io_uring: fix ltimeout unprep
[platform/kernel/linux-starfive.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103         struct logicalVolIntegrityDesc *lvid;
104         unsigned int partnum;
105         unsigned int offset;
106
107         if (!UDF_SB(sb)->s_lvid_bh)
108                 return NULL;
109         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110         partnum = le32_to_cpu(lvid->numOfPartitions);
111         /* The offset is to skip freeSpaceTable and sizeTable arrays */
112         offset = partnum * 2 * sizeof(uint32_t);
113         return (struct logicalVolIntegrityDescImpUse *)
114                                         (((uint8_t *)(lvid + 1)) + offset);
115 }
116
117 /* UDF filesystem type */
118 static struct dentry *udf_mount(struct file_system_type *fs_type,
119                       int flags, const char *dev_name, void *data)
120 {
121         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
122 }
123
124 static struct file_system_type udf_fstype = {
125         .owner          = THIS_MODULE,
126         .name           = "udf",
127         .mount          = udf_mount,
128         .kill_sb        = kill_block_super,
129         .fs_flags       = FS_REQUIRES_DEV,
130 };
131 MODULE_ALIAS_FS("udf");
132
133 static struct kmem_cache *udf_inode_cachep;
134
135 static struct inode *udf_alloc_inode(struct super_block *sb)
136 {
137         struct udf_inode_info *ei;
138         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
139         if (!ei)
140                 return NULL;
141
142         ei->i_unique = 0;
143         ei->i_lenExtents = 0;
144         ei->i_lenStreams = 0;
145         ei->i_next_alloc_block = 0;
146         ei->i_next_alloc_goal = 0;
147         ei->i_strat4096 = 0;
148         ei->i_streamdir = 0;
149         init_rwsem(&ei->i_data_sem);
150         ei->cached_extent.lstart = -1;
151         spin_lock_init(&ei->i_extent_cache_lock);
152
153         return &ei->vfs_inode;
154 }
155
156 static void udf_free_in_core_inode(struct inode *inode)
157 {
158         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
159 }
160
161 static void init_once(void *foo)
162 {
163         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
164
165         ei->i_data = NULL;
166         inode_init_once(&ei->vfs_inode);
167 }
168
169 static int __init init_inodecache(void)
170 {
171         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
172                                              sizeof(struct udf_inode_info),
173                                              0, (SLAB_RECLAIM_ACCOUNT |
174                                                  SLAB_MEM_SPREAD |
175                                                  SLAB_ACCOUNT),
176                                              init_once);
177         if (!udf_inode_cachep)
178                 return -ENOMEM;
179         return 0;
180 }
181
182 static void destroy_inodecache(void)
183 {
184         /*
185          * Make sure all delayed rcu free inodes are flushed before we
186          * destroy cache.
187          */
188         rcu_barrier();
189         kmem_cache_destroy(udf_inode_cachep);
190 }
191
192 /* Superblock operations */
193 static const struct super_operations udf_sb_ops = {
194         .alloc_inode    = udf_alloc_inode,
195         .free_inode     = udf_free_in_core_inode,
196         .write_inode    = udf_write_inode,
197         .evict_inode    = udf_evict_inode,
198         .put_super      = udf_put_super,
199         .sync_fs        = udf_sync_fs,
200         .statfs         = udf_statfs,
201         .remount_fs     = udf_remount_fs,
202         .show_options   = udf_show_options,
203 };
204
205 struct udf_options {
206         unsigned char novrs;
207         unsigned int blocksize;
208         unsigned int session;
209         unsigned int lastblock;
210         unsigned int anchor;
211         unsigned int flags;
212         umode_t umask;
213         kgid_t gid;
214         kuid_t uid;
215         umode_t fmode;
216         umode_t dmode;
217         struct nls_table *nls_map;
218 };
219
220 static int __init init_udf_fs(void)
221 {
222         int err;
223
224         err = init_inodecache();
225         if (err)
226                 goto out1;
227         err = register_filesystem(&udf_fstype);
228         if (err)
229                 goto out;
230
231         return 0;
232
233 out:
234         destroy_inodecache();
235
236 out1:
237         return err;
238 }
239
240 static void __exit exit_udf_fs(void)
241 {
242         unregister_filesystem(&udf_fstype);
243         destroy_inodecache();
244 }
245
246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248         struct udf_sb_info *sbi = UDF_SB(sb);
249
250         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
251         if (!sbi->s_partmaps) {
252                 sbi->s_partitions = 0;
253                 return -ENOMEM;
254         }
255
256         sbi->s_partitions = count;
257         return 0;
258 }
259
260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262         int i;
263         int nr_groups = bitmap->s_nr_groups;
264
265         for (i = 0; i < nr_groups; i++)
266                 brelse(bitmap->s_block_bitmap[i]);
267
268         kvfree(bitmap);
269 }
270
271 static void udf_free_partition(struct udf_part_map *map)
272 {
273         int i;
274         struct udf_meta_data *mdata;
275
276         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
277                 iput(map->s_uspace.s_table);
278         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
279                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
280         if (map->s_partition_type == UDF_SPARABLE_MAP15)
281                 for (i = 0; i < 4; i++)
282                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
283         else if (map->s_partition_type == UDF_METADATA_MAP25) {
284                 mdata = &map->s_type_specific.s_metadata;
285                 iput(mdata->s_metadata_fe);
286                 mdata->s_metadata_fe = NULL;
287
288                 iput(mdata->s_mirror_fe);
289                 mdata->s_mirror_fe = NULL;
290
291                 iput(mdata->s_bitmap_fe);
292                 mdata->s_bitmap_fe = NULL;
293         }
294 }
295
296 static void udf_sb_free_partitions(struct super_block *sb)
297 {
298         struct udf_sb_info *sbi = UDF_SB(sb);
299         int i;
300
301         if (!sbi->s_partmaps)
302                 return;
303         for (i = 0; i < sbi->s_partitions; i++)
304                 udf_free_partition(&sbi->s_partmaps[i]);
305         kfree(sbi->s_partmaps);
306         sbi->s_partmaps = NULL;
307 }
308
309 static int udf_show_options(struct seq_file *seq, struct dentry *root)
310 {
311         struct super_block *sb = root->d_sb;
312         struct udf_sb_info *sbi = UDF_SB(sb);
313
314         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
315                 seq_puts(seq, ",nostrict");
316         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
317                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
318         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
319                 seq_puts(seq, ",unhide");
320         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
321                 seq_puts(seq, ",undelete");
322         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
323                 seq_puts(seq, ",noadinicb");
324         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
325                 seq_puts(seq, ",shortad");
326         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
327                 seq_puts(seq, ",uid=forget");
328         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
329                 seq_puts(seq, ",gid=forget");
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
331                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
333                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
334         if (sbi->s_umask != 0)
335                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
336         if (sbi->s_fmode != UDF_INVALID_MODE)
337                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
338         if (sbi->s_dmode != UDF_INVALID_MODE)
339                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
340         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
341                 seq_printf(seq, ",session=%d", sbi->s_session);
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
343                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
344         if (sbi->s_anchor != 0)
345                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
346         if (sbi->s_nls_map)
347                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
348         else
349                 seq_puts(seq, ",iocharset=utf8");
350
351         return 0;
352 }
353
354 /*
355  * udf_parse_options
356  *
357  * PURPOSE
358  *      Parse mount options.
359  *
360  * DESCRIPTION
361  *      The following mount options are supported:
362  *
363  *      gid=            Set the default group.
364  *      umask=          Set the default umask.
365  *      mode=           Set the default file permissions.
366  *      dmode=          Set the default directory permissions.
367  *      uid=            Set the default user.
368  *      bs=             Set the block size.
369  *      unhide          Show otherwise hidden files.
370  *      undelete        Show deleted files in lists.
371  *      adinicb         Embed data in the inode (default)
372  *      noadinicb       Don't embed data in the inode
373  *      shortad         Use short ad's
374  *      longad          Use long ad's (default)
375  *      nostrict        Unset strict conformance
376  *      iocharset=      Set the NLS character set
377  *
378  *      The remaining are for debugging and disaster recovery:
379  *
380  *      novrs           Skip volume sequence recognition
381  *
382  *      The following expect a offset from 0.
383  *
384  *      session=        Set the CDROM session (default= last session)
385  *      anchor=         Override standard anchor location. (default= 256)
386  *      volume=         Override the VolumeDesc location. (unused)
387  *      partition=      Override the PartitionDesc location. (unused)
388  *      lastblock=      Set the last block of the filesystem/
389  *
390  *      The following expect a offset from the partition root.
391  *
392  *      fileset=        Override the fileset block location. (unused)
393  *      rootdir=        Override the root directory location. (unused)
394  *              WARNING: overriding the rootdir to a non-directory may
395  *              yield highly unpredictable results.
396  *
397  * PRE-CONDITIONS
398  *      options         Pointer to mount options string.
399  *      uopts           Pointer to mount options variable.
400  *
401  * POST-CONDITIONS
402  *      <return>        1       Mount options parsed okay.
403  *      <return>        0       Error parsing mount options.
404  *
405  * HISTORY
406  *      July 1, 1997 - Andrew E. Mileski
407  *      Written, tested, and released.
