitmap_fe);
320                 mdata->s_bitmap_fe = NULL;
321         }
322 }
323
324 static void udf_sb_free_partitions(struct super_block *sb)
325 {
326         struct udf_sb_info *sbi = UDF_SB(sb);
327         int i;
328         if (sbi->s_partmaps == NULL)
329                 return;
330         for (i = 0; i < sbi->s_partitions; i++)
331                 udf_free_partition(&sbi->s_partmaps[i]);
332         kfree(sbi->s_partmaps);
333         sbi->s_partmaps = NULL;
334 }
335
336 static int udf_show_options(struct seq_file *seq, struct dentry *root)
337 {
338         struct super_block *sb = root->d_sb;
339         struct udf_sb_info *sbi = UDF_SB(sb);
340
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342                 seq_puts(seq, ",nostrict");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346                 seq_puts(seq, ",unhide");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348                 seq_puts(seq, ",undelete");
349         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350                 seq_puts(seq, ",noadinicb");
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352                 seq_puts(seq, ",shortad");
353         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354                 seq_puts(seq, ",uid=forget");
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356                 seq_puts(seq, ",uid=ignore");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358                 seq_puts(seq, ",gid=forget");
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360                 seq_puts(seq, ",gid=ignore");
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365         if (sbi->s_umask != 0)
366                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367         if (sbi->s_fmode != UDF_INVALID_MODE)
368                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369         if (sbi->s_dmode != UDF_INVALID_MODE)
370                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372                 seq_printf(seq, ",session=%u", sbi->s_session);
373         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375         if (sbi->s_anchor != 0)
376                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377         /*
378          * volume, partition, fileset and rootdir seem to be ignored
379          * currently
380          */
381         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382                 seq_puts(seq, ",utf8");
383         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386         return 0;
387 }
388
389 /*
390  * udf_parse_options
391  *
392  * PURPOSE
393  *      Parse mount options.
394  *
395  * DESCRIPTION
396  *      The following mount options are supported:
397  *
398  *      gid=            Set the default group.
399  *      umask=          Set the default umask.
400  *      mode=           Set the default file permissions.
401  *      dmode=          Set the default directory permissions.
402  *      uid=            Set the default user.
403  *      bs=             Set the block size.
404  *      unhide          Show otherwise hidden files.
405  *      undelete        Show deleted files in lists.
406  *      adinicb         Embed data in the inode (default)
407  *      noadinicb       Don't embed data in the inode
408  *      shortad         Use short ad's
409  *      longad          Use long ad's (default)
410  *      nostrict        Unset strict conformance
411  *      iocharset=      Set the NLS character set
412  *
413  *      The remaining are for debugging and disaster recovery:
414  *
415  *      novrs           Skip volume sequence recognition
416  *
417  *      The following expect a offset from 0.
418  *
419  *      session=        Set the CDROM session (default= last session)
420  *      anchor=         Override standard anchor location. (default= 256)
421  *      volume=         Override the VolumeDesc location. (unused)
422  *      partition=      Override the PartitionDesc location. (unused)
423  *      lastblock=      Set the last block of the filesystem/
424  *
425  *      The following expect a offset from the partition root.
426  *
427  *      fileset=        Override the fileset block location. (unused)
428  *      rootdir=        Override the root directory location. (unused)
429  *              WARNING: overriding the rootdir to a non-directory may
430  *              yield highly unpredictable results.
431  *
432  * PRE-CONDITIONS
433  *      options         Pointer to mount options string.
434  *      uopts           Pointer to mount options variable.
435  *
436  * POST-CONDITIONS
437  *      <return>        1       Mount options parsed okay.
438  *      <return>        0       Error parsing mount options.
439  *
440  * HISTORY
441  *      July 1, 1997 - Andrew E. Mileski
442  *      Written, tested, and released.
443  */
444
445 enum {
446         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450         Opt_rootdir, Opt_utf8, Opt_iocharset,
451         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452         Opt_fmode, Opt_dmode
453 };
454
455 static const match_table_t tokens = {
456         {Opt_novrs,     "novrs"},
457         {Opt_nostrict,  "nostrict"},
458         {Opt_bs,        "bs=%u"},
459         {Opt_unhide,    "unhide"},
460         {Opt_undelete,  "undelete"},
461         {Opt_noadinicb, "noadinicb"},
462         {Opt_adinicb,   "adinicb"},
463         {Opt_shortad,   "shortad"},
464         {Opt_longad,    "longad"},
465         {Opt_uforget,   "uid=forget"},
466         {Opt_uignore,   "uid=ignore"},
467         {Opt_gforget,   "gid=forget"},
468         {Opt_gignore,   "gid=ignore"},
469         {Opt_gid,       "gid=%u"},
470         {Opt_uid,       "uid=%u"},
471         {Opt_umask,     "umask=%o"},
472         {Opt_session,   "session=%u"},
473         {Opt_lastblock, "lastblock=%u"},
474         {Opt_anchor,    "anchor=%u"},
475         {Opt_volume,    "volume=%u"},
476         {Opt_partition, "partition=%u"},
477         {Opt_fileset,   "fileset=%u"},
478         {Opt_rootdir,   "rootdir=%u"},
479         {Opt_utf8,      "utf8"},
480         {Opt_iocharset, "iocharset=%s"},
481         {Opt_fmode,     "mode=%o"},
482         {Opt_dmode,     "dmode=%o"},
483         {Opt_err,       NULL}
484 };
485
486 static int udf_parse_options(char *options, struct udf_options *uopt,
487                              bool remount)
488 {
489         char *p;
490         int option;
491
492         uopt->novrs = 0;
493         uopt->partition = 0xFFFF;
494         uopt->session = 0xFFFFFFFF;
495         uopt->lastblock = 0;
496         uopt->anchor = 0;
497         uopt->volume = 0xFFFFFFFF;
498         uopt->rootdir = 0xFFFFFFFF;
499         uopt->fileset = 0xFFFFFFFF;
500         uopt->nls_map = NULL;
501
502         if (!options)
503                 return 1;
504
505         while ((p = strsep(&options, ",")) != NULL) {
506                 substring_t args[MAX_OPT_ARGS];
507                 int token;
508                 if (!*p)
509                         continue;
510
511                 token = match_token(p, tokens, args);
512                 switch (token) {
513                 case Opt_novrs:
514                         uopt->novrs = 1;
515                         break;
516                 case Opt_bs:
517                         if (match_int(&args[0], &option))
518                                 return 0;
519                         uopt->blocksize = option;
520                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
521                         break;
522                 case Opt_unhide:
523                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
524                         break;
525                 case Opt_undelete:
526                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
527                         break;
528                 case Opt_noadinicb:
529                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
530                         break;
531                 case Opt_adinicb:
532                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
533                         break;
534                 case Opt_shortad:
535                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
536                         break;
537                 case Opt_longad:
538                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
539                         break;
540                 case Opt_gid:
541                         if (match_int(args, &option))
542                                 return 0;
543                         uopt->gid = make_kgid(current_user_ns(), option);
544                         if (!gid_valid(uopt->gid))
545                                 return 0;
546                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
547                         break;
548                 case Opt_uid:
549                         if (match_int(args, &option))
550                                 return 0;
551                         uopt->uid = make_kuid(current_user_ns(), option);
552                         if (!uid_valid(uopt->uid))
553                                 return 0;
554                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
555                         break;
556                 case Opt_umask:
557                         if (match_octal(args, &option))
558                                 return 0;
559                         uopt->umask = option;
560                         break;
561                 case Opt_nostrict:
562                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
563                         break;
564                 case Opt_session:
565                         if (match_int(args, &option))
566                                 return 0;
567                         uopt->session = option;
568                         if (!remount)
569                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
570                         break;
571                 case Opt_lastblock:
572                         if (match_int(args, &option))
573                                 return 0;
574                         uopt->lastblock = option;
575                         if (!remount)
576                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
577                         break;
578                 case Opt_anchor:
579                         if (match_int(args, &option))
580                                 return 0;
581                         uopt->anchor = option;
582                         break;
583                 case Opt_volume:
584                         if (match_int(args, &option))
585                                 return 0;
586                         uopt->volume = option;
587                         break;
588                 case Opt_partition:
589                         if (match_int(args, &option))
590                                 return 0;
591                         uopt->partition = option;
592                         break;
593                 case Opt_fileset:
594                         if (match_int(args, &option))
595                                 return 0;
596                         uopt->fileset = option;
597                         break;
598                 case Opt_rootdir:
599                         if (match_int(args, &option))
600                                 return 0;
601                         uopt->rootdir = option;
602                         break;
603                 case Opt_utf8:
604                         uopt->flags |= (1 << UDF_FLAG_UTF8);
605                         break;
606 #ifdef CONFIG_UDF_NLS
607                 case Opt_iocharset:
608                         uopt->nls_map = load_nls(args[0].from);
609                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
610                         break;
611 #endif
612                 case Opt_uignore:
613                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
