Merge tag 'drm-misc-fixes-2021-10-26' of git://anongit.freedesktop.org/drm/drm-misc...
[platform/kernel/linux-starfive.git] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49                          FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50                          FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53                          FE_PERM_O_DELETE)
54
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61                               struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63                               struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65                                  struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68                                int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73         struct udf_inode_info *iinfo = UDF_I(inode);
74
75         if (iinfo->cached_extent.lstart != -1) {
76                 brelse(iinfo->cached_extent.epos.bh);
77                 iinfo->cached_extent.lstart = -1;
78         }
79 }
80
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84         struct udf_inode_info *iinfo = UDF_I(inode);
85
86         spin_lock(&iinfo->i_extent_cache_lock);
87         __udf_clear_extent_cache(inode);
88         spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93                                  loff_t *lbcount, struct extent_position *pos)
94 {
95         struct udf_inode_info *iinfo = UDF_I(inode);
96         int ret = 0;
97
98         spin_lock(&iinfo->i_extent_cache_lock);
99         if ((iinfo->cached_extent.lstart <= bcount) &&
100             (iinfo->cached_extent.lstart != -1)) {
101                 /* Cache hit */
102                 *lbcount = iinfo->cached_extent.lstart;
103                 memcpy(pos, &iinfo->cached_extent.epos,
104                        sizeof(struct extent_position));
105                 if (pos->bh)
106                         get_bh(pos->bh);
107                 ret = 1;
108         }
109         spin_unlock(&iinfo->i_extent_cache_lock);
110         return ret;
111 }
112
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115                                     struct extent_position *pos)
116 {
117         struct udf_inode_info *iinfo = UDF_I(inode);
118
119         spin_lock(&iinfo->i_extent_cache_lock);
120         /* Invalidate previously cached extent */
121         __udf_clear_extent_cache(inode);
122         if (pos->bh)
123                 get_bh(pos->bh);
124         memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125         iinfo->cached_extent.lstart = estart;
126         switch (iinfo->i_alloc_type) {
127         case ICBTAG_FLAG_AD_SHORT:
128                 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129                 break;
130         case ICBTAG_FLAG_AD_LONG:
131                 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132                 break;
133         }
134         spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136
137 void udf_evict_inode(struct inode *inode)
138 {
139         struct udf_inode_info *iinfo = UDF_I(inode);
140         int want_delete = 0;
141
142         if (!is_bad_inode(inode)) {
143                 if (!inode->i_nlink) {
144                         want_delete = 1;
145                         udf_setsize(inode, 0);
146                         udf_update_inode(inode, IS_SYNC(inode));
147                 }
148                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149                     inode->i_size != iinfo->i_lenExtents) {
150                         udf_warn(inode->i_sb,
151                                  "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152                                  inode->i_ino, inode->i_mode,
153                                  (unsigned long long)inode->i_size,
154                                  (unsigned long long)iinfo->i_lenExtents);
155                 }
156         }
157         truncate_inode_pages_final(&inode->i_data);
158         invalidate_inode_buffers(inode);
159         clear_inode(inode);
160         kfree(iinfo->i_data);
161         iinfo->i_data = NULL;
162         udf_clear_extent_cache(inode);
163         if (want_delete) {
164                 udf_free_inode(inode);
165         }
166 }
167
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170         struct inode *inode = mapping->host;
171         struct udf_inode_info *iinfo = UDF_I(inode);
172         loff_t isize = inode->i_size;
173
174         if (to > isize) {
175                 truncate_pagecache(inode, isize);
176                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177                         down_write(&iinfo->i_data_sem);
178                         udf_clear_extent_cache(inode);
179                         udf_truncate_extents(inode);
180                         up_write(&iinfo->i_data_sem);
181                 }
182         }
183 }
184
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187         return block_write_full_page(page, udf_get_block, wbc);
188 }
189
190 static int udf_writepages(struct address_space *mapping,
191                         struct writeback_control *wbc)
192 {
193         return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
196 static int udf_readpage(struct file *file, struct page *page)
197 {
198         return mpage_readpage(page, udf_get_block);
199 }
200
201 static void udf_readahead(struct readahead_control *rac)
202 {
203         mpage_readahead(rac, udf_get_block);
204 }
205
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207                         loff_t pos, unsigned len, unsigned flags,
208                         struct page **pagep, void **fsdata)
209 {
210         int ret;
211
212         ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213         if (unlikely(ret))
214                 udf_write_failed(mapping, pos + len);
215         return ret;
216 }
217
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220         struct file *file = iocb->ki_filp;
221         struct address_space *mapping = file->f_mapping;
222         struct inode *inode = mapping->host;
223         size_t count = iov_iter_count(iter);
224         ssize_t ret;
225
226         ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228                 udf_write_failed(mapping, iocb->ki_pos + count);
229         return ret;
230 }
231
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234         return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238         .set_page_dirty = __set_page_dirty_buffers,
239         .readpage       = udf_readpage,
240         .readahead      = udf_readahead,
241         .writepage      = udf_writepage,
242         .writepages     = udf_writepages,
243         .write_begin    = udf_write_begin,
244         .write_end      = generic_write_end,
245         .direct_IO      = udf_direct_IO,
246         .bmap           = udf_bmap,
247 };
248
249 /*
250  * Expand file stored in ICB to a normal one-block-file
251  *
252  * This function requires i_data_sem for writing and releases it.