408  */
409
410 enum {
411         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
412         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
413         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
414         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
415         Opt_rootdir, Opt_utf8, Opt_iocharset,
416         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
417         Opt_fmode, Opt_dmode
418 };
419
420 static const match_table_t tokens = {
421         {Opt_novrs,     "novrs"},
422         {Opt_nostrict,  "nostrict"},
423         {Opt_bs,        "bs=%u"},
424         {Opt_unhide,    "unhide"},
425         {Opt_undelete,  "undelete"},
426         {Opt_noadinicb, "noadinicb"},
427         {Opt_adinicb,   "adinicb"},
428         {Opt_shortad,   "shortad"},
429         {Opt_longad,    "longad"},
430         {Opt_uforget,   "uid=forget"},
431         {Opt_uignore,   "uid=ignore"},
432         {Opt_gforget,   "gid=forget"},
433         {Opt_gignore,   "gid=ignore"},
434         {Opt_gid,       "gid=%u"},
435         {Opt_uid,       "uid=%u"},
436         {Opt_umask,     "umask=%o"},
437         {Opt_session,   "session=%u"},
438         {Opt_lastblock, "lastblock=%u"},
439         {Opt_anchor,    "anchor=%u"},
440         {Opt_volume,    "volume=%u"},
441         {Opt_partition, "partition=%u"},
442         {Opt_fileset,   "fileset=%u"},
443         {Opt_rootdir,   "rootdir=%u"},
444         {Opt_utf8,      "utf8"},
445         {Opt_iocharset, "iocharset=%s"},
446         {Opt_fmode,     "mode=%o"},
447         {Opt_dmode,     "dmode=%o"},
448         {Opt_err,       NULL}
449 };
450
451 static int udf_parse_options(char *options, struct udf_options *uopt,
452                              bool remount)
453 {
454         char *p;
455         int option;
456         unsigned int uv;
457
458         uopt->novrs = 0;
459         uopt->session = 0xFFFFFFFF;
460         uopt->lastblock = 0;
461         uopt->anchor = 0;
462
463         if (!options)
464                 return 1;
465
466         while ((p = strsep(&options, ",")) != NULL) {
467                 substring_t args[MAX_OPT_ARGS];
468                 int token;
469                 unsigned n;
470                 if (!*p)
471                         continue;
472
473                 token = match_token(p, tokens, args);
474                 switch (token) {
475                 case Opt_novrs:
476                         uopt->novrs = 1;
477                         break;
478                 case Opt_bs:
479                         if (match_int(&args[0], &option))
480                                 return 0;
481                         n = option;
482                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
483                                 return 0;
484                         uopt->blocksize = n;
485                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
486                         break;
487                 case Opt_unhide:
488                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
489                         break;
490                 case Opt_undelete:
491                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
492                         break;
493                 case Opt_noadinicb:
494                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
495                         break;
496                 case Opt_adinicb:
497                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
498                         break;
499                 case Opt_shortad:
500                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
501                         break;
502                 case Opt_longad:
503                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
504                         break;
505                 case Opt_gid:
506                         if (match_uint(args, &uv))
507                                 return 0;
508                         uopt->gid = make_kgid(current_user_ns(), uv);
509                         if (!gid_valid(uopt->gid))
510                                 return 0;
511                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
512                         break;
513                 case Opt_uid:
514                         if (match_uint(args, &uv))
515                                 return 0;
516                         uopt->uid = make_kuid(current_user_ns(), uv);
517                         if (!uid_valid(uopt->uid))
518                                 return 0;
519                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
520                         break;
521                 case Opt_umask:
522                         if (match_octal(args, &option))
523                                 return 0;
524                         uopt->umask = option;
525                         break;
526                 case Opt_nostrict:
527                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
528                         break;
529                 case Opt_session:
530                         if (match_int(args, &option))
531                                 return 0;
532                         uopt->session = option;
533                         if (!remount)
534                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
535                         break;
536                 case Opt_lastblock:
537                         if (match_int(args, &option))
538                                 return 0;
539                         uopt->lastblock = option;
540                         if (!remount)
541                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
542                         break;
543                 case Opt_anchor:
544                         if (match_int(args, &option))
545                                 return 0;
546                         uopt->anchor = option;
547                         break;
548                 case Opt_volume:
549                 case Opt_partition:
550                 case Opt_fileset:
551                 case Opt_rootdir:
552                         /* Ignored (never implemented properly) */
553                         break;
554                 case Opt_utf8:
555                         if (!remount) {
556                                 unload_nls(uopt->nls_map);
557                                 uopt->nls_map = NULL;
558                         }
559                         break;
560                 case Opt_iocharset:
561                         if (!remount) {
562                                 unload_nls(uopt->nls_map);
563                                 uopt->nls_map = NULL;
564                         }
565                         /* When nls_map is not loaded then UTF-8 is used */
566                         if (!remount && strcmp(args[0].from, "utf8") != 0) {
567                                 uopt->nls_map = load_nls(args[0].from);
568                                 if (!uopt->nls_map) {
569                                         pr_err("iocharset %s not found\n",
570                                                 args[0].from);
571                                         return 0;
572                                 }
573                         }
574                         break;
575                 case Opt_uforget:
576                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577                         break;
578                 case Opt_uignore:
579                 case Opt_gignore:
580                         /* These options are superseeded by uid=<number> */
581                         break;
582                 case Opt_gforget:
583                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584                         break;
585                 case Opt_fmode:
586                         if (match_octal(args, &option))
587                                 return 0;
588                         uopt->fmode = option & 0777;
589                         break;
590                 case Opt_dmode:
591                         if (match_octal(args, &option))
592                                 return 0;
593                         uopt->dmode = option & 0777;
594                         break;
595                 default:
596                         pr_err("bad mount option \"%s\" or missing value\n", p);
597                         return 0;
598                 }
599         }
600         return 1;
601 }
602
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605         struct udf_options uopt;
606         struct udf_sb_info *sbi = UDF_SB(sb);
607         int error = 0;
608
609         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610                 return -EACCES;
611
612         sync_filesystem(sb);
613
614         uopt.flags = sbi->s_flags;
615         uopt.uid   = sbi->s_uid;
616         uopt.gid   = sbi->s_gid;
617         uopt.umask = sbi->s_umask;
618         uopt.fmode = sbi->s_fmode;
619         uopt.dmode = sbi->s_dmode;
620         uopt.nls_map = NULL;
621
622         if (!udf_parse_options(options, &uopt, true))
623                 return -EINVAL;
624
625         write_lock(&sbi->s_cred_lock);
626         sbi->s_flags = uopt.flags;
627         sbi->s_uid   = uopt.uid;
628         sbi->s_gid   = uopt.gid;
629         sbi->s_umask = uopt.umask;
630         sbi->s_fmode = uopt.fmode;
631         sbi->s_dmode = uopt.dmode;
632         write_unlock(&sbi->s_cred_lock);
633
634         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635                 goto out_unlock;
636
637         if (*flags & SB_RDONLY)
638                 udf_close_lvid(sb);
639         else
640                 udf_open_lvid(sb);
641
642 out_unlock:
643         return error;
644 }
645
646 /*
647  * Check VSD descriptor. Returns -1 in case we are at the end of volume
648  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649  * we found one of NSR descriptors we are looking for.
650  */
651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653         int ret = 0;
654
655         if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656                 switch (vsd->structType) {
657                 case 0:
658                         udf_debug("ISO9660 Boot Record found\n");
659                         break;
660                 case 1:
661                         udf_debug("ISO9660 Primary Volume Descriptor found\n");
662                         break;
663                 case 2:
664                         udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665                         break;
666                 case 3:
667                         udf_debug("ISO9660 Volume Partition Descriptor found\n");
668                         break;
669                 case 255:
670                         udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671                         break;
672                 default:
673                         udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674                         break;
675                 }
676         } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677                 ; /* ret = 0 */
678         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679                 ret = 1;
680         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681                 ret = 1;
682         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683                 ; /* ret = 0 */
684         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685                 ; /* ret = 0 */
686         else {
687                 /* TEA01 or invalid id : end of volume recognition area */
688                 ret = -1;
689         }
690
691         return ret;
692 }
693
694 /*
695  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697  * @return   1 if NSR02 or NSR03 found,
698  *          -1 if first sector read error, 0 otherwise
699  */
700 static int udf_check_vsd(struct super_block *sb)
701 {
702         struct volStructDesc *vsd = NULL;
703         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704         int sectorsize;
705         struct buffer_head *bh = NULL;
706         int nsr = 0;
707         struct udf_sb_info *sbi;
708         loff_t session_offset;
709
710         sbi = UDF_SB(sb);
711         if (sb->s_blocksize < sizeof(struct volStructDesc))
712                 sectorsize = sizeof(struct volStructDesc);
713         else
714                 sectorsize = sb->s_blocksize;
715
716         session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
717         sector += session_offset;
718
719         udf_debug("Starting at sector %u (%lu byte sectors)\n",
720                   (unsigned int)(sector >> sb->s_blocksize_bits),
721                   sb->s_blocksize);
722         /* Process the sequence (if applicable). The hard limit on the sector
723          * offset is arbitrary, hopefully large enough so that all valid UDF
724          * filesystems will be recognised. There is no mention of an upper
725          * bound to the size of the volume recognition area in the standard.
