Bluetooth: Read LE Max data length command
[platform/kernel/linux-starfive.git] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49                          FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50                          FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53                          FE_PERM_O_DELETE)
54
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61                               struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63                               struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65                                  struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68                                int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73         struct udf_inode_info *iinfo = UDF_I(inode);
74
75         if (iinfo->cached_extent.lstart != -1) {
76                 brelse(iinfo->cached_extent.epos.bh);
77                 iinfo->cached_extent.lstart = -1;
78         }
79 }
80
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84         struct udf_inode_info *iinfo = UDF_I(inode);
85
86         spin_lock(&iinfo->i_extent_cache_lock);
87         __udf_clear_extent_cache(inode);
88         spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93                                  loff_t *lbcount, struct extent_position *pos)
94 {
95         struct udf_inode_info *iinfo = UDF_I(inode);
96         int ret = 0;
97
98         spin_lock(&iinfo->i_extent_cache_lock);
99         if ((iinfo->cached_extent.lstart <= bcount) &&
100             (iinfo->cached_extent.lstart != -1)) {
101                 /* Cache hit */
102                 *lbcount = iinfo->cached_extent.lstart;
103                 memcpy(pos, &iinfo->cached_extent.epos,
104                        sizeof(struct extent_position));
105                 if (pos->bh)
106                         get_bh(pos->bh);
107                 ret = 1;
108         }
109         spin_unlock(&iinfo->i_extent_cache_lock);
110         return ret;
111 }
112
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115                                     struct extent_position *pos)
116 {
117         struct udf_inode_info *iinfo = UDF_I(inode);
118
119         spin_lock(&iinfo->i_extent_cache_lock);
120         /* Invalidate previously cached extent */
121         __udf_clear_extent_cache(inode);
122         if (pos->bh)
123                 get_bh(pos->bh);
124         memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125         iinfo->cached_extent.lstart = estart;
126         switch (iinfo->i_alloc_type) {
127         case ICBTAG_FLAG_AD_SHORT:
128                 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129                 break;
130         case ICBTAG_FLAG_AD_LONG:
131                 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132                 break;
133         }
134         spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136
137 void udf_evict_inode(struct inode *inode)
138 {
139         struct udf_inode_info *iinfo = UDF_I(inode);
140         int want_delete = 0;
141
142         if (!is_bad_inode(inode)) {
143                 if (!inode->i_nlink) {
144                         want_delete = 1;
145                         udf_setsize(inode, 0);
146                         udf_update_inode(inode, IS_SYNC(inode));
147                 }
148                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149                     inode->i_size != iinfo->i_lenExtents) {
150                         udf_warn(inode->i_sb,
151                                  "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152                                  inode->i_ino, inode->i_mode,
153                                  (unsigned long long)inode->i_size,
154                                  (unsigned long long)iinfo->i_lenExtents);
155                 }
156         }
157         truncate_inode_pages_final(&inode->i_data);
158         invalidate_inode_buffers(inode);
159         clear_inode(inode);
160         kfree(iinfo->i_data);
161         iinfo->i_data = NULL;
162         udf_clear_extent_cache(inode);
163         if (want_delete) {
164                 udf_free_inode(inode);
165         }
166 }
167
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170         struct inode *inode = mapping->host;
171         struct udf_inode_info *iinfo = UDF_I(inode);
172         loff_t isize = inode->i_size;
173
174         if (to > isize) {
175                 truncate_pagecache(inode, isize);
176                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177                         down_write(&iinfo->i_data_sem);
178                         udf_clear_extent_cache(inode);
179                         udf_truncate_extents(inode);
180                         up_write(&iinfo->i_data_sem);
181                 }
182         }
183 }
184
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187         return block_write_full_page(page, udf_get_block, wbc);
188 }
189
190 static int udf_writepages(struct address_space *mapping,
191                         struct writeback_control *wbc)
192 {
193         return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
196 static int udf_read_folio(struct file *file, struct folio *folio)
197 {
198         return mpage_read_folio(folio, udf_get_block);
199 }
200
201 static void udf_readahead(struct readahead_control *rac)
202 {
203         mpage_readahead(rac, udf_get_block);
204 }
205
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207                         loff_t pos, unsigned len,
208                         struct page **pagep, void **fsdata)
209 {
210         int ret;
211
212         ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
213         if (unlikely(ret))
214                 udf_write_failed(mapping, pos + len);
215         return ret;
216 }
217
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220         struct file *file = iocb->ki_filp;
221         struct address_space *mapping = file->f_mapping;
222         struct inode *inode = mapping->host;
223         size_t count = iov_iter_count(iter);
224         ssize_t ret;
225
226         ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228                 udf_write_failed(mapping, iocb->ki_pos + count);
229         return ret;
230 }
231
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234         return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238         .dirty_folio    = block_dirty_folio,
239         .invalidate_folio = block_invalidate_folio,
240         .read_folio     = udf_read_folio,
241         .readahead      = udf_readahead,
242         .writepage      = udf_writepage,
243         .writepages     = udf_writepages,
244         .write_begin    = udf_write_begin,
245         .write_end      = generic_write_end,
246         .direct_IO      = udf_direct_IO,
247         .bmap           = udf_bmap,
248 };
249
250 /*
251  * Expand file stored in ICB to a normal one-block-file
252  *
253  * This function requires i_data_sem for writing and releases it.
254  * This function requires i_mutex held
255  */
256 int udf_expand_file_adinicb(struct inode *inode)
257 {
258         struct page *page;
259         char *kaddr;
260         struct udf_inode_info *iinfo = UDF_I(inode);
261         int err;
262
263         WARN_ON_ONCE(!inode_is_locked(inode));
264         if (!iinfo->i_lenAlloc) {
265                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267                 else
268                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269                 /* from now on we have normal address_space methods */
270                 inode->i_data.a_ops = &udf_aops;
271                 up_write(&iinfo->i_data_sem);
272                 mark_inode_dirty(inode);
273                 return 0;
274         }
275         /*
276          * Release i_data_sem so that we can lock a page - page lock ranks
277          * above i_data_sem. i_mutex still protects us against file changes.
278          */
279         up_write(&iinfo->i_data_sem);
280
281         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282         if (!page)
283                 return -ENOMEM;
284
285         if (!PageUptodate(page)) {
286                 kaddr = kmap_atomic(page);
287                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
288                        PAGE_SIZE - iinfo->i_lenAlloc);
289                 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
290                         iinfo->i_lenAlloc);
291                 flush_dcache_page(page);
292                 SetPageUptodate(page);
293                 kunmap_atomic(kaddr);
294         }
295         down_write(&iinfo->i_data_sem);
296         memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
297                iinfo->i_lenAlloc);
298         iinfo->i_lenAlloc = 0;
299         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301         else
302                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303         /* from now on we have normal address_space methods */
304         inode->i_data.a_ops = &udf_aops;
305         set_page_dirty(page);
306         unlock_page(page);
307         up_write(&iinfo->i_data_sem);
308         err = filemap_fdatawrite(inode->i_mapping);
309         if (err) {
310                 /* Restore everything back so that we don't lose data... */
311                 lock_page(page);
312                 down_write(&iinfo->i_data_sem);
313                 kaddr = kmap_atomic(page);
314                 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
315                 kunmap_atomic(kaddr);
316                 unlock_page(page);
317                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
318                 inode->i_data.a_ops = &udf_adinicb_aops;
319                 iinfo->i_lenAlloc = inode->i_size;
320                 up_write(&iinfo->i_data_sem);
321         }
322         put_page(page);
323         mark_inode_dirty(inode);
324
325         return err;
326 }
327
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329                                             udf_pblk_t *block, int *err)
330 {
331         udf_pblk_t newblock;
332         struct buffer_head *dbh = NULL;
333         struct kernel_lb_addr eloc;
334         uint8_t alloctype;
335         struct extent_position epos;
336
337         struct udf_fileident_bh sfibh, dfibh;
338         loff_t f_pos = udf_ext0_offset(inode);
339         int size = udf_ext0_offset(inode) + inode->i_size;
340         struct fileIdentDesc cfi, *sfi, *dfi;
341         struct udf_inode_info *iinfo = UDF_I(inode);
342
343         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344                 alloctype = ICBTAG_FLAG_AD_SHORT;
345         else
346                 alloctype = ICBTAG_FLAG_AD_LONG;
347
348         if (!inode->i_size) {
349                 iinfo->i_alloc_type = alloctype;
350                 mark_inode_dirty(inode);
351                 return NULL;
352         }
353
354         /* alloc block, and copy data to it */
355         *block = udf_new_block(inode->i_sb, inode,
356                                iinfo->i_location.partitionReferenceNum,
357                                iinfo->i_location.logicalBlockNum, err);
358         if (!(*block))
359                 return NULL;
360         newblock = udf_get_pblock(inode->i_sb, *block,
361                                   iinfo->i_location.partitionReferenceNum,
362                                 0);
363         if (!newblock)
364                 return NULL;
365         dbh = udf_tgetblk(inode->i_sb, newblock);
366         if (!dbh)
367                 return NULL;
368         lock_buffer(dbh);
369         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370         set_buffer_uptodate(dbh);
371         unlock_buffer(dbh);
372         mark_buffer_dirty_inode(dbh, inode);
373
374         sfibh.soffset = sfibh.eoffset =
375                         f_pos & (inode->i_sb->s_blocksize - 1);
376         sfibh.sbh = sfibh.ebh = NULL;
377         dfibh.soffset = dfibh.eoffset = 0;
378         dfibh.sbh = dfibh.ebh = dbh;
379         while (f_pos < size) {
380                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382                                          NULL, NULL, NULL);
383                 if (!sfi) {
384                         brelse(dbh);
385                         return NULL;
386                 }
387                 iinfo->i_alloc_type = alloctype;
388                 sfi->descTag.tagLocation = cpu_to_le32(*block);
389                 dfibh.soffset = dfibh.eoffset;
390                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393                                  udf_get_fi_ident(sfi))) {
394                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395                         brelse(dbh);
396                         return NULL;
397                 }
398         }
399         mark_buffer_dirty_inode(dbh, inode);
400
401         memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402         iinfo->i_lenAlloc = 0;
403         eloc.logicalBlockNum = *block;
404         eloc.partitionReferenceNum =
405                                 iinfo->i_location.partitionReferenceNum;
406         iinfo->i_lenExtents = inode->i_size;
407         epos.bh = NULL;
408         epos.block = iinfo->i_location;
409         epos.offset = udf_file_entry_alloc_offset(inode);
410         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411         /* UniqueID stuff */
412
413         brelse(epos.bh);
414         mark_inode_dirty(inode);
415         return dbh;
416 }
417
418 static int udf_get_block(struct inode *inode, sector_t block,
419                          struct buffer_head *bh_result, int create)
420 {
421         int err, new;
422         sector_t phys = 0;
423         struct udf_inode_info *iinfo;
424
425         if (!create) {
426                 phys = udf_block_map(inode, block);
427                 if (phys)
428                         map_bh(bh_result, inode->i_sb, phys);
429                 return 0;
430         }
431
432         err = -EIO;
433         new = 0;
434         iinfo = UDF_I(inode);
435
436         down_write(&iinfo->i_data_sem);
437         if (block == iinfo->i_next_alloc_block + 1) {
438                 iinfo->i_next_alloc_block++;
439                 iinfo->i_next_alloc_goal++;
440         }
441
442         /*
443          * Block beyond EOF and prealloc extents? Just discard preallocation
444          * as it is not useful and complicates things.