253  * This function requires i_mutex held
254  */
255 int udf_expand_file_adinicb(struct inode *inode)
256 {
257         struct page *page;
258         char *kaddr;
259         struct udf_inode_info *iinfo = UDF_I(inode);
260         int err;
261         struct writeback_control udf_wbc = {
262                 .sync_mode = WB_SYNC_NONE,
263                 .nr_to_write = 1,
264         };
265
266         WARN_ON_ONCE(!inode_is_locked(inode));
267         if (!iinfo->i_lenAlloc) {
268                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270                 else
271                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272                 /* from now on we have normal address_space methods */
273                 inode->i_data.a_ops = &udf_aops;
274                 up_write(&iinfo->i_data_sem);
275                 mark_inode_dirty(inode);
276                 return 0;
277         }
278         /*
279          * Release i_data_sem so that we can lock a page - page lock ranks
280          * above i_data_sem. i_mutex still protects us against file changes.
281          */
282         up_write(&iinfo->i_data_sem);
283
284         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285         if (!page)
286                 return -ENOMEM;
287
288         if (!PageUptodate(page)) {
289                 kaddr = kmap_atomic(page);
290                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
291                        PAGE_SIZE - iinfo->i_lenAlloc);
292                 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293                         iinfo->i_lenAlloc);
294                 flush_dcache_page(page);
295                 SetPageUptodate(page);
296                 kunmap_atomic(kaddr);
297         }
298         down_write(&iinfo->i_data_sem);
299         memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300                iinfo->i_lenAlloc);
301         iinfo->i_lenAlloc = 0;
302         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304         else
305                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306         /* from now on we have normal address_space methods */
307         inode->i_data.a_ops = &udf_aops;
308         up_write(&iinfo->i_data_sem);
309         err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310         if (err) {
311                 /* Restore everything back so that we don't lose data... */
312                 lock_page(page);
313                 down_write(&iinfo->i_data_sem);
314                 kaddr = kmap_atomic(page);
315                 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316                 kunmap_atomic(kaddr);
317                 unlock_page(page);
318                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319                 inode->i_data.a_ops = &udf_adinicb_aops;
320                 up_write(&iinfo->i_data_sem);
321         }
322         put_page(page);
323         mark_inode_dirty(inode);
324
325         return err;
326 }
327
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329                                             udf_pblk_t *block, int *err)
330 {
331         udf_pblk_t newblock;
332         struct buffer_head *dbh = NULL;
333         struct kernel_lb_addr eloc;
334         uint8_t alloctype;
335         struct extent_position epos;
336
337         struct udf_fileident_bh sfibh, dfibh;
338         loff_t f_pos = udf_ext0_offset(inode);
339         int size = udf_ext0_offset(inode) + inode->i_size;
340         struct fileIdentDesc cfi, *sfi, *dfi;
341         struct udf_inode_info *iinfo = UDF_I(inode);
342
343         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344                 alloctype = ICBTAG_FLAG_AD_SHORT;
345         else
346                 alloctype = ICBTAG_FLAG_AD_LONG;
347
348         if (!inode->i_size) {
349                 iinfo->i_alloc_type = alloctype;
350                 mark_inode_dirty(inode);
351                 return NULL;
352         }
353
354         /* alloc block, and copy data to it */
355         *block = udf_new_block(inode->i_sb, inode,
356                                iinfo->i_location.partitionReferenceNum,
357                                iinfo->i_location.logicalBlockNum, err);
358         if (!(*block))
359                 return NULL;
360         newblock = udf_get_pblock(inode->i_sb, *block,
361                                   iinfo->i_location.partitionReferenceNum,
362                                 0);
363         if (!newblock)
364                 return NULL;
365         dbh = udf_tgetblk(inode->i_sb, newblock);
366         if (!dbh)
367                 return NULL;
368         lock_buffer(dbh);
369         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370         set_buffer_uptodate(dbh);
371         unlock_buffer(dbh);
372         mark_buffer_dirty_inode(dbh, inode);
373
374         sfibh.soffset = sfibh.eoffset =
375                         f_pos & (inode->i_sb->s_blocksize - 1);
376         sfibh.sbh = sfibh.ebh = NULL;
377         dfibh.soffset = dfibh.eoffset = 0;
378         dfibh.sbh = dfibh.ebh = dbh;
379         while (f_pos < size) {
380                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382                                          NULL, NULL, NULL);
383                 if (!sfi) {
384                         brelse(dbh);
385                         return NULL;
386                 }
387                 iinfo->i_alloc_type = alloctype;
388                 sfi->descTag.tagLocation = cpu_to_le32(*block);
389                 dfibh.soffset = dfibh.eoffset;