614                         break;
615                 case Opt_uforget:
616                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
617                         break;
618                 case Opt_gignore:
619                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
620                         break;
621                 case Opt_gforget:
622                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
623                         break;
624                 case Opt_fmode:
625                         if (match_octal(args, &option))
626                                 return 0;
627                         uopt->fmode = option & 0777;
628                         break;
629                 case Opt_dmode:
630                         if (match_octal(args, &option))
631                                 return 0;
632                         uopt->dmode = option & 0777;
633                         break;
634                 default:
635                         pr_err("bad mount option \"%s\" or missing value\n", p);
636                         return 0;
637                 }
638         }
639         return 1;
640 }
641
642 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
643 {
644         struct udf_options uopt;
645         struct udf_sb_info *sbi = UDF_SB(sb);
646         int error = 0;
647         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
648
649         if (lvidiu) {
650                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
651                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
652                         return -EACCES;
653         }
654
655         uopt.flags = sbi->s_flags;
656         uopt.uid   = sbi->s_uid;
657         uopt.gid   = sbi->s_gid;
658         uopt.umask = sbi->s_umask;
659         uopt.fmode = sbi->s_fmode;
660         uopt.dmode = sbi->s_dmode;
661
662         if (!udf_parse_options(options, &uopt, true))
663                 return -EINVAL;
664
665         write_lock(&sbi->s_cred_lock);
666         sbi->s_flags = uopt.flags;
667         sbi->s_uid   = uopt.uid;
668         sbi->s_gid   = uopt.gid;
669         sbi->s_umask = uopt.umask;
670         sbi->s_fmode = uopt.fmode;
671         sbi->s_dmode = uopt.dmode;
672         write_unlock(&sbi->s_cred_lock);
673
674         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
675                 goto out_unlock;
676
677         if (*flags & MS_RDONLY)
678                 udf_close_lvid(sb);
679         else
680                 udf_open_lvid(sb);
681
682 out_unlock:
683         return error;
684 }
685
686 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
687 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
688 static loff_t udf_check_vsd(struct super_block *sb)
689 {
690         struct volStructDesc *vsd = NULL;
691         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
692         int sectorsize;
693         struct buffer_head *bh = NULL;
694         int nsr02 = 0;
695         int nsr03 = 0;
696         struct udf_sb_info *sbi;
697
698         sbi = UDF_SB(sb);
699         if (sb->s_blocksize < sizeof(struct volStructDesc))
700                 sectorsize = sizeof(struct volStructDesc);
701         else
702                 sectorsize = sb->s_blocksize;
703
704         sector += (sbi->s_session << sb->s_blocksize_bits);
705
706         udf_debug("Starting at sector %u (%ld byte sectors)\n",
707                   (unsigned int)(sector >> sb->s_blocksize_bits),
708                   sb->s_blocksize);
709         /* Process the sequence (if applicable). The hard limit on the sector
710          * offset is arbitrary, hopefully large enough so that all valid UDF
711          * filesystems will be recognised. There is no mention of an upper
712          * bound to the size of the volume recognition area in the standard.
713          *  The limit will prevent the code to read all the sectors of a
714          * specially crafted image (like a bluray disc full of CD001 sectors),
715          * potentially causing minutes or even hours of uninterruptible I/O
716          * activity. This actually happened with uninitialised SSD partitions
717          * (all 0xFF) before the check for the limit and all valid IDs were
718          * added */
719         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
720              sector += sectorsize) {
721                 /* Read a block */
722                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
723                 if (!bh)
724                         break;
725
726                 /* Look for ISO  descriptors */
727                 vsd = (struct volStructDesc *)(bh->b_data +
728                                               (sector & (sb->s_blocksize - 1)));
729
730                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
731                                     VSD_STD_ID_LEN)) {
732                         switch (vsd->structType) {
733                         case 0:
734                                 udf_debug("ISO9660 Boot Record found\n");
735                                 break;
736                         case 1:
737                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
738                                 break;
739                         case 2:
740                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
741                                 break;
742                         case 3:
743                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
744                                 break;
745                         case 255:
746                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
747                                 break;
748                         default:
749                                 udf_debug("ISO9660 VRS (%u) found\n",
750                                           vsd->structType);
751                                 break;
752                         }
753                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
754                                     VSD_STD_ID_LEN))
755                         ; /* nothing */
756                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
757                                     VSD_STD_ID_LEN)) {
758                         brelse(bh);
759                         break;
760                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
761                                     VSD_STD_ID_LEN))
762                         nsr02 = sector;
763                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
764                                     VSD_STD_ID_LEN))
765                         nsr03 = sector;
766                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
767                                     VSD_STD_ID_LEN))
768                         ; /* nothing */
769                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
770                                     VSD_STD_ID_LEN))
771                         ; /* nothing */
772                 else {
773                         /* invalid id : end of volume recognition area */
774                         brelse(bh);
775                         break;
776                 }
777                 brelse(bh);
778         }
779
780         if (nsr03)
781                 return nsr03;
782         else if (nsr02)
783                 return nsr02;
784         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
785                         VSD_FIRST_SECTOR_OFFSET)
786                 return -1;
787         else
788                 return 0;
789 }
790
791 static int udf_find_fileset(struct super_block *sb,
792                             struct kernel_lb_addr *fileset,
793                             struct kernel_lb_addr *root)
794 {
795         struct buffer_head *bh = NULL;
796         long lastblock;
797         uint16_t ident;
798         struct udf_sb_info *sbi;
799
800         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
801             fileset->partitionReferenceNum != 0xFFFF) {
802                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
803
804                 if (!bh) {
805                         return 1;
806                 } else if (ident != TAG_IDENT_FSD) {
807                         brelse(bh);
808                         return 1;
809                 }
810
811         }
812
813         sbi = UDF_SB(sb);
814         if (!bh) {
815                 /* Search backwards through the partitions */
816                 struct kernel_lb_addr newfileset;
817
818 /* --> cvg: FIXME - is it reasonable? */
819                 return 1;
820
821                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
822                      (newfileset.partitionReferenceNum != 0xFFFF &&
823                       fileset->logicalBlockNum == 0xFFFFFFFF &&
824                       fileset->partitionReferenceNum == 0xFFFF);
825                      newfileset.partitionReferenceNum--) {
826                         lastblock = sbi->s_partmaps
827                                         [newfileset.partitionReferenceNum]
828                                                 .s_partition_len;
829                         newfileset.logicalBlockNum = 0;
830
831                         do {
832                                 bh = udf_read_ptagged(sb, &newfileset, 0,
833                                                       &ident);
834                                 if (!bh) {
835                                         newfileset.logicalBlockNum++;
836                                         continue;
837                                 }
838
839                                 switch (ident) {
840                                 case TAG_IDENT_SBD:
841                                 {
842                                         struct spaceBitmapDesc *sp;
843                                         sp = (struct spaceBitmapDesc *)
844                                                                 bh->b_data;
845                                         newfileset.logicalBlockNum += 1 +
846                                                 ((le32_to_cpu(sp->numOfBytes) +
847                                                   sizeof(struct spaceBitmapDesc)
848                                                   - 1) >> sb->s_blocksize_bits);
849                                         brelse(bh);
850                                         break;
851                                 }
852                                 case TAG_IDENT_FSD:
853                                         *fileset = newfileset;
854                                         break;
855                                 default:
856                                         newfileset.logicalBlockNum++;
857                                         brelse(bh);
858                                         bh = NULL;
859                                         break;
860                                 }
861                         } while (newfileset.logicalBlockNum < lastblock &&
862                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
863                                  fileset->partitionReferenceNum == 0xFFFF);
864                 }
865         }
866
867         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
868              fileset->partitionReferenceNum != 0xFFFF) && bh) {
869                 udf_debug("Fileset at block=%d, partition=%d\n",
870                           fileset->logicalBlockNum,
871                           fileset->partitionReferenceNum);
872
873                 sbi->s_partition = fileset->partitionReferenceNum;
874                 udf_load_fileset(sb, bh, root);
875                 brelse(bh);
876                 return 0;
877         }
878         return 1;
879 }
880
881 /*
882  * Load primary Volume Descriptor Sequence
883  *
884  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
885  * should be tried.