445          */
446         if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents)
447                 udf_discard_prealloc(inode);
448         udf_clear_extent_cache(inode);
449         phys = inode_getblk(inode, block, &err, &new);
450         if (!phys)
451                 goto abort;
452
453         if (new)
454                 set_buffer_new(bh_result);
455         map_bh(bh_result, inode->i_sb, phys);
456
457 abort:
458         up_write(&iinfo->i_data_sem);
459         return err;
460 }
461
462 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
463                                       int create, int *err)
464 {
465         struct buffer_head *bh;
466         struct buffer_head dummy;
467
468         dummy.b_state = 0;
469         dummy.b_blocknr = -1000;
470         *err = udf_get_block(inode, block, &dummy, create);
471         if (!*err && buffer_mapped(&dummy)) {
472                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
473                 if (buffer_new(&dummy)) {
474                         lock_buffer(bh);
475                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
476                         set_buffer_uptodate(bh);
477                         unlock_buffer(bh);
478                         mark_buffer_dirty_inode(bh, inode);
479                 }
480                 return bh;
481         }
482
483         return NULL;
484 }
485
486 /* Extend the file with new blocks totaling 'new_block_bytes',
487  * return the number of extents added
488  */
489 static int udf_do_extend_file(struct inode *inode,
490                               struct extent_position *last_pos,
491                               struct kernel_long_ad *last_ext,
492                               loff_t new_block_bytes)
493 {
494         uint32_t add;
495         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
496         struct super_block *sb = inode->i_sb;
497         struct udf_inode_info *iinfo;
498         int err;
499
500         /* The previous extent is fake and we should not extend by anything
501          * - there's nothing to do... */
502         if (!new_block_bytes && fake)
503                 return 0;
504
505         iinfo = UDF_I(inode);
506         /* Round the last extent up to a multiple of block size */
507         if (last_ext->extLength & (sb->s_blocksize - 1)) {
508                 last_ext->extLength =
509                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
510                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
511                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
512                 iinfo->i_lenExtents =
513                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
514                         ~(sb->s_blocksize - 1);
515         }
516
517         /* Can we merge with the previous extent? */
518         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
520                 add = (1 << 30) - sb->s_blocksize -
521                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522                 if (add > new_block_bytes)
523                         add = new_block_bytes;
524                 new_block_bytes -= add;
525                 last_ext->extLength += add;
526         }
527
528         if (fake) {
529                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
530                                    last_ext->extLength, 1);
531                 if (err < 0)
532                         goto out_err;
533                 count++;
534         } else {
535                 struct kernel_lb_addr tmploc;
536                 uint32_t tmplen;
537
538                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
539                                 last_ext->extLength, 1);
540
541                 /*
542                  * We've rewritten the last extent. If we are going to add
543                  * more extents, we may need to enter possible following
544                  * empty indirect extent.
545                  */
546                 if (new_block_bytes)
547                         udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
548         }
549
550         /* Managed to do everything necessary? */
551         if (!new_block_bytes)
552                 goto out;
553
554         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
555         last_ext->extLocation.logicalBlockNum = 0;
556         last_ext->extLocation.partitionReferenceNum = 0;
557         add = (1 << 30) - sb->s_blocksize;
558         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
559
560         /* Create enough extents to cover the whole hole */
561         while (new_block_bytes > add) {
562                 new_block_bytes -= add;
563                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
564                                    last_ext->extLength, 1);
565                 if (err)
566                         goto out_err;
567                 count++;
568         }
569         if (new_block_bytes) {
570                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
571                         new_block_bytes;
572                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
573                                    last_ext->extLength, 1);
574                 if (err)
575                         goto out_err;
576                 count++;
577         }
578
579 out:
580         /* last_pos should point to the last written extent... */
581         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
582                 last_pos->offset -= sizeof(struct short_ad);
583         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
584                 last_pos->offset -= sizeof(struct long_ad);
585         else
586                 return -EIO;
587
588         return count;
589 out_err:
590         /* Remove extents we've created so far */
591         udf_clear_extent_cache(inode);
592         udf_truncate_extents(inode);
593         return err;
594 }
595
596 /* Extend the final block of the file to final_block_len bytes */
597 static void udf_do_extend_final_block(struct inode *inode,
598                                       struct extent_position *last_pos,
599                                       struct kernel_long_ad *last_ext,
600                                       uint32_t new_elen)
601 {
602         uint32_t added_bytes;
603
604         /*
605          * Extent already large enough? It may be already rounded up to block
606          * size...
607          */
608         if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
609                 return;
610         added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
611         last_ext->extLength += added_bytes;
612         UDF_I(inode)->i_lenExtents += added_bytes;
613
614         udf_write_aext(inode, last_pos, &last_ext->extLocation,
615                         last_ext->extLength, 1);
616 }
617
618 static int udf_extend_file(struct inode *inode, loff_t newsize)
619 {
620
621         struct extent_position epos;
622         struct kernel_lb_addr eloc;
623         uint32_t elen;
624         int8_t etype;
625         struct super_block *sb = inode->i_sb;
626         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
627         loff_t new_elen;
628         int adsize;
629         struct udf_inode_info *iinfo = UDF_I(inode);
630         struct kernel_long_ad extent;
631         int err = 0;
632         bool within_last_ext;
633
634         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
635                 adsize = sizeof(struct short_ad);
636         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
637                 adsize = sizeof(struct long_ad);
638         else
639                 BUG();
640
641         /*
642          * When creating hole in file, just don't bother with preserving
643          * preallocation. It likely won't be very useful anyway.
644          */
645         udf_discard_prealloc(inode);
646
647         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
648         within_last_ext = (etype != -1);
649         /* We don't expect extents past EOF... */
650         WARN_ON_ONCE(within_last_ext &&
651                      elen > ((loff_t)offset + 1) << inode->i_blkbits);
652
653         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655                 /* File has no extents at all or has empty last
656                  * indirect extent! Create a fake extent... */
657                 extent.extLocation.logicalBlockNum = 0;
658                 extent.extLocation.partitionReferenceNum = 0;
659                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660         } else {
661                 epos.offset -= adsize;
662                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
663                                       &extent.extLength, 0);
664                 extent.extLength |= etype << 30;
665         }
666
667         new_elen = ((loff_t)offset << inode->i_blkbits) |
668                                         (newsize & (sb->s_blocksize - 1));
669
670         /* File has extent covering the new size (could happen when extending
671          * inside a block)?
