Merge tag 'ata-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal...
[platform/kernel/linux-starfive.git] / fs / udf / super.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * super.c
4  *
5  * PURPOSE
6  *  Super block routines for the OSTA-UDF(tm) filesystem.
7  *
8  * DESCRIPTION
9  *  OSTA-UDF(tm) = Optical Storage Technology Association
10  *  Universal Disk Format.
11  *
12  *  This code is based on version 2.00 of the UDF specification,
13  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14  *    http://www.osta.org/
15  *    https://www.ecma.ch/
16  *    https://www.iso.org/
17  *
18  * COPYRIGHT
19  *  (C) 1998 Dave Boynton
20  *  (C) 1998-2004 Ben Fennema
21  *  (C) 2000 Stelias Computing Inc
22  *
23  * HISTORY
24  *
25  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
26  *                added some debugging.
27  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
28  *  10/16/98      attempting some multi-session support
29  *  10/17/98      added freespace count for "df"
30  *  11/11/98 gr   added novrs option
31  *  11/26/98 dgb  added fileset,anchor mount options
32  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
33  *                vol descs. rewrote option handling based on isofs
34  *  12/20/98      find the free space bitmap (if it exists)
35  */
36
37 #include "udfdecl.h"
38
39 #include <linux/blkdev.h>
40 #include <linux/slab.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/parser.h>
44 #include <linux/stat.h>
45 #include <linux/cdrom.h>
46 #include <linux/nls.h>
47 #include <linux/vfs.h>
48 #include <linux/vmalloc.h>
49 #include <linux/errno.h>
50 #include <linux/mount.h>
51 #include <linux/seq_file.h>
52 #include <linux/bitmap.h>
53 #include <linux/crc-itu-t.h>
54 #include <linux/log2.h>
55 #include <asm/byteorder.h>
56 #include <linux/iversion.h>
57
58 #include "udf_sb.h"
59 #include "udf_i.h"
60
61 #include <linux/init.h>
62 #include <linux/uaccess.h>
63
64 enum {
65         VDS_POS_PRIMARY_VOL_DESC,
66         VDS_POS_UNALLOC_SPACE_DESC,
67         VDS_POS_LOGICAL_VOL_DESC,
68         VDS_POS_IMP_USE_VOL_DESC,
69         VDS_POS_LENGTH
70 };
71
72 #define VSD_FIRST_SECTOR_OFFSET         32768
73 #define VSD_MAX_SECTOR_OFFSET           0x800000
74
75 /*
76  * Maximum number of Terminating Descriptor / Logical Volume Integrity
77  * Descriptor redirections. The chosen numbers are arbitrary - just that we
78  * hopefully don't limit any real use of rewritten inode on write-once media
79  * but avoid looping for too long on corrupted media.
80  */
81 #define UDF_MAX_TD_NESTING 64
82 #define UDF_MAX_LVID_NESTING 1000
83
84 enum { UDF_MAX_LINKS = 0xffff };
85 /*
86  * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87  * more but because the file space is described by a linked list of extents,
88  * each of which can have at most 1GB, the creation and handling of extents
89  * gets unusably slow beyond certain point...
90  */
91 #define UDF_MAX_FILESIZE (1ULL << 42)
92
93 /* These are the "meat" - everything else is stuffing */
94 static int udf_fill_super(struct super_block *, void *, int);
95 static void udf_put_super(struct super_block *);
96 static int udf_sync_fs(struct super_block *, int);
97 static int udf_remount_fs(struct super_block *, int *, char *);
98 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         /* The offset is to skip freeSpaceTable and sizeTable arrays */
116         offset = partnum * 2 * sizeof(uint32_t);
117         return (struct logicalVolIntegrityDescImpUse *)
118                                         (((uint8_t *)(lvid + 1)) + offset);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123                       int flags, const char *dev_name, void *data)
124 {
125         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129         .owner          = THIS_MODULE,
130         .name           = "udf",
131         .mount          = udf_mount,
132         .kill_sb        = kill_block_super,
133         .fs_flags       = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141         struct udf_inode_info *ei;
142         ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
143         if (!ei)
144                 return NULL;
145
146         ei->i_unique = 0;
147         ei->i_lenExtents = 0;
148         ei->i_lenStreams = 0;
149         ei->i_next_alloc_block = 0;
150         ei->i_next_alloc_goal = 0;
151         ei->i_strat4096 = 0;
152         ei->i_streamdir = 0;
153         ei->i_hidden = 0;
154         init_rwsem(&ei->i_data_sem);
155         ei->cached_extent.lstart = -1;
156         spin_lock_init(&ei->i_extent_cache_lock);
157         inode_set_iversion(&ei->vfs_inode, 1);
158
159         return &ei->vfs_inode;
160 }
161
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
167 static void init_once(void *foo)
168 {
169         struct udf_inode_info *ei = foo;
170
171         ei->i_data = NULL;
172         inode_init_once(&ei->vfs_inode);
173 }
174
175 static int __init init_inodecache(void)
176 {
177         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178                                              sizeof(struct udf_inode_info),
179                                              0, (SLAB_RECLAIM_ACCOUNT |
180                                                  SLAB_MEM_SPREAD |
181                                                  SLAB_ACCOUNT),
182                                              init_once);
183         if (!udf_inode_cachep)
184                 return -ENOMEM;
185         return 0;
186 }
187
188 static void destroy_inodecache(void)
189 {
190         /*
191          * Make sure all delayed rcu free inodes are flushed before we
192          * destroy cache.
193          */
194         rcu_barrier();
195         kmem_cache_destroy(udf_inode_cachep);
196 }
197
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200         .alloc_inode    = udf_alloc_inode,
201         .free_inode     = udf_free_in_core_inode,
202         .write_inode    = udf_write_inode,
203         .evict_inode    = udf_evict_inode,
204         .put_super      = udf_put_super,
205         .sync_fs        = udf_sync_fs,
206         .statfs         = udf_statfs,
207         .remount_fs     = udf_remount_fs,
208         .show_options   = udf_show_options,
209 };
210
211 struct udf_options {
212         unsigned char novrs;
213         unsigned int blocksize;
214         unsigned int session;
215         unsigned int lastblock;
216         unsigned int anchor;
217         unsigned int flags;
218         umode_t umask;
219         kgid_t gid;
220         kuid_t uid;
221         umode_t fmode;
222         umode_t dmode;
223         struct nls_table *nls_map;
224 };
225
226 static int __init init_udf_fs(void)
227 {
228         int err;
229
230         err = init_inodecache();
231         if (err)
232                 goto out1;
233         err = register_filesystem(&udf_fstype);
234         if (err)
235                 goto out;
236
237         return 0;
238
239 out:
240         destroy_inodecache();
241
242 out1:
243         return err;
244 }
245
246 static void __exit exit_udf_fs(void)
247 {
248         unregister_filesystem(&udf_fstype);
249         destroy_inodecache();
250 }
251
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254         struct udf_sb_info *sbi = UDF_SB(sb);
255
256         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257         if (!sbi->s_partmaps) {
258                 sbi->s_partitions = 0;
259                 return -ENOMEM;
260         }
261
262         sbi->s_partitions = count;
263         return 0;
264 }
265
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268         int i;
269         int nr_groups = bitmap->s_nr_groups;
270
271         for (i = 0; i < nr_groups; i++)
272                 brelse(bitmap->s_block_bitmap[i]);
273
274         kvfree(bitmap);
275 }
276
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279         int i;
280         struct udf_meta_data *mdata;
281
282         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283                 iput(map->s_uspace.s_table);
284         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286         if (map->s_partition_type == UDF_SPARABLE_MAP15)
287                 for (i = 0; i < 4; i++)
288                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289         else if (map->s_partition_type == UDF_METADATA_MAP25) {
290                 mdata = &map->s_type_specific.s_metadata;
291                 iput(mdata->s_metadata_fe);
292                 mdata->s_metadata_fe = NULL;
293
294                 iput(mdata->s_mirror_fe);
295                 mdata->s_mirror_fe = NULL;
296
297                 iput(mdata->s_bitmap_fe);
298                 mdata->s_bitmap_fe = NULL;
299         }
300 }
301
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304         struct udf_sb_info *sbi = UDF_SB(sb);
305         int i;
306
307         if (!sbi->s_partmaps)
308                 return;
309         for (i = 0; i < sbi->s_partitions; i++)
310                 udf_free_partition(&sbi->s_partmaps[i]);
311         kfree(sbi->s_partmaps);
312         sbi->s_partmaps = NULL;
313 }
314
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317         struct super_block *sb = root->d_sb;
318         struct udf_sb_info *sbi = UDF_SB(sb);
319
320         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321                 seq_puts(seq, ",nostrict");
322         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325                 seq_puts(seq, ",unhide");
326         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327                 seq_puts(seq, ",undelete");
328         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329                 seq_puts(seq, ",noadinicb");
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331                 seq_puts(seq, ",shortad");
332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333                 seq_puts(seq, ",uid=forget");
334         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335                 seq_puts(seq, ",gid=forget");
336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340         if (sbi->s_umask != 0)
341                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342         if (sbi->s_fmode != UDF_INVALID_MODE)
343                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344         if (sbi->s_dmode != UDF_INVALID_MODE)
345                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347                 seq_printf(seq, ",session=%d", sbi->s_session);
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350         if (sbi->s_anchor != 0)
351                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352         if (sbi->s_nls_map)
353                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
354         else
355                 seq_puts(seq, ",iocharset=utf8");
356
357         return 0;
358 }
359
360 /*
361  * udf_parse_options
362  *
363  * PURPOSE
364  *      Parse mount options.