886  */
887 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
888 {
889         struct primaryVolDesc *pvoldesc;
890         struct ustr *instr, *outstr;
891         struct buffer_head *bh;
892         uint16_t ident;
893         int ret = -ENOMEM;
894
895         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
896         if (!instr)
897                 return -ENOMEM;
898
899         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900         if (!outstr)
901                 goto out1;
902
903         bh = udf_read_tagged(sb, block, block, &ident);
904         if (!bh) {
905                 ret = -EAGAIN;
906                 goto out2;
907         }
908
909         if (ident != TAG_IDENT_PVD) {
910                 ret = -EIO;
911                 goto out_bh;
912         }
913
914         pvoldesc = (struct primaryVolDesc *)bh->b_data;
915
916         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917                               pvoldesc->recordingDateAndTime)) {
918 #ifdef UDFFS_DEBUG
919                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
920                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
921                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
922                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
923 #endif
924         }
925
926         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
927                 if (udf_CS0toUTF8(outstr, instr)) {
928                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
929                                 outstr->u_len > 31 ? 31 : outstr->u_len);
930                         udf_debug("volIdent[] = '%s'\n",
931                                   UDF_SB(sb)->s_volume_ident);
932                 }
933
934         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
935                 if (udf_CS0toUTF8(outstr, instr))
936                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
937
938         ret = 0;
939 out_bh:
940         brelse(bh);
941 out2:
942         kfree(outstr);
943 out1:
944         kfree(instr);
945         return ret;
946 }
947
948 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
949                                         u32 meta_file_loc, u32 partition_num)
950 {
951         struct kernel_lb_addr addr;
952         struct inode *metadata_fe;
953
954         addr.logicalBlockNum = meta_file_loc;
955         addr.partitionReferenceNum = partition_num;
956
957         metadata_fe = udf_iget(sb, &addr);
958
959         if (metadata_fe == NULL)
960                 udf_warn(sb, "metadata inode efe not found\n");
961         else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
962                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
963                 iput(metadata_fe);
964                 metadata_fe = NULL;
965         }
966
967         return metadata_fe;
968 }
969
970 static int udf_load_metadata_files(struct super_block *sb, int partition)
971 {
972         struct udf_sb_info *sbi = UDF_SB(sb);
973         struct udf_part_map *map;
974         struct udf_meta_data *mdata;
975         struct kernel_lb_addr addr;
976
977         map = &sbi->s_partmaps[partition];
978         mdata = &map->s_type_specific.s_metadata;
979
980         /* metadata address */
981         udf_debug("Metadata file location: block = %d part = %d\n",
982                   mdata->s_meta_file_loc, map->s_partition_num);
983
984         mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
985                 mdata->s_meta_file_loc, map->s_partition_num);
986
987         if (mdata->s_metadata_fe == NULL) {
988                 /* mirror file entry */
989                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
990                           mdata->s_mirror_file_loc, map->s_partition_num);
991
992                 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
993                         mdata->s_mirror_file_loc, map->s_partition_num);
994
995                 if (mdata->s_mirror_fe == NULL) {
996                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
997                         return -EIO;
998                 }
999         }
1000
1001         /*
1002          * bitmap file entry
1003          * Note:
1004          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1005         */
1006         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1007                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1008                 addr.partitionReferenceNum = map->s_partition_num;
1009
1010                 udf_debug("Bitmap file location: block = %d part = %d\n",
1011                           addr.logicalBlockNum, addr.partitionReferenceNum);
1012
1013                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
1014                 if (mdata->s_bitmap_fe == NULL) {
1015                         if (sb->s_flags & MS_RDONLY)
1016                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1017                         else {
1018                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1019                                 return -EIO;
1020                         }
1021                 }
1022         }
1023
1024         udf_debug("udf_load_metadata_files Ok\n");
1025         return 0;
1026 }
1027
1028 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1029                              struct kernel_lb_addr *root)
1030 {
1031         struct fileSetDesc *fset;
1032
1033         fset = (struct fileSetDesc *)bh->b_data;
1034
1035         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1036
1037         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1038
1039         udf_debug("Rootdir at block=%d, partition=%d\n",
1040                   root->logicalBlockNum, root->partitionReferenceNum);
1041 }
1042
1043 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1044 {
1045         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1046         return DIV_ROUND_UP(map->s_partition_len +
1047                             (sizeof(struct spaceBitmapDesc) << 3),
1048                             sb->s_blocksize * 8);
1049 }
1050
1051 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1052 {
1053         struct udf_bitmap *bitmap;
1054         int nr_groups;
1055         int size;
1056
1057         nr_groups = udf_compute_nr_groups(sb, index);
1058         size = sizeof(struct udf_bitmap) +
1059                 (sizeof(struct buffer_head *) * nr_groups);
1060
1061         if (size <= PAGE_SIZE)
1062                 bitmap = kzalloc(size, GFP_KERNEL);
1063         else
1064                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1065
1066         if (bitmap == NULL)
1067                 return NULL;
1068
1069         bitmap->s_nr_groups = nr_groups;
1070         return bitmap;
1071 }
1072
1073 static int udf_fill_partdesc_info(struct super_block *sb,
1074                 struct partitionDesc *p, int p_index)
1075 {
1076         struct udf_part_map *map;
1077         struct udf_sb_info *sbi = UDF_SB(sb);
1078         struct partitionHeaderDesc *phd;
1079
1080         map = &sbi->s_partmaps[p_index];
1081
1082         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1083         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1084
1085         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1086                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1087         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1088                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1089         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1090                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1091         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1092                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1093
1094         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1095                   p_index, map->s_partition_type,
1096                   map->s_partition_root, map->s_partition_len);
1097
1098         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1099             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1100                 return 0;
1101
1102         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1103         if (phd->unallocSpaceTable.extLength) {
1104                 struct kernel_lb_addr loc = {
1105                         .logicalBlockNum = le32_to_cpu(
1106                                 phd->unallocSpaceTable.extPosition),
1107                         .partitionReferenceNum = p_index,
1108                 };
1109
1110                 map->s_uspace.s_table = udf_iget(sb, &loc);
1111                 if (!map->s_uspace.s_table) {
1112                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1113                                   p_index);
1114                         return -EIO;
1115                 }
1116                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1117                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1118                           p_index, map->s_uspace.s_table->i_ino);
1119         }
1120
1121         if (phd->unallocSpaceBitmap.extLength) {
1122                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1123                 if (!bitmap)
1124                         return -ENOMEM;
1125                 map->s_uspace.s_bitmap = bitmap;
1126                 bitmap->s_extPosition = le32_to_cpu(
1127                                 phd->unallocSpaceBitmap.extPosition);
1128                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1129                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1130                           p_index, bitmap->s_extPosition);
1131         }
1132
1133         if (phd->partitionIntegrityTable.extLength)
1134                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1135
1136         if (phd->freedSpaceTable.extLength) {
1137                 struct kernel_lb_addr loc = {
1138                         .logicalBlockNum = le32_to_cpu(
1139                                 phd->freedSpaceTable.extPosition),
1140                         .partitionReferenceNum = p_index,
1141                 };
1142
1143                 map->s_fspace.s_table = udf_iget(sb, &loc);
1144                 if (!map->s_fspace.s_table) {
1145                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1146                                   p_index);
1147                         return -EIO;
1148                 }
1149
1150                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1151                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1152                           p_index, map->s_fspace.s_table->i_ino);
1153         }
1154
1155         if (phd->freedSpaceBitmap.extLength) {
1156                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1157                 if (!bitmap)
1158                         return -ENOMEM;
1159                 map->s_fspace.s_bitmap = bitmap;
1160                 bitmap->s_extPosition = le32_to_cpu(
1161                                 phd->freedSpaceBitmap.extPosition);
1162                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1163                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1164                           p_index, bitmap->s_extPosition);
1165         }
1166         return 0;
1167 }
1168
1169 static void udf_find_vat_block(struct super_block *sb, int p_index,
1170                                int type1_index, sector_t start_block)
1171 {
1172         struct udf_sb_info *sbi = UDF_SB(sb);
1173         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1174         sector_t vat_block;
1175         struct kernel_lb_addr ino;
1176
1177         /*
1178          * VAT file entry is in the last recorded block. Some broken disks have
1179          * it a few blocks before so try a bit harder...