672          */
673         if (within_last_ext) {
674                 /* Extending file within the last file block */
675                 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
676         } else {
677                 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
678         }
679
680         if (err < 0)
681                 goto out;
682         err = 0;
683         iinfo->i_lenExtents = newsize;
684 out:
685         brelse(epos.bh);
686         return err;
687 }
688
689 static sector_t inode_getblk(struct inode *inode, sector_t block,
690                              int *err, int *new)
691 {
692         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
693         struct extent_position prev_epos, cur_epos, next_epos;
694         int count = 0, startnum = 0, endnum = 0;
695         uint32_t elen = 0, tmpelen;
696         struct kernel_lb_addr eloc, tmpeloc;
697         int c = 1;
698         loff_t lbcount = 0, b_off = 0;
699         udf_pblk_t newblocknum, newblock;
700         sector_t offset = 0;
701         int8_t etype;
702         struct udf_inode_info *iinfo = UDF_I(inode);
703         udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
704         int lastblock = 0;
705         bool isBeyondEOF;
706
707         *err = 0;
708         *new = 0;
709         prev_epos.offset = udf_file_entry_alloc_offset(inode);
710         prev_epos.block = iinfo->i_location;
711         prev_epos.bh = NULL;
712         cur_epos = next_epos = prev_epos;
713         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
714
715         /* find the extent which contains the block we are looking for.
716            alternate between laarr[0] and laarr[1] for locations of the
717            current extent, and the previous extent */
718         do {
719                 if (prev_epos.bh != cur_epos.bh) {
720                         brelse(prev_epos.bh);
721                         get_bh(cur_epos.bh);
722                         prev_epos.bh = cur_epos.bh;
723                 }
724                 if (cur_epos.bh != next_epos.bh) {
725                         brelse(cur_epos.bh);
726                         get_bh(next_epos.bh);
727                         cur_epos.bh = next_epos.bh;
728                 }
729
730                 lbcount += elen;
731
732                 prev_epos.block = cur_epos.block;
733                 cur_epos.block = next_epos.block;
734
735                 prev_epos.offset = cur_epos.offset;
736                 cur_epos.offset = next_epos.offset;
737
738                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
739                 if (etype == -1)
740                         break;
741
742                 c = !c;
743
744                 laarr[c].extLength = (etype << 30) | elen;
745                 laarr[c].extLocation = eloc;
746
747                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
748                         pgoal = eloc.logicalBlockNum +
749                                 ((elen + inode->i_sb->s_blocksize - 1) >>
750                                  inode->i_sb->s_blocksize_bits);
751
752                 count++;
753         } while (lbcount + elen <= b_off);
754
755         b_off -= lbcount;
756         offset = b_off >> inode->i_sb->s_blocksize_bits;
757         /*
758          * Move prev_epos and cur_epos into indirect extent if we are at
759          * the pointer to it
760          */
761         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
762         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
763
764         /* if the extent is allocated and recorded, return the block
765            if the extent is not a multiple of the blocksize, round up */
766
767         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
768                 if (elen & (inode->i_sb->s_blocksize - 1)) {
769                         elen = EXT_RECORDED_ALLOCATED |
770                                 ((elen + inode->i_sb->s_blocksize - 1) &
771                                  ~(inode->i_sb->s_blocksize - 1));
772                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
773                 }
774                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
775                 goto out_free;
776         }
777
778         /* Are we beyond EOF and preallocated extent? */
779         if (etype == -1) {
780                 int ret;
781                 loff_t hole_len;
782
783                 isBeyondEOF = true;
784                 if (count) {
785                         if (c)
786                                 laarr[0] = laarr[1];
787                         startnum = 1;
788                 } else {
789                         /* Create a fake extent when there's not one */
790                         memset(&laarr[0].extLocation, 0x00,
791                                 sizeof(struct kernel_lb_addr));
792                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
793                         /* Will udf_do_extend_file() create real extent from
794                            a fake one? */
795                         startnum = (offset > 0);
796                 }
797                 /* Create extents for the hole between EOF and offset */
798                 hole_len = (loff_t)offset << inode->i_blkbits;
799                 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
800                 if (ret < 0) {
801                         *err = ret;
802                         newblock = 0;
803                         goto out_free;
804                 }
805                 c = 0;
806                 offset = 0;
807                 count += ret;
808                 /*
809                  * Is there any real extent? - otherwise we overwrite the fake
810                  * one...
811                  */
812                 if (count)
813                         c = !c;
814                 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
815                         inode->i_sb->s_blocksize;
816                 memset(&laarr[c].extLocation, 0x00,
817                         sizeof(struct kernel_lb_addr));
818                 count++;
819                 endnum = c + 1;
820                 lastblock = 1;
821         } else {
822                 isBeyondEOF = false;
823                 endnum = startnum = ((count > 2) ? 2 : count);
824
825                 /* if the current extent is in position 0,
826                    swap it with the previous */
827                 if (!c && count != 1) {
828                         laarr[2] = laarr[0];
829                         laarr[0] = laarr[1];
830                         laarr[1] = laarr[2];
831                         c = 1;
832                 }
833
834                 /* if the current block is located in an extent,
835                    read the next extent */
836                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
837                 if (etype != -1) {
838                         laarr[c + 1].extLength = (etype << 30) | elen;
839                         laarr[c + 1].extLocation = eloc;
840                         count++;
841                         startnum++;
842                         endnum++;
843                 } else
844                         lastblock = 1;
845         }
846
847         /* if the current extent is not recorded but allocated, get the
848          * block in the extent corresponding to the requested block */
849         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
850                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
851         else { /* otherwise, allocate a new block */
852                 if (iinfo->i_next_alloc_block == block)
853                         goal = iinfo->i_next_alloc_goal;
854
855                 if (!goal) {
856                         if (!(goal = pgoal)) /* XXX: what was intended here? */
857                                 goal = iinfo->i_location.logicalBlockNum + 1;
858                 }
859
860                 newblocknum = udf_new_block(inode->i_sb, inode,
861                                 iinfo->i_location.partitionReferenceNum,
862                                 goal, err);
863                 if (!newblocknum) {
864                         *err = -ENOSPC;
865                         newblock = 0;
866                         goto out_free;
867                 }
868                 if (isBeyondEOF)
869                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
870         }
871
872         /* if the extent the requsted block is located in contains multiple
873          * blocks, split the extent into at most three extents. blocks prior
874          * to requested block, requested block, and blocks after requested
875          * block */
876         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
877
878         /* We preallocate blocks only for regular files. It also makes sense
879          * for directories but there's a problem when to drop the
880          * preallocation. We might use some delayed work for that but I feel
881          * it's overengineering for a filesystem like UDF. */
882         if (S_ISREG(inode->i_mode))
883                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
884
885         /* merge any continuous blocks in laarr */
886         udf_merge_extents(inode, laarr, &endnum);
887
888         /* write back the new extents, inserting new extents if the new number
889          * of extents is greater than the old number, and deleting extents if
890          * the new number of extents is less than the old number */
891         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
892
893         newblock = udf_get_pblock(inode->i_sb, newblocknum,
894                                 iinfo->i_location.partitionReferenceNum, 0);
895         if (!newblock) {
896                 *err = -EIO;
897                 goto out_free;
898         }
899         *new = 1;
900         iinfo->i_next_alloc_block = block;
901         iinfo->i_next_alloc_goal = newblocknum;
902         inode->i_ctime = current_time(inode);
903
904         if (IS_SYNC(inode))
905                 udf_sync_inode(inode);
906         else
907                 mark_inode_dirty(inode);
908 out_free:
909         brelse(prev_epos.bh);
910         brelse(cur_epos.bh);
911         brelse(next_epos.bh);
912         return newblock;
913 }
914
915 static void udf_split_extents(struct inode *inode, int *c, int offset,
916                                udf_pblk_t newblocknum,
917                                struct kernel_long_ad *laarr, int *endnum)
918 {
919         unsigned long blocksize = inode->i_sb->s_blocksize;
920         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
921
922         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
923             (laarr[*c].extLength >> 30) ==
924                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
925                 int curr = *c;
926                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
927                             blocksize - 1) >> blocksize_bits;
928                 int8_t etype = (laarr[curr].extLength >> 30);
929
930                 if (blen == 1)
931                         ;
932                 else if (!offset || blen == offset + 1) {
933                         laarr[curr + 2] = laarr[curr + 1];
934                         laarr[curr + 1] = laarr[curr];
935                 } else {
936                         laarr[curr + 3] = laarr[curr + 1];
937                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
938                 }
939
940                 if (offset) {
941                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
942                                 udf_free_blocks(inode->i_sb, inode,
943                                                 &laarr[curr].extLocation,
944                                                 0, offset);
945                                 laarr[curr].extLength =
946                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
947                                         (offset << blocksize_bits);
948                                 laarr[curr].extLocation.logicalBlockNum = 0;
949                                 laarr[curr].extLocation.