365  *
366  * DESCRIPTION
367  *      The following mount options are supported:
368  *
369  *      gid=            Set the default group.
370  *      umask=          Set the default umask.
371  *      mode=           Set the default file permissions.
372  *      dmode=          Set the default directory permissions.
373  *      uid=            Set the default user.
374  *      bs=             Set the block size.
375  *      unhide          Show otherwise hidden files.
376  *      undelete        Show deleted files in lists.
377  *      adinicb         Embed data in the inode (default)
378  *      noadinicb       Don't embed data in the inode
379  *      shortad         Use short ad's
380  *      longad          Use long ad's (default)
381  *      nostrict        Unset strict conformance
382  *      iocharset=      Set the NLS character set
383  *
384  *      The remaining are for debugging and disaster recovery:
385  *
386  *      novrs           Skip volume sequence recognition
387  *
388  *      The following expect a offset from 0.
389  *
390  *      session=        Set the CDROM session (default= last session)
391  *      anchor=         Override standard anchor location. (default= 256)
392  *      volume=         Override the VolumeDesc location. (unused)
393  *      partition=      Override the PartitionDesc location. (unused)
394  *      lastblock=      Set the last block of the filesystem/
395  *
396  *      The following expect a offset from the partition root.
397  *
398  *      fileset=        Override the fileset block location. (unused)
399  *      rootdir=        Override the root directory location. (unused)
400  *              WARNING: overriding the rootdir to a non-directory may
401  *              yield highly unpredictable results.
402  *
403  * PRE-CONDITIONS
404  *      options         Pointer to mount options string.
405  *      uopts           Pointer to mount options variable.
406  *
407  * POST-CONDITIONS
408  *      <return>        1       Mount options parsed okay.
409  *      <return>        0       Error parsing mount options.
410  *
411  * HISTORY
412  *      July 1, 1997 - Andrew E. Mileski
413  *      Written, tested, and released.
414  */
415
416 enum {
417         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421         Opt_rootdir, Opt_utf8, Opt_iocharset,
422         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423         Opt_fmode, Opt_dmode
424 };
425
426 static const match_table_t tokens = {
427         {Opt_novrs,     "novrs"},
428         {Opt_nostrict,  "nostrict"},
429         {Opt_bs,        "bs=%u"},
430         {Opt_unhide,    "unhide"},
431         {Opt_undelete,  "undelete"},
432         {Opt_noadinicb, "noadinicb"},
433         {Opt_adinicb,   "adinicb"},
434         {Opt_shortad,   "shortad"},
435         {Opt_longad,    "longad"},
436         {Opt_uforget,   "uid=forget"},
437         {Opt_uignore,   "uid=ignore"},
438         {Opt_gforget,   "gid=forget"},
439         {Opt_gignore,   "gid=ignore"},
440         {Opt_gid,       "gid=%u"},
441         {Opt_uid,       "uid=%u"},
442         {Opt_umask,     "umask=%o"},
443         {Opt_session,   "session=%u"},
444         {Opt_lastblock, "lastblock=%u"},
445         {Opt_anchor,    "anchor=%u"},
446         {Opt_volume,    "volume=%u"},
447         {Opt_partition, "partition=%u"},
448         {Opt_fileset,   "fileset=%u"},
449         {Opt_rootdir,   "rootdir=%u"},
450         {Opt_utf8,      "utf8"},
451         {Opt_iocharset, "iocharset=%s"},
452         {Opt_fmode,     "mode=%o"},
453         {Opt_dmode,     "dmode=%o"},
454         {Opt_err,       NULL}
455 };
456
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458                              bool remount)
459 {
460         char *p;
461         int option;
462         unsigned int uv;
463
464         uopt->novrs = 0;
465         uopt->session = 0xFFFFFFFF;
466         uopt->lastblock = 0;
467         uopt->anchor = 0;
468
469         if (!options)
470                 return 1;
471
472         while ((p = strsep(&options, ",")) != NULL) {
473                 substring_t args[MAX_OPT_ARGS];
474                 int token;
475                 unsigned n;
476                 if (!*p)
477                         continue;
478
479                 token = match_token(p, tokens, args);
480                 switch (token) {
481                 case Opt_novrs:
482                         uopt->novrs = 1;
483                         break;
484                 case Opt_bs:
485                         if (match_int(&args[0], &option))
486                                 return 0;
487                         n = option;
488                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
489                                 return 0;
490                         uopt->blocksize = n;
491                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
492                         break;
493                 case Opt_unhide:
494                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
495                         break;
496                 case Opt_undelete:
497                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
498                         break;
499                 case Opt_noadinicb:
500                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
501                         break;
502                 case Opt_adinicb:
503                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
504                         break;
505                 case Opt_shortad:
506                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
507                         break;
508                 case Opt_longad:
509                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
510                         break;
511                 case Opt_gid:
512                         if (match_uint(args, &uv))
513                                 return 0;
514                         uopt->gid = make_kgid(current_user_ns(), uv);
515                         if (!gid_valid(uopt->gid))
516                                 return 0;
517                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
518                         break;
519                 case Opt_uid:
520                         if (match_uint(args, &uv))
521                                 return 0;
522                         uopt->uid = make_kuid(current_user_ns(), uv);
523                         if (!uid_valid(uopt->uid))
524                                 return 0;
525                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
526                         break;
527                 case Opt_umask:
528                         if (match_octal(args, &option))
529                                 return 0;
530                         uopt->umask = option;
531                         break;
532                 case Opt_nostrict:
533                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
534                         break;
535                 case Opt_session:
536                         if (match_int(args, &option))
537                                 return 0;
538                         uopt->session = option;
539                         if (!remount)
540                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
541                         break;
542                 case Opt_lastblock:
543                         if (match_int(args, &option))
544                                 return 0;
545                         uopt->lastblock = option;
546                         if (!remount)
547                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
548                         break;
549                 case Opt_anchor:
550                         if (match_int(args, &option))
551                                 return 0;
552                         uopt->anchor = option;
553                         break;
554                 case Opt_volume:
555                 case Opt_partition:
556                 case Opt_fileset:
557                 case Opt_rootdir:
558                         /* Ignored (never implemented properly) */
559                         break;
560                 case Opt_utf8:
561                         if (!remount) {
562                                 unload_nls(uopt->nls_map);
563                                 uopt->nls_map = NULL;
564                         }
565                         break;
566                 case Opt_iocharset:
567                         if (!remount) {
568                                 unload_nls(uopt->nls_map);
569                                 uopt->nls_map = NULL;
570                         }
571                         /* When nls_map is not loaded then UTF-8 is used */
572                         if (!remount && strcmp(args[0].from, "utf8") != 0) {
573                                 uopt->nls_map = load_nls(args[0].from);
574                                 if (!uopt->nls_map) {
575                                         pr_err("iocharset %s not found\n",
576                                                 args[0].from);
577                                         return 0;
578                                 }
579                         }
580                         break;
581                 case Opt_uforget:
582                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
583                         break;
584                 case Opt_uignore:
585                 case Opt_gignore:
586                         /* These options are superseeded by uid=<number> */
587                         break;
588                 case Opt_gforget:
589                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
590                         break;
591                 case Opt_fmode:
592                         if (match_octal(args, &option))
593                                 return 0;
594                         uopt->fmode = option & 0777;
595                         break;
596                 case Opt_dmode:
597                         if (match_octal(args, &option))
598                                 return 0;
599                         uopt->dmode = option & 0777;
600                         break;
601                 default:
602                         pr_err("bad mount option \"%s\" or missing value\n", p);
603                         return 0;
604                 }
605         }
606         return 1;
607 }
608
609 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
610 {
611         struct udf_options uopt;
612         struct udf_sb_info *sbi = UDF_SB(sb);
613         int error = 0;
614
615         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
616                 return -EACCES;
617
618         sync_filesystem(sb);
619
620         uopt.flags = sbi->s_flags;
621         uopt.uid   = sbi->s_uid;
622         uopt.gid   = sbi->s_gid;
623         uopt.umask = sbi->s_umask;
624         uopt.fmode = sbi->s_fmode;
625         uopt.dmode = sbi->s_dmode;
626         uopt.nls_map = NULL;
627
628         if (!udf_parse_options(options, &uopt, true))
629                 return -EINVAL;
630
631         write_lock(&sbi->s_cred_lock);
632         sbi->s_flags = uopt.flags;
633         sbi->s_uid   = uopt.uid;
634         sbi->s_gid   = uopt.gid;
635         sbi->s_umask = uopt.umask;
636         sbi->s_fmode = uopt.fmode;
637         sbi->s_dmode = uopt.dmode;
638         write_unlock(&sbi->s_cred_lock);
639
640         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
641                 goto out_unlock;
642
643         if (*flags & SB_RDONLY)
644                 udf_close_lvid(sb);
645         else
646                 udf_open_lvid(sb);
647
648 out_unlock:
649         return error;
650 }
651
652 /*
653  * Check VSD descriptor. Returns -1 in case we are at the end of volume
654  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
655  * we found one of NSR descriptors we are looking for.