390                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393                                  udf_get_fi_ident(sfi))) {
394                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395                         brelse(dbh);
396                         return NULL;
397                 }
398         }
399         mark_buffer_dirty_inode(dbh, inode);
400
401         memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402         iinfo->i_lenAlloc = 0;
403         eloc.logicalBlockNum = *block;
404         eloc.partitionReferenceNum =
405                                 iinfo->i_location.partitionReferenceNum;
406         iinfo->i_lenExtents = inode->i_size;
407         epos.bh = NULL;
408         epos.block = iinfo->i_location;
409         epos.offset = udf_file_entry_alloc_offset(inode);
410         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411         /* UniqueID stuff */
412
413         brelse(epos.bh);
414         mark_inode_dirty(inode);
415         return dbh;
416 }
417
418 static int udf_get_block(struct inode *inode, sector_t block,
419                          struct buffer_head *bh_result, int create)
420 {
421         int err, new;
422         sector_t phys = 0;
423         struct udf_inode_info *iinfo;
424
425         if (!create) {
426                 phys = udf_block_map(inode, block);
427                 if (phys)
428                         map_bh(bh_result, inode->i_sb, phys);
429                 return 0;
430         }
431
432         err = -EIO;
433         new = 0;
434         iinfo = UDF_I(inode);
435
436         down_write(&iinfo->i_data_sem);
437         if (block == iinfo->i_next_alloc_block + 1) {
438                 iinfo->i_next_alloc_block++;
439                 iinfo->i_next_alloc_goal++;
440         }
441
442         udf_clear_extent_cache(inode);
443         phys = inode_getblk(inode, block, &err, &new);
444         if (!phys)
445                 goto abort;
446
447         if (new)
448                 set_buffer_new(bh_result);
449         map_bh(bh_result, inode->i_sb, phys);
450
451 abort:
452         up_write(&iinfo->i_data_sem);
453         return err;
454 }
455
456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
457                                       int create, int *err)
458 {
459         struct buffer_head *bh;
460         struct buffer_head dummy;
461
462         dummy.b_state = 0;
463         dummy.b_blocknr = -1000;
464         *err = udf_get_block(inode, block, &dummy, create);
465         if (!*err && buffer_mapped(&dummy)) {
466                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
467                 if (buffer_new(&dummy)) {
468                         lock_buffer(bh);
469                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
470                         set_buffer_uptodate(bh);
471                         unlock_buffer(bh);
472                         mark_buffer_dirty_inode(bh, inode);
473                 }
474                 return bh;
475         }
476
477         return NULL;
478 }
479
480 /* Extend the file with new blocks totaling 'new_block_bytes',
481  * return the number of extents added
482  */
483 static int udf_do_extend_file(struct inode *inode,
484                               struct extent_position *last_pos,
485                               struct kernel_long_ad *last_ext,
486                               loff_t new_block_bytes)
487 {
488         uint32_t add;
489         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490         struct super_block *sb = inode->i_sb;
491         struct kernel_lb_addr prealloc_loc = {};
492         uint32_t prealloc_len = 0;
493         struct udf_inode_info *iinfo;
494         int err;
495
496         /* The previous extent is fake and we should not extend by anything
497          * - there's nothing to do... */
498         if (!new_block_bytes && fake)
499                 return 0;
500
501         iinfo = UDF_I(inode);
502         /* Round the last extent up to a multiple of block size */
503         if (last_ext->extLength & (sb->s_blocksize - 1)) {
504                 last_ext->extLength =
505                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508                 iinfo->i_lenExtents =
509                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510                         ~(sb->s_blocksize - 1);
511         }
512
513         /* Last extent are just preallocated blocks? */
514         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515                                                 EXT_NOT_RECORDED_ALLOCATED) {
516                 /* Save the extent so that we can reattach it to the end */
517                 prealloc_loc = last_ext->extLocation;
518                 prealloc_len = last_ext->extLength;
519                 /* Mark the extent as a hole */
520                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522                 last_ext->extLocation.logicalBlockNum = 0;
523                 last_ext->extLocation.partitionReferenceNum = 0;
524         }
525
526         /* Can we merge with the previous extent? */
527         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
529                 add = (1 << 30) - sb->s_blocksize -
530                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
531                 if (add > new_block_bytes)
532                         add = new_block_bytes;
533                 new_block_bytes -= add;
534                 last_ext->extLength += add;
535         }
536
537         if (fake) {
538                 udf_add_aext(inode, last_pos, &last_ext->extLocation,
539                              last_ext->extLength, 1);
540                 count++;