950                                                 partitionReferenceNum = 0;
951                         } else
952                                 laarr[curr].extLength = (etype << 30) |
953                                         (offset << blocksize_bits);
954                         curr++;
955                         (*c)++;
956                         (*endnum)++;
957                 }
958
959                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
960                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
961                         laarr[curr].extLocation.partitionReferenceNum =
962                                 UDF_I(inode)->i_location.partitionReferenceNum;
963                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
964                         blocksize;
965                 curr++;
966
967                 if (blen != offset + 1) {
968                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
969                                 laarr[curr].extLocation.logicalBlockNum +=
970                                                                 offset + 1;
971                         laarr[curr].extLength = (etype << 30) |
972                                 ((blen - (offset + 1)) << blocksize_bits);
973                         curr++;
974                         (*endnum)++;
975                 }
976         }
977 }
978
979 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
980                                  struct kernel_long_ad *laarr,
981                                  int *endnum)
982 {
983         int start, length = 0, currlength = 0, i;
984
985         if (*endnum >= (c + 1)) {
986                 if (!lastblock)
987                         return;
988                 else
989                         start = c;
990         } else {
991                 if ((laarr[c + 1].extLength >> 30) ==
992                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
993                         start = c + 1;
994                         length = currlength =
995                                 (((laarr[c + 1].extLength &
996                                         UDF_EXTENT_LENGTH_MASK) +
997                                 inode->i_sb->s_blocksize - 1) >>
998                                 inode->i_sb->s_blocksize_bits);
999                 } else
1000                         start = c;
1001         }
1002
1003         for (i = start + 1; i <= *endnum; i++) {
1004                 if (i == *endnum) {
1005                         if (lastblock)
1006                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007                 } else if ((laarr[i].extLength >> 30) ==
1008                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009                         length += (((laarr[i].extLength &
1010                                                 UDF_EXTENT_LENGTH_MASK) +
1011                                     inode->i_sb->s_blocksize - 1) >>
1012                                     inode->i_sb->s_blocksize_bits);
1013                 } else
1014                         break;
1015         }
1016
1017         if (length) {
1018                 int next = laarr[start].extLocation.logicalBlockNum +
1019                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020                           inode->i_sb->s_blocksize - 1) >>
1021                           inode->i_sb->s_blocksize_bits);
1022                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023                                 laarr[start].extLocation.partitionReferenceNum,
1024                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026                                 currlength);
1027                 if (numalloc)   {
1028                         if (start == (c + 1))
1029                                 laarr[start].extLength +=
1030                                         (numalloc <<
1031                                          inode->i_sb->s_blocksize_bits);
1032                         else {
1033                                 memmove(&laarr[c + 2], &laarr[c + 1],
1034                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1035                                 (*endnum)++;
1036                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1037                                 laarr[c + 1].extLocation.partitionReferenceNum =
1038                                         laarr[c].extLocation.
1039                                                         partitionReferenceNum;
1040                                 laarr[c + 1].extLength =
1041                                         EXT_NOT_RECORDED_ALLOCATED |
1042                                         (numalloc <<
1043                                          inode->i_sb->s_blocksize_bits);
1044                                 start = c + 1;
1045                         }
1046
1047                         for (i = start + 1; numalloc && i < *endnum; i++) {
1048                                 int elen = ((laarr[i].extLength &
1049                                                 UDF_EXTENT_LENGTH_MASK) +
1050                                             inode->i_sb->s_blocksize - 1) >>
1051                                             inode->i_sb->s_blocksize_bits;
1052
1053                                 if (elen > numalloc) {
1054                                         laarr[i].extLength -=
1055                                                 (numalloc <<
1056                                                  inode->i_sb->s_blocksize_bits);
1057                                         numalloc = 0;
1058                                 } else {
1059                                         numalloc -= elen;
1060                                         if (*endnum > (i + 1))
1061                                                 memmove(&laarr[i],
1062                                                         &laarr[i + 1],
1063                                                         sizeof(struct long_ad) *
1064                                                         (*endnum - (i + 1)));
1065                                         i--;
1066                                         (*endnum)--;
1067                                 }
1068                         }
1069                         UDF_I(inode)->i_lenExtents +=
1070                                 numalloc << inode->i_sb->s_blocksize_bits;
1071                 }
1072         }
1073 }
1074
1075 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076                               int *endnum)
1077 {
1078         int i;
1079         unsigned long blocksize = inode->i_sb->s_blocksize;
1080         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081
1082         for (i = 0; i < (*endnum - 1); i++) {
1083                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085
1086                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087                         (((li->extLength >> 30) ==
1088                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089                         ((lip1->extLocation.logicalBlockNum -
1090                           li->extLocation.logicalBlockNum) ==
1091                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092                         blocksize - 1) >> blocksize_bits)))) {
1093
1094                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096                              blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1097                                 li->extLength = lip1->extLength +
1098                                         (((li->extLength &
1099                                                 UDF_EXTENT_LENGTH_MASK) +
1100                                          blocksize - 1) & ~(blocksize - 1));
1101                                 if (*endnum > (i + 2))
1102                                         memmove(&laarr[i + 1], &laarr[i + 2],
1103                                                 sizeof(struct long_ad) *
1104                                                 (*endnum - (i + 2)));
1105                                 i--;
1106                                 (*endnum)--;
1107                         }
1108                 } else if (((li->extLength >> 30) ==
1109                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1110                            ((lip1->extLength >> 30) ==
1111                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1112                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1113                                         ((li->extLength &
1114                                           UDF_EXTENT_LENGTH_MASK) +
1115                                          blocksize - 1) >> blocksize_bits);
1116                         li->extLocation.logicalBlockNum = 0;
1117                         li->extLocation.partitionReferenceNum = 0;
1118
1119                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1120                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1121                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1122                                 lip1->extLength = (lip1->extLength -
1123                                                    (li->extLength &
1124                                                    UDF_EXTENT_LENGTH_MASK) +
1125                                                    UDF_EXTENT_LENGTH_MASK) &
1126                                                    ~(blocksize - 1);
1127                                 li->extLength = (li->extLength &
1128                                                  UDF_EXTENT_FLAG_MASK) +
1129                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1130                                                 blocksize;
1131                         } else {
1132                                 li->extLength = lip1->extLength +
1133                                         (((li->extLength &
1134                                                 UDF_EXTENT_LENGTH_MASK) +
1135                                           blocksize - 1) & ~(blocksize - 1));
1136                                 if (*endnum > (i + 2))
1137                                         memmove(&laarr[i + 1], &laarr[i + 2],
1138                                                 sizeof(struct long_ad) *
1139                                                 (*endnum - (i + 2)));
1140                                 i--;
1141                                 (*endnum)--;
1142                         }
1143                 } else if ((li->extLength >> 30) ==
1144                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1145                         udf_free_blocks(inode->i_sb, inode,
1146                                         &li->extLocation, 0,
1147                                         ((li->extLength &
1148                                                 UDF_EXTENT_LENGTH_MASK) +
1149                                          blocksize - 1) >> blocksize_bits);
1150                         li->extLocation.logicalBlockNum = 0;
1151                         li->extLocation.partitionReferenceNum = 0;
1152                         li->extLength = (li->extLength &
1153                                                 UDF_EXTENT_LENGTH_MASK) |
1154                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1155                 }
1156         }
1157 }
1158
1159 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1160                                int startnum, int endnum,
1161                                struct extent_position *epos)
1162 {
1163         int start = 0, i;
1164         struct kernel_lb_addr tmploc;
1165         uint32_t tmplen;
1166
1167         if (startnum > endnum) {
1168                 for (i = 0; i < (startnum - endnum); i++)
1169                         udf_delete_aext(inode, *epos);
1170         } else if (startnum < endnum) {
1171                 for (i = 0; i < (endnum - startnum); i++) {
1172                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
1173                                         laarr[i].extLength);
1174                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1175                                       &laarr[i].extLength, 1);
1176                         start++;
1177                 }
1178         }
1179
1180         for (i = start; i < endnum; i++) {
1181                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1182                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1183                                laarr[i].extLength, 1);
1184         }
1185 }
1186
1187 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1188                               int create, int *err)
1189 {
1190         struct buffer_head *bh = NULL;
1191
1192         bh = udf_getblk(inode, block, create, err);
1193         if (!bh)
1194                 return NULL;
1195
1196         if (bh_read(bh, 0) >= 0)
1197                 return bh;
1198
1199         brelse(bh);
1200         *err = -EIO;
1201         return NULL;
1202 }
1203
1204 int udf_setsize(struct inode *inode, loff_t newsize)
1205 {
1206         int err;
1207         struct udf_inode_info *iinfo;
1208         unsigned int bsize = i_blocksize(inode);
1209
1210         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1211               S_ISLNK(inode->i_mode)))
1212                 return -EINVAL;
1213         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1214                 return -EPERM;
1215
1216         iinfo = UDF_I(inode);
1217         if (newsize > inode->i_size) {
1218                 down_write(&iinfo->i_data_sem);
1219                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1220                         if (bsize <
1221                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1222                                 err = udf_expand_file_adinicb(inode);
1223                                 if (err)
1224                                         return err;
1225                                 down_write(&iinfo->i_data_sem);
1226                         } else {
1227                                 iinfo->i_lenAlloc = newsize;
1228                                 goto set_size;
1229                         }
1230                 }
1231                 err = udf_extend_file(inode, newsize);
1232                 if (err) {
1233                         up_write(&iinfo->i_data_sem);
1234                         return err;
1235                 }
1236 set_size:
1237                 up_write(&iinfo->i_data_sem);
1238                 truncate_setsize(inode, newsize);
1239         } else {
1240                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1241                         down_write(&iinfo->i_data_sem);
1242                         udf_clear_extent_cache(inode);
1243                         memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1244                                0x00, bsize - newsize -
1245                                udf_file_entry_alloc_offset(inode));
1246                         iinfo->i_lenAlloc = newsize;
1247                         truncate_setsize(inode, newsize);
1248                         up_write(&iinfo->i_data_sem);
1249                         goto update_time;
1250                 }
1251                 err = block_truncate_page(inode->i_mapping, newsize,
1252                                           udf_get_block);
1253                 if (err)
1254                         return err;
1255                 truncate_setsize(inode, newsize);
1256                 down_write(&iinfo->i_data_sem);
1257                 udf_clear_extent_cache(inode);
1258                 err = udf_truncate_extents(inode);
1259                 up_write(&iinfo->i_data_sem);
1260                 if (err)
1261                         return err;
1262         }
1263 update_time:
1264         inode->i_mtime = inode->i_ctime = current_time(inode);
1265         if (IS_SYNC(inode))
1266                 udf_sync_inode(inode);
1267         else
1268                 mark_inode_dirty(inode);
1269         return 0;
1270 }
1271
1272 /*
1273  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1274  * arbitrary - just that we hopefully don't limit any real use of rewritten
1275  * inode on write-once media but avoid looping for too long on corrupted media.