656  */
657 static int identify_vsd(const struct volStructDesc *vsd)
658 {
659         int ret = 0;
660
661         if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
662                 switch (vsd->structType) {
663                 case 0:
664                         udf_debug("ISO9660 Boot Record found\n");
665                         break;
666                 case 1:
667                         udf_debug("ISO9660 Primary Volume Descriptor found\n");
668                         break;
669                 case 2:
670                         udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
671                         break;
672                 case 3:
673                         udf_debug("ISO9660 Volume Partition Descriptor found\n");
674                         break;
675                 case 255:
676                         udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
677                         break;
678                 default:
679                         udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
680                         break;
681                 }
682         } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
683                 ; /* ret = 0 */
684         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
685                 ret = 1;
686         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
687                 ret = 1;
688         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
689                 ; /* ret = 0 */
690         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
691                 ; /* ret = 0 */
692         else {
693                 /* TEA01 or invalid id : end of volume recognition area */
694                 ret = -1;
695         }
696
697         return ret;
698 }
699
700 /*
701  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
702  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
703  * @return   1 if NSR02 or NSR03 found,
704  *          -1 if first sector read error, 0 otherwise
705  */
706 static int udf_check_vsd(struct super_block *sb)
707 {
708         struct volStructDesc *vsd = NULL;
709         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
710         int sectorsize;
711         struct buffer_head *bh = NULL;
712         int nsr = 0;
713         struct udf_sb_info *sbi;
714         loff_t session_offset;
715
716         sbi = UDF_SB(sb);
717         if (sb->s_blocksize < sizeof(struct volStructDesc))
718                 sectorsize = sizeof(struct volStructDesc);
719         else
720                 sectorsize = sb->s_blocksize;
721
722         session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
723         sector += session_offset;
724
725         udf_debug("Starting at sector %u (%lu byte sectors)\n",
726                   (unsigned int)(sector >> sb->s_blocksize_bits),
727                   sb->s_blocksize);
728         /* Process the sequence (if applicable). The hard limit on the sector
729          * offset is arbitrary, hopefully large enough so that all valid UDF
730          * filesystems will be recognised. There is no mention of an upper
731          * bound to the size of the volume recognition area in the standard.
732          *  The limit will prevent the code to read all the sectors of a
733          * specially crafted image (like a bluray disc full of CD001 sectors),
734          * potentially causing minutes or even hours of uninterruptible I/O
735          * activity. This actually happened with uninitialised SSD partitions
736          * (all 0xFF) before the check for the limit and all valid IDs were
737          * added */
738         for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
739                 /* Read a block */
740                 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
741                 if (!bh)
742                         break;
743
744                 vsd = (struct volStructDesc *)(bh->b_data +
745                                               (sector & (sb->s_blocksize - 1)));
746                 nsr = identify_vsd(vsd);
747                 /* Found NSR or end? */
748                 if (nsr) {
749                         brelse(bh);
750                         break;
751                 }
752                 /*
753                  * Special handling for improperly formatted VRS (e.g., Win10)
754                  * where components are separated by 2048 bytes even though
755                  * sectors are 4K
756                  */
757                 if (sb->s_blocksize == 4096) {
758                         nsr = identify_vsd(vsd + 1);
759                         /* Ignore unknown IDs... */
760                         if (nsr < 0)
761                                 nsr = 0;
762                 }
763                 brelse(bh);
764         }
765
766         if (nsr > 0)
767                 return 1;
768         else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
769                 return -1;
770         else
771                 return 0;
772 }
773
774 static int udf_verify_domain_identifier(struct super_block *sb,
775                                         struct regid *ident, char *dname)
776 {
777         struct domainIdentSuffix *suffix;
778
779         if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
780                 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
781                 goto force_ro;
782         }
783         if (ident->flags & ENTITYID_FLAGS_DIRTY) {
784                 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
785                          dname);
786                 goto force_ro;
787         }
788         suffix = (struct domainIdentSuffix *)ident->identSuffix;
789         if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
790             (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
791                 if (!sb_rdonly(sb)) {
792                         udf_warn(sb, "Descriptor for %s marked write protected."
793                                  " Forcing read only mount.\n", dname);
794                 }
795                 goto force_ro;
796         }
797         return 0;
798
799 force_ro:
800         if (!sb_rdonly(sb))
801                 return -EACCES;
802         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
803         return 0;
804 }
805
806 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
807                             struct kernel_lb_addr *root)
808 {
809         int ret;
810
811         ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
812         if (ret < 0)
813                 return ret;
814
815         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
816         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
817
818         udf_debug("Rootdir at block=%u, partition=%u\n",
819                   root->logicalBlockNum, root->partitionReferenceNum);
820         return 0;
821 }
822
823 static int udf_find_fileset(struct super_block *sb,
824                             struct kernel_lb_addr *fileset,
825                             struct kernel_lb_addr *root)
826 {
827         struct buffer_head *bh;
828         uint16_t ident;
829         int ret;
830
831         if (fileset->logicalBlockNum == 0xFFFFFFFF &&
832             fileset->partitionReferenceNum == 0xFFFF)
833                 return -EINVAL;
834
835         bh = udf_read_ptagged(sb, fileset, 0, &ident);
836         if (!bh)
837                 return -EIO;
838         if (ident != TAG_IDENT_FSD) {
839                 brelse(bh);
840                 return -EINVAL;
841         }
842
843         udf_debug("Fileset at block=%u, partition=%u\n",
844                   fileset->logicalBlockNum, fileset->partitionReferenceNum);
845
846         UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
847         ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
848         brelse(bh);
849         return ret;
850 }
851
852 /*
853  * Load primary Volume Descriptor Sequence
854  *
855  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856  * should be tried.
857  */
858 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859 {
860         struct primaryVolDesc *pvoldesc;
861         uint8_t *outstr;
862         struct buffer_head *bh;
863         uint16_t ident;
864         int ret;
865         struct timestamp *ts;
866
867         outstr = kmalloc(128, GFP_NOFS);
868         if (!outstr)
869                 return -ENOMEM;
870
871         bh = udf_read_tagged(sb, block, block, &ident);
872         if (!bh) {
873                 ret = -EAGAIN;
874                 goto out2;
875         }
876
877         if (ident != TAG_IDENT_PVD) {
878                 ret = -EIO;
879                 goto out_bh;
880         }
881
882         pvoldesc = (struct primaryVolDesc *)bh->b_data;
883
884         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
885                               pvoldesc->recordingDateAndTime);
886         ts = &pvoldesc->recordingDateAndTime;
887         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
888                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
889                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
890
891         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
892         if (ret < 0) {
893                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
894                 pr_warn("incorrect volume identification, setting to "
895                         "'InvalidName'\n");
896         } else {
897                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
898         }
899         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
900
901         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
902         if (ret < 0) {
903                 ret = 0;
904                 goto out_bh;
905         }
906         outstr[ret] = 0;
907         udf_debug("volSetIdent[] = '%s'\n", outstr);
908
909         ret = 0;
910 out_bh:
911         brelse(bh);
912 out2:
913         kfree(outstr);
914         return ret;
915 }
916
917 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
918                                         u32 meta_file_loc, u32 partition_ref)
919 {
920         struct kernel_lb_addr addr;
921         struct inode *metadata_fe;
922
923         addr.logicalBlockNum = meta_file_loc;
924         addr.partitionReferenceNum = partition_ref;
925
926         metadata_fe = udf_iget_special(sb, &addr);
927
928         if (IS_ERR(metadata_fe)) {
929                 udf_warn(sb, "metadata inode efe not found\n");
930                 return metadata_fe;
931         }
932         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
933                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
934                 iput(metadata_fe);
935                 return ERR_PTR(-EIO);
936         }
937
938         return metadata_fe;
939 }
940
941 static int udf_load_metadata_files(struct super_block *sb, int partition,
942                                    int type1_index)
943 {
944         struct udf_sb_info *sbi = UDF_SB(sb);
945         struct udf_part_map *map;
946         struct udf_meta_data *mdata;
947         struct kernel_lb_addr addr;
948         struct inode *fe;
949
950         map = &sbi->s_partmaps[partition];
951         mdata = &map->s_type_specific.s_metadata;
952         mdata->s_phys_partition_ref = type1_index;
953
954         /* metadata address */
955         udf_debug("Metadata file location: block = %u part = %u\n",
956                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
957
958         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
959                                          mdata->s_phys_partition_ref);
960         if (IS_ERR(fe)) {
961                 /* mirror file entry */
962                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
963                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
964
965                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
966                                                  mdata->s_phys_partition_ref);
967
968                 if (IS_ERR(fe)) {
969                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
970                         return PTR_ERR(fe);
971                 }
972                 mdata->s_mirror_fe = fe;
973         } else
974                 mdata->s_metadata_fe = fe;
975
976
977         /*
978          * bitmap file entry
979          * Note:
980          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
981         */
982         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
983                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
984                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
985
986                 udf_debug("Bitmap file location: block = %u part = %u\n",
987                           addr.logicalBlockNum, addr.partitionReferenceNum);
988
989                 fe = udf_iget_special(sb, &addr);
990                 if (IS_ERR(fe)) {
991                         if (sb_rdonly(sb))
992                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
993                         else {
994                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995                                 return PTR_ERR(fe);
996                         }
997                 } else
998                         mdata->s_bitmap_fe = fe;
999         }
1000
1001         udf_debug("udf_load_metadata_files Ok\n");
1002         return 0;
1003 }
1004
1005 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1006 {
1007         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1008         return DIV_ROUND_UP(map->s_partition_len +
1009                             (sizeof(struct spaceBitmapDesc) << 3),
1010                             sb->s_blocksize * 8);
1011 }
1012
1013 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1014 {
1015         struct udf_bitmap *bitmap;
1016         int nr_groups = udf_compute_nr_groups(sb, index);
1017
1018         bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1019                           GFP_KERNEL);
1020         if (!bitmap)
1021                 return NULL;
1022
1023         bitmap->s_nr_groups = nr_groups;
1024         return bitmap;
1025 }
1026
1027 static int check_partition_desc(struct super_block *sb,
1028                                 struct partitionDesc *p,
1029                                 struct udf_part_map *map)
1030 {
1031         bool umap, utable, fmap, ftable;
1032         struct partitionHeaderDesc *phd;
1033
1034         switch (le32_to_cpu(p->accessType)) {
1035         case PD_ACCESS_TYPE_READ_ONLY:
1036         case PD_ACCESS_TYPE_WRITE_ONCE:
1037         case PD_ACCESS_TYPE_NONE:
1038                 goto force_ro;
1039         }
1040
1041         /* No Partition Header Descriptor? */
1042         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1043             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1044                 goto force_ro;
1045
1046         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1047         utable = phd->unallocSpaceTable.extLength;
1048         umap = phd->unallocSpaceBitmap.extLength;
1049         ftable = phd->freedSpaceTable.extLength;
1050         fmap = phd->freedSpaceBitmap.extLength;
1051
1052         /* No allocation info? */
1053         if (!utable && !umap && !ftable && !fmap)
1054                 goto force_ro;
1055
1056         /* We don't support blocks that require erasing before overwrite */
1057         if (ftable || fmap)
1058                 goto force_ro;
1059         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1060         if (utable && umap)
1061                 goto force_ro;
1062
1063         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1064             map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1065             map->s_partition_type == UDF_METADATA_MAP25)
1066                 goto force_ro;
1067
1068         return 0;
1069 force_ro:
1070         if (!sb_rdonly(sb))
1071                 return -EACCES;
1072         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1073         return 0;
1074 }
1075
1076 static int udf_fill_partdesc_info(struct super_block *sb,
1077                 struct partitionDesc *p, int p_index)
1078 {
1079         struct udf_part_map *map;
1080         struct udf_sb_info *sbi = UDF_SB(sb);
1081         struct partitionHeaderDesc *phd;
1082         int err;
1083
1084         map = &sbi->s_partmaps[p_index];
1085
1086         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1087         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1088
1089         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1090                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1091         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1092                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1093         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1094                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1095         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1096                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1097
1098         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1099                   p_index, map->s_partition_type,
1100                   map->s_partition_root, map->s_partition_len);
1101
1102         err = check_partition_desc(sb, p, map);
1103         if (err)
1104                 return err;
1105
1106         /*
1107          * Skip loading allocation info it we cannot ever write to the fs.