1180          */
1181         ino.partitionReferenceNum = type1_index;
1182         for (vat_block = start_block;
1183              vat_block >= map->s_partition_root &&
1184              vat_block >= start_block - 3 &&
1185              !sbi->s_vat_inode; vat_block--) {
1186                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1187                 sbi->s_vat_inode = udf_iget(sb, &ino);
1188         }
1189 }
1190
1191 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1192 {
1193         struct udf_sb_info *sbi = UDF_SB(sb);
1194         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1195         struct buffer_head *bh = NULL;
1196         struct udf_inode_info *vati;
1197         uint32_t pos;
1198         struct virtualAllocationTable20 *vat20;
1199         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1200
1201         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1202         if (!sbi->s_vat_inode &&
1203             sbi->s_last_block != blocks - 1) {
1204                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1205                           (unsigned long)sbi->s_last_block,
1206                           (unsigned long)blocks - 1);
1207                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1208         }
1209         if (!sbi->s_vat_inode)
1210                 return -EIO;
1211
1212         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1213                 map->s_type_specific.s_virtual.s_start_offset = 0;
1214                 map->s_type_specific.s_virtual.s_num_entries =
1215                         (sbi->s_vat_inode->i_size - 36) >> 2;
1216         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1217                 vati = UDF_I(sbi->s_vat_inode);
1218                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1219                         pos = udf_block_map(sbi->s_vat_inode, 0);
1220                         bh = sb_bread(sb, pos);
1221                         if (!bh)
1222                                 return -EIO;
1223                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1224                 } else {
1225                         vat20 = (struct virtualAllocationTable20 *)
1226                                                         vati->i_ext.i_data;
1227                 }
1228
1229                 map->s_type_specific.s_virtual.s_start_offset =
1230                         le16_to_cpu(vat20->lengthHeader);
1231                 map->s_type_specific.s_virtual.s_num_entries =
1232                         (sbi->s_vat_inode->i_size -
1233                                 map->s_type_specific.s_virtual.
1234                                         s_start_offset) >> 2;
1235                 brelse(bh);
1236         }
1237         return 0;
1238 }
1239
1240 /*
1241  * Load partition descriptor block
1242  *
1243  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1244  * sequence.
1245  */
1246 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1247 {
1248         struct buffer_head *bh;
1249         struct partitionDesc *p;
1250         struct udf_part_map *map;
1251         struct udf_sb_info *sbi = UDF_SB(sb);
1252         int i, type1_idx;
1253         uint16_t partitionNumber;
1254         uint16_t ident;
1255         int ret;
1256
1257         bh = udf_read_tagged(sb, block, block, &ident);
1258         if (!bh)
1259                 return -EAGAIN;
1260         if (ident != TAG_IDENT_PD) {
1261                 ret = 0;
1262                 goto out_bh;
1263         }
1264
1265         p = (struct partitionDesc *)bh->b_data;
1266         partitionNumber = le16_to_cpu(p->partitionNumber);
1267
1268         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1269         for (i = 0; i < sbi->s_partitions; i++) {
1270                 map = &sbi->s_partmaps[i];
1271                 udf_debug("Searching map: (%d == %d)\n",
1272                           map->s_partition_num, partitionNumber);
1273                 if (map->s_partition_num == partitionNumber &&
1274                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1275                      map->s_partition_type == UDF_SPARABLE_MAP15))
1276                         break;
1277         }
1278
1279         if (i >= sbi->s_partitions) {
1280                 udf_debug("Partition (%d) not found in partition map\n",
1281                           partitionNumber);
1282                 ret = 0;
1283                 goto out_bh;
1284         }
1285
1286         ret = udf_fill_partdesc_info(sb, p, i);
1287         if (ret < 0)
1288                 goto out_bh;
1289
1290         /*
1291          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1292          * PHYSICAL partitions are already set up
1293          */
1294         type1_idx = i;
1295 #ifdef UDFFS_DEBUG
1296         map = NULL; /* supress 'maybe used uninitialized' warning */
1297 #endif
1298         for (i = 0; i < sbi->s_partitions; i++) {
1299                 map = &sbi->s_partmaps[i];
1300
1301                 if (map->s_partition_num == partitionNumber &&
1302                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1303                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1304                      map->s_partition_type == UDF_METADATA_MAP25))
1305                         break;
1306         }
1307
1308         if (i >= sbi->s_partitions) {
1309                 ret = 0;
1310                 goto out_bh;
1311         }
1312
1313         ret = udf_fill_partdesc_info(sb, p, i);
1314         if (ret < 0)
1315                 goto out_bh;
1316
1317         if (map->s_partition_type == UDF_METADATA_MAP25) {
1318                 ret = udf_load_metadata_files(sb, i);
1319                 if (ret < 0) {
1320                         udf_err(sb, "error loading MetaData partition map %d\n",
1321                                 i);
1322                         goto out_bh;
1323                 }
1324         } else {
1325                 /*
1326                  * If we have a partition with virtual map, we don't handle
1327                  * writing to it (we overwrite blocks instead of relocating
1328                  * them).
1329                  */
1330                 if (!(sb->s_flags & MS_RDONLY)) {
1331                         ret = -EACCES;
1332                         goto out_bh;
1333                 }
1334                 ret = udf_load_vat(sb, i, type1_idx);
1335                 if (ret < 0)
1336                         goto out_bh;
1337         }
1338         ret = 0;
1339 out_bh:
1340         /* In case loading failed, we handle cleanup in udf_fill_super */
1341         brelse(bh);
1342         return ret;
1343 }
1344
1345 static int udf_load_sparable_map(struct super_block *sb,
1346                                  struct udf_part_map *map,
1347                                  struct sparablePartitionMap *spm)
1348 {
1349         uint32_t loc;
1350         uint16_t ident;
1351         struct sparingTable *st;
1352         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1353         int i;
1354         struct buffer_head *bh;
1355
1356         map->s_partition_type = UDF_SPARABLE_MAP15;
1357         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1358         if (!is_power_of_2(sdata->s_packet_len)) {
1359                 udf_err(sb, "error loading logical volume descriptor: "
1360                         "Invalid packet length %u\n",
1361                         (unsigned)sdata->s_packet_len);
1362                 return -EIO;
1363         }
1364         if (spm->numSparingTables > 4) {
1365                 udf_err(sb, "error loading logical volume descriptor: "
1366                         "Too many sparing tables (%d)\n",
1367                         (int)spm->numSparingTables);
1368                 return -EIO;
1369         }
1370
1371         for (i = 0; i < spm->numSparingTables; i++) {
1372                 loc = le32_to_cpu(spm->locSparingTable[i]);
1373                 bh = udf_read_tagged(sb, loc, loc, &ident);
1374                 if (!bh)
1375                         continue;
1376
1377                 st = (struct sparingTable *)bh->b_data;
1378                 if (ident != 0 ||
1379                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1380                             strlen(UDF_ID_SPARING)) ||
1381                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1382                                                         sb->s_blocksize) {
1383                         brelse(bh);
1384                         continue;
1385                 }
1386
1387                 sdata->s_spar_map[i] = bh;
1388         }
1389         map->s_partition_func = udf_get_pblock_spar15;
1390         return 0;
1391 }
1392
1393 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1394                                struct kernel_lb_addr *fileset)
1395 {
1396         struct logicalVolDesc *lvd;
1397         int i, offset;
1398         uint8_t type;
1399         struct udf_sb_info *sbi = UDF_SB(sb);
1400         struct genericPartitionMap *gpm;
1401         uint16_t ident;
1402         struct buffer_head *bh;
1403         unsigned int table_len;
1404         int ret;
1405
1406         bh = udf_read_tagged(sb, block, block, &ident);
1407         if (!bh)
1408                 return -EAGAIN;
1409         BUG_ON(ident != TAG_IDENT_LVD);
1410         lvd = (struct logicalVolDesc *)bh->b_data;
1411         table_len = le32_to_cpu(lvd->mapTableLength);