1276  */
1277 #define UDF_MAX_ICB_NESTING 1024
1278
1279 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1280 {
1281         struct buffer_head *bh = NULL;
1282         struct fileEntry *fe;
1283         struct extendedFileEntry *efe;
1284         uint16_t ident;
1285         struct udf_inode_info *iinfo = UDF_I(inode);
1286         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1287         struct kernel_lb_addr *iloc = &iinfo->i_location;
1288         unsigned int link_count;
1289         unsigned int indirections = 0;
1290         int bs = inode->i_sb->s_blocksize;
1291         int ret = -EIO;
1292         uint32_t uid, gid;
1293
1294 reread:
1295         if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1296                 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1297                           iloc->partitionReferenceNum, sbi->s_partitions);
1298                 return -EIO;
1299         }
1300
1301         if (iloc->logicalBlockNum >=
1302             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1303                 udf_debug("block=%u, partition=%u out of range\n",
1304                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1305                 return -EIO;
1306         }
1307
1308         /*
1309          * Set defaults, but the inode is still incomplete!
1310          * Note: get_new_inode() sets the following on a new inode:
1311          *      i_sb = sb
1312          *      i_no = ino
1313          *      i_flags = sb->s_flags
1314          *      i_state = 0
1315          * clean_inode(): zero fills and sets
1316          *      i_count = 1
1317          *      i_nlink = 1
1318          *      i_op = NULL;
1319          */
1320         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1321         if (!bh) {
1322                 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1323                 return -EIO;
1324         }
1325
1326         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1327             ident != TAG_IDENT_USE) {
1328                 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1329                         inode->i_ino, ident);
1330                 goto out;
1331         }
1332
1333         fe = (struct fileEntry *)bh->b_data;
1334         efe = (struct extendedFileEntry *)bh->b_data;
1335
1336         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1337                 struct buffer_head *ibh;
1338
1339                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1340                 if (ident == TAG_IDENT_IE && ibh) {
1341                         struct kernel_lb_addr loc;
1342                         struct indirectEntry *ie;
1343
1344                         ie = (struct indirectEntry *)ibh->b_data;
1345                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1346
1347                         if (ie->indirectICB.extLength) {
1348                                 brelse(ibh);
1349                                 memcpy(&iinfo->i_location, &loc,
1350                                        sizeof(struct kernel_lb_addr));
1351                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1352                                         udf_err(inode->i_sb,
1353                                                 "too many ICBs in ICB hierarchy"
1354                                                 " (max %d supported)\n",
1355                                                 UDF_MAX_ICB_NESTING);
1356                                         goto out;
1357                                 }
1358                                 brelse(bh);
1359                                 goto reread;
1360                         }
1361                 }
1362                 brelse(ibh);
1363         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1364                 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1365                         le16_to_cpu(fe->icbTag.strategyType));
1366                 goto out;
1367         }
1368         if (fe->icbTag.strategyType == cpu_to_le16(4))
1369                 iinfo->i_strat4096 = 0;
1370         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1371                 iinfo->i_strat4096 = 1;
1372
1373         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1374                                                         ICBTAG_FLAG_AD_MASK;
1375         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1376             iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1377             iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1378                 ret = -EIO;
1379                 goto out;
1380         }
1381         iinfo->i_hidden = hidden_inode;
1382         iinfo->i_unique = 0;
1383         iinfo->i_lenEAttr = 0;
1384         iinfo->i_lenExtents = 0;
1385         iinfo->i_lenAlloc = 0;
1386         iinfo->i_next_alloc_block = 0;
1387         iinfo->i_next_alloc_goal = 0;
1388         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1389                 iinfo->i_efe = 1;
1390                 iinfo->i_use = 0;
1391                 ret = udf_alloc_i_data(inode, bs -
1392                                         sizeof(struct extendedFileEntry));
1393                 if (ret)
1394                         goto out;
1395                 memcpy(iinfo->i_data,
1396                        bh->b_data + sizeof(struct extendedFileEntry),
1397                        bs - sizeof(struct extendedFileEntry));
1398         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1399                 iinfo->i_efe = 0;
1400                 iinfo->i_use = 0;
1401                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1402                 if (ret)
1403                         goto out;
1404                 memcpy(iinfo->i_data,
1405                        bh->b_data + sizeof(struct fileEntry),
1406                        bs - sizeof(struct fileEntry));
1407         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1408                 iinfo->i_efe = 0;
1409                 iinfo->i_use = 1;
1410                 iinfo->i_lenAlloc = le32_to_cpu(
1411                                 ((struct unallocSpaceEntry *)bh->b_data)->
1412                                  lengthAllocDescs);
1413                 ret = udf_alloc_i_data(inode, bs -
1414                                         sizeof(struct unallocSpaceEntry));
1415                 if (ret)
1416                         goto out;
1417                 memcpy(iinfo->i_data,
1418                        bh->b_data + sizeof(struct unallocSpaceEntry),
1419                        bs - sizeof(struct unallocSpaceEntry));
1420                 return 0;
1421         }
1422
1423         ret = -EIO;
1424         read_lock(&sbi->s_cred_lock);
1425         uid = le32_to_cpu(fe->uid);
1426         if (uid == UDF_INVALID_ID ||
1427             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1428                 inode->i_uid = sbi->s_uid;
1429         else
1430                 i_uid_write(inode, uid);
1431
1432         gid = le32_to_cpu(fe->gid);
1433         if (gid == UDF_INVALID_ID ||
1434             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1435                 inode->i_gid = sbi->s_gid;
1436         else
1437                 i_gid_write(inode, gid);
1438
1439         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1440                         sbi->s_fmode != UDF_INVALID_MODE)
1441                 inode->i_mode = sbi->s_fmode;
1442         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1443                         sbi->s_dmode != UDF_INVALID_MODE)
1444                 inode->i_mode = sbi->s_dmode;
1445         else
1446                 inode->i_mode = udf_convert_permissions(fe);
1447         inode->i_mode &= ~sbi->s_umask;
1448         iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1449
1450         read_unlock(&sbi->s_cred_lock);
1451
1452         link_count = le16_to_cpu(fe->fileLinkCount);
1453         if (!link_count) {
1454                 if (!hidden_inode) {
1455                         ret = -ESTALE;
1456                         goto out;
1457                 }
1458                 link_count = 1;
1459         }
1460         set_nlink(inode, link_count);
1461
1462         inode->i_size = le64_to_cpu(fe->informationLength);
1463         iinfo->i_lenExtents = inode->i_size;
1464
1465         if (iinfo->i_efe == 0) {
1466                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1467                         (inode->i_sb->s_blocksize_bits - 9);
1468
1469                 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1470                 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1471                 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1472
1473                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1474                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1475                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1476                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1477                 iinfo->i_streamdir = 0;
1478                 iinfo->i_lenStreams = 0;
1479         } else {
1480                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1481                     (inode->i_sb->s_blocksize_bits - 9);
1482
1483                 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1484                 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1485                 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1486                 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1487
1488                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1489                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1490                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1491                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1492
1493                 /* Named streams */
1494                 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1495                 iinfo->i_locStreamdir =
1496                         lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1497                 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1498                 if (iinfo->i_lenStreams >= inode->i_size)
1499                         iinfo->i_lenStreams -= inode->i_size;
1500                 else
1501                         iinfo->i_lenStreams = 0;
1502         }
1503         inode->i_generation = iinfo->i_unique;
1504
1505         /*
1506          * Sanity check length of allocation descriptors and extended attrs to
1507          * avoid integer overflows
1508          */
1509         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1510                 goto out;
1511         /* Now do exact checks */
1512         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1513                 goto out;
1514         /* Sanity checks for files in ICB so that we don't get confused later */
1515         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1516                 /*
1517                  * For file in ICB data is stored in allocation descriptor
1518                  * so sizes should match
1519                  */
1520                 if (iinfo->i_lenAlloc != inode->i_size)
1521                         goto out;