1108          * This is a correctness thing as we may have decided to force ro mount
1109          * to avoid allocation info we don't support.
1110          */
1111         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1112                 return 0;
1113
1114         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115         if (phd->unallocSpaceTable.extLength) {
1116                 struct kernel_lb_addr loc = {
1117                         .logicalBlockNum = le32_to_cpu(
1118                                 phd->unallocSpaceTable.extPosition),
1119                         .partitionReferenceNum = p_index,
1120                 };
1121                 struct inode *inode;
1122
1123                 inode = udf_iget_special(sb, &loc);
1124                 if (IS_ERR(inode)) {
1125                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126                                   p_index);
1127                         return PTR_ERR(inode);
1128                 }
1129                 map->s_uspace.s_table = inode;
1130                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1132                           p_index, map->s_uspace.s_table->i_ino);
1133         }
1134
1135         if (phd->unallocSpaceBitmap.extLength) {
1136                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137                 if (!bitmap)
1138                         return -ENOMEM;
1139                 map->s_uspace.s_bitmap = bitmap;
1140                 bitmap->s_extPosition = le32_to_cpu(
1141                                 phd->unallocSpaceBitmap.extPosition);
1142                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1144                           p_index, bitmap->s_extPosition);
1145         }
1146
1147         return 0;
1148 }
1149
1150 static void udf_find_vat_block(struct super_block *sb, int p_index,
1151                                int type1_index, sector_t start_block)
1152 {
1153         struct udf_sb_info *sbi = UDF_SB(sb);
1154         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155         sector_t vat_block;
1156         struct kernel_lb_addr ino;
1157         struct inode *inode;
1158
1159         /*
1160          * VAT file entry is in the last recorded block. Some broken disks have
1161          * it a few blocks before so try a bit harder...
1162          */
1163         ino.partitionReferenceNum = type1_index;
1164         for (vat_block = start_block;
1165              vat_block >= map->s_partition_root &&
1166              vat_block >= start_block - 3; vat_block--) {
1167                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1168                 inode = udf_iget_special(sb, &ino);
1169                 if (!IS_ERR(inode)) {
1170                         sbi->s_vat_inode = inode;
1171                         break;
1172                 }
1173         }
1174 }
1175
1176 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1177 {
1178         struct udf_sb_info *sbi = UDF_SB(sb);
1179         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180         struct buffer_head *bh = NULL;
1181         struct udf_inode_info *vati;
1182         struct virtualAllocationTable20 *vat20;
1183         sector_t blocks = sb_bdev_nr_blocks(sb);
1184
1185         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1186         if (!sbi->s_vat_inode &&
1187             sbi->s_last_block != blocks - 1) {
1188                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1189                           (unsigned long)sbi->s_last_block,
1190                           (unsigned long)blocks - 1);
1191                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1192         }
1193         if (!sbi->s_vat_inode)
1194                 return -EIO;
1195
1196         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1197                 map->s_type_specific.s_virtual.s_start_offset = 0;
1198                 map->s_type_specific.s_virtual.s_num_entries =
1199                         (sbi->s_vat_inode->i_size - 36) >> 2;
1200         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1201                 vati = UDF_I(sbi->s_vat_inode);
1202                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1203                         int err = 0;
1204
1205                         bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1206                         if (!bh) {
1207                                 if (!err)
1208                                         err = -EFSCORRUPTED;
1209                                 return err;
1210                         }
1211                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1212                 } else {
1213                         vat20 = (struct virtualAllocationTable20 *)
1214                                                         vati->i_data;
1215                 }
1216
1217                 map->s_type_specific.s_virtual.s_start_offset =
1218                         le16_to_cpu(vat20->lengthHeader);
1219                 map->s_type_specific.s_virtual.s_num_entries =
1220                         (sbi->s_vat_inode->i_size -
1221                                 map->s_type_specific.s_virtual.
1222                                         s_start_offset) >> 2;
1223                 brelse(bh);
1224         }
1225         return 0;
1226 }
1227
1228 /*
1229  * Load partition descriptor block
1230  *
1231  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1232  * sequence.
1233  */
1234 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1235 {
1236         struct buffer_head *bh;
1237         struct partitionDesc *p;
1238         struct udf_part_map *map;
1239         struct udf_sb_info *sbi = UDF_SB(sb);
1240         int i, type1_idx;
1241         uint16_t partitionNumber;
1242         uint16_t ident;
1243         int ret;
1244
1245         bh = udf_read_tagged(sb, block, block, &ident);
1246         if (!bh)
1247                 return -EAGAIN;
1248         if (ident != TAG_IDENT_PD) {
1249                 ret = 0;
1250                 goto out_bh;
1251         }
1252
1253         p = (struct partitionDesc *)bh->b_data;
1254         partitionNumber = le16_to_cpu(p->partitionNumber);
1255
1256         /* First scan for TYPE1 and SPARABLE partitions */
1257         for (i = 0; i < sbi->s_partitions; i++) {
1258                 map = &sbi->s_partmaps[i];
1259                 udf_debug("Searching map: (%u == %u)\n",
1260                           map->s_partition_num, partitionNumber);
1261                 if (map->s_partition_num == partitionNumber &&
1262                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1263                      map->s_partition_type == UDF_SPARABLE_MAP15))
1264                         break;
1265         }
1266
1267         if (i >= sbi->s_partitions) {
1268                 udf_debug("Partition (%u) not found in partition map\n",
1269                           partitionNumber);
1270                 ret = 0;
1271                 goto out_bh;
1272         }
1273
1274         ret = udf_fill_partdesc_info(sb, p, i);
1275         if (ret < 0)
1276                 goto out_bh;
1277
1278         /*
1279          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1280          * PHYSICAL partitions are already set up
1281          */
1282         type1_idx = i;
1283         map = NULL; /* supress 'maybe used uninitialized' warning */
1284         for (i = 0; i < sbi->s_partitions; i++) {
1285                 map = &sbi->s_partmaps[i];
1286
1287                 if (map->s_partition_num == partitionNumber &&
1288                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1289                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1290                      map->s_partition_type == UDF_METADATA_MAP25))
1291                         break;
1292         }
1293
1294         if (i >= sbi->s_partitions) {
1295                 ret = 0;
1296                 goto out_bh;
1297         }
1298
1299         ret = udf_fill_partdesc_info(sb, p, i);
1300         if (ret < 0)
1301                 goto out_bh;
1302
1303         if (map->s_partition_type == UDF_METADATA_MAP25) {
1304                 ret = udf_load_metadata_files(sb, i, type1_idx);
1305                 if (ret < 0) {
1306                         udf_err(sb, "error loading MetaData partition map %d\n",
1307                                 i);
1308                         goto out_bh;
1309                 }
1310         } else {
1311                 /*
1312                  * If we have a partition with virtual map, we don't handle
1313                  * writing to it (we overwrite blocks instead of relocating
1314                  * them).