1412         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1413                 udf_err(sb, "error loading logical volume descriptor: "
1414                         "Partition table too long (%u > %lu)\n", table_len,
1415                         sb->s_blocksize - sizeof(*lvd));
1416                 ret = -EIO;
1417                 goto out_bh;
1418         }
1419
1420         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1421         if (ret)
1422                 goto out_bh;
1423
1424         for (i = 0, offset = 0;
1425              i < sbi->s_partitions && offset < table_len;
1426              i++, offset += gpm->partitionMapLength) {
1427                 struct udf_part_map *map = &sbi->s_partmaps[i];
1428                 gpm = (struct genericPartitionMap *)
1429                                 &(lvd->partitionMaps[offset]);
1430                 type = gpm->partitionMapType;
1431                 if (type == 1) {
1432                         struct genericPartitionMap1 *gpm1 =
1433                                 (struct genericPartitionMap1 *)gpm;
1434                         map->s_partition_type = UDF_TYPE1_MAP15;
1435                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1436                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1437                         map->s_partition_func = NULL;
1438                 } else if (type == 2) {
1439                         struct udfPartitionMap2 *upm2 =
1440                                                 (struct udfPartitionMap2 *)gpm;
1441                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1442                                                 strlen(UDF_ID_VIRTUAL))) {
1443                                 u16 suf =
1444                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1445                                                         identSuffix)[0]);
1446                                 if (suf < 0x0200) {
1447                                         map->s_partition_type =
1448                                                         UDF_VIRTUAL_MAP15;
1449                                         map->s_partition_func =
1450                                                         udf_get_pblock_virt15;
1451                                 } else {
1452                                         map->s_partition_type =
1453                                                         UDF_VIRTUAL_MAP20;
1454                                         map->s_partition_func =
1455                                                         udf_get_pblock_virt20;
1456                                 }
1457                         } else if (!strncmp(upm2->partIdent.ident,
1458                                                 UDF_ID_SPARABLE,
1459                                                 strlen(UDF_ID_SPARABLE))) {
1460                                 ret = udf_load_sparable_map(sb, map,
1461                                         (struct sparablePartitionMap *)gpm);
1462                                 if (ret < 0)
1463                                         goto out_bh;
1464                         } else if (!strncmp(upm2->partIdent.ident,
1465                                                 UDF_ID_METADATA,
1466                                                 strlen(UDF_ID_METADATA))) {
1467                                 struct udf_meta_data *mdata =
1468                                         &map->s_type_specific.s_metadata;
1469                                 struct metadataPartitionMap *mdm =
1470                                                 (struct metadataPartitionMap *)
1471                                                 &(lvd->partitionMaps[offset]);
1472                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1473                                           i, type, UDF_ID_METADATA);
1474
1475                                 map->s_partition_type = UDF_METADATA_MAP25;
1476                                 map->s_partition_func = udf_get_pblock_meta25;
1477
1478                                 mdata->s_meta_file_loc   =
1479                                         le32_to_cpu(mdm->metadataFileLoc);
1480                                 mdata->s_mirror_file_loc =
1481                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1482                                 mdata->s_bitmap_file_loc =
1483                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1484                                 mdata->s_alloc_unit_size =
1485                                         le32_to_cpu(mdm->allocUnitSize);
1486                                 mdata->s_align_unit_size =
1487                                         le16_to_cpu(mdm->alignUnitSize);
1488                                 if (mdm->flags & 0x01)
1489                                         mdata->s_flags |= MF_DUPLICATE_MD;
1490
1491                                 udf_debug("Metadata Ident suffix=0x%x\n",
1492                                           le16_to_cpu(*(__le16 *)
1493                                                       mdm->partIdent.identSuffix));
1494                                 udf_debug("Metadata part num=%d\n",
1495                                           le16_to_cpu(mdm->partitionNum));
1496                                 udf_debug("Metadata part alloc unit size=%d\n",
1497                                           le32_to_cpu(mdm->allocUnitSize));
1498                                 udf_debug("Metadata file loc=%d\n",
1499                                           le32_to_cpu(mdm->metadataFileLoc));
1500                                 udf_debug("Mirror file loc=%d\n",
1501                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1502                                 udf_debug("Bitmap file loc=%d\n",
1503                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1504                                 udf_debug("Flags: %d %d\n",
1505                                           mdata->s_flags, mdm->flags);
1506                         } else {
1507                                 udf_debug("Unknown ident: %s\n",
1508                                           upm2->partIdent.ident);
1509                                 continue;
1510                         }
1511                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1512                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1513                 }
1514                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1515                           i, map->s_partition_num, type, map->s_volumeseqnum);
1516         }
1517
1518         if (fileset) {
1519                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1520
1521                 *fileset = lelb_to_cpu(la->extLocation);
1522                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1523                           fileset->logicalBlockNum,
1524                           fileset->partitionReferenceNum);
1525         }
1526         if (lvd->integritySeqExt.extLength)
1527                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1528         ret = 0;
1529 out_bh:
1530         brelse(bh);
1531         return ret;
1532 }
1533
1534 /*
1535  * udf_load_logicalvolint
1536  *
1537  */
1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 {
1540         struct buffer_head *bh = NULL;
1541         uint16_t ident;
1542         struct udf_sb_info *sbi = UDF_SB(sb);
1543         struct logicalVolIntegrityDesc *lvid;
1544
1545         while (loc.extLength > 0 &&
1546                (bh = udf_read_tagged(sb, loc.extLocation,
1547                                      loc.extLocation, &ident)) &&
1548                ident == TAG_IDENT_LVID) {
1549                 sbi->s_lvid_bh = bh;
1550                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1551
1552                 if (lvid->nextIntegrityExt.extLength)
1553                         udf_load_logicalvolint(sb,
1554                                 leea_to_cpu(lvid->nextIntegrityExt));
1555
1556                 if (sbi->s_lvid_bh != bh)
1557                         brelse(bh);
1558                 loc.extLength -= sb->s_blocksize;
1559                 loc.extLocation++;
1560         }
1561         if (sbi->s_lvid_bh != bh)
1562                 brelse(bh);
1563 }
1564
1565 /*
1566  * Process a main/reserve volume descriptor sequence.
1567  *   @block             First block of first extent of the sequence.
1568  *   @lastblock         Lastblock of first extent of the sequence.
1569  *   @fileset           There we store extent containing root fileset
1570  *
1571  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1572  * sequence
1573  */
1574 static noinline int udf_process_sequence(
1575                 struct super_block *sb,
1576                 sector_t block, sector_t lastblock,
1577                 struct kernel_lb_addr *fileset)
1578 {
1579         struct buffer_head *bh = NULL;
1580         struct udf_vds_record vds[VDS_POS_LENGTH];
1581         struct udf_vds_record *curr;
1582         struct generic_desc *gd;
1583         struct volDescPtr *vdp;
1584         int done = 0;
1585         uint32_t vdsn;
1586         uint16_t ident;
1587         long next_s = 0, next_e = 0;
1588         int ret;
1589
1590         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1591
1592         /*
1593          * Read the main descriptor sequence and find which descriptors
1594          * are in it.