1522                 /* File in ICB has to fit in there... */
1523                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1524                         goto out;
1525         }
1526
1527         switch (fe->icbTag.fileType) {
1528         case ICBTAG_FILE_TYPE_DIRECTORY:
1529                 inode->i_op = &udf_dir_inode_operations;
1530                 inode->i_fop = &udf_dir_operations;
1531                 inode->i_mode |= S_IFDIR;
1532                 inc_nlink(inode);
1533                 break;
1534         case ICBTAG_FILE_TYPE_REALTIME:
1535         case ICBTAG_FILE_TYPE_REGULAR:
1536         case ICBTAG_FILE_TYPE_UNDEF:
1537         case ICBTAG_FILE_TYPE_VAT20:
1538                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1539                         inode->i_data.a_ops = &udf_adinicb_aops;
1540                 else
1541                         inode->i_data.a_ops = &udf_aops;
1542                 inode->i_op = &udf_file_inode_operations;
1543                 inode->i_fop = &udf_file_operations;
1544                 inode->i_mode |= S_IFREG;
1545                 break;
1546         case ICBTAG_FILE_TYPE_BLOCK:
1547                 inode->i_mode |= S_IFBLK;
1548                 break;
1549         case ICBTAG_FILE_TYPE_CHAR:
1550                 inode->i_mode |= S_IFCHR;
1551                 break;
1552         case ICBTAG_FILE_TYPE_FIFO:
1553                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1554                 break;
1555         case ICBTAG_FILE_TYPE_SOCKET:
1556                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1557                 break;
1558         case ICBTAG_FILE_TYPE_SYMLINK:
1559                 inode->i_data.a_ops = &udf_symlink_aops;
1560                 inode->i_op = &udf_symlink_inode_operations;
1561                 inode_nohighmem(inode);
1562                 inode->i_mode = S_IFLNK | 0777;
1563                 break;
1564         case ICBTAG_FILE_TYPE_MAIN:
1565                 udf_debug("METADATA FILE-----\n");
1566                 break;
1567         case ICBTAG_FILE_TYPE_MIRROR:
1568                 udf_debug("METADATA MIRROR FILE-----\n");
1569                 break;
1570         case ICBTAG_FILE_TYPE_BITMAP:
1571                 udf_debug("METADATA BITMAP FILE-----\n");
1572                 break;
1573         default:
1574                 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1575                         inode->i_ino, fe->icbTag.fileType);
1576                 goto out;
1577         }
1578         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1579                 struct deviceSpec *dsea =
1580                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1581                 if (dsea) {
1582                         init_special_inode(inode, inode->i_mode,
1583                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1584                                       le32_to_cpu(dsea->minorDeviceIdent)));
1585                         /* Developer ID ??? */
1586                 } else
1587                         goto out;
1588         }
1589         ret = 0;
1590 out:
1591         brelse(bh);
1592         return ret;
1593 }
1594
1595 static int udf_alloc_i_data(struct inode *inode, size_t size)
1596 {
1597         struct udf_inode_info *iinfo = UDF_I(inode);
1598         iinfo->i_data = kmalloc(size, GFP_KERNEL);
1599         if (!iinfo->i_data)
1600                 return -ENOMEM;
1601         return 0;
1602 }
1603
1604 static umode_t udf_convert_permissions(struct fileEntry *fe)
1605 {
1606         umode_t mode;
1607         uint32_t permissions;
1608         uint32_t flags;
1609
1610         permissions = le32_to_cpu(fe->permissions);
1611         flags = le16_to_cpu(fe->icbTag.flags);
1612
1613         mode =  ((permissions) & 0007) |
1614                 ((permissions >> 2) & 0070) |
1615                 ((permissions >> 4) & 0700) |
1616                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1617                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1618                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1619
1620         return mode;
1621 }
1622
1623 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1624 {
1625         struct udf_inode_info *iinfo = UDF_I(inode);
1626
1627         /*
1628          * UDF 2.01 sec. 3.3.3.3 Note 2:
1629          * In Unix, delete permission tracks write
1630          */
1631         iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1632         if (mode & 0200)
1633                 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1634         if (mode & 0020)
1635                 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1636         if (mode & 0002)
1637                 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1638 }
1639
1640 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1641 {
1642         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1643 }
1644
1645 static int udf_sync_inode(struct inode *inode)
1646 {
1647         return udf_update_inode(inode, 1);
1648 }
1649
1650 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1651 {
1652         if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1653             (iinfo->i_crtime.tv_sec == time.tv_sec &&
1654              iinfo->i_crtime.tv_nsec > time.tv_nsec))
1655                 iinfo->i_crtime = time;
1656 }
1657
1658 static int udf_update_inode(struct inode *inode, int do_sync)
1659 {
1660         struct buffer_head *bh = NULL;
1661         struct fileEntry *fe;
1662         struct extendedFileEntry *efe;
1663         uint64_t lb_recorded;
1664         uint32_t udfperms;
1665         uint16_t icbflags;
1666         uint16_t crclen;
1667         int err = 0;
1668         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1669         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1670         struct udf_inode_info *iinfo = UDF_I(inode);
1671
1672         bh = udf_tgetblk(inode->i_sb,
1673                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1674         if (!bh) {
1675                 udf_debug("getblk failure\n");
1676                 return -EIO;
1677         }
1678
1679         lock_buffer(bh);
1680         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1681         fe = (struct fileEntry *)bh->b_data;
1682         efe = (struct extendedFileEntry *)bh->b_data;
1683
1684         if (iinfo->i_use) {
1685                 struct unallocSpaceEntry *use =
1686                         (struct unallocSpaceEntry *)bh->b_data;
1687
1688                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1689                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1690                        iinfo->i_data, inode->i_sb->s_blocksize -
1691                                         sizeof(struct unallocSpaceEntry));
1692                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1693                 crclen = sizeof(struct unallocSpaceEntry);
1694
1695                 goto finish;
1696         }
1697
1698         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1699                 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1700         else
1701                 fe->uid = cpu_to_le32(i_uid_read(inode));
1702
1703         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1704                 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1705         else
1706                 fe->gid = cpu_to_le32(i_gid_read(inode));
1707
1708         udfperms = ((inode->i_mode & 0007)) |
1709                    ((inode->i_mode & 0070) << 2) |
1710                    ((inode->i_mode & 0700) << 4);
1711
1712         udfperms |= iinfo->i_extraPerms;
1713         fe->permissions = cpu_to_le32(udfperms);
1714
1715         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1716                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1717         else {
1718                 if (iinfo->i_hidden)
1719                         fe->fileLinkCount = cpu_to_le16(0);
1720                 else
1721                         fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1722         }
1723
1724         fe->informationLength = cpu_to_le64(inode->i_size);
1725
1726         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1727                 struct regid *eid;
1728                 struct deviceSpec *dsea =
1729                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1730                 if (!dsea) {
1731                         dsea = (struct deviceSpec *)
1732                                 udf_add_extendedattr(inode,
1733                                                      sizeof(struct deviceSpec) +
1734                                                      sizeof(struct regid), 12, 0x3);
1735                         dsea->attrType = cpu_to_le32(12);
1736                         dsea->attrSubtype = 1;
1737                         dsea->attrLength = cpu_to_le32(
1738                                                 sizeof(struct deviceSpec) +
1739                                                 sizeof(struct regid));
1740                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1741                 }
1742                 eid = (struct regid *)dsea->impUse;
1743                 memset(eid, 0, sizeof(*eid));
1744                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1745                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1746                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1747                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1748                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1749         }
1750
1751         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1752                 lb_recorded = 0; /* No extents => no blocks! */
1753         else
1754                 lb_recorded =
1755                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1756                         (blocksize_bits - 9);
1757
1758         if (iinfo->i_efe == 0) {
1759                 memcpy(bh->b_data + sizeof(struct fileEntry),
1760                        iinfo->i_data,
1761                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1762                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1763
1764                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1765                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1766                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1767                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1768                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1769                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1770                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1771                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1772                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1773                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1774                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1775                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1776                 crclen = sizeof(struct fileEntry);
1777         } else {
1778                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1779                        iinfo->i_data,