1315                  */
1316                 if (!sb_rdonly(sb)) {
1317                         ret = -EACCES;
1318                         goto out_bh;
1319                 }
1320                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1321                 ret = udf_load_vat(sb, i, type1_idx);
1322                 if (ret < 0)
1323                         goto out_bh;
1324         }
1325         ret = 0;
1326 out_bh:
1327         /* In case loading failed, we handle cleanup in udf_fill_super */
1328         brelse(bh);
1329         return ret;
1330 }
1331
1332 static int udf_load_sparable_map(struct super_block *sb,
1333                                  struct udf_part_map *map,
1334                                  struct sparablePartitionMap *spm)
1335 {
1336         uint32_t loc;
1337         uint16_t ident;
1338         struct sparingTable *st;
1339         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1340         int i;
1341         struct buffer_head *bh;
1342
1343         map->s_partition_type = UDF_SPARABLE_MAP15;
1344         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1345         if (!is_power_of_2(sdata->s_packet_len)) {
1346                 udf_err(sb, "error loading logical volume descriptor: "
1347                         "Invalid packet length %u\n",
1348                         (unsigned)sdata->s_packet_len);
1349                 return -EIO;
1350         }
1351         if (spm->numSparingTables > 4) {
1352                 udf_err(sb, "error loading logical volume descriptor: "
1353                         "Too many sparing tables (%d)\n",
1354                         (int)spm->numSparingTables);
1355                 return -EIO;
1356         }
1357         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1358                 udf_err(sb, "error loading logical volume descriptor: "
1359                         "Too big sparing table size (%u)\n",
1360                         le32_to_cpu(spm->sizeSparingTable));
1361                 return -EIO;
1362         }
1363
1364         for (i = 0; i < spm->numSparingTables; i++) {
1365                 loc = le32_to_cpu(spm->locSparingTable[i]);
1366                 bh = udf_read_tagged(sb, loc, loc, &ident);
1367                 if (!bh)
1368                         continue;
1369
1370                 st = (struct sparingTable *)bh->b_data;
1371                 if (ident != 0 ||
1372                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1373                             strlen(UDF_ID_SPARING)) ||
1374                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1375                                                         sb->s_blocksize) {
1376                         brelse(bh);
1377                         continue;
1378                 }
1379
1380                 sdata->s_spar_map[i] = bh;
1381         }
1382         map->s_partition_func = udf_get_pblock_spar15;
1383         return 0;
1384 }
1385
1386 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1387                                struct kernel_lb_addr *fileset)
1388 {
1389         struct logicalVolDesc *lvd;
1390         int i, offset;
1391         uint8_t type;
1392         struct udf_sb_info *sbi = UDF_SB(sb);
1393         struct genericPartitionMap *gpm;
1394         uint16_t ident;
1395         struct buffer_head *bh;
1396         unsigned int table_len;
1397         int ret;
1398
1399         bh = udf_read_tagged(sb, block, block, &ident);
1400         if (!bh)
1401                 return -EAGAIN;
1402         BUG_ON(ident != TAG_IDENT_LVD);
1403         lvd = (struct logicalVolDesc *)bh->b_data;
1404         table_len = le32_to_cpu(lvd->mapTableLength);
1405         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1406                 udf_err(sb, "error loading logical volume descriptor: "
1407                         "Partition table too long (%u > %lu)\n", table_len,
1408                         sb->s_blocksize - sizeof(*lvd));
1409                 ret = -EIO;
1410                 goto out_bh;
1411         }
1412
1413         ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1414                                            "logical volume");
1415         if (ret)
1416                 goto out_bh;
1417         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1418         if (ret)
1419                 goto out_bh;
1420
1421         for (i = 0, offset = 0;
1422              i < sbi->s_partitions && offset < table_len;
1423              i++, offset += gpm->partitionMapLength) {
1424                 struct udf_part_map *map = &sbi->s_partmaps[i];
1425                 gpm = (struct genericPartitionMap *)
1426                                 &(lvd->partitionMaps[offset]);
1427                 type = gpm->partitionMapType;
1428                 if (type == 1) {
1429                         struct genericPartitionMap1 *gpm1 =
1430                                 (struct genericPartitionMap1 *)gpm;
1431                         map->s_partition_type = UDF_TYPE1_MAP15;
1432                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1433                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1434                         map->s_partition_func = NULL;
1435                 } else if (type == 2) {
1436                         struct udfPartitionMap2 *upm2 =
1437                                                 (struct udfPartitionMap2 *)gpm;
1438                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1439                                                 strlen(UDF_ID_VIRTUAL))) {
1440                                 u16 suf =
1441                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1442                                                         identSuffix)[0]);
1443                                 if (suf < 0x0200) {
1444                                         map->s_partition_type =
1445                                                         UDF_VIRTUAL_MAP15;
1446                                         map->s_partition_func =
1447                                                         udf_get_pblock_virt15;
1448                                 } else {
1449                                         map->s_partition_type =
1450                                                         UDF_VIRTUAL_MAP20;
1451                                         map->s_partition_func =
1452                                                         udf_get_pblock_virt20;
1453                                 }
1454                         } else if (!strncmp(upm2->partIdent.ident,
1455                                                 UDF_ID_SPARABLE,
1456                                                 strlen(UDF_ID_SPARABLE))) {
1457                                 ret = udf_load_sparable_map(sb, map,
1458                                         (struct sparablePartitionMap *)gpm);
1459                                 if (ret < 0)
1460                                         goto out_bh;
1461                         } else if (!strncmp(upm2->partIdent.ident,
1462                                                 UDF_ID_METADATA,
1463                                                 strlen(UDF_ID_METADATA))) {
1464                                 struct udf_meta_data *mdata =
1465                                         &map->s_type_specific.s_metadata;
1466                                 struct metadataPartitionMap *mdm =
1467                                                 (struct metadataPartitionMap *)
1468                                                 &(lvd->partitionMaps[offset]);
1469                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1470                                           i, type, UDF_ID_METADATA);
1471
1472                                 map->s_partition_type = UDF_METADATA_MAP25;
1473                                 map->s_partition_func = udf_get_pblock_meta25;
1474
1475                                 mdata->s_meta_file_loc   =
1476                                         le32_to_cpu(mdm->metadataFileLoc);
1477                                 mdata->s_mirror_file_loc =
1478                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1479                                 mdata->s_bitmap_file_loc =
1480                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1481                                 mdata->s_alloc_unit_size =
1482                                         le32_to_cpu(mdm->allocUnitSize);
1483                                 mdata->s_align_unit_size =
1484                                         le16_to_cpu(mdm->alignUnitSize);
1485                                 if (mdm->flags & 0x01)
1486                                         mdata->s_flags |= MF_DUPLICATE_MD;
1487
1488                                 udf_debug("Metadata Ident suffix=0x%x\n",
1489                                           le16_to_cpu(*(__le16 *)
1490                                                       mdm->partIdent.identSuffix));
1491                                 udf_debug("Metadata part num=%u\n",
1492                                           le16_to_cpu(mdm->partitionNum));
1493                                 udf_debug("Metadata part alloc unit size=%u\n",
1494                                           le32_to_cpu(mdm->allocUnitSize));
1495                                 udf_debug("Metadata file loc=%u\n",
1496                                           le32_to_cpu(mdm->metadataFileLoc));
1497                                 udf_debug("Mirror file loc=%u\n",
1498                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1499                                 udf_debug("Bitmap file loc=%u\n",
1500                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1501                                 udf_debug("Flags: %d %u\n",
1502                                           mdata->s_flags, mdm->flags);
1503                         } else {
1504                                 udf_debug("Unknown ident: %s\n",
1505                                           upm2->partIdent.ident);
1506                                 continue;
1507                         }
1508                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1509                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1510                 }
1511                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1512                           i, map->s_partition_num, type, map->s_volumeseqnum);
1513         }
1514
1515         if (fileset) {
1516                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1517
1518                 *fileset = lelb_to_cpu(la->extLocation);
1519                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1520                           fileset->logicalBlockNum,
1521                           fileset->partitionReferenceNum);
1522         }
1523         if (lvd->integritySeqExt.extLength)
1524                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1525         ret = 0;
1526
1527         if (!sbi->s_lvid_bh) {
1528                 /* We can't generate unique IDs without a valid LVID */
1529                 if (sb_rdonly(sb)) {
1530                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1531                 } else {
1532                         udf_warn(sb, "Damaged or missing LVID, forcing "
1533                                      "readonly mount\n");
1534                         ret = -EACCES;
1535                 }
1536         }
1537 out_bh:
1538         brelse(bh);
1539         return ret;
1540 }
1541
1542 /*
1543  * Find the prevailing Logical Volume Integrity Descriptor.
1544  */
1545 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1546 {
1547         struct buffer_head *bh, *final_bh;
1548         uint16_t ident;
1549         struct udf_sb_info *sbi = UDF_SB(sb);
1550         struct logicalVolIntegrityDesc *lvid;
1551         int indirections = 0;
1552         u32 parts, impuselen;
1553
1554         while (++indirections <= UDF_MAX_LVID_NESTING) {
1555                 final_bh = NULL;
1556                 while (loc.extLength > 0 &&
1557                         (bh = udf_read_tagged(sb, loc.extLocation,
1558                                         loc.extLocation, &ident))) {
1559                         if (ident != TAG_IDENT_LVID) {
1560                                 brelse(bh);
1561                                 break;
1562                         }
1563
1564                         brelse(final_bh);
1565                         final_bh = bh;
1566
1567                         loc.extLength -= sb->s_blocksize;
1568                         loc.extLocation++;
1569                 }
1570
1571                 if (!final_bh)
1572                         return;
1573
1574                 brelse(sbi->s_lvid_bh);
1575                 sbi->s_lvid_bh = final_bh;
1576
1577                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1578                 if (lvid->nextIntegrityExt.extLength == 0)
1579                         goto check;
1580
1581                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1582         }
1583
1584         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1585                 UDF_MAX_LVID_NESTING);
1586 out_err:
1587         brelse(sbi->s_lvid_bh);
1588         sbi->s_lvid_bh = NULL;
1589         return;
1590 check:
1591         parts = le32_to_cpu(lvid->numOfPartitions);
1592         impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1593         if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1594             sizeof(struct logicalVolIntegrityDesc) + impuselen +
1595             2 * parts * sizeof(u32) > sb->s_blocksize) {
1596                 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1597                          "ignoring.\n", parts, impuselen);
1598                 goto out_err;
1599         }
1600 }
1601
1602 /*
1603  * Step for reallocation of table of partition descriptor sequence numbers.