541         } else {
542                 struct kernel_lb_addr tmploc;
543                 uint32_t tmplen;
544
545                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
546                                 last_ext->extLength, 1);
547
548                 /*
549                  * We've rewritten the last extent. If we are going to add
550                  * more extents, we may need to enter possible following
551                  * empty indirect extent.
552                  */
553                 if (new_block_bytes || prealloc_len)
554                         udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
555         }
556
557         /* Managed to do everything necessary? */
558         if (!new_block_bytes)
559                 goto out;
560
561         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
562         last_ext->extLocation.logicalBlockNum = 0;
563         last_ext->extLocation.partitionReferenceNum = 0;
564         add = (1 << 30) - sb->s_blocksize;
565         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
566
567         /* Create enough extents to cover the whole hole */
568         while (new_block_bytes > add) {
569                 new_block_bytes -= add;
570                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
571                                    last_ext->extLength, 1);
572                 if (err)
573                         return err;
574                 count++;
575         }
576         if (new_block_bytes) {
577                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
578                         new_block_bytes;
579                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
580                                    last_ext->extLength, 1);
581                 if (err)
582                         return err;
583                 count++;
584         }
585
586 out:
587         /* Do we have some preallocated blocks saved? */
588         if (prealloc_len) {
589                 err = udf_add_aext(inode, last_pos, &prealloc_loc,
590                                    prealloc_len, 1);
591                 if (err)
592                         return err;
593                 last_ext->extLocation = prealloc_loc;
594                 last_ext->extLength = prealloc_len;
595                 count++;
596         }
597
598         /* last_pos should point to the last written extent... */
599         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
600                 last_pos->offset -= sizeof(struct short_ad);
601         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
602                 last_pos->offset -= sizeof(struct long_ad);
603         else
604                 return -EIO;
605
606         return count;
607 }
608
609 /* Extend the final block of the file to final_block_len bytes */
610 static void udf_do_extend_final_block(struct inode *inode,
611                                       struct extent_position *last_pos,
612                                       struct kernel_long_ad *last_ext,
613                                       uint32_t final_block_len)
614 {
615         struct super_block *sb = inode->i_sb;
616         uint32_t added_bytes;
617
618         added_bytes = final_block_len -
619                       (last_ext->extLength & (sb->s_blocksize - 1));
620         last_ext->extLength += added_bytes;
621         UDF_I(inode)->i_lenExtents += added_bytes;
622
623         udf_write_aext(inode, last_pos, &last_ext->extLocation,
624                         last_ext->extLength, 1);
625 }
626
627 static int udf_extend_file(struct inode *inode, loff_t newsize)
628 {
629
630         struct extent_position epos;
631         struct kernel_lb_addr eloc;
632         uint32_t elen;
633         int8_t etype;
634         struct super_block *sb = inode->i_sb;
635         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
636         unsigned long partial_final_block;
637         int adsize;
638         struct udf_inode_info *iinfo = UDF_I(inode);
639         struct kernel_long_ad extent;
640         int err = 0;
641         int within_final_block;
642
643         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
644                 adsize = sizeof(struct short_ad);
645         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
646                 adsize = sizeof(struct long_ad);
647         else
648                 BUG();
649
650         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
651         within_final_block = (etype != -1);
652
653         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655                 /* File has no extents at all or has empty last
656                  * indirect extent! Create a fake extent... */
657                 extent.extLocation.logicalBlockNum = 0;
658                 extent.extLocation.partitionReferenceNum = 0;
659                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660         } else {
661                 epos.offset -= adsize;
662                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
663                                       &extent.extLength, 0);
664                 extent.extLength |= etype << 30;
665         }
666
667         partial_final_block = newsize & (sb->s_blocksize - 1);
668
669         /* File has extent covering the new size (could happen when extending
670          * inside a block)?
671          */
672         if (within_final_block) {
673                 /* Extending file within the last file block */
674                 udf_do_extend_final_block(inode, &epos, &extent,
675                                           partial_final_block);