1780                        inode->i_sb->s_blocksize -
1781                                         sizeof(struct extendedFileEntry));
1782                 efe->objectSize =
1783                         cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1784                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1785
1786                 if (iinfo->i_streamdir) {
1787                         struct long_ad *icb_lad = &efe->streamDirectoryICB;
1788
1789                         icb_lad->extLocation =
1790                                 cpu_to_lelb(iinfo->i_locStreamdir);
1791                         icb_lad->extLength =
1792                                 cpu_to_le32(inode->i_sb->s_blocksize);
1793                 }
1794
1795                 udf_adjust_time(iinfo, inode->i_atime);
1796                 udf_adjust_time(iinfo, inode->i_mtime);
1797                 udf_adjust_time(iinfo, inode->i_ctime);
1798
1799                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1800                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1801                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1802                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1803
1804                 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1805                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1806                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1807                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1808                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1809                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1810                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1811                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1812                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1813                 crclen = sizeof(struct extendedFileEntry);
1814         }
1815
1816 finish:
1817         if (iinfo->i_strat4096) {
1818                 fe->icbTag.strategyType = cpu_to_le16(4096);
1819                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1820                 fe->icbTag.numEntries = cpu_to_le16(2);
1821         } else {
1822                 fe->icbTag.strategyType = cpu_to_le16(4);
1823                 fe->icbTag.numEntries = cpu_to_le16(1);
1824         }
1825
1826         if (iinfo->i_use)
1827                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1828         else if (S_ISDIR(inode->i_mode))
1829                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1830         else if (S_ISREG(inode->i_mode))
1831                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1832         else if (S_ISLNK(inode->i_mode))
1833                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1834         else if (S_ISBLK(inode->i_mode))
1835                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1836         else if (S_ISCHR(inode->i_mode))
1837                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1838         else if (S_ISFIFO(inode->i_mode))
1839                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1840         else if (S_ISSOCK(inode->i_mode))
1841                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1842
1843         icbflags =      iinfo->i_alloc_type |
1844                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1845                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1846                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1847                         (le16_to_cpu(fe->icbTag.flags) &
1848                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1849                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1850
1851         fe->icbTag.flags = cpu_to_le16(icbflags);
1852         if (sbi->s_udfrev >= 0x0200)
1853                 fe->descTag.descVersion = cpu_to_le16(3);
1854         else
1855                 fe->descTag.descVersion = cpu_to_le16(2);
1856         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1857         fe->descTag.tagLocation = cpu_to_le32(
1858                                         iinfo->i_location.logicalBlockNum);
1859         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1860         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1861         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1862                                                   crclen));
1863         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1864
1865         set_buffer_uptodate(bh);
1866         unlock_buffer(bh);
1867
1868         /* write the data blocks */
1869         mark_buffer_dirty(bh);
1870         if (do_sync) {
1871                 sync_dirty_buffer(bh);
1872                 if (buffer_write_io_error(bh)) {
1873                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1874                                  inode->i_ino);
1875                         err = -EIO;
1876                 }
1877         }
1878         brelse(bh);
1879
1880         return err;
1881 }
1882
1883 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1884                          bool hidden_inode)
1885 {
1886         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1887         struct inode *inode = iget_locked(sb, block);
1888         int err;
1889
1890         if (!inode)
1891                 return ERR_PTR(-ENOMEM);
1892
1893         if (!(inode->i_state & I_NEW)) {
1894                 if (UDF_I(inode)->i_hidden != hidden_inode) {
1895                         iput(inode);
1896                         return ERR_PTR(-EFSCORRUPTED);
1897                 }
1898                 return inode;
1899         }
1900
1901         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1902         err = udf_read_inode(inode, hidden_inode);
1903         if (err < 0) {
1904                 iget_failed(inode);
1905                 return ERR_PTR(err);
1906         }
1907         unlock_new_inode(inode);
1908
1909         return inode;
1910 }
1911
1912 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1913                             struct extent_position *epos)
1914 {
1915         struct super_block *sb = inode->i_sb;
1916         struct buffer_head *bh;
1917         struct allocExtDesc *aed;
1918         struct extent_position nepos;
1919         struct kernel_lb_addr neloc;
1920         int ver, adsize;
1921
1922         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1923                 adsize = sizeof(struct short_ad);
1924         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1925                 adsize = sizeof(struct long_ad);
1926         else
1927                 return -EIO;
1928
1929         neloc.logicalBlockNum = block;
1930         neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1931
1932         bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1933         if (!bh)
1934                 return -EIO;
1935         lock_buffer(bh);
1936         memset(bh->b_data, 0x00, sb->s_blocksize);
1937         set_buffer_uptodate(bh);
1938         unlock_buffer(bh);
1939         mark_buffer_dirty_inode(bh, inode);
1940
1941         aed = (struct allocExtDesc *)(bh->b_data);
1942         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1943                 aed->previousAllocExtLocation =
1944                                 cpu_to_le32(epos->block.logicalBlockNum);
1945         }
1946         aed->lengthAllocDescs = cpu_to_le32(0);
1947         if (UDF_SB(sb)->s_udfrev >= 0x0200)
1948                 ver = 3;
1949         else
1950                 ver = 2;
1951         udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1952                     sizeof(struct tag));
1953
1954         nepos.block = neloc;
1955         nepos.offset = sizeof(struct allocExtDesc);
1956         nepos.bh = bh;
1957
1958         /*
1959          * Do we have to copy current last extent to make space for indirect
1960          * one?
1961          */
1962         if (epos->offset + adsize > sb->s_blocksize) {
1963                 struct kernel_lb_addr cp_loc;
1964                 uint32_t cp_len;
1965                 int cp_type;
1966
1967                 epos->offset -= adsize;
1968                 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1969                 cp_len |= ((uint32_t)cp_type) << 30;
1970
1971                 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1972                 udf_write_aext(inode, epos, &nepos.block,
1973                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1974         } else {
1975                 __udf_add_aext(inode, epos, &nepos.block,
1976                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1977         }
1978
1979         brelse(epos->bh);
1980         *epos = nepos;
1981
1982         return 0;
1983 }
1984
1985 /*
1986  * Append extent at the given position - should be the first free one in inode
1987  * / indirect extent. This function assumes there is enough space in the inode
1988  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1989  */
1990 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1991                    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1992 {
1993         struct udf_inode_info *iinfo = UDF_I(inode);
1994         struct allocExtDesc *aed;
1995         int adsize;
1996
1997         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1998                 adsize = sizeof(struct short_ad);
1999         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2000                 adsize = sizeof(struct long_ad);
2001         else
2002                 return -EIO;
2003
2004         if (!epos->bh) {
2005                 WARN_ON(iinfo->i_lenAlloc !=
2006                         epos->offset - udf_file_entry_alloc_offset(inode));
2007         } else {
2008                 aed = (struct allocExtDesc *)epos->bh->b_data;
2009                 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2010                         epos->offset - sizeof(struct allocExtDesc));
2011                 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2012         }
2013
2014         udf_write_aext(inode, epos, eloc, elen, inc);
2015
2016         if (!epos->bh) {
2017                 iinfo->i_lenAlloc += adsize;
2018                 mark_inode_dirty(inode);
2019         } else {
2020                 aed = (struct allocExtDesc *)epos->bh->b_data;
2021                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2022                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2023                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2024                         udf_update_tag(epos->bh->b_data,
2025                                         epos->offset + (inc ? 0 : adsize));
2026                 else
2027                         udf_update_tag(epos->bh->b_data,
2028                                         sizeof(struct allocExtDesc));
2029                 mark_buffer_dirty_inode(epos->bh, inode);
2030         }
2031
2032         return 0;
2033 }
2034
2035 /*
2036  * Append extent at given position - should be the first free one in inode
2037  * / indirect extent. Takes care of allocating and linking indirect blocks.