726          *  The limit will prevent the code to read all the sectors of a
727          * specially crafted image (like a bluray disc full of CD001 sectors),
728          * potentially causing minutes or even hours of uninterruptible I/O
729          * activity. This actually happened with uninitialised SSD partitions
730          * (all 0xFF) before the check for the limit and all valid IDs were
731          * added */
732         for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
733                 /* Read a block */
734                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
735                 if (!bh)
736                         break;
737
738                 vsd = (struct volStructDesc *)(bh->b_data +
739                                               (sector & (sb->s_blocksize - 1)));
740                 nsr = identify_vsd(vsd);
741                 /* Found NSR or end? */
742                 if (nsr) {
743                         brelse(bh);
744                         break;
745                 }
746                 /*
747                  * Special handling for improperly formatted VRS (e.g., Win10)
748                  * where components are separated by 2048 bytes even though
749                  * sectors are 4K
750                  */
751                 if (sb->s_blocksize == 4096) {
752                         nsr = identify_vsd(vsd + 1);
753                         /* Ignore unknown IDs... */
754                         if (nsr < 0)
755                                 nsr = 0;
756                 }
757                 brelse(bh);
758         }
759
760         if (nsr > 0)
761                 return 1;
762         else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
763                 return -1;
764         else
765                 return 0;
766 }
767
768 static int udf_verify_domain_identifier(struct super_block *sb,
769                                         struct regid *ident, char *dname)
770 {
771         struct domainIdentSuffix *suffix;
772
773         if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
774                 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
775                 goto force_ro;
776         }
777         if (ident->flags & ENTITYID_FLAGS_DIRTY) {
778                 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
779                          dname);
780                 goto force_ro;
781         }
782         suffix = (struct domainIdentSuffix *)ident->identSuffix;
783         if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
784             (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
785                 if (!sb_rdonly(sb)) {
786                         udf_warn(sb, "Descriptor for %s marked write protected."
787                                  " Forcing read only mount.\n", dname);
788                 }
789                 goto force_ro;
790         }
791         return 0;
792
793 force_ro:
794         if (!sb_rdonly(sb))
795                 return -EACCES;
796         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
797         return 0;
798 }
799
800 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
801                             struct kernel_lb_addr *root)
802 {
803         int ret;
804
805         ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
806         if (ret < 0)
807                 return ret;
808
809         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
810         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
811
812         udf_debug("Rootdir at block=%u, partition=%u\n",
813                   root->logicalBlockNum, root->partitionReferenceNum);
814         return 0;
815 }
816
817 static int udf_find_fileset(struct super_block *sb,
818                             struct kernel_lb_addr *fileset,
819                             struct kernel_lb_addr *root)
820 {
821         struct buffer_head *bh = NULL;
822         uint16_t ident;
823         int ret;
824
825         if (fileset->logicalBlockNum == 0xFFFFFFFF &&
826             fileset->partitionReferenceNum == 0xFFFF)
827                 return -EINVAL;
828
829         bh = udf_read_ptagged(sb, fileset, 0, &ident);
830         if (!bh)
831                 return -EIO;
832         if (ident != TAG_IDENT_FSD) {
833                 brelse(bh);
834                 return -EINVAL;
835         }
836
837         udf_debug("Fileset at block=%u, partition=%u\n",
838                   fileset->logicalBlockNum, fileset->partitionReferenceNum);
839
840         UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
841         ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
842         brelse(bh);
843         return ret;
844 }
845
846 /*
847  * Load primary Volume Descriptor Sequence
848  *
849  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
850  * should be tried.
851  */
852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853 {
854         struct primaryVolDesc *pvoldesc;
855         uint8_t *outstr;
856         struct buffer_head *bh;
857         uint16_t ident;
858         int ret;
859         struct timestamp *ts;
860
861         outstr = kmalloc(128, GFP_NOFS);
862         if (!outstr)
863                 return -ENOMEM;
864
865         bh = udf_read_tagged(sb, block, block, &ident);
866         if (!bh) {
867                 ret = -EAGAIN;
868                 goto out2;
869         }
870
871         if (ident != TAG_IDENT_PVD) {
872                 ret = -EIO;
873                 goto out_bh;
874         }
875
876         pvoldesc = (struct primaryVolDesc *)bh->b_data;
877
878         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
879                               pvoldesc->recordingDateAndTime);
880         ts = &pvoldesc->recordingDateAndTime;
881         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
882                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
883                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
884
885         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
886         if (ret < 0) {
887                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
888                 pr_warn("incorrect volume identification, setting to "
889                         "'InvalidName'\n");
890         } else {
891                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
892         }
893         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
894
895         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
896         if (ret < 0) {
897                 ret = 0;
898                 goto out_bh;
899         }
900         outstr[ret] = 0;
901         udf_debug("volSetIdent[] = '%s'\n", outstr);
902
903         ret = 0;
904 out_bh:
905         brelse(bh);
906 out2:
907         kfree(outstr);
908         return ret;
909 }
910
911 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
912                                         u32 meta_file_loc, u32 partition_ref)
913 {
914         struct kernel_lb_addr addr;
915         struct inode *metadata_fe;
916
917         addr.logicalBlockNum = meta_file_loc;
918         addr.partitionReferenceNum = partition_ref;
919
920         metadata_fe = udf_iget_special(sb, &addr);
921
922         if (IS_ERR(metadata_fe)) {
923                 udf_warn(sb, "metadata inode efe not found\n");
924                 return metadata_fe;
925         }
926         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
927                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
928                 iput(metadata_fe);
929                 return ERR_PTR(-EIO);
930         }
931
932         return metadata_fe;
933 }
934
935 static int udf_load_metadata_files(struct super_block *sb, int partition,
936                                    int type1_index)
937 {
938         struct udf_sb_info *sbi = UDF_SB(sb);
939         struct udf_part_map *map;
940         struct udf_meta_data *mdata;
941         struct kernel_lb_addr addr;
942         struct inode *fe;
943
944         map = &sbi->s_partmaps[partition];
945         mdata = &map->s_type_specific.s_metadata;
946         mdata->s_phys_partition_ref = type1_index;
947
948         /* metadata address */
949         udf_debug("Metadata file location: block = %u part = %u\n",
950                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
951
952         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
953                                          mdata->s_phys_partition_ref);
954         if (IS_ERR(fe)) {
955                 /* mirror file entry */
956                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
957                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
958
959                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
960                                                  mdata->s_phys_partition_ref);
961
962                 if (IS_ERR(fe)) {
963                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
964                         return PTR_ERR(fe);
965                 }
966                 mdata->s_mirror_fe = fe;
967         } else
968                 mdata->s_metadata_fe = fe;
969
970
971         /*
972          * bitmap file entry
973          * Note:
974          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
975         */
976         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
977                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
978                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
979
980                 udf_debug("Bitmap file location: block = %u part = %u\n",
981                           addr.logicalBlockNum, addr.partitionReferenceNum);
982
983                 fe = udf_iget_special(sb, &addr);
984                 if (IS_ERR(fe)) {
985                         if (sb_rdonly(sb))
986                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
987                         else {
988                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
989                                 return PTR_ERR(fe);
990                         }
991                 } else
992                         mdata->s_bitmap_fe = fe;
993         }
994
995         udf_debug("udf_load_metadata_files Ok\n");
996         return 0;
997 }
998
999 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1000 {
1001         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1002         return DIV_ROUND_UP(map->s_partition_len +
1003                             (sizeof(struct spaceBitmapDesc) << 3),
1004                             sb->s_blocksize * 8);
1005 }
1006
1007 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1008 {
1009         struct udf_bitmap *bitmap;
1010         int nr_groups = udf_compute_nr_groups(sb, index);
1011
1012         bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1013                           GFP_KERNEL);
1014         if (!bitmap)
1015                 return NULL;
1016
1017         bitmap->s_nr_groups = nr_groups;
1018         return bitmap;
1019 }
1020
1021 static int check_partition_desc(struct super_block *sb,
1022                                 struct partitionDesc *p,
1023                                 struct udf_part_map *map)
1024 {
1025         bool umap, utable, fmap, ftable;
1026         struct partitionHeaderDesc *phd;
1027
1028         switch (le32_to_cpu(p->accessType)) {
1029         case PD_ACCESS_TYPE_READ_ONLY:
1030         case PD_ACCESS_TYPE_WRITE_ONCE:
1031         case PD_ACCESS_TYPE_NONE:
1032                 goto force_ro;
1033         }
1034
1035         /* No Partition Header Descriptor? */
1036         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1037             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1038                 goto force_ro;
1039
1040         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1041         utable = phd->unallocSpaceTable.extLength;
1042         umap = phd->unallocSpaceBitmap.extLength;
1043         ftable = phd->freedSpaceTable.extLength;
1044         fmap = phd->freedSpaceBitmap.extLength;
1045
1046         /* No allocation info? */
1047         if (!utable && !umap && !ftable && !fmap)
1048                 goto force_ro;
1049
1050         /* We don't support blocks that require erasing before overwrite */
1051         if (ftable || fmap)
1052                 goto force_ro;
1053         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1054         if (utable && umap)
1055                 goto force_ro;
1056
1057         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1058             map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1059             map->s_partition_type == UDF_METADATA_MAP25)
1060                 goto force_ro;
1061
1062         return 0;
1063 force_ro:
1064         if (!sb_rdonly(sb))
1065                 return -EACCES;
1066         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1067         return 0;
1068 }
1069
1070 static int udf_fill_partdesc_info(struct super_block *sb,
1071                 struct partitionDesc *p, int p_index)
1072 {
1073         struct udf_part_map *map;
1074         struct udf_sb_info *sbi = UDF_SB(sb);
1075         struct partitionHeaderDesc *phd;
1076         int err;
1077
1078         map = &sbi->s_partmaps[p_index];
1079
1080         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1081         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1082
1083         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1084                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1085         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1086                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1087         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1088                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1089         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1090                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1091
1092         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1093                   p_index, map->s_partition_type,
1094                   map->s_partition_root, map->s_partition_len);
1095
1096         err = check_partition_desc(sb, p, map);
1097         if (err)
1098                 return err;
1099
1100         /*
1101          * Skip loading allocation info it we cannot ever write to the fs.