1595          */
1596         for (; (!done && block <= lastblock); block++) {
1597
1598                 bh = udf_read_tagged(sb, block, block, &ident);
1599                 if (!bh) {
1600                         udf_err(sb,
1601                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1602                                 (unsigned long long)block);
1603                         return -EAGAIN;
1604                 }
1605
1606                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1607                 gd = (struct generic_desc *)bh->b_data;
1608                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1609                 switch (ident) {
1610                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1611                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1612                         if (vdsn >= curr->volDescSeqNum) {
1613                                 curr->volDescSeqNum = vdsn;
1614                                 curr->block = block;
1615                         }
1616                         break;
1617                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1618                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1619                         if (vdsn >= curr->volDescSeqNum) {
1620                                 curr->volDescSeqNum = vdsn;
1621                                 curr->block = block;
1622
1623                                 vdp = (struct volDescPtr *)bh->b_data;
1624                                 next_s = le32_to_cpu(
1625                                         vdp->nextVolDescSeqExt.extLocation);
1626                                 next_e = le32_to_cpu(
1627                                         vdp->nextVolDescSeqExt.extLength);
1628                                 next_e = next_e >> sb->s_blocksize_bits;
1629                                 next_e += next_s;
1630                         }
1631                         break;
1632                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1633                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1634                         if (vdsn >= curr->volDescSeqNum) {
1635                                 curr->volDescSeqNum = vdsn;
1636                                 curr->block = block;
1637                         }
1638                         break;
1639                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1640                         curr = &vds[VDS_POS_PARTITION_DESC];
1641                         if (!curr->block)
1642                                 curr->block = block;
1643                         break;
1644                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1645                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1646                         if (vdsn >= curr->volDescSeqNum) {
1647                                 curr->volDescSeqNum = vdsn;
1648                                 curr->block = block;
1649                         }
1650                         break;
1651                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1652                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1653                         if (vdsn >= curr->volDescSeqNum) {
1654                                 curr->volDescSeqNum = vdsn;
1655                                 curr->block = block;
1656                         }
1657                         break;
1658                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1659                         vds[VDS_POS_TERMINATING_DESC].block = block;
1660                         if (next_e) {
1661                                 block = next_s;
1662                                 lastblock = next_e;
1663                                 next_s = next_e = 0;
1664                         } else
1665                                 done = 1;
1666                         break;
1667                 }
1668                 brelse(bh);
1669         }
1670         /*
1671          * Now read interesting descriptors again and process them
1672          * in a suitable order
1673          */
1674         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1675                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1676                 return -EAGAIN;
1677         }
1678         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1679         if (ret < 0)
1680                 return ret;
1681
1682         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1683                 ret = udf_load_logicalvol(sb,
1684                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1685                                           fileset);
1686                 if (ret < 0)
1687                         return ret;
1688         }
1689
1690         if (vds[VDS_POS_PARTITION_DESC].block) {
1691                 /*
1692                  * We rescan the whole descriptor sequence to find
1693                  * partition descriptor blocks and process them.
1694                  */
1695                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1696                      block < vds[VDS_POS_TERMINATING_DESC].block;
1697                      block++) {
1698                         ret = udf_load_partdesc(sb, block);
1699                         if (ret < 0)
1700                                 return ret;
1701                 }
1702         }
1703
1704         return 0;
1705 }
1706
1707 /*
1708  * Load Volume Descriptor Sequence described by anchor in bh
1709  *
1710  * Returns <0 on error, 0 on success
1711  */
1712 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1713                              struct kernel_lb_addr *fileset)
1714 {
1715         struct anchorVolDescPtr *anchor;
1716         sector_t main_s, main_e, reserve_s, reserve_e;
1717         int ret;
1718
1719         anchor = (struct anchorVolDescPtr *)bh->b_data;
1720
1721         /* Locate the main sequence */
1722         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1723         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1724         main_e = main_e >> sb->s_blocksize_bits;
1725         main_e += main_s;
1726
1727         /* Locate the reserve sequence */
1728         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1729         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1730         reserve_e = reserve_e >> sb->s_blocksize_bits;
1731         reserve_e += reserve_s;
1732
1733         /* Process the main & reserve sequences */
1734         /* responsible for finding the PartitionDesc(s) */
1735         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1736         if (ret != -EAGAIN)
1737                 return ret;
1738         udf_sb_free_partitions(sb);
1739         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1740         if (ret < 0) {
1741                 udf_sb_free_partitions(sb);
1742                 /* No sequence was OK, return -EIO */
1743                 if (ret == -EAGAIN)
1744                         ret = -EIO;
1745         }
1746         return ret;
1747 }
1748
1749 /*
1750  * Check whether there is an anchor block in the given block and
1751  * load Volume Descriptor Sequence if so.
1752  *
1753  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1754  * block
1755  */
1756 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1757                                   struct kernel_lb_addr *fileset)
1758 {
1759         struct buffer_head *bh;
1760         uint16_t ident;
1761         int ret;
1762
1763         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1764             udf_fixed_to_variable(block) >=
1765             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1766                 return -EAGAIN;
1767
1768         bh = udf_read_tagged(sb, block, block, &ident);
1769         if (!bh)
1770                 return -EAGAIN;
1771         if (ident != TAG_IDENT_AVDP) {
1772                 brelse(bh);
1773                 return -EAGAIN;
1774         }
1775         ret = udf_load_sequence(sb, bh, fileset);
1776         brelse(bh);
1777         return ret;
1778 }
1779
1780 /*
1781  * Search for an anchor volume descriptor pointer.
1782  *
1783  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1784  * of anchors.
1785  */
1786 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1787                             struct kernel_lb_addr *fileset)
1788 {
1789         sector_t last[6];
1790         int i;
1791         struct udf_sb_info *sbi = UDF_SB(sb);
1792         int last_count = 0;
1793         int ret;
1794
1795         /* First try user provided anchor */
1796         if (sbi->s_anchor) {
1797                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1798                 if (ret != -EAGAIN)
1799                         return ret;
1800         }
1801         /*
1802          * according to spec, anchor is in either:
1803          *     block 256
1804          *     lastblock-256
1805          *     lastblock
1806          *  however, if the disc isn't closed, it could be 512.
1807          */
1808         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1809         if (ret != -EAGAIN)
1810                 return ret;
1811         /*
1812          * The trouble is which block is the last one. Drives often misreport
1813          * this so we try various possibilities.
1814          */
1815         last[last_count++] = *lastblock;
1816         if (*lastblock >= 1)
1817                 last[last_count++] = *lastblock - 1;
1818         last[last_count++] = *lastblock + 1;
1819         if (*lastblock >= 2)
1820                 last[last_count++] = *lastblock - 2;
1821         if (*lastblock >= 150)
1822                 last[last_count++] = *lastblock - 150;
1823         if (*lastblock >= 152)
1824                 last[last_count++] = *lastblock - 152;
1825
1826         for (i = 0; i < last_count; i++) {
1827                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1828                                 sb->s_blocksize_bits)
1829                         continue;
1830                 ret = udf_check_anchor_block(sb, last[i], fileset);
1831                 if (ret != -EAGAIN) {
1832                         if (!ret)
1833                                 *lastblock = last[i];
1834                         return ret;
1835                 }
1836                 if (last[i] < 256)
1837                         continue;
1838                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1839                 if (ret != -EAGAIN) {
1840                         if (!ret)
1841                                 *lastblock = last[i];
1842                         return ret;
1843                 }
1844         }
1845
1846         /* Finally try block 512 in case media is open */
1847         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1848 }
1849
1850 /*
1851  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1852  * area specified by it. The function expects sbi->s_lastblock to be the last
1853  * block on the media.
1854  *
1855  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1856  * was not found.
1857  */
1858 static int udf_find_anchor(struct super_block *sb,
1859                            struct kernel_lb_addr *fileset)
1860 {
1861         struct udf_sb_info *sbi = UDF_SB(sb);
1862         sector_t lastblock = sbi->s_last_block;
1863         int ret;
1864
1865         ret = udf_scan_anchors(sb, &lastblock, fileset);
1866         if (ret != -EAGAIN)
1867                 goto out;
1868
1869         /* No anchor found? Try VARCONV conversion of block numbers */
1870         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1871         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1872         /* Firstly, we try to not convert number of the last block */
1873         ret = udf_scan_anchors(sb, &lastblock, fileset);
1874         if (ret != -EAGAIN)
1875                 goto out;
1876
1877         lastblock = sbi->s_last_block;
1878         /* Secondly, we try with converted number of the last block */
1879         ret = udf_scan_anchors(sb, &lastblock, fileset);
1880         if (ret < 0) {
1881                 /* VARCONV didn't help. Clear it. */
1882                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1883         }
1884 out:
1885         if (ret == 0)
1886                 sbi->s_last_block = lastblock;
1887         return ret;
1888 }
1889
1890 /*
1891  * Check Volume Structure Descriptor, find Anchor block and load Volume
1892  * Descriptor Sequence.
1893  *
1894  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1895  * block was not found.