676         } else {
677                 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
678                              partial_final_block;
679                 err = udf_do_extend_file(inode, &epos, &extent, add);
680         }
681
682         if (err < 0)
683                 goto out;
684         err = 0;
685         iinfo->i_lenExtents = newsize;
686 out:
687         brelse(epos.bh);
688         return err;
689 }
690
691 static sector_t inode_getblk(struct inode *inode, sector_t block,
692                              int *err, int *new)
693 {
694         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
695         struct extent_position prev_epos, cur_epos, next_epos;
696         int count = 0, startnum = 0, endnum = 0;
697         uint32_t elen = 0, tmpelen;
698         struct kernel_lb_addr eloc, tmpeloc;
699         int c = 1;
700         loff_t lbcount = 0, b_off = 0;
701         udf_pblk_t newblocknum, newblock;
702         sector_t offset = 0;
703         int8_t etype;
704         struct udf_inode_info *iinfo = UDF_I(inode);
705         udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
706         int lastblock = 0;
707         bool isBeyondEOF;
708
709         *err = 0;
710         *new = 0;
711         prev_epos.offset = udf_file_entry_alloc_offset(inode);
712         prev_epos.block = iinfo->i_location;
713         prev_epos.bh = NULL;
714         cur_epos = next_epos = prev_epos;
715         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
716
717         /* find the extent which contains the block we are looking for.
718            alternate between laarr[0] and laarr[1] for locations of the
719            current extent, and the previous extent */
720         do {
721                 if (prev_epos.bh != cur_epos.bh) {
722                         brelse(prev_epos.bh);
723                         get_bh(cur_epos.bh);
724                         prev_epos.bh = cur_epos.bh;
725                 }
726                 if (cur_epos.bh != next_epos.bh) {
727                         brelse(cur_epos.bh);
728                         get_bh(next_epos.bh);
729                         cur_epos.bh = next_epos.bh;
730                 }
731
732                 lbcount += elen;
733
734                 prev_epos.block = cur_epos.block;
735                 cur_epos.block = next_epos.block;
736
737                 prev_epos.offset = cur_epos.offset;
738                 cur_epos.offset = next_epos.offset;
739
740                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
741                 if (etype == -1)
742                         break;
743
744                 c = !c;
745
746                 laarr[c].extLength = (etype << 30) | elen;
747                 laarr[c].extLocation = eloc;
748
749                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
750                         pgoal = eloc.logicalBlockNum +
751                                 ((elen + inode->i_sb->s_blocksize - 1) >>
752                                  inode->i_sb->s_blocksize_bits);
753
754                 count++;
755         } while (lbcount + elen <= b_off);
756
757         b_off -= lbcount;
758         offset = b_off >> inode->i_sb->s_blocksize_bits;
759         /*
760          * Move prev_epos and cur_epos into indirect extent if we are at
761          * the pointer to it
762          */
763         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
764         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
765
766         /* if the extent is allocated and recorded, return the block
767            if the extent is not a multiple of the blocksize, round up */
768
769         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
770                 if (elen & (inode->i_sb->s_blocksize - 1)) {
771                         elen = EXT_RECORDED_ALLOCATED |
772                                 ((elen + inode->i_sb->s_blocksize - 1) &
773                                  ~(inode->i_sb->s_blocksize - 1));
774                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
775                 }
776                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
777                 goto out_free;
778         }
779
780         /* Are we beyond EOF? */
781         if (etype == -1) {
782                 int ret;
783                 loff_t hole_len;
784                 isBeyondEOF = true;
785                 if (count) {
786                         if (c)
787                                 laarr[0] = laarr[1];
788                         startnum = 1;
789                 } else {
790                         /* Create a fake extent when there's not one */
791                         memset(&laarr[0].extLocation, 0x00,
792                                 sizeof(struct kernel_lb_addr));
793                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
794                         /* Will udf_do_extend_file() create real extent from
795                            a fake one? */
796                         startnum = (offset > 0);
797                 }
798                 /* Create extents for the hole between EOF and offset */
799                 hole_len = (loff_t)offset << inode->i_blkbits;
800                 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
801                 if (ret < 0) {
802                         *err = ret;
803                         newblock = 0;
804                         goto out_free;
805                 }
806                 c = 0;
807                 offset = 0;
808                 count += ret;
809                 /* We are not covered by a preallocated extent? */
810                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