1102          * This is a correctness thing as we may have decided to force ro mount
1103          * to avoid allocation info we don't support.
1104          */
1105         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1106                 return 0;
1107
1108         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109         if (phd->unallocSpaceTable.extLength) {
1110                 struct kernel_lb_addr loc = {
1111                         .logicalBlockNum = le32_to_cpu(
1112                                 phd->unallocSpaceTable.extPosition),
1113                         .partitionReferenceNum = p_index,
1114                 };
1115                 struct inode *inode;
1116
1117                 inode = udf_iget_special(sb, &loc);
1118                 if (IS_ERR(inode)) {
1119                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120                                   p_index);
1121                         return PTR_ERR(inode);
1122                 }
1123                 map->s_uspace.s_table = inode;
1124                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1126                           p_index, map->s_uspace.s_table->i_ino);
1127         }
1128
1129         if (phd->unallocSpaceBitmap.extLength) {
1130                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131                 if (!bitmap)
1132                         return -ENOMEM;
1133                 map->s_uspace.s_bitmap = bitmap;
1134                 bitmap->s_extPosition = le32_to_cpu(
1135                                 phd->unallocSpaceBitmap.extPosition);
1136                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1138                           p_index, bitmap->s_extPosition);
1139         }
1140
1141         return 0;
1142 }
1143
1144 static void udf_find_vat_block(struct super_block *sb, int p_index,
1145                                int type1_index, sector_t start_block)
1146 {
1147         struct udf_sb_info *sbi = UDF_SB(sb);
1148         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1149         sector_t vat_block;
1150         struct kernel_lb_addr ino;
1151         struct inode *inode;
1152
1153         /*
1154          * VAT file entry is in the last recorded block. Some broken disks have
1155          * it a few blocks before so try a bit harder...
1156          */
1157         ino.partitionReferenceNum = type1_index;
1158         for (vat_block = start_block;
1159              vat_block >= map->s_partition_root &&
1160              vat_block >= start_block - 3; vat_block--) {
1161                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1162                 inode = udf_iget_special(sb, &ino);
1163                 if (!IS_ERR(inode)) {
1164                         sbi->s_vat_inode = inode;
1165                         break;
1166                 }
1167         }
1168 }
1169
1170 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1171 {
1172         struct udf_sb_info *sbi = UDF_SB(sb);
1173         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1174         struct buffer_head *bh = NULL;
1175         struct udf_inode_info *vati;
1176         uint32_t pos;
1177         struct virtualAllocationTable20 *vat20;
1178         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1179                           sb->s_blocksize_bits;
1180
1181         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1182         if (!sbi->s_vat_inode &&
1183             sbi->s_last_block != blocks - 1) {
1184                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1185                           (unsigned long)sbi->s_last_block,
1186                           (unsigned long)blocks - 1);
1187                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1188         }
1189         if (!sbi->s_vat_inode)
1190                 return -EIO;
1191
1192         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1193                 map->s_type_specific.s_virtual.s_start_offset = 0;
1194                 map->s_type_specific.s_virtual.s_num_entries =
1195                         (sbi->s_vat_inode->i_size - 36) >> 2;
1196         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1197                 vati = UDF_I(sbi->s_vat_inode);
1198                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1199                         pos = udf_block_map(sbi->s_vat_inode, 0);
1200                         bh = sb_bread(sb, pos);
1201                         if (!bh)
1202                                 return -EIO;
1203                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1204                 } else {
1205                         vat20 = (struct virtualAllocationTable20 *)
1206                                                         vati->i_data;
1207                 }
1208
1209                 map->s_type_specific.s_virtual.s_start_offset =
1210                         le16_to_cpu(vat20->lengthHeader);
1211                 map->s_type_specific.s_virtual.s_num_entries =
1212                         (sbi->s_vat_inode->i_size -
1213                                 map->s_type_specific.s_virtual.
1214                                         s_start_offset) >> 2;
1215                 brelse(bh);
1216         }
1217         return 0;
1218 }
1219
1220 /*
1221  * Load partition descriptor block
1222  *
1223  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1224  * sequence.
1225  */
1226 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1227 {
1228         struct buffer_head *bh;
1229         struct partitionDesc *p;
1230         struct udf_part_map *map;
1231         struct udf_sb_info *sbi = UDF_SB(sb);
1232         int i, type1_idx;
1233         uint16_t partitionNumber;
1234         uint16_t ident;
1235         int ret;
1236
1237         bh = udf_read_tagged(sb, block, block, &ident);
1238         if (!bh)
1239                 return -EAGAIN;
1240         if (ident != TAG_IDENT_PD) {
1241                 ret = 0;
1242                 goto out_bh;
1243         }
1244
1245         p = (struct partitionDesc *)bh->b_data;
1246         partitionNumber = le16_to_cpu(p->partitionNumber);
1247
1248         /* First scan for TYPE1 and SPARABLE partitions */
1249         for (i = 0; i < sbi->s_partitions; i++) {
1250                 map = &sbi->s_partmaps[i];
1251                 udf_debug("Searching map: (%u == %u)\n",
1252                           map->s_partition_num, partitionNumber);
1253                 if (map->s_partition_num == partitionNumber &&
1254                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1255                      map->s_partition_type == UDF_SPARABLE_MAP15))
1256                         break;
1257         }
1258
1259         if (i >= sbi->s_partitions) {
1260                 udf_debug("Partition (%u) not found in partition map\n",
1261                           partitionNumber);
1262                 ret = 0;
1263                 goto out_bh;
1264         }
1265
1266         ret = udf_fill_partdesc_info(sb, p, i);
1267         if (ret < 0)
1268                 goto out_bh;
1269
1270         /*
1271          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1272          * PHYSICAL partitions are already set up
1273          */
1274         type1_idx = i;
1275         map = NULL; /* supress 'maybe used uninitialized' warning */
1276         for (i = 0; i < sbi->s_partitions; i++) {
1277                 map = &sbi->s_partmaps[i];
1278
1279                 if (map->s_partition_num == partitionNumber &&
1280                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1281                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1282                      map->s_partition_type == UDF_METADATA_MAP25))
1283                         break;
1284         }
1285
1286         if (i >= sbi->s_partitions) {
1287                 ret = 0;
1288                 goto out_bh;
1289         }
1290
1291         ret = udf_fill_partdesc_info(sb, p, i);
1292         if (ret < 0)
1293                 goto out_bh;
1294
1295         if (map->s_partition_type == UDF_METADATA_MAP25) {
1296                 ret = udf_load_metadata_files(sb, i, type1_idx);
1297                 if (ret < 0) {
1298                         udf_err(sb, "error loading MetaData partition map %d\n",
1299                                 i);
1300                         goto out_bh;
1301                 }
1302         } else {
1303                 /*
1304                  * If we have a partition with virtual map, we don't handle
1305                  * writing to it (we overwrite blocks instead of relocating
1306                  * them).