1896  */
1897 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1898                         int silent, struct kernel_lb_addr *fileset)
1899 {
1900         struct udf_sb_info *sbi = UDF_SB(sb);
1901         loff_t nsr_off;
1902         int ret;
1903
1904         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1905                 if (!silent)
1906                         udf_warn(sb, "Bad block size\n");
1907                 return -EINVAL;
1908         }
1909         sbi->s_last_block = uopt->lastblock;
1910         if (!uopt->novrs) {
1911                 /* Check that it is NSR02 compliant */
1912                 nsr_off = udf_check_vsd(sb);
1913                 if (!nsr_off) {
1914                         if (!silent)
1915                                 udf_warn(sb, "No VRS found\n");
1916                         return 0;
1917                 }
1918                 if (nsr_off == -1)
1919                         udf_debug("Failed to read sector at offset %d. "
1920                                   "Assuming open disc. Skipping validity "
1921                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1922                 if (!sbi->s_last_block)
1923                         sbi->s_last_block = udf_get_last_block(sb);
1924         } else {
1925                 udf_debug("Validity check skipped because of novrs option\n");
1926         }
1927
1928         /* Look for anchor block and load Volume Descriptor Sequence */
1929         sbi->s_anchor = uopt->anchor;
1930         ret = udf_find_anchor(sb, fileset);
1931         if (ret < 0) {
1932                 if (!silent && ret == -EAGAIN)
1933                         udf_warn(sb, "No anchor found\n");
1934                 return ret;
1935         }
1936         return 0;
1937 }
1938
1939 static void udf_open_lvid(struct super_block *sb)
1940 {
1941         struct udf_sb_info *sbi = UDF_SB(sb);
1942         struct buffer_head *bh = sbi->s_lvid_bh;
1943         struct logicalVolIntegrityDesc *lvid;
1944         struct logicalVolIntegrityDescImpUse *lvidiu;
1945
1946         if (!bh)
1947                 return;
1948         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1949         lvidiu = udf_sb_lvidiu(sb);
1950         if (!lvidiu)
1951                 return;
1952
1953         mutex_lock(&sbi->s_alloc_mutex);
1954         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1955         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1956         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1957                                 CURRENT_TIME);
1958         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1959
1960         lvid->descTag.descCRC = cpu_to_le16(
1961                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1962                         le16_to_cpu(lvid->descTag.descCRCLength)));
1963
1964         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1965         mark_buffer_dirty(bh);
1966         sbi->s_lvid_dirty = 0;
1967         mutex_unlock(&sbi->s_alloc_mutex);
1968         /* Make opening of filesystem visible on the media immediately */
1969         sync_dirty_buffer(bh);
1970 }
1971
1972 static void udf_close_lvid(struct super_block *sb)
1973 {
1974         struct udf_sb_info *sbi = UDF_SB(sb);
1975         struct buffer_head *bh = sbi->s_lvid_bh;
1976         struct logicalVolIntegrityDesc *lvid;
1977         struct logicalVolIntegrityDescImpUse *lvidiu;
1978
1979         if (!bh)
1980                 return;
1981         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1982         lvidiu = udf_sb_lvidiu(sb);
1983         if (!lvidiu)
1984                 return;
1985
1986         mutex_lock(&sbi->s_alloc_mutex);
1987         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1988         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1989         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1990         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1991                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1992         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1993                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1994         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1995                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1996         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1997
1998         lvid->descTag.descCRC = cpu_to_le16(
1999                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2000                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2001
2002         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2003         /*
2004          * We set buffer uptodate unconditionally here to avoid spurious
2005          * warnings from mark_buffer_dirty() when previous EIO has marked
2006          * the buffer as !uptodate
2007          */
2008         set_buffer_uptodate(bh);
2009         mark_buffer_dirty(bh);
2010         sbi->s_lvid_dirty = 0;
2011         mutex_unlock(&sbi->s_alloc_mutex);
2012         /* Make closing of filesystem visible on the media immediately */
2013         sync_dirty_buffer(bh);
2014 }
2015
2016 u64 lvid_get_unique_id(struct super_block *sb)
2017 {
2018         struct buffer_head *bh;
2019         struct udf_sb_info *sbi = UDF_SB(sb);
2020         struct logicalVolIntegrityDesc *lvid;
2021         struct logicalVolHeaderDesc *lvhd;
2022         u64 uniqueID;
2023         u64 ret;
2024
2025         bh = sbi->s_lvid_bh;
2026         if (!bh)
2027                 return 0;
2028
2029         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2030         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2031
2032         mutex_lock(&sbi->s_alloc_mutex);
2033         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2034         if (!(++uniqueID & 0xFFFFFFFF))
2035                 uniqueID += 16;
2036         lvhd->uniqueID = cpu_to_le64(uniqueID);
2037         mutex_unlock(&sbi->s_alloc_mutex);
2038         mark_buffer_dirty(bh);
2039
2040         return ret;
2041 }
2042
2043 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2044 {
2045         int ret = -EINVAL;
2046         struct inode *inode = NULL;
2047         struct udf_options uopt;
2048         struct kernel_lb_addr rootdir, fileset;
2049         struct udf_sb_info *sbi;
2050
2051         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2052         uopt.uid = INVALID_UID;
2053         uopt.gid = INVALID_GID;
2054         uopt.umask = 0;
2055         uopt.fmode = UDF_INVALID_MODE;
2056         uopt.dmode = UDF_INVALID_MODE;
2057
2058         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2059         if (!sbi)
2060                 return -ENOMEM;
2061
2062         sb->s_fs_info = sbi;
2063
2064         mutex_init(&sbi->s_alloc_mutex);
2065
2066         if (!udf_parse_options((char *)options, &uopt, false))
2067                 goto error_out;
2068
2069         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2070             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2071                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2072                 goto error_out;
2073         }
2074 #ifdef CONFIG_UDF_NLS
2075         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2076                 uopt.nls_map = load_nls_default();
2077                 if (!uopt.nls_map)
2078                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2079                 else
2080                         udf_debug("Using default NLS map\n");
2081         }
2082 #endif
2083         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2084                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2085
2086         fileset.logicalBlockNum = 0xFFFFFFFF;
2087         fileset.partitionReferenceNum = 0xFFFF;
2088
2089         sbi->s_flags = uopt.flags;
2090         sbi->s_uid = uopt.uid;
2091         sbi->s_gid = uopt.gid;
2092         sbi->s_umask = uopt.umask;
2093         sbi->s_fmode = uopt.fmode;
2094         sbi->s_dmode = uopt.dmode;
2095         sbi->s_nls_map = uopt.nls_map;
2096         rwlock_init(&sbi->s_cred_lock);
2097
2098         if (uopt.session == 0xFFFFFFFF)
2099                 sbi->s_session = udf_get_last_session(sb);
2100         else
2101                 sbi->s_session = uopt.session;
2102
2103         udf_debug("Multi-session=%d\n", sbi->s_session);
2104
2105         /* Fill in the rest of the superblock */
2106         sb->s_op = &udf_sb_ops;
2107         sb->s_export_op = &udf_export_ops;
2108
2109         sb->s_magic = UDF_SUPER_MAGIC;
2110         sb->s_time_gran = 1000;
2111
2112         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2113                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2114         } else {
2115                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2116                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2117                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2118                         if (!silent)
2119                                 pr_notice("Rescanning with blocksize %d\n",
2120                                           UDF_DEFAULT_BLOCKSIZE);
2121                         brelse(sbi->s_lvid_bh);
2122                         sbi->s_lvid_bh = NULL;
2123                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2124                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2125                 }
2126         }
2127         if (ret < 0) {
2128                 if (ret == -EAGAIN) {
2129                         udf_warn(sb, "No partition found (1)\n");
2130                         ret = -EINVAL;
2131                 }
2132                 goto error_out;
2133         }
2134
2135         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2136
2137         if (sbi->s_lvid_bh) {
2138                 struct logicalVolIntegrityDescImpUse *lvidiu =
2139                                                         udf_sb_lvidiu(sb);
2140                 uint16_t minUDFReadRev;
2141                 uint16_t minUDFWriteRev;
2142
2143                 if (!lvidiu) {
2144                         ret = -EINVAL;
2145                         goto error_out;
2146                 }
2147                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2148                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2149                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2150                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2151                                 minUDFReadRev,
2152                                 UDF_MAX_READ_VERSION);
2153                         ret = -EINVAL;
2154                         goto error_out;
2155                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2156                            !(sb->s_flags & MS_RDONLY)) {
2157                         ret = -EACCES;
2158                         goto error_out;
2159                 }
2160
2161                 sbi->s_udfrev = minUDFWriteRev;
2162
2163                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2164                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2165                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2166                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2167         }
2168
2169         if (!sbi->s_partitions) {
2170                 udf_warn(sb, "No partition found (2)\n");
2171                 ret = -EINVAL;
2172                 goto error_out;
2173         }
2174
2175         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2176                         UDF_PART_FLAG_READ_ONLY &&
2177             !(sb->s_flags & MS_RDONLY)) {
2178                 ret = -EACCES;
2179                 goto error_out;
2180         }
2181
2182         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2183                 udf_warn(sb, "No fileset found\n");
2184                 ret = -EINVAL;
2185                 goto error_out;
2186         }
2187
2188         if (!silent) {
2189                 struct timestamp ts;
2190                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2191                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2192                          sbi->s_volume_ident,
2193                          le16_to_cpu(ts.year), ts.month, ts.day,
2194                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2195         }
2196         if (!(sb->s_flags & MS_RDONLY))
2197                 udf_open_lvid(sb);
2198
2199         /* Assign the root inode */
2200         /* assign inodes by physical block number */
2201         /* perhaps it's not extensible enough, but for now ... */
2202         inode = udf_iget(sb, &rootdir);
2203         if (!inode) {
2204                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2205                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2206                 ret = -EIO;
2207                 goto error_out;
2208         }
2209
2210         /* Allocate a dentry for the root inode */
2211         sb->s_root = d_make_root(inode);
2212         if (!sb->s_root) {
2213                 udf_err(sb, "Couldn't allocate root dentry\n");
2214                 ret = -ENOMEM;
2215                 goto error_out;
2216         }
2217         sb->s_maxbytes = MAX_LFS_FILESIZE;
2218         sb->s_max_links = UDF_MAX_LINKS;
2219         return 0;
2220
2221 error_out:
2222         if (sbi->s_vat_inode)
2223                 iput(sbi->s_vat_inode);
2224 #ifdef CONFIG_UDF_NLS
2225         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2226                 unload_nls(sbi->s_nls_map);
2227 #endif
2228         if (!(sb->s_flags & MS_RDONLY))
2229                 udf_close_lvid(sb);
2230         brelse(sbi->s_lvid_bh);
2231         udf_sb_free_partitions(sb);
2232         kfree(sbi);
2233         sb->s_fs_info = NULL;
2234
2235         return ret;
2236 }
2237
2238 void _udf_err(struct super_block *sb, const char *function,
2239               const char *fmt, ...)