811                                                 EXT_NOT_RECORDED_ALLOCATED) {
812                         /* Is there any real extent? - otherwise we overwrite
813                          * the fake one... */
814                         if (count)
815                                 c = !c;
816                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
817                                 inode->i_sb->s_blocksize;
818                         memset(&laarr[c].extLocation, 0x00,
819                                 sizeof(struct kernel_lb_addr));
820                         count++;
821                 }
822                 endnum = c + 1;
823                 lastblock = 1;
824         } else {
825                 isBeyondEOF = false;
826                 endnum = startnum = ((count > 2) ? 2 : count);
827
828                 /* if the current extent is in position 0,
829                    swap it with the previous */
830                 if (!c && count != 1) {
831                         laarr[2] = laarr[0];
832                         laarr[0] = laarr[1];
833                         laarr[1] = laarr[2];
834                         c = 1;
835                 }
836
837                 /* if the current block is located in an extent,
838                    read the next extent */
839                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
840                 if (etype != -1) {
841                         laarr[c + 1].extLength = (etype << 30) | elen;
842                         laarr[c + 1].extLocation = eloc;
843                         count++;
844                         startnum++;
845                         endnum++;
846                 } else
847                         lastblock = 1;
848         }
849
850         /* if the current extent is not recorded but allocated, get the
851          * block in the extent corresponding to the requested block */
852         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
853                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
854         else { /* otherwise, allocate a new block */
855                 if (iinfo->i_next_alloc_block == block)
856                         goal = iinfo->i_next_alloc_goal;
857
858                 if (!goal) {
859                         if (!(goal = pgoal)) /* XXX: what was intended here? */
860                                 goal = iinfo->i_location.logicalBlockNum + 1;
861                 }
862
863                 newblocknum = udf_new_block(inode->i_sb, inode,
864                                 iinfo->i_location.partitionReferenceNum,
865                                 goal, err);
866                 if (!newblocknum) {
867                         *err = -ENOSPC;
868                         newblock = 0;
869                         goto out_free;
870                 }
871                 if (isBeyondEOF)
872                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
873         }
874
875         /* if the extent the requsted block is located in contains multiple
876          * blocks, split the extent into at most three extents. blocks prior
877          * to requested block, requested block, and blocks after requested
878          * block */
879         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
880
881         /* We preallocate blocks only for regular files. It also makes sense
882          * for directories but there's a problem when to drop the
883          * preallocation. We might use some delayed work for that but I feel
884          * it's overengineering for a filesystem like UDF. */
885         if (S_ISREG(inode->i_mode))
886                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
887
888         /* merge any continuous blocks in laarr */
889         udf_merge_extents(inode, laarr, &endnum);
890
891         /* write back the new extents, inserting new extents if the new number
892          * of extents is greater than the old number, and deleting extents if
893          * the new number of extents is less than the old number */
894         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
895
896         newblock = udf_get_pblock(inode->i_sb, newblocknum,
897                                 iinfo->i_location.partitionReferenceNum, 0);
898         if (!newblock) {
899                 *err = -EIO;
900                 goto out_free;
901         }
902         *new = 1;
903         iinfo->i_next_alloc_block = block;
904         iinfo->i_next_alloc_goal = newblocknum;
905         inode->i_ctime = current_time(inode);
906
907         if (IS_SYNC(inode))
908                 udf_sync_inode(inode);
909         else
910                 mark_inode_dirty(inode);
911 out_free:
912         brelse(prev_epos.bh);
913         brelse(cur_epos.bh);
914         brelse(next_epos.bh);
915         return newblock;
916 }
917
918 static void udf_split_extents(struct inode *inode, int *c, int offset,
919                                udf_pblk_t newblocknum,
920                                struct kernel_long_ad *laarr, int *endnum)
921 {
922         unsigned long blocksize = inode->i_sb->s_blocksize;
923         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
924
925         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
926             (laarr[*c].extLength >> 30) ==
927                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
928                 int curr = *c;
929                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
930                             blocksize - 1) >> blocksize_bits;
931                 int8_t etype = (laarr[curr].extLength >> 30);