1604  * Must be power of 2.
1605  */
1606 #define PART_DESC_ALLOC_STEP 32
1607
1608 struct part_desc_seq_scan_data {
1609         struct udf_vds_record rec;
1610         u32 partnum;
1611 };
1612
1613 struct desc_seq_scan_data {
1614         struct udf_vds_record vds[VDS_POS_LENGTH];
1615         unsigned int size_part_descs;
1616         unsigned int num_part_descs;
1617         struct part_desc_seq_scan_data *part_descs_loc;
1618 };
1619
1620 static struct udf_vds_record *handle_partition_descriptor(
1621                                 struct buffer_head *bh,
1622                                 struct desc_seq_scan_data *data)
1623 {
1624         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1625         int partnum;
1626         int i;
1627
1628         partnum = le16_to_cpu(desc->partitionNumber);
1629         for (i = 0; i < data->num_part_descs; i++)
1630                 if (partnum == data->part_descs_loc[i].partnum)
1631                         return &(data->part_descs_loc[i].rec);
1632         if (data->num_part_descs >= data->size_part_descs) {
1633                 struct part_desc_seq_scan_data *new_loc;
1634                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1635
1636                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1637                 if (!new_loc)
1638                         return ERR_PTR(-ENOMEM);
1639                 memcpy(new_loc, data->part_descs_loc,
1640                        data->size_part_descs * sizeof(*new_loc));
1641                 kfree(data->part_descs_loc);
1642                 data->part_descs_loc = new_loc;
1643                 data->size_part_descs = new_size;
1644         }
1645         return &(data->part_descs_loc[data->num_part_descs++].rec);
1646 }
1647
1648
1649 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1650                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1651 {
1652         switch (ident) {
1653         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1654                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1655         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1656                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1657         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1658                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1659         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1660                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1661         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1662                 return handle_partition_descriptor(bh, data);
1663         }
1664         return NULL;
1665 }
1666
1667 /*
1668  * Process a main/reserve volume descriptor sequence.
1669  *   @block             First block of first extent of the sequence.
1670  *   @lastblock         Lastblock of first extent of the sequence.
1671  *   @fileset           There we store extent containing root fileset
1672  *
1673  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1674  * sequence
1675  */
1676 static noinline int udf_process_sequence(
1677                 struct super_block *sb,
1678                 sector_t block, sector_t lastblock,
1679                 struct kernel_lb_addr *fileset)
1680 {
1681         struct buffer_head *bh = NULL;
1682         struct udf_vds_record *curr;
1683         struct generic_desc *gd;
1684         struct volDescPtr *vdp;
1685         bool done = false;
1686         uint32_t vdsn;
1687         uint16_t ident;
1688         int ret;
1689         unsigned int indirections = 0;
1690         struct desc_seq_scan_data data;
1691         unsigned int i;
1692
1693         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1694         data.size_part_descs = PART_DESC_ALLOC_STEP;
1695         data.num_part_descs = 0;
1696         data.part_descs_loc = kcalloc(data.size_part_descs,
1697                                       sizeof(*data.part_descs_loc),
1698                                       GFP_KERNEL);
1699         if (!data.part_descs_loc)
1700                 return -ENOMEM;
1701
1702         /*
1703          * Read the main descriptor sequence and find which descriptors
1704          * are in it.
1705          */
1706         for (; (!done && block <= lastblock); block++) {
1707                 bh = udf_read_tagged(sb, block, block, &ident);
1708                 if (!bh)
1709                         break;
1710
1711                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1712                 gd = (struct generic_desc *)bh->b_data;
1713                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1714                 switch (ident) {
1715                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1716                         if (++indirections > UDF_MAX_TD_NESTING) {
1717                                 udf_err(sb, "too many Volume Descriptor "
1718                                         "Pointers (max %u supported)\n",
1719                                         UDF_MAX_TD_NESTING);
1720                                 brelse(bh);
1721                                 ret = -EIO;
1722                                 goto out;
1723                         }
1724
1725                         vdp = (struct volDescPtr *)bh->b_data;
1726                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1727                         lastblock = le32_to_cpu(
1728                                 vdp->nextVolDescSeqExt.extLength) >>
1729                                 sb->s_blocksize_bits;
1730                         lastblock += block - 1;
1731                         /* For loop is going to increment 'block' again */
1732                         block--;
1733                         break;
1734                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1735                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1736                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1737                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1738                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1739                         curr = get_volume_descriptor_record(ident, bh, &data);
1740                         if (IS_ERR(curr)) {
1741                                 brelse(bh);
1742                                 ret = PTR_ERR(curr);
1743                                 goto out;
1744                         }
1745                         /* Descriptor we don't care about? */
1746                         if (!curr)
1747                                 break;
1748                         if (vdsn >= curr->volDescSeqNum) {
1749                                 curr->volDescSeqNum = vdsn;
1750                                 curr->block = block;
1751                         }
1752                         break;
1753                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1754                         done = true;
1755                         break;
1756                 }
1757                 brelse(bh);
1758         }
1759         /*
1760          * Now read interesting descriptors again and process them
1761          * in a suitable order
1762          */
1763         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1764                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1765                 ret = -EAGAIN;
1766                 goto out;
1767         }
1768         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1769         if (ret < 0)
1770                 goto out;
1771
1772         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1773                 ret = udf_load_logicalvol(sb,
1774                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1775                                 fileset);
1776                 if (ret < 0)
1777                         goto out;
1778         }
1779
1780         /* Now handle prevailing Partition Descriptors */
1781         for (i = 0; i < data.num_part_descs; i++) {
1782                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1783                 if (ret < 0)
1784                         goto out;
1785         }
1786         ret = 0;
1787 out:
1788         kfree(data.part_descs_loc);
1789         return ret;
1790 }
1791
1792 /*
1793  * Load Volume Descriptor Sequence described by anchor in bh
1794  *
1795  * Returns <0 on error, 0 on success
1796  */
1797 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1798                              struct kernel_lb_addr *fileset)
1799 {
1800         struct anchorVolDescPtr *anchor;
1801         sector_t main_s, main_e, reserve_s, reserve_e;
1802         int ret;
1803
1804         anchor = (struct anchorVolDescPtr *)bh->b_data;
1805
1806         /* Locate the main sequence */
1807         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1808         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1809         main_e = main_e >> sb->s_blocksize_bits;
1810         main_e += main_s - 1;
1811
1812         /* Locate the reserve sequence */
1813         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1814         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1815         reserve_e = reserve_e >> sb->s_blocksize_bits;
1816         reserve_e += reserve_s - 1;
1817
1818         /* Process the main & reserve sequences */
1819         /* responsible for finding the PartitionDesc(s) */
1820         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1821         if (ret != -EAGAIN)
1822                 return ret;
1823         udf_sb_free_partitions(sb);
1824         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1825         if (ret < 0) {
1826                 udf_sb_free_partitions(sb);
1827                 /* No sequence was OK, return -EIO */
1828                 if (ret == -EAGAIN)
1829                         ret = -EIO;
1830         }
1831         return ret;
1832 }
1833
1834 /*
1835  * Check whether there is an anchor block in the given block and
1836  * load Volume Descriptor Sequence if so.
1837  *
1838  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1839  * block
1840  */
1841 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1842                                   struct kernel_lb_addr *fileset)
1843 {
1844         struct buffer_head *bh;
1845         uint16_t ident;
1846         int ret;
1847
1848         bh = udf_read_tagged(sb, block, block, &ident);
1849         if (!bh)
1850                 return -EAGAIN;
1851         if (ident != TAG_IDENT_AVDP) {
1852                 brelse(bh);
1853                 return -EAGAIN;
1854         }
1855         ret = udf_load_sequence(sb, bh, fileset);
1856         brelse(bh);
1857         return ret;
1858 }
1859
1860 /*
1861  * Search for an anchor volume descriptor pointer.
1862  *
1863  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1864  * of anchors.
1865  */
1866 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1867                             struct kernel_lb_addr *fileset)
1868 {
1869         udf_pblk_t last[6];
1870         int i;
1871         struct udf_sb_info *sbi = UDF_SB(sb);
1872         int last_count = 0;
1873         int ret;
1874
1875         /* First try user provided anchor */
1876         if (sbi->s_anchor) {
1877                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1878                 if (ret != -EAGAIN)
1879                         return ret;
1880         }
1881         /*
1882          * according to spec, anchor is in either:
1883          *     block 256
1884          *     lastblock-256
1885          *     lastblock
1886          *  however, if the disc isn't closed, it could be 512.
1887          */
1888         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1889         if (ret != -EAGAIN)
1890                 return ret;
1891         /*
1892          * The trouble is which block is the last one. Drives often misreport
1893          * this so we try various possibilities.