1307                  */
1308                 if (!sb_rdonly(sb)) {
1309                         ret = -EACCES;
1310                         goto out_bh;
1311                 }
1312                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1313                 ret = udf_load_vat(sb, i, type1_idx);
1314                 if (ret < 0)
1315                         goto out_bh;
1316         }
1317         ret = 0;
1318 out_bh:
1319         /* In case loading failed, we handle cleanup in udf_fill_super */
1320         brelse(bh);
1321         return ret;
1322 }
1323
1324 static int udf_load_sparable_map(struct super_block *sb,
1325                                  struct udf_part_map *map,
1326                                  struct sparablePartitionMap *spm)
1327 {
1328         uint32_t loc;
1329         uint16_t ident;
1330         struct sparingTable *st;
1331         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1332         int i;
1333         struct buffer_head *bh;
1334
1335         map->s_partition_type = UDF_SPARABLE_MAP15;
1336         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1337         if (!is_power_of_2(sdata->s_packet_len)) {
1338                 udf_err(sb, "error loading logical volume descriptor: "
1339                         "Invalid packet length %u\n",
1340                         (unsigned)sdata->s_packet_len);
1341                 return -EIO;
1342         }
1343         if (spm->numSparingTables > 4) {
1344                 udf_err(sb, "error loading logical volume descriptor: "
1345                         "Too many sparing tables (%d)\n",
1346                         (int)spm->numSparingTables);
1347                 return -EIO;
1348         }
1349         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1350                 udf_err(sb, "error loading logical volume descriptor: "
1351                         "Too big sparing table size (%u)\n",
1352                         le32_to_cpu(spm->sizeSparingTable));
1353                 return -EIO;
1354         }
1355
1356         for (i = 0; i < spm->numSparingTables; i++) {
1357                 loc = le32_to_cpu(spm->locSparingTable[i]);
1358                 bh = udf_read_tagged(sb, loc, loc, &ident);
1359                 if (!bh)
1360                         continue;
1361
1362                 st = (struct sparingTable *)bh->b_data;
1363                 if (ident != 0 ||
1364                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365                             strlen(UDF_ID_SPARING)) ||
1366                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367                                                         sb->s_blocksize) {
1368                         brelse(bh);
1369                         continue;
1370                 }
1371
1372                 sdata->s_spar_map[i] = bh;
1373         }
1374         map->s_partition_func = udf_get_pblock_spar15;
1375         return 0;
1376 }
1377
1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379                                struct kernel_lb_addr *fileset)
1380 {
1381         struct logicalVolDesc *lvd;
1382         int i, offset;
1383         uint8_t type;
1384         struct udf_sb_info *sbi = UDF_SB(sb);
1385         struct genericPartitionMap *gpm;
1386         uint16_t ident;
1387         struct buffer_head *bh;
1388         unsigned int table_len;
1389         int ret;
1390
1391         bh = udf_read_tagged(sb, block, block, &ident);
1392         if (!bh)
1393                 return -EAGAIN;
1394         BUG_ON(ident != TAG_IDENT_LVD);
1395         lvd = (struct logicalVolDesc *)bh->b_data;
1396         table_len = le32_to_cpu(lvd->mapTableLength);
1397         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398                 udf_err(sb, "error loading logical volume descriptor: "
1399                         "Partition table too long (%u > %lu)\n", table_len,
1400                         sb->s_blocksize - sizeof(*lvd));
1401                 ret = -EIO;
1402                 goto out_bh;
1403         }
1404
1405         ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1406                                            "logical volume");
1407         if (ret)
1408                 goto out_bh;
1409         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1410         if (ret)
1411                 goto out_bh;
1412
1413         for (i = 0, offset = 0;
1414              i < sbi->s_partitions && offset < table_len;
1415              i++, offset += gpm->partitionMapLength) {
1416                 struct udf_part_map *map = &sbi->s_partmaps[i];
1417                 gpm = (struct genericPartitionMap *)
1418                                 &(lvd->partitionMaps[offset]);
1419                 type = gpm->partitionMapType;
1420                 if (type == 1) {
1421                         struct genericPartitionMap1 *gpm1 =
1422                                 (struct genericPartitionMap1 *)gpm;
1423                         map->s_partition_type = UDF_TYPE1_MAP15;
1424                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1425                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1426                         map->s_partition_func = NULL;
1427                 } else if (type == 2) {
1428                         struct udfPartitionMap2 *upm2 =
1429                                                 (struct udfPartitionMap2 *)gpm;
1430                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1431                                                 strlen(UDF_ID_VIRTUAL))) {
1432                                 u16 suf =
1433                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1434                                                         identSuffix)[0]);
1435                                 if (suf < 0x0200) {
1436                                         map->s_partition_type =
1437                                                         UDF_VIRTUAL_MAP15;
1438                                         map->s_partition_func =
1439                                                         udf_get_pblock_virt15;
1440                                 } else {
1441                                         map->s_partition_type =
1442                                                         UDF_VIRTUAL_MAP20;
1443                                         map->s_partition_func =
1444                                                         udf_get_pblock_virt20;
1445                                 }
1446                         } else if (!strncmp(upm2->partIdent.ident,
1447                                                 UDF_ID_SPARABLE,
1448                                                 strlen(UDF_ID_SPARABLE))) {
1449                                 ret = udf_load_sparable_map(sb, map,
1450                                         (struct sparablePartitionMap *)gpm);
1451                                 if (ret < 0)
1452                                         goto out_bh;
1453                         } else if (!strncmp(upm2->partIdent.ident,
1454                                                 UDF_ID_METADATA,
1455                                                 strlen(UDF_ID_METADATA))) {
1456                                 struct udf_meta_data *mdata =
1457                                         &map->s_type_specific.s_metadata;
1458                                 struct metadataPartitionMap *mdm =
1459                                                 (struct metadataPartitionMap *)
1460                                                 &(lvd->partitionMaps[offset]);
1461                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1462                                           i, type, UDF_ID_METADATA);
1463
1464                                 map->s_partition_type = UDF_METADATA_MAP25;
1465                                 map->s_partition_func = udf_get_pblock_meta25;
1466
1467                                 mdata->s_meta_file_loc   =
1468                                         le32_to_cpu(mdm->metadataFileLoc);
1469                                 mdata->s_mirror_file_loc =
1470                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1471                                 mdata->s_bitmap_file_loc =
1472                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1473                                 mdata->s_alloc_unit_size =
1474                                         le32_to_cpu(mdm->allocUnitSize);
1475                                 mdata->s_align_unit_size =
1476                                         le16_to_cpu(mdm->alignUnitSize);
1477                                 if (mdm->flags & 0x01)
1478                                         mdata->s_flags |= MF_DUPLICATE_MD;
1479
1480                                 udf_debug("Metadata Ident suffix=0x%x\n",
1481                                           le16_to_cpu(*(__le16 *)
1482                                                       mdm->partIdent.identSuffix));
1483                                 udf_debug("Metadata part num=%u\n",
1484                                           le16_to_cpu(mdm->partitionNum));
1485                                 udf_debug("Metadata part alloc unit size=%u\n",
1486                                           le32_to_cpu(mdm->allocUnitSize));
1487                                 udf_debug("Metadata file loc=%u\n",
1488                                           le32_to_cpu(mdm->metadataFileLoc));
1489                                 udf_debug("Mirror file loc=%u\n",
1490                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1491                                 udf_debug("Bitmap file loc=%u\n",
1492                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1493                                 udf_debug("Flags: %d %u\n",
1494                                           mdata->s_flags, mdm->flags);
1495                         } else {
1496                                 udf_debug("Unknown ident: %s\n",
1497                                           upm2->partIdent.ident);
1498                                 continue;
1499                         }
1500                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1501                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1502                 }
1503                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1504                           i, map->s_partition_num, type, map->s_volumeseqnum);
1505         }
1506
1507         if (fileset) {
1508                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1509
1510                 *fileset = lelb_to_cpu(la->extLocation);
1511                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1512                           fileset->logicalBlockNum,
1513                           fileset->partitionReferenceNum);
1514         }
1515         if (lvd->integritySeqExt.extLength)
1516                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1517         ret = 0;
1518
1519         if (!sbi->s_lvid_bh) {
1520                 /* We can't generate unique IDs without a valid LVID */
1521                 if (sb_rdonly(sb)) {
1522                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1523                 } else {
1524                         udf_warn(sb, "Damaged or missing LVID, forcing "
1525                                      "readonly mount\n");
1526                         ret = -EACCES;
1527                 }
1528         }
1529 out_bh:
1530         brelse(bh);
1531         return ret;
1532 }
1533
1534 /*
1535  * Find the prevailing Logical Volume Integrity Descriptor.
1536  */
1537 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1538 {
1539         struct buffer_head *bh, *final_bh;
1540         uint16_t ident;
1541         struct udf_sb_info *sbi = UDF_SB(sb);
1542         struct logicalVolIntegrityDesc *lvid;
1543         int indirections = 0;
1544         u32 parts, impuselen;
1545
1546         while (++indirections <= UDF_MAX_LVID_NESTING) {
1547                 final_bh = NULL;
1548                 while (loc.extLength > 0 &&
1549                         (bh = udf_read_tagged(sb, loc.extLocation,
1550                                         loc.extLocation, &ident))) {
1551                         if (ident != TAG_IDENT_LVID) {
1552                                 brelse(bh);
1553                                 break;
1554                         }
1555
1556                         brelse(final_bh);
1557                         final_bh = bh;
1558
1559                         loc.extLength -= sb->s_blocksize;
1560                         loc.extLocation++;
1561                 }
1562
1563                 if (!final_bh)
1564                         return;
1565
1566                 brelse(sbi->s_lvid_bh);
1567                 sbi->s_lvid_bh = final_bh;
1568
1569                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570                 if (lvid->nextIntegrityExt.extLength == 0)
1571                         goto check;
1572
1573                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1574         }
1575
1576         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577                 UDF_MAX_LVID_NESTING);
1578 out_err:
1579         brelse(sbi->s_lvid_bh);
1580         sbi->s_lvid_bh = NULL;
1581         return;
1582 check:
1583         parts = le32_to_cpu(lvid->numOfPartitions);
1584         impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1585         if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1586             sizeof(struct logicalVolIntegrityDesc) + impuselen +
1587             2 * parts * sizeof(u32) > sb->s_blocksize) {
1588                 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1589                          "ignoring.\n", parts, impuselen);
1590                 goto out_err;
1591         }
1592 }
1593
1594 /*
1595  * Step for reallocation of table of partition descriptor sequence numbers.
1596  * Must be power of 2.
1597  */
1598 #define PART_DESC_ALLOC_STEP 32
1599
1600 struct part_desc_seq_scan_data {
1601         struct udf_vds_record rec;
1602         u32 partnum;
1603 };
1604
1605 struct desc_seq_scan_data {
1606         struct udf_vds_record vds[VDS_POS_LENGTH];
1607         unsigned int size_part_descs;
1608         unsigned int num_part_descs;
1609         struct part_desc_seq_scan_data *part_descs_loc;
1610 };
1611
1612 static struct udf_vds_record *handle_partition_descriptor(
1613                                 struct buffer_head *bh,
1614                                 struct desc_seq_scan_data *data)
1615 {
1616         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1617         int partnum;
1618         int i;
1619
1620         partnum = le16_to_cpu(desc->partitionNumber);
1621         for (i = 0; i < data->num_part_descs; i++)
1622                 if (partnum == data->part_descs_loc[i].partnum)
1623                         return &(data->part_descs_loc[i].rec);
1624         if (data->num_part_descs >= data->size_part_descs) {
1625                 struct part_desc_seq_scan_data *new_loc;
1626                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1627
1628                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1629                 if (!new_loc)
1630                         return ERR_PTR(-ENOMEM);
1631                 memcpy(new_loc, data->part_descs_loc,
1632                        data->size_part_descs * sizeof(*new_loc));
1633                 kfree(data->part_descs_loc);
1634                 data->part_descs_loc = new_loc;
1635                 data->size_part_descs = new_size;
1636         }
1637         return &(data->part_descs_loc[data->num_part_descs++].rec);
1638 }
1639
1640
1641 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1642                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1643 {
1644         switch (ident) {
1645         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1646                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1647         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1648                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1649         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1651         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1652                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1653         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1654                 return handle_partition_descriptor(bh, data);
1655         }
1656         return NULL;
1657 }
1658
1659 /*
1660  * Process a main/reserve volume descriptor sequence.