2038  */
2039 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2040                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2041 {
2042         int adsize;
2043         struct super_block *sb = inode->i_sb;
2044
2045         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2046                 adsize = sizeof(struct short_ad);
2047         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2048                 adsize = sizeof(struct long_ad);
2049         else
2050                 return -EIO;
2051
2052         if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2053                 int err;
2054                 udf_pblk_t new_block;
2055
2056                 new_block = udf_new_block(sb, NULL,
2057                                           epos->block.partitionReferenceNum,
2058                                           epos->block.logicalBlockNum, &err);
2059                 if (!new_block)
2060                         return -ENOSPC;
2061
2062                 err = udf_setup_indirect_aext(inode, new_block, epos);
2063                 if (err)
2064                         return err;
2065         }
2066
2067         return __udf_add_aext(inode, epos, eloc, elen, inc);
2068 }
2069
2070 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2071                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2072 {
2073         int adsize;
2074         uint8_t *ptr;
2075         struct short_ad *sad;
2076         struct long_ad *lad;
2077         struct udf_inode_info *iinfo = UDF_I(inode);
2078
2079         if (!epos->bh)
2080                 ptr = iinfo->i_data + epos->offset -
2081                         udf_file_entry_alloc_offset(inode) +
2082                         iinfo->i_lenEAttr;
2083         else
2084                 ptr = epos->bh->b_data + epos->offset;
2085
2086         switch (iinfo->i_alloc_type) {
2087         case ICBTAG_FLAG_AD_SHORT:
2088                 sad = (struct short_ad *)ptr;
2089                 sad->extLength = cpu_to_le32(elen);
2090                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2091                 adsize = sizeof(struct short_ad);
2092                 break;
2093         case ICBTAG_FLAG_AD_LONG:
2094                 lad = (struct long_ad *)ptr;
2095                 lad->extLength = cpu_to_le32(elen);
2096                 lad->extLocation = cpu_to_lelb(*eloc);
2097                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2098                 adsize = sizeof(struct long_ad);
2099                 break;
2100         default:
2101                 return;
2102         }
2103
2104         if (epos->bh) {
2105                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2106                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2107                         struct allocExtDesc *aed =
2108                                 (struct allocExtDesc *)epos->bh->b_data;
2109                         udf_update_tag(epos->bh->b_data,
2110                                        le32_to_cpu(aed->lengthAllocDescs) +
2111                                        sizeof(struct allocExtDesc));
2112                 }
2113                 mark_buffer_dirty_inode(epos->bh, inode);
2114         } else {
2115                 mark_inode_dirty(inode);
2116         }
2117
2118         if (inc)
2119                 epos->offset += adsize;
2120 }
2121
2122 /*
2123  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2124  * someone does some weird stuff.
2125  */
2126 #define UDF_MAX_INDIR_EXTS 16
2127
2128 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2129                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2130 {
2131         int8_t etype;
2132         unsigned int indirections = 0;
2133
2134         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2135                (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2136                 udf_pblk_t block;
2137
2138                 if (++indirections > UDF_MAX_INDIR_EXTS) {
2139                         udf_err(inode->i_sb,
2140                                 "too many indirect extents in inode %lu\n",
2141                                 inode->i_ino);
2142                         return -1;
2143                 }
2144
2145                 epos->block = *eloc;
2146                 epos->offset = sizeof(struct allocExtDesc);
2147                 brelse(epos->bh);
2148                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2149                 epos->bh = udf_tread(inode->i_sb, block);
2150                 if (!epos->bh) {
2151                         udf_debug("reading block %u failed!\n", block);
2152                         return -1;
2153                 }
2154         }
2155
2156         return etype;
2157 }
2158
2159 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2160                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2161 {
2162         int alen;
2163         int8_t etype;
2164         uint8_t *ptr;
2165         struct short_ad *sad;
2166         struct long_ad *lad;
2167         struct udf_inode_info *iinfo = UDF_I(inode);
2168
2169         if (!epos->bh) {
2170                 if (!epos->offset)
2171                         epos->offset = udf_file_entry_alloc_offset(inode);
2172                 ptr = iinfo->i_data + epos->offset -
2173                         udf_file_entry_alloc_offset(inode) +
2174                         iinfo->i_lenEAttr;
2175                 alen = udf_file_entry_alloc_offset(inode) +
2176                                                         iinfo->i_lenAlloc;
2177         } else {
2178                 if (!epos->offset)
2179                         epos->offset = sizeof(struct allocExtDesc);
2180                 ptr = epos->bh->b_data + epos->offset;
2181                 alen = sizeof(struct allocExtDesc) +
2182                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2183                                                         lengthAllocDescs);
2184         }
2185
2186         switch (iinfo->i_alloc_type) {
2187         case ICBTAG_FLAG_AD_SHORT:
2188                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2189                 if (!sad)
2190                         return -1;
2191                 etype = le32_to_cpu(sad->extLength) >> 30;
2192                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2193                 eloc->partitionReferenceNum =
2194                                 iinfo->i_location.partitionReferenceNum;
2195                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2196                 break;
2197         case ICBTAG_FLAG_AD_LONG:
2198                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2199                 if (!lad)
2200                         return -1;
2201                 etype = le32_to_cpu(lad->extLength) >> 30;
2202                 *eloc = lelb_to_cpu(lad->extLocation);
2203                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2204                 break;
2205         default:
2206                 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2207                 return -1;
2208         }
2209
2210         return etype;
2211 }
2212
2213 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2214                               struct kernel_lb_addr neloc, uint32_t nelen)
2215 {
2216         struct kernel_lb_addr oeloc;
2217         uint32_t oelen;
2218         int8_t etype;
2219
2220         if (epos.bh)
2221                 get_bh(epos.bh);
2222
2223         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2224                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2225                 neloc = oeloc;
2226                 nelen = (etype << 30) | oelen;
2227         }
2228         udf_add_aext(inode, &epos, &neloc, nelen, 1);
2229         brelse(epos.bh);
2230
2231         return (nelen >> 30);
2232 }
2233
2234 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2235 {
2236         struct extent_position oepos;
2237         int adsize;
2238         int8_t etype;
2239         struct allocExtDesc *aed;
2240         struct udf_inode_info *iinfo;
2241         struct kernel_lb_addr eloc;
2242         uint32_t elen;
2243
2244         if (epos.bh) {
2245                 get_bh(epos.bh);
2246                 get_bh(epos.bh);
2247         }
2248
2249         iinfo = UDF_I(inode);
2250         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2251                 adsize = sizeof(struct short_ad);
2252         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2253                 adsize = sizeof(struct long_ad);
2254         else
2255                 adsize = 0;
2256
2257         oepos = epos;
2258         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2259                 return -1;
2260
2261         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2262                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2263                 if (oepos.bh != epos.bh) {
2264                         oepos.block = epos.block;
2265                         brelse(oepos.bh);
2266                         get_bh(epos.bh);
2267                         oepos.bh = epos.bh;
2268                         oepos.offset = epos.offset - adsize;
2269                 }
2270         }
2271         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2272         elen = 0;
2273
2274         if (epos.bh != oepos.bh) {
2275                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2276                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2277                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2278                 if (!oepos.bh) {
2279                         iinfo->i_lenAlloc -= (adsize * 2);
2280                         mark_inode_dirty(inode);
2281                 } else {
2282                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2283                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2284                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2285                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2286                                 udf_update_tag(oepos.bh->b_data,
2287                                                 oepos.offset - (2 * adsize));
2288                         else
2289                                 udf_update_tag(oepos.bh->b_data,
2290                                                 sizeof(struct allocExtDesc));
2291                         mark_buffer_dirty_inode(oepos.bh, inode);
2292                 }
2293         } else {
2294                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2295                 if (!oepos.bh) {
2296                         iinfo->i_lenAlloc -= adsize;
2297                         mark_inode_dirty(inode);
2298                 } else {
2299                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2300                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2301                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2302                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2303                                 udf_update_tag(oepos.bh->b_data,
2304                                                 epos.offset - adsize);
2305                         else
2306                                 udf_update_tag(oepos.bh->b_data,
2307                                                 sizeof(struct allocExtDesc));
2308                         mark_buffer_dirty_inode(oepos.bh, inode);
2309                 }
2310         }
2311
2312         brelse(epos.bh);
2313         brelse(oepos.bh);
2314
2315         return (elen >> 30);
2316 }
2317
2318 int8_t inode_bmap(struct inode *inode, sector_t block,
2319                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2320                   uint32_t *elen, sector_t *offset)
2321 {
2322         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2323         loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2324         int8_t etype;
2325         struct udf_inode_info *iinfo;
2326
2327         iinfo = UDF_I(inode);
2328         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2329                 pos->offset = 0;
2330                 pos->block = iinfo->i_location;
2331                 pos->bh = NULL;
2332         }
2333         *elen = 0;
2334         do {
2335                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2336                 if (etype == -1) {
2337                         *offset = (bcount - lbcount) >> blocksize_bits;
2338                         iinfo->i_lenExtents = lbcount;
2339                         return -1;
2340                 }
2341                 lbcount += *elen;
2342         } while (lbcount <= bcount);
2343         /* update extent cache */
2344         udf_update_extent_cache(inode, lbcount - *elen, pos);
2345         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2346
2347         return etype;
2348 }
2349
2350 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2351 {
2352         struct kernel_lb_addr eloc;
2353         uint32_t elen;
2354         sector_t offset;
2355         struct extent_position epos = {};
2356         udf_pblk_t ret;
2357
2358         down_read(&UDF_I(inode)->i_data_sem);
2359
2360         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2361                                                 (EXT_RECORDED_ALLOCATED >> 30))
2362                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2363         else
2364                 ret = 0;
2365
2366         up_read(&UDF_I(inode)->i_data_sem);
2367         brelse(epos.bh);
2368
2369         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2370                 return udf_fixed_to_variable(ret);
2371         else
2372                 return ret;
2373 }