1894          */
1895         last[last_count++] = *lastblock;
1896         if (*lastblock >= 1)
1897                 last[last_count++] = *lastblock - 1;
1898         last[last_count++] = *lastblock + 1;
1899         if (*lastblock >= 2)
1900                 last[last_count++] = *lastblock - 2;
1901         if (*lastblock >= 150)
1902                 last[last_count++] = *lastblock - 150;
1903         if (*lastblock >= 152)
1904                 last[last_count++] = *lastblock - 152;
1905
1906         for (i = 0; i < last_count; i++) {
1907                 if (last[i] >= sb_bdev_nr_blocks(sb))
1908                         continue;
1909                 ret = udf_check_anchor_block(sb, last[i], fileset);
1910                 if (ret != -EAGAIN) {
1911                         if (!ret)
1912                                 *lastblock = last[i];
1913                         return ret;
1914                 }
1915                 if (last[i] < 256)
1916                         continue;
1917                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1918                 if (ret != -EAGAIN) {
1919                         if (!ret)
1920                                 *lastblock = last[i];
1921                         return ret;
1922                 }
1923         }
1924
1925         /* Finally try block 512 in case media is open */
1926         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1927 }
1928
1929 /*
1930  * Check Volume Structure Descriptor, find Anchor block and load Volume
1931  * Descriptor Sequence.
1932  *
1933  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1934  * block was not found.
1935  */
1936 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1937                         int silent, struct kernel_lb_addr *fileset)
1938 {
1939         struct udf_sb_info *sbi = UDF_SB(sb);
1940         int nsr = 0;
1941         int ret;
1942
1943         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1944                 if (!silent)
1945                         udf_warn(sb, "Bad block size\n");
1946                 return -EINVAL;
1947         }
1948         sbi->s_last_block = uopt->lastblock;
1949         if (!uopt->novrs) {
1950                 /* Check that it is NSR02 compliant */
1951                 nsr = udf_check_vsd(sb);
1952                 if (!nsr) {
1953                         if (!silent)
1954                                 udf_warn(sb, "No VRS found\n");
1955                         return -EINVAL;
1956                 }
1957                 if (nsr == -1)
1958                         udf_debug("Failed to read sector at offset %d. "
1959                                   "Assuming open disc. Skipping validity "
1960                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1961                 if (!sbi->s_last_block)
1962                         sbi->s_last_block = udf_get_last_block(sb);
1963         } else {
1964                 udf_debug("Validity check skipped because of novrs option\n");
1965         }
1966
1967         /* Look for anchor block and load Volume Descriptor Sequence */
1968         sbi->s_anchor = uopt->anchor;
1969         ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1970         if (ret < 0) {
1971                 if (!silent && ret == -EAGAIN)
1972                         udf_warn(sb, "No anchor found\n");
1973                 return ret;
1974         }
1975         return 0;
1976 }
1977
1978 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1979 {
1980         struct timespec64 ts;
1981
1982         ktime_get_real_ts64(&ts);
1983         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1984         lvid->descTag.descCRC = cpu_to_le16(
1985                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1986                         le16_to_cpu(lvid->descTag.descCRCLength)));
1987         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988 }
1989
1990 static void udf_open_lvid(struct super_block *sb)
1991 {
1992         struct udf_sb_info *sbi = UDF_SB(sb);
1993         struct buffer_head *bh = sbi->s_lvid_bh;
1994         struct logicalVolIntegrityDesc *lvid;
1995         struct logicalVolIntegrityDescImpUse *lvidiu;
1996
1997         if (!bh)
1998                 return;
1999         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000         lvidiu = udf_sb_lvidiu(sb);
2001         if (!lvidiu)
2002                 return;
2003
2004         mutex_lock(&sbi->s_alloc_mutex);
2005         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2008                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2009         else
2010                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2011
2012         udf_finalize_lvid(lvid);
2013         mark_buffer_dirty(bh);
2014         sbi->s_lvid_dirty = 0;
2015         mutex_unlock(&sbi->s_alloc_mutex);
2016         /* Make opening of filesystem visible on the media immediately */
2017         sync_dirty_buffer(bh);
2018 }
2019
2020 static void udf_close_lvid(struct super_block *sb)
2021 {
2022         struct udf_sb_info *sbi = UDF_SB(sb);
2023         struct buffer_head *bh = sbi->s_lvid_bh;
2024         struct logicalVolIntegrityDesc *lvid;
2025         struct logicalVolIntegrityDescImpUse *lvidiu;
2026
2027         if (!bh)
2028                 return;
2029         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2030         lvidiu = udf_sb_lvidiu(sb);
2031         if (!lvidiu)
2032                 return;
2033
2034         mutex_lock(&sbi->s_alloc_mutex);
2035         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2036         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2037         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2038                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2039         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2040                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2041         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2042                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2043         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2044                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2045
2046         /*
2047          * We set buffer uptodate unconditionally here to avoid spurious
2048          * warnings from mark_buffer_dirty() when previous EIO has marked
2049          * the buffer as !uptodate
2050          */
2051         set_buffer_uptodate(bh);
2052         udf_finalize_lvid(lvid);
2053         mark_buffer_dirty(bh);
2054         sbi->s_lvid_dirty = 0;
2055         mutex_unlock(&sbi->s_alloc_mutex);
2056         /* Make closing of filesystem visible on the media immediately */
2057         sync_dirty_buffer(bh);
2058 }
2059
2060 u64 lvid_get_unique_id(struct super_block *sb)
2061 {
2062         struct buffer_head *bh;
2063         struct udf_sb_info *sbi = UDF_SB(sb);
2064         struct logicalVolIntegrityDesc *lvid;
2065         struct logicalVolHeaderDesc *lvhd;
2066         u64 uniqueID;
2067         u64 ret;
2068
2069         bh = sbi->s_lvid_bh;
2070         if (!bh)
2071                 return 0;
2072
2073         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076         mutex_lock(&sbi->s_alloc_mutex);
2077         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078         if (!(++uniqueID & 0xFFFFFFFF))
2079                 uniqueID += 16;
2080         lvhd->uniqueID = cpu_to_le64(uniqueID);
2081         udf_updated_lvid(sb);
2082         mutex_unlock(&sbi->s_alloc_mutex);
2083
2084         return ret;
2085 }
2086
2087 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088 {
2089         int ret = -EINVAL;
2090         struct inode *inode = NULL;
2091         struct udf_options uopt;
2092         struct kernel_lb_addr rootdir, fileset;
2093         struct udf_sb_info *sbi;
2094         bool lvid_open = false;
2095
2096         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2098         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2099         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2100         uopt.umask = 0;
2101         uopt.fmode = UDF_INVALID_MODE;
2102         uopt.dmode = UDF_INVALID_MODE;
2103         uopt.nls_map = NULL;
2104
2105         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2106         if (!sbi)
2107                 return -ENOMEM;
2108
2109         sb->s_fs_info = sbi;
2110
2111         mutex_init(&sbi->s_alloc_mutex);
2112
2113         if (!udf_parse_options((char *)options, &uopt, false))
2114                 goto parse_options_failure;
2115
2116         fileset.logicalBlockNum = 0xFFFFFFFF;
2117         fileset.partitionReferenceNum = 0xFFFF;
2118
2119         sbi->s_flags = uopt.flags;
2120         sbi->s_uid = uopt.uid;
2121         sbi->s_gid = uopt.gid;
2122         sbi->s_umask = uopt.umask;
2123         sbi->s_fmode = uopt.fmode;
2124         sbi->s_dmode = uopt.dmode;
2125         sbi->s_nls_map = uopt.nls_map;
2126         rwlock_init(&sbi->s_cred_lock);
2127
2128         if (uopt.session == 0xFFFFFFFF)
2129                 sbi->s_session = udf_get_last_session(sb);
2130         else
2131                 sbi->s_session = uopt.session;
2132
2133         udf_debug("Multi-session=%d\n", sbi->s_session);
2134
2135         /* Fill in the rest of the superblock */
2136         sb->s_op = &udf_sb_ops;
2137         sb->s_export_op = &udf_export_ops;
2138
2139         sb->s_magic = UDF_SUPER_MAGIC;
2140         sb->s_time_gran = 1000;
2141
2142         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2143                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2144         } else {
2145                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2146                 while (uopt.blocksize <= 4096) {
2147                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148                         if (ret < 0) {
2149                                 if (!silent && ret != -EACCES) {
2150                                         pr_notice("Scanning with blocksize %u failed\n",
2151                                                   uopt.blocksize);
2152                                 }
2153                                 brelse(sbi->s_lvid_bh);
2154                                 sbi->s_lvid_bh = NULL;
2155                                 /*
2156                                  * EACCES is special - we want to propagate to
2157                                  * upper layers that we cannot handle RW mount.