1661  *   @block             First block of first extent of the sequence.
1662  *   @lastblock         Lastblock of first extent of the sequence.
1663  *   @fileset           There we store extent containing root fileset
1664  *
1665  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1666  * sequence
1667  */
1668 static noinline int udf_process_sequence(
1669                 struct super_block *sb,
1670                 sector_t block, sector_t lastblock,
1671                 struct kernel_lb_addr *fileset)
1672 {
1673         struct buffer_head *bh = NULL;
1674         struct udf_vds_record *curr;
1675         struct generic_desc *gd;
1676         struct volDescPtr *vdp;
1677         bool done = false;
1678         uint32_t vdsn;
1679         uint16_t ident;
1680         int ret;
1681         unsigned int indirections = 0;
1682         struct desc_seq_scan_data data;
1683         unsigned int i;
1684
1685         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1686         data.size_part_descs = PART_DESC_ALLOC_STEP;
1687         data.num_part_descs = 0;
1688         data.part_descs_loc = kcalloc(data.size_part_descs,
1689                                       sizeof(*data.part_descs_loc),
1690                                       GFP_KERNEL);
1691         if (!data.part_descs_loc)
1692                 return -ENOMEM;
1693
1694         /*
1695          * Read the main descriptor sequence and find which descriptors
1696          * are in it.
1697          */
1698         for (; (!done && block <= lastblock); block++) {
1699                 bh = udf_read_tagged(sb, block, block, &ident);
1700                 if (!bh)
1701                         break;
1702
1703                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1704                 gd = (struct generic_desc *)bh->b_data;
1705                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1706                 switch (ident) {
1707                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1708                         if (++indirections > UDF_MAX_TD_NESTING) {
1709                                 udf_err(sb, "too many Volume Descriptor "
1710                                         "Pointers (max %u supported)\n",
1711                                         UDF_MAX_TD_NESTING);
1712                                 brelse(bh);
1713                                 ret = -EIO;
1714                                 goto out;
1715                         }
1716
1717                         vdp = (struct volDescPtr *)bh->b_data;
1718                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1719                         lastblock = le32_to_cpu(
1720                                 vdp->nextVolDescSeqExt.extLength) >>
1721                                 sb->s_blocksize_bits;
1722                         lastblock += block - 1;
1723                         /* For loop is going to increment 'block' again */
1724                         block--;
1725                         break;
1726                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1727                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1728                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1729                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1730                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1731                         curr = get_volume_descriptor_record(ident, bh, &data);
1732                         if (IS_ERR(curr)) {
1733                                 brelse(bh);
1734                                 ret = PTR_ERR(curr);
1735                                 goto out;
1736                         }
1737                         /* Descriptor we don't care about? */
1738                         if (!curr)
1739                                 break;
1740                         if (vdsn >= curr->volDescSeqNum) {
1741                                 curr->volDescSeqNum = vdsn;
1742                                 curr->block = block;
1743                         }
1744                         break;
1745                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1746                         done = true;
1747                         break;
1748                 }
1749                 brelse(bh);
1750         }
1751         /*
1752          * Now read interesting descriptors again and process them
1753          * in a suitable order
1754          */
1755         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1756                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1757                 ret = -EAGAIN;
1758                 goto out;
1759         }
1760         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1761         if (ret < 0)
1762                 goto out;
1763
1764         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1765                 ret = udf_load_logicalvol(sb,
1766                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1767                                 fileset);
1768                 if (ret < 0)
1769                         goto out;
1770         }
1771
1772         /* Now handle prevailing Partition Descriptors */
1773         for (i = 0; i < data.num_part_descs; i++) {
1774                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1775                 if (ret < 0)
1776                         goto out;
1777         }
1778         ret = 0;
1779 out:
1780         kfree(data.part_descs_loc);
1781         return ret;
1782 }
1783
1784 /*
1785  * Load Volume Descriptor Sequence described by anchor in bh
1786  *
1787  * Returns <0 on error, 0 on success
1788  */
1789 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1790                              struct kernel_lb_addr *fileset)
1791 {
1792         struct anchorVolDescPtr *anchor;
1793         sector_t main_s, main_e, reserve_s, reserve_e;
1794         int ret;
1795
1796         anchor = (struct anchorVolDescPtr *)bh->b_data;
1797
1798         /* Locate the main sequence */
1799         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1800         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1801         main_e = main_e >> sb->s_blocksize_bits;
1802         main_e += main_s - 1;
1803
1804         /* Locate the reserve sequence */
1805         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1806         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1807         reserve_e = reserve_e >> sb->s_blocksize_bits;
1808         reserve_e += reserve_s - 1;
1809
1810         /* Process the main & reserve sequences */
1811         /* responsible for finding the PartitionDesc(s) */
1812         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1813         if (ret != -EAGAIN)
1814                 return ret;
1815         udf_sb_free_partitions(sb);
1816         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1817         if (ret < 0) {
1818                 udf_sb_free_partitions(sb);
1819                 /* No sequence was OK, return -EIO */
1820                 if (ret == -EAGAIN)
1821                         ret = -EIO;
1822         }
1823         return ret;
1824 }
1825
1826 /*
1827  * Check whether there is an anchor block in the given block and
1828  * load Volume Descriptor Sequence if so.
1829  *
1830  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1831  * block
1832  */
1833 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1834                                   struct kernel_lb_addr *fileset)
1835 {
1836         struct buffer_head *bh;
1837         uint16_t ident;
1838         int ret;
1839
1840         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1841             udf_fixed_to_variable(block) >=
1842             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1843                 return -EAGAIN;
1844
1845         bh = udf_read_tagged(sb, block, block, &ident);
1846         if (!bh)
1847                 return -EAGAIN;
1848         if (ident != TAG_IDENT_AVDP) {
1849                 brelse(bh);
1850                 return -EAGAIN;
1851         }
1852         ret = udf_load_sequence(sb, bh, fileset);
1853         brelse(bh);
1854         return ret;
1855 }
1856
1857 /*
1858  * Search for an anchor volume descriptor pointer.
1859  *
1860  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861  * of anchors.
1862  */
1863 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864                             struct kernel_lb_addr *fileset)
1865 {
1866         sector_t last[6];
1867         int i;
1868         struct udf_sb_info *sbi = UDF_SB(sb);
1869         int last_count = 0;
1870         int ret;
1871
1872         /* First try user provided anchor */
1873         if (sbi->s_anchor) {
1874                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875                 if (ret != -EAGAIN)
1876                         return ret;
1877         }
1878         /*
1879          * according to spec, anchor is in either:
1880          *     block 256
1881          *     lastblock-256
1882          *     lastblock
1883          *  however, if the disc isn't closed, it could be 512.
1884          */
1885         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886         if (ret != -EAGAIN)
1887                 return ret;
1888         /*
1889          * The trouble is which block is the last one. Drives often misreport
1890          * this so we try various possibilities.
1891          */
1892         last[last_count++] = *lastblock;
1893         if (*lastblock >= 1)
1894                 last[last_count++] = *lastblock - 1;
1895         last[last_count++] = *lastblock + 1;
1896         if (*lastblock >= 2)
1897                 last[last_count++] = *lastblock - 2;
1898         if (*lastblock >= 150)
1899                 last[last_count++] = *lastblock - 150;
1900         if (*lastblock >= 152)
1901                 last[last_count++] = *lastblock - 152;
1902
1903         for (i = 0; i < last_count; i++) {
1904                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1905                                 sb->s_blocksize_bits)
1906                         continue;
1907                 ret = udf_check_anchor_block(sb, last[i], fileset);
1908                 if (ret != -EAGAIN) {
1909                         if (!ret)
1910                                 *lastblock = last[i];
1911                         return ret;
1912                 }
1913                 if (last[i] < 256)
1914                         continue;
1915                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1916                 if (ret != -EAGAIN) {
1917                         if (!ret)
1918                                 *lastblock = last[i];
1919                         return ret;
1920                 }
1921         }
1922
1923         /* Finally try block 512 in case media is open */
1924         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1925 }
1926
1927 /*
1928  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1929  * area specified by it. The function expects sbi->s_lastblock to be the last
1930  * block on the media.
1931  *
1932  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1933  * was not found.