932
933                 if (blen == 1)
934                         ;
935                 else if (!offset || blen == offset + 1) {
936                         laarr[curr + 2] = laarr[curr + 1];
937                         laarr[curr + 1] = laarr[curr];
938                 } else {
939                         laarr[curr + 3] = laarr[curr + 1];
940                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
941                 }
942
943                 if (offset) {
944                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
945                                 udf_free_blocks(inode->i_sb, inode,
946                                                 &laarr[curr].extLocation,
947                                                 0, offset);
948                                 laarr[curr].extLength =
949                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
950                                         (offset << blocksize_bits);
951                                 laarr[curr].extLocation.logicalBlockNum = 0;
952                                 laarr[curr].extLocation.
953                                                 partitionReferenceNum = 0;
954                         } else
955                                 laarr[curr].extLength = (etype << 30) |
956                                         (offset << blocksize_bits);
957                         curr++;
958                         (*c)++;
959                         (*endnum)++;
960                 }
961
962                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
963                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
964                         laarr[curr].extLocation.partitionReferenceNum =
965                                 UDF_I(inode)->i_location.partitionReferenceNum;
966                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
967                         blocksize;
968                 curr++;
969
970                 if (blen != offset + 1) {
971                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
972                                 laarr[curr].extLocation.logicalBlockNum +=
973                                                                 offset + 1;
974                         laarr[curr].extLength = (etype << 30) |
975                                 ((blen - (offset + 1)) << blocksize_bits);
976                         curr++;
977                         (*endnum)++;
978                 }
979         }
980 }
981
982 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
983                                  struct kernel_long_ad *laarr,
984                                  int *endnum)
985 {
986         int start, length = 0, currlength = 0, i;
987
988         if (*endnum >= (c + 1)) {
989                 if (!lastblock)
990                         return;
991                 else
992                         start = c;
993         } else {
994                 if ((laarr[c + 1].extLength >> 30) ==
995                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
996                         start = c + 1;
997                         length = currlength =
998                                 (((laarr[c + 1].extLength &
999                                         UDF_EXTENT_LENGTH_MASK) +
1000                                 inode->i_sb->s_blocksize - 1) >>
1001                                 inode->i_sb->s_blocksize_bits);
1002                 } else
1003                         start = c;
1004         }
1005
1006         for (i = start + 1; i <= *endnum; i++) {
1007                 if (i == *endnum) {
1008                         if (lastblock)
1009                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1010                 } else if ((laarr[i].extLength >> 30) ==
1011                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1012                         length += (((laarr[i].extLength &
1013                                                 UDF_EXTENT_LENGTH_MASK) +
1014                                     inode->i_sb->s_blocksize - 1) >>
1015                                     inode->i_sb->s_blocksize_bits);
1016                 } else
1017                         break;
1018         }
1019
1020         if (length) {
1021                 int next = laarr[start].extLocation.logicalBlockNum +
1022                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1023                           inode->i_sb->s_blocksize - 1) >>
1024                           inode->i_sb->s_blocksize_bits);
1025                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1026                                 laarr[start].extLocation.partitionReferenceNum,
1027                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1028                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1029                                 currlength);
1030                 if (numalloc)   {
1031                         if (start == (c + 1))
1032                                 laarr[start].extLength +=
1033                                         (numalloc <<
1034                                          inode->i_sb->s_blocksize_bits);
1035                         else {
1036                                 memmove(&laarr[c + 2], &laarr[c + 1],
1037                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1038                                 (*endnum)++;
1039                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1040                                 laarr[c + 1].extLocation.partitionReferenceNum =
1041                                         laarr[c].extLocation.