2158                                  */
2159                                 if (ret == -EACCES)
2160                                         break;
2161                         } else
2162                                 break;
2163
2164                         uopt.blocksize <<= 1;
2165                 }
2166         }
2167         if (ret < 0) {
2168                 if (ret == -EAGAIN) {
2169                         udf_warn(sb, "No partition found (1)\n");
2170                         ret = -EINVAL;
2171                 }
2172                 goto error_out;
2173         }
2174
2175         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2176
2177         if (sbi->s_lvid_bh) {
2178                 struct logicalVolIntegrityDescImpUse *lvidiu =
2179                                                         udf_sb_lvidiu(sb);
2180                 uint16_t minUDFReadRev;
2181                 uint16_t minUDFWriteRev;
2182
2183                 if (!lvidiu) {
2184                         ret = -EINVAL;
2185                         goto error_out;
2186                 }
2187                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2188                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2189                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2190                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2191                                 minUDFReadRev,
2192                                 UDF_MAX_READ_VERSION);
2193                         ret = -EINVAL;
2194                         goto error_out;
2195                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2196                         if (!sb_rdonly(sb)) {
2197                                 ret = -EACCES;
2198                                 goto error_out;
2199                         }
2200                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2201                 }
2202
2203                 sbi->s_udfrev = minUDFWriteRev;
2204
2205                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2206                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2207                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2208                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2209         }
2210
2211         if (!sbi->s_partitions) {
2212                 udf_warn(sb, "No partition found (2)\n");
2213                 ret = -EINVAL;
2214                 goto error_out;
2215         }
2216
2217         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2218                         UDF_PART_FLAG_READ_ONLY) {
2219                 if (!sb_rdonly(sb)) {
2220                         ret = -EACCES;
2221                         goto error_out;
2222                 }
2223                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2224         }
2225
2226         ret = udf_find_fileset(sb, &fileset, &rootdir);
2227         if (ret < 0) {
2228                 udf_warn(sb, "No fileset found\n");
2229                 goto error_out;
2230         }
2231
2232         if (!silent) {
2233                 struct timestamp ts;
2234                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2235                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2236                          sbi->s_volume_ident,
2237                          le16_to_cpu(ts.year), ts.month, ts.day,
2238                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2239         }
2240         if (!sb_rdonly(sb)) {
2241                 udf_open_lvid(sb);
2242                 lvid_open = true;
2243         }
2244
2245         /* Assign the root inode */
2246         /* assign inodes by physical block number */
2247         /* perhaps it's not extensible enough, but for now ... */
2248         inode = udf_iget(sb, &rootdir);
2249         if (IS_ERR(inode)) {
2250                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2251                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2252                 ret = PTR_ERR(inode);
2253                 goto error_out;
2254         }
2255
2256         /* Allocate a dentry for the root inode */
2257         sb->s_root = d_make_root(inode);
2258         if (!sb->s_root) {
2259                 udf_err(sb, "Couldn't allocate root dentry\n");
2260                 ret = -ENOMEM;
2261                 goto error_out;
2262         }
2263         sb->s_maxbytes = UDF_MAX_FILESIZE;
2264         sb->s_max_links = UDF_MAX_LINKS;
2265         return 0;
2266
2267 error_out:
2268         iput(sbi->s_vat_inode);
2269 parse_options_failure:
2270         unload_nls(uopt.nls_map);
2271         if (lvid_open)
2272                 udf_close_lvid(sb);
2273         brelse(sbi->s_lvid_bh);
2274         udf_sb_free_partitions(sb);
2275         kfree(sbi);
2276         sb->s_fs_info = NULL;
2277
2278         return ret;
2279 }
2280
2281 void _udf_err(struct super_block *sb, const char *function,
2282               const char *fmt, ...)
2283 {
2284         struct va_format vaf;
2285         va_list args;
2286
2287         va_start(args, fmt);
2288
2289         vaf.fmt = fmt;
2290         vaf.va = &args;
2291
2292         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2293
2294         va_end(args);
2295 }
2296
2297 void _udf_warn(struct super_block *sb, const char *function,
2298                const char *fmt, ...)
2299 {
2300         struct va_format vaf;
2301         va_list args;
2302
2303         va_start(args, fmt);
2304
2305         vaf.fmt = fmt;
2306         vaf.va = &args;
2307
2308         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2309
2310         va_end(args);
2311 }
2312
2313 static void udf_put_super(struct super_block *sb)
2314 {
2315         struct udf_sb_info *sbi;
2316
2317         sbi = UDF_SB(sb);
2318
2319         iput(sbi->s_vat_inode);
2320         unload_nls(sbi->s_nls_map);
2321         if (!sb_rdonly(sb))
2322                 udf_close_lvid(sb);
2323         brelse(sbi->s_lvid_bh);
2324         udf_sb_free_partitions(sb);
2325         mutex_destroy(&sbi->s_alloc_mutex);
2326         kfree(sb->s_fs_info);
2327         sb->s_fs_info = NULL;
2328 }
2329
2330 static int udf_sync_fs(struct super_block *sb, int wait)
2331 {
2332         struct udf_sb_info *sbi = UDF_SB(sb);
2333
2334         mutex_lock(&sbi->s_alloc_mutex);
2335         if (sbi->s_lvid_dirty) {
2336                 struct buffer_head *bh = sbi->s_lvid_bh;
2337                 struct logicalVolIntegrityDesc *lvid;
2338
2339                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2340                 udf_finalize_lvid(lvid);
2341
2342                 /*
2343                  * Blockdevice will be synced later so we don't have to submit
2344                  * the buffer for IO
2345                  */
2346                 mark_buffer_dirty(bh);
2347                 sbi->s_lvid_dirty = 0;
2348         }
2349         mutex_unlock(&sbi->s_alloc_mutex);
2350
2351         return 0;
2352 }
2353
2354 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2355 {
2356         struct super_block *sb = dentry->d_sb;
2357         struct udf_sb_info *sbi = UDF_SB(sb);
2358         struct logicalVolIntegrityDescImpUse *lvidiu;
2359         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2360
2361         lvidiu = udf_sb_lvidiu(sb);
2362         buf->f_type = UDF_SUPER_MAGIC;
2363         buf->f_bsize = sb->s_blocksize;
2364         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2365         buf->f_bfree = udf_count_free(sb);
2366         buf->f_bavail = buf->f_bfree;
2367         /*
2368          * Let's pretend each free block is also a free 'inode' since UDF does
2369          * not have separate preallocated table of inodes.
2370          */
2371         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2372                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2373                         + buf->f_bfree;
2374         buf->f_ffree = buf->f_bfree;
2375         buf->f_namelen = UDF_NAME_LEN;
2376         buf->f_fsid = u64_to_fsid(id);
2377
2378         return 0;
2379 }
2380
2381 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2382                                           struct udf_bitmap *bitmap)
2383 {
2384         struct buffer_head *bh = NULL;
2385         unsigned int accum = 0;
2386         int index;
2387         udf_pblk_t block = 0, newblock;
2388         struct kernel_lb_addr loc;
2389         uint32_t bytes;
2390         uint8_t *ptr;
2391         uint16_t ident;
2392         struct spaceBitmapDesc *bm;
2393
2394         loc.logicalBlockNum = bitmap->s_extPosition;
2395         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2396         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2397
2398         if (!bh) {
2399                 udf_err(sb, "udf_count_free failed\n");
2400                 goto out;
2401         } else if (ident != TAG_IDENT_SBD) {
2402                 brelse(bh);
2403                 udf_err(sb, "udf_count_free failed\n");
2404                 goto out;
2405         }
2406
2407         bm = (struct spaceBitmapDesc *)bh->b_data;
2408         bytes = le32_to_cpu(bm->numOfBytes);
2409         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2410         ptr = (uint8_t *)bh->b_data;
2411
2412         while (bytes > 0) {
2413                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2414                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2415                                         cur_bytes * 8);
2416                 bytes -= cur_bytes;
2417                 if (bytes) {
2418                         brelse(bh);
2419                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2420                         bh = sb_bread(sb, newblock);
2421                         if (!bh) {
2422                                 udf_debug("read failed\n");
2423                                 goto out;
2424                         }
2425                         index = 0;
2426                         ptr = (uint8_t *)bh->b_data;
2427                 }
2428         }
2429         brelse(bh);
2430 out:
2431         return accum;
2432 }
2433
2434 static unsigned int udf_count_free_table(struct super_block *sb,
2435                                          struct inode *table)
2436 {
2437         unsigned int accum = 0;
2438         uint32_t elen;
2439         struct kernel_lb_addr eloc;
2440         struct extent_position epos;
2441
2442         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2443         epos.block = UDF_I(table)->i_location;
2444         epos.offset = sizeof(struct unallocSpaceEntry);
2445         epos.bh = NULL;
2446
2447         while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2448                 accum += (elen >> table->i_sb->s_blocksize_bits);
2449
2450         brelse(epos.bh);
2451         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2452
2453         return accum;
2454 }
2455
2456 static unsigned int udf_count_free(struct super_block *sb)
2457 {
2458         unsigned int accum = 0;
2459         struct udf_sb_info *sbi = UDF_SB(sb);
2460         struct udf_part_map *map;
2461         unsigned int part = sbi->s_partition;
2462         int ptype = sbi->s_partmaps[part].s_partition_type;
2463
2464         if (ptype == UDF_METADATA_MAP25) {
2465                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2466                                                         s_phys_partition_ref;
2467         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2468                 /*
2469                  * Filesystems with VAT are append-only and we cannot write to
2470                  * them. Let's just report 0 here.
2471                  */
2472                 return 0;
2473         }
2474
2475         if (sbi->s_lvid_bh) {
2476                 struct logicalVolIntegrityDesc *lvid =
2477                         (struct logicalVolIntegrityDesc *)
2478                         sbi->s_lvid_bh->b_data;
2479                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2480                         accum = le32_to_cpu(
2481                                         lvid->freeSpaceTable[part]);
2482                         if (accum == 0xFFFFFFFF)
2483                                 accum = 0;
2484                 }
2485         }
2486
2487         if (accum)
2488                 return accum;
2489
2490         map = &sbi->s_partmaps[part];
2491         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2492                 accum += udf_count_free_bitmap(sb,
2493                                                map->s_uspace.s_bitmap);
2494         }
2495         if (accum)
2496                 return accum;
2497
2498         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2499                 accum += udf_count_free_table(sb,
2500                                               map->s_uspace.s_table);
2501         }
2502         return accum;
2503 }
2504
2505 MODULE_AUTHOR("Ben Fennema");
2506 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2507 MODULE_LICENSE("GPL");
2508 module_init(init_udf_fs)
2509 module_exit(exit_udf_fs)