1934  */
1935 static int udf_find_anchor(struct super_block *sb,
1936                            struct kernel_lb_addr *fileset)
1937 {
1938         struct udf_sb_info *sbi = UDF_SB(sb);
1939         sector_t lastblock = sbi->s_last_block;
1940         int ret;
1941
1942         ret = udf_scan_anchors(sb, &lastblock, fileset);
1943         if (ret != -EAGAIN)
1944                 goto out;
1945
1946         /* No anchor found? Try VARCONV conversion of block numbers */
1947         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1948         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1949         /* Firstly, we try to not convert number of the last block */
1950         ret = udf_scan_anchors(sb, &lastblock, fileset);
1951         if (ret != -EAGAIN)
1952                 goto out;
1953
1954         lastblock = sbi->s_last_block;
1955         /* Secondly, we try with converted number of the last block */
1956         ret = udf_scan_anchors(sb, &lastblock, fileset);
1957         if (ret < 0) {
1958                 /* VARCONV didn't help. Clear it. */
1959                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1960         }
1961 out:
1962         if (ret == 0)
1963                 sbi->s_last_block = lastblock;
1964         return ret;
1965 }
1966
1967 /*
1968  * Check Volume Structure Descriptor, find Anchor block and load Volume
1969  * Descriptor Sequence.
1970  *
1971  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1972  * block was not found.
1973  */
1974 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1975                         int silent, struct kernel_lb_addr *fileset)
1976 {
1977         struct udf_sb_info *sbi = UDF_SB(sb);
1978         int nsr = 0;
1979         int ret;
1980
1981         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1982                 if (!silent)
1983                         udf_warn(sb, "Bad block size\n");
1984                 return -EINVAL;
1985         }
1986         sbi->s_last_block = uopt->lastblock;
1987         if (!uopt->novrs) {
1988                 /* Check that it is NSR02 compliant */
1989                 nsr = udf_check_vsd(sb);
1990                 if (!nsr) {
1991                         if (!silent)
1992                                 udf_warn(sb, "No VRS found\n");
1993                         return -EINVAL;
1994                 }
1995                 if (nsr == -1)
1996                         udf_debug("Failed to read sector at offset %d. "
1997                                   "Assuming open disc. Skipping validity "
1998                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1999                 if (!sbi->s_last_block)
2000                         sbi->s_last_block = udf_get_last_block(sb);
2001         } else {
2002                 udf_debug("Validity check skipped because of novrs option\n");
2003         }
2004
2005         /* Look for anchor block and load Volume Descriptor Sequence */
2006         sbi->s_anchor = uopt->anchor;
2007         ret = udf_find_anchor(sb, fileset);
2008         if (ret < 0) {
2009                 if (!silent && ret == -EAGAIN)
2010                         udf_warn(sb, "No anchor found\n");
2011                 return ret;
2012         }
2013         return 0;
2014 }
2015
2016 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2017 {
2018         struct timespec64 ts;
2019
2020         ktime_get_real_ts64(&ts);
2021         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2022         lvid->descTag.descCRC = cpu_to_le16(
2023                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2024                         le16_to_cpu(lvid->descTag.descCRCLength)));
2025         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026 }
2027
2028 static void udf_open_lvid(struct super_block *sb)
2029 {
2030         struct udf_sb_info *sbi = UDF_SB(sb);
2031         struct buffer_head *bh = sbi->s_lvid_bh;
2032         struct logicalVolIntegrityDesc *lvid;
2033         struct logicalVolIntegrityDescImpUse *lvidiu;
2034
2035         if (!bh)
2036                 return;
2037         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2038         lvidiu = udf_sb_lvidiu(sb);
2039         if (!lvidiu)
2040                 return;
2041
2042         mutex_lock(&sbi->s_alloc_mutex);
2043         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2044         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2045         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2046                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2047         else
2048                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2049
2050         udf_finalize_lvid(lvid);
2051         mark_buffer_dirty(bh);
2052         sbi->s_lvid_dirty = 0;
2053         mutex_unlock(&sbi->s_alloc_mutex);
2054         /* Make opening of filesystem visible on the media immediately */
2055         sync_dirty_buffer(bh);
2056 }
2057
2058 static void udf_close_lvid(struct super_block *sb)
2059 {
2060         struct udf_sb_info *sbi = UDF_SB(sb);
2061         struct buffer_head *bh = sbi->s_lvid_bh;
2062         struct logicalVolIntegrityDesc *lvid;
2063         struct logicalVolIntegrityDescImpUse *lvidiu;
2064
2065         if (!bh)
2066                 return;
2067         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068         lvidiu = udf_sb_lvidiu(sb);
2069         if (!lvidiu)
2070                 return;
2071
2072         mutex_lock(&sbi->s_alloc_mutex);
2073         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2074         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2075         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2076                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2077         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2078                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2079         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2080                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2081         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2082                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2083
2084         /*
2085          * We set buffer uptodate unconditionally here to avoid spurious
2086          * warnings from mark_buffer_dirty() when previous EIO has marked
2087          * the buffer as !uptodate
2088          */
2089         set_buffer_uptodate(bh);
2090         udf_finalize_lvid(lvid);
2091         mark_buffer_dirty(bh);
2092         sbi->s_lvid_dirty = 0;
2093         mutex_unlock(&sbi->s_alloc_mutex);
2094         /* Make closing of filesystem visible on the media immediately */
2095         sync_dirty_buffer(bh);
2096 }
2097
2098 u64 lvid_get_unique_id(struct super_block *sb)
2099 {
2100         struct buffer_head *bh;
2101         struct udf_sb_info *sbi = UDF_SB(sb);
2102         struct logicalVolIntegrityDesc *lvid;
2103         struct logicalVolHeaderDesc *lvhd;
2104         u64 uniqueID;
2105         u64 ret;
2106
2107         bh = sbi->s_lvid_bh;
2108         if (!bh)
2109                 return 0;
2110
2111         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2112         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2113
2114         mutex_lock(&sbi->s_alloc_mutex);
2115         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2116         if (!(++uniqueID & 0xFFFFFFFF))
2117                 uniqueID += 16;
2118         lvhd->uniqueID = cpu_to_le64(uniqueID);
2119         udf_updated_lvid(sb);
2120         mutex_unlock(&sbi->s_alloc_mutex);
2121
2122         return ret;
2123 }
2124
2125 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2126 {
2127         int ret = -EINVAL;
2128         struct inode *inode = NULL;
2129         struct udf_options uopt;
2130         struct kernel_lb_addr rootdir, fileset;
2131         struct udf_sb_info *sbi;
2132         bool lvid_open = false;
2133
2134         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2135         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2136         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2137         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2138         uopt.umask = 0;
2139         uopt.fmode = UDF_INVALID_MODE;
2140         uopt.dmode = UDF_INVALID_MODE;
2141         uopt.nls_map = NULL;
2142
2143         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2144         if (!sbi)
2145                 return -ENOMEM;
2146
2147         sb->s_fs_info = sbi;
2148
2149         mutex_init(&sbi->s_alloc_mutex);
2150
2151         if (!udf_parse_options((char *)options, &uopt, false))
2152                 goto parse_options_failure;
2153
2154         fileset.logicalBlockNum = 0xFFFFFFFF;
2155         fileset.partitionReferenceNum = 0xFFFF;
2156
2157         sbi->s_flags = uopt.flags;
2158         sbi->s_uid = uopt.uid;
2159         sbi->s_gid = uopt.gid;
2160         sbi->s_umask = uopt.umask;
2161         sbi->s_fmode = uopt.fmode;
2162         sbi->s_dmode = uopt.dmode;
2163         sbi->s_nls_map = uopt.nls_map;
2164         rwlock_init(&sbi->s_cred_lock);
2165
2166         if (uopt.session == 0xFFFFFFFF)
2167                 sbi->s_session = udf_get_last_session(sb);
2168         else
2169                 sbi->s_session = uopt.session;
2170
2171         udf_debug("Multi-session=%d\n", sbi->s_session);
2172
2173         /* Fill in the rest of the superblock */
2174         sb->s_op = &udf_sb_ops;
2175         sb->s_export_op = &udf_export_ops;
2176
2177         sb->s_magic = UDF_SUPER_MAGIC;
2178         sb->s_time_gran = 1000;
2179
2180         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2181                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2182         } else {
2183                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2184                 while (uopt.blocksize <= 4096) {
2185                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2186                         if (ret < 0) {
2187                                 if (!silent && ret != -EACCES) {
2188                                         pr_notice("Scanning with blocksize %u failed\n",
2189                                                   uopt.blocksize);
2190                                 }
2191                                 brelse(sbi->s_lvid_bh);
2192                                 sbi->s_lvid_bh = NULL;
2193                                 /*
2194                                  * EACCES is special - we want to propagate to
2195                                  * upper layers that we cannot handle RW mount.