2240 {
2241         struct va_format vaf;
2242         va_list args;
2243
2244         va_start(args, fmt);
2245
2246         vaf.fmt = fmt;
2247         vaf.va = &args;
2248
2249         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2250
2251         va_end(args);
2252 }
2253
2254 void _udf_warn(struct super_block *sb, const char *function,
2255                const char *fmt, ...)
2256 {
2257         struct va_format vaf;
2258         va_list args;
2259
2260         va_start(args, fmt);
2261
2262         vaf.fmt = fmt;
2263         vaf.va = &args;
2264
2265         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2266
2267         va_end(args);
2268 }
2269
2270 static void udf_put_super(struct super_block *sb)
2271 {
2272         struct udf_sb_info *sbi;
2273
2274         sbi = UDF_SB(sb);
2275
2276         if (sbi->s_vat_inode)
2277                 iput(sbi->s_vat_inode);
2278 #ifdef CONFIG_UDF_NLS
2279         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2280                 unload_nls(sbi->s_nls_map);
2281 #endif
2282         if (!(sb->s_flags & MS_RDONLY))
2283                 udf_close_lvid(sb);
2284         brelse(sbi->s_lvid_bh);
2285         udf_sb_free_partitions(sb);
2286         kfree(sb->s_fs_info);
2287         sb->s_fs_info = NULL;
2288 }
2289
2290 static int udf_sync_fs(struct super_block *sb, int wait)
2291 {
2292         struct udf_sb_info *sbi = UDF_SB(sb);
2293
2294         mutex_lock(&sbi->s_alloc_mutex);
2295         if (sbi->s_lvid_dirty) {
2296                 /*
2297                  * Blockdevice will be synced later so we don't have to submit
2298                  * the buffer for IO
2299                  */
2300                 mark_buffer_dirty(sbi->s_lvid_bh);
2301                 sbi->s_lvid_dirty = 0;
2302         }
2303         mutex_unlock(&sbi->s_alloc_mutex);
2304
2305         return 0;
2306 }
2307
2308 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2309 {
2310         struct super_block *sb = dentry->d_sb;
2311         struct udf_sb_info *sbi = UDF_SB(sb);
2312         struct logicalVolIntegrityDescImpUse *lvidiu;
2313         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2314
2315         lvidiu = udf_sb_lvidiu(sb);
2316         buf->f_type = UDF_SUPER_MAGIC;
2317         buf->f_bsize = sb->s_blocksize;
2318         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2319         buf->f_bfree = udf_count_free(sb);
2320         buf->f_bavail = buf->f_bfree;
2321         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2322                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2323                         + buf->f_bfree;
2324         buf->f_ffree = buf->f_bfree;
2325         buf->f_namelen = UDF_NAME_LEN - 2;
2326         buf->f_fsid.val[0] = (u32)id;
2327         buf->f_fsid.val[1] = (u32)(id >> 32);
2328
2329         return 0;
2330 }
2331
2332 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2333                                           struct udf_bitmap *bitmap)
2334 {
2335         struct buffer_head *bh = NULL;
2336         unsigned int accum = 0;
2337         int index;
2338         int block = 0, newblock;
2339         struct kernel_lb_addr loc;
2340         uint32_t bytes;
2341         uint8_t *ptr;
2342         uint16_t ident;
2343         struct spaceBitmapDesc *bm;
2344
2345         loc.logicalBlockNum = bitmap->s_extPosition;
2346         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2347         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2348
2349         if (!bh) {
2350                 udf_err(sb, "udf_count_free failed\n");
2351                 goto out;
2352         } else if (ident != TAG_IDENT_SBD) {
2353                 brelse(bh);
2354                 udf_err(sb, "udf_count_free failed\n");
2355                 goto out;
2356         }
2357
2358         bm = (struct spaceBitmapDesc *)bh->b_data;
2359         bytes = le32_to_cpu(bm->numOfBytes);
2360         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2361         ptr = (uint8_t *)bh->b_data;
2362
2363         while (bytes > 0) {
2364                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2365                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2366                                         cur_bytes * 8);
2367                 bytes -= cur_bytes;
2368                 if (bytes) {
2369                         brelse(bh);
2370                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2371                         bh = udf_tread(sb, newblock);
2372                         if (!bh) {
2373                                 udf_debug("read failed\n");
2374                                 goto out;
2375                         }
2376                         index = 0;
2377                         ptr = (uint8_t *)bh->b_data;
2378                 }
2379         }
2380         brelse(bh);
2381 out:
2382         return accum;
2383 }
2384
2385 static unsigned int udf_count_free_table(struct super_block *sb,
2386                                          struct inode *table)
2387 {
2388         unsigned int accum = 0;
2389         uint32_t elen;
2390         struct kernel_lb_addr eloc;
2391         int8_t etype;
2392         struct extent_position epos;
2393
2394         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2395         epos.block = UDF_I(table)->i_location;
2396         epos.offset = sizeof(struct unallocSpaceEntry);
2397         epos.bh = NULL;
2398
2399         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2400                 accum += (elen >> table->i_sb->s_blocksize_bits);
2401
2402         brelse(epos.bh);
2403         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2404
2405         return accum;
2406 }
2407
2408 static unsigned int udf_count_free(struct super_block *sb)
2409 {
2410         unsigned int accum = 0;
2411         struct udf_sb_info *sbi;
2412         struct udf_part_map *map;
2413
2414         sbi = UDF_SB(sb);
2415         if (sbi->s_lvid_bh) {
2416                 struct logicalVolIntegrityDesc *lvid =
2417                         (struct logicalVolIntegrityDesc *)
2418                         sbi->s_lvid_bh->b_data;
2419                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2420                         accum = le32_to_cpu(
2421                                         lvid->freeSpaceTable[sbi->s_partition]);
2422                         if (accum == 0xFFFFFFFF)
2423                                 accum = 0;
2424                 }
2425         }
2426
2427         if (accum)
2428                 return accum;
2429
2430         map = &sbi->s_partmaps[sbi->s_partition];
2431         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2432                 accum += udf_count_free_bitmap(sb,
2433                                                map->s_uspace.s_bitmap);
2434         }
2435         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2436                 accum += udf_count_free_bitmap(sb,
2437                                                map->s_fspace.s_bitmap);
2438         }
2439         if (accum)
2440                 return accum;
2441
2442         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2443                 accum += udf_count_free_table(sb,
2444                                               map->s_uspace.s_table);
2445         }
2446         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2447                 accum += udf_count_free_table(sb,
2448                                               map->s_fspace.s_table);
2449         }
2450
2451         return accum;
2452 }