2196                                  */
2197                                 if (ret == -EACCES)
2198                                         break;
2199                         } else
2200                                 break;
2201
2202                         uopt.blocksize <<= 1;
2203                 }
2204         }
2205         if (ret < 0) {
2206                 if (ret == -EAGAIN) {
2207                         udf_warn(sb, "No partition found (1)\n");
2208                         ret = -EINVAL;
2209                 }
2210                 goto error_out;
2211         }
2212
2213         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2214
2215         if (sbi->s_lvid_bh) {
2216                 struct logicalVolIntegrityDescImpUse *lvidiu =
2217                                                         udf_sb_lvidiu(sb);
2218                 uint16_t minUDFReadRev;
2219                 uint16_t minUDFWriteRev;
2220
2221                 if (!lvidiu) {
2222                         ret = -EINVAL;
2223                         goto error_out;
2224                 }
2225                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2226                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2227                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2228                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2229                                 minUDFReadRev,
2230                                 UDF_MAX_READ_VERSION);
2231                         ret = -EINVAL;
2232                         goto error_out;
2233                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2234                         if (!sb_rdonly(sb)) {
2235                                 ret = -EACCES;
2236                                 goto error_out;
2237                         }
2238                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2239                 }
2240
2241                 sbi->s_udfrev = minUDFWriteRev;
2242
2243                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2244                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2245                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2246                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2247         }
2248
2249         if (!sbi->s_partitions) {
2250                 udf_warn(sb, "No partition found (2)\n");
2251                 ret = -EINVAL;
2252                 goto error_out;
2253         }
2254
2255         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2256                         UDF_PART_FLAG_READ_ONLY) {
2257                 if (!sb_rdonly(sb)) {
2258                         ret = -EACCES;
2259                         goto error_out;
2260                 }
2261                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2262         }
2263
2264         ret = udf_find_fileset(sb, &fileset, &rootdir);
2265         if (ret < 0) {
2266                 udf_warn(sb, "No fileset found\n");
2267                 goto error_out;
2268         }
2269
2270         if (!silent) {
2271                 struct timestamp ts;
2272                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2273                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2274                          sbi->s_volume_ident,
2275                          le16_to_cpu(ts.year), ts.month, ts.day,
2276                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2277         }
2278         if (!sb_rdonly(sb)) {
2279                 udf_open_lvid(sb);
2280                 lvid_open = true;
2281         }
2282
2283         /* Assign the root inode */
2284         /* assign inodes by physical block number */
2285         /* perhaps it's not extensible enough, but for now ... */
2286         inode = udf_iget(sb, &rootdir);
2287         if (IS_ERR(inode)) {
2288                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2289                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2290                 ret = PTR_ERR(inode);
2291                 goto error_out;
2292         }
2293
2294         /* Allocate a dentry for the root inode */
2295         sb->s_root = d_make_root(inode);
2296         if (!sb->s_root) {
2297                 udf_err(sb, "Couldn't allocate root dentry\n");
2298                 ret = -ENOMEM;
2299                 goto error_out;
2300         }
2301         sb->s_maxbytes = MAX_LFS_FILESIZE;
2302         sb->s_max_links = UDF_MAX_LINKS;
2303         return 0;
2304
2305 error_out:
2306         iput(sbi->s_vat_inode);
2307 parse_options_failure:
2308         unload_nls(uopt.nls_map);
2309         if (lvid_open)
2310                 udf_close_lvid(sb);
2311         brelse(sbi->s_lvid_bh);
2312         udf_sb_free_partitions(sb);
2313         kfree(sbi);
2314         sb->s_fs_info = NULL;
2315
2316         return ret;
2317 }
2318
2319 void _udf_err(struct super_block *sb, const char *function,
2320               const char *fmt, ...)
2321 {
2322         struct va_format vaf;
2323         va_list args;
2324
2325         va_start(args, fmt);
2326
2327         vaf.fmt = fmt;
2328         vaf.va = &args;
2329
2330         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2331
2332         va_end(args);
2333 }
2334
2335 void _udf_warn(struct super_block *sb, const char *function,
2336                const char *fmt, ...)
2337 {
2338         struct va_format vaf;
2339         va_list args;
2340
2341         va_start(args, fmt);
2342
2343         vaf.fmt = fmt;
2344         vaf.va = &args;
2345
2346         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2347
2348         va_end(args);
2349 }
2350
2351 static void udf_put_super(struct super_block *sb)
2352 {
2353         struct udf_sb_info *sbi;
2354
2355         sbi = UDF_SB(sb);
2356
2357         iput(sbi->s_vat_inode);
2358         unload_nls(sbi->s_nls_map);
2359         if (!sb_rdonly(sb))
2360                 udf_close_lvid(sb);
2361         brelse(sbi->s_lvid_bh);
2362         udf_sb_free_partitions(sb);
2363         mutex_destroy(&sbi->s_alloc_mutex);
2364         kfree(sb->s_fs_info);
2365         sb->s_fs_info = NULL;
2366 }
2367
2368 static int udf_sync_fs(struct super_block *sb, int wait)
2369 {
2370         struct udf_sb_info *sbi = UDF_SB(sb);
2371
2372         mutex_lock(&sbi->s_alloc_mutex);
2373         if (sbi->s_lvid_dirty) {
2374                 struct buffer_head *bh = sbi->s_lvid_bh;
2375                 struct logicalVolIntegrityDesc *lvid;
2376
2377                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378                 udf_finalize_lvid(lvid);
2379
2380                 /*
2381                  * Blockdevice will be synced later so we don't have to submit
2382                  * the buffer for IO
2383                  */
2384                 mark_buffer_dirty(bh);
2385                 sbi->s_lvid_dirty = 0;
2386         }
2387         mutex_unlock(&sbi->s_alloc_mutex);
2388
2389         return 0;
2390 }
2391
2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 {
2394         struct super_block *sb = dentry->d_sb;
2395         struct udf_sb_info *sbi = UDF_SB(sb);
2396         struct logicalVolIntegrityDescImpUse *lvidiu;
2397         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398
2399         lvidiu = udf_sb_lvidiu(sb);
2400         buf->f_type = UDF_SUPER_MAGIC;
2401         buf->f_bsize = sb->s_blocksize;
2402         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403         buf->f_bfree = udf_count_free(sb);
2404         buf->f_bavail = buf->f_bfree;
2405         /*
2406          * Let's pretend each free block is also a free 'inode' since UDF does
2407          * not have separate preallocated table of inodes.
2408          */
2409         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2411                         + buf->f_bfree;
2412         buf->f_ffree = buf->f_bfree;
2413         buf->f_namelen = UDF_NAME_LEN;
2414         buf->f_fsid = u64_to_fsid(id);
2415
2416         return 0;
2417 }
2418
2419 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2420                                           struct udf_bitmap *bitmap)
2421 {
2422         struct buffer_head *bh = NULL;
2423         unsigned int accum = 0;
2424         int index;
2425         udf_pblk_t block = 0, newblock;
2426         struct kernel_lb_addr loc;
2427         uint32_t bytes;
2428         uint8_t *ptr;
2429         uint16_t ident;
2430         struct spaceBitmapDesc *bm;
2431
2432         loc.logicalBlockNum = bitmap->s_extPosition;
2433         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2434         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2435
2436         if (!bh) {
2437                 udf_err(sb, "udf_count_free failed\n");
2438                 goto out;
2439         } else if (ident != TAG_IDENT_SBD) {
2440                 brelse(bh);
2441                 udf_err(sb, "udf_count_free failed\n");
2442                 goto out;
2443         }
2444
2445         bm = (struct spaceBitmapDesc *)bh->b_data;
2446         bytes = le32_to_cpu(bm->numOfBytes);
2447         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2448         ptr = (uint8_t *)bh->b_data;
2449
2450         while (bytes > 0) {
2451                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2452                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2453                                         cur_bytes * 8);
2454                 bytes -= cur_bytes;
2455                 if (bytes) {
2456                         brelse(bh);
2457                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2458                         bh = udf_tread(sb, newblock);
2459                         if (!bh) {
2460                                 udf_debug("read failed\n");
2461                                 goto out;
2462                         }
2463                         index = 0;
2464                         ptr = (uint8_t *)bh->b_data;
2465                 }
2466         }
2467         brelse(bh);
2468 out:
2469         return accum;
2470 }
2471
2472 static unsigned int udf_count_free_table(struct super_block *sb,
2473                                          struct inode *table)
2474 {
2475         unsigned int accum = 0;
2476         uint32_t elen;
2477         struct kernel_lb_addr eloc;
2478         int8_t etype;
2479         struct extent_position epos;
2480
2481         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2482         epos.block = UDF_I(table)->i_location;
2483         epos.offset = sizeof(struct unallocSpaceEntry);
2484         epos.bh = NULL;
2485
2486         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2487                 accum += (elen >> table->i_sb->s_blocksize_bits);
2488
2489         brelse(epos.bh);
2490         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2491
2492         return accum;
2493 }
2494
2495 static unsigned int udf_count_free(struct super_block *sb)
2496 {
2497         unsigned int accum = 0;
2498         struct udf_sb_info *sbi = UDF_SB(sb);
2499         struct udf_part_map *map;
2500         unsigned int part = sbi->s_partition;
2501         int ptype = sbi->s_partmaps[part].s_partition_type;
2502
2503         if (ptype == UDF_METADATA_MAP25) {
2504                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2505                                                         s_phys_partition_ref;
2506         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2507                 /*
2508                  * Filesystems with VAT are append-only and we cannot write to
2509                  * them. Let's just report 0 here.
2510                  */
2511                 return 0;
2512         }
2513
2514         if (sbi->s_lvid_bh) {
2515                 struct logicalVolIntegrityDesc *lvid =
2516                         (struct logicalVolIntegrityDesc *)
2517                         sbi->s_lvid_bh->b_data;
2518                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2519                         accum = le32_to_cpu(
2520                                         lvid->freeSpaceTable[part]);
2521                         if (accum == 0xFFFFFFFF)
2522                                 accum = 0;
2523                 }
2524         }
2525
2526         if (accum)
2527                 return accum;
2528
2529         map = &sbi->s_partmaps[part];
2530         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2531                 accum += udf_count_free_bitmap(sb,
2532                                                map->s_uspace.s_bitmap);
2533         }
2534         if (accum)
2535                 return accum;
2536
2537         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2538                 accum += udf_count_free_table(sb,
2539                                               map->s_uspace.s_table);
2540         }
2541         return accum;
2542 }
2543
2544 MODULE_AUTHOR("Ben Fennema");
2545 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2546 MODULE_LICENSE("GPL");
2547 module_init(init_udf_fs)
2548 module_exit(exit_udf_fs)