1042                                                         partitionReferenceNum;
1043                                 laarr[c + 1].extLength =
1044                                         EXT_NOT_RECORDED_ALLOCATED |
1045                                         (numalloc <<
1046                                          inode->i_sb->s_blocksize_bits);
1047                                 start = c + 1;
1048                         }
1049
1050                         for (i = start + 1; numalloc && i < *endnum; i++) {
1051                                 int elen = ((laarr[i].extLength &
1052                                                 UDF_EXTENT_LENGTH_MASK) +
1053                                             inode->i_sb->s_blocksize - 1) >>
1054                                             inode->i_sb->s_blocksize_bits;
1055
1056                                 if (elen > numalloc) {
1057                                         laarr[i].extLength -=
1058                                                 (numalloc <<
1059                                                  inode->i_sb->s_blocksize_bits);
1060                                         numalloc = 0;
1061                                 } else {
1062                                         numalloc -= elen;
1063                                         if (*endnum > (i + 1))
1064                                                 memmove(&laarr[i],
1065                                                         &laarr[i + 1],
1066                                                         sizeof(struct long_ad) *
1067                                                         (*endnum - (i + 1)));
1068                                         i--;
1069                                         (*endnum)--;
1070                                 }
1071                         }
1072                         UDF_I(inode)->i_lenExtents +=
1073                                 numalloc << inode->i_sb->s_blocksize_bits;
1074                 }
1075         }
1076 }
1077
1078 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1079                               int *endnum)
1080 {
1081         int i;
1082         unsigned long blocksize = inode->i_sb->s_blocksize;
1083         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1084
1085         for (i = 0; i < (*endnum - 1); i++) {
1086                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1087                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1088
1089                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1090                         (((li->extLength >> 30) ==
1091                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1092                         ((lip1->extLocation.logicalBlockNum -
1093                           li->extLocation.logicalBlockNum) ==
1094                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095                         blocksize - 1) >> blocksize_bits)))) {
1096
1097                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1098                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1099                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1100                                 lip1->extLength = (lip1->extLength -
1101                                                   (li->extLength &
1102                                                    UDF_EXTENT_LENGTH_MASK) +
1103                                                    UDF_EXTENT_LENGTH_MASK) &
1104                                                         ~(blocksize - 1);
1105                                 li->extLength = (li->extLength &
1106                                                  UDF_EXTENT_FLAG_MASK) +
1107                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1108                                                 blocksize;
1109                                 lip1->extLocation.logicalBlockNum =
1110                                         li->extLocation.logicalBlockNum +
1111                                         ((li->extLength &
1112                                                 UDF_EXTENT_LENGTH_MASK) >>
1113                                                 blocksize_bits);
1114                         } else {
1115                                 li->extLength = lip1->extLength +
1116                                         (((li->extLength &
1117                                                 UDF_EXTENT_LENGTH_MASK) +
1118                                          blocksize - 1) & ~(blocksize - 1));
1119                                 if (*endnum > (i + 2))
1120                                         memmove(&laarr[i + 1], &laarr[i + 2],
1121                                                 sizeof(struct long_ad) *
1122                                                 (*endnum - (i + 2)));
1123                                 i--;
1124                                 (*endnum)--;
1125                         }
1126                 } else if (((li->extLength >> 30) ==
1127                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1128                            ((lip1->extLength >> 30) ==
1129                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1130                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1131                                         ((li->extLength &
1132                                           UDF_EXTENT_LENGTH_MASK) +
1133                                          blocksize - 1) >> blocksize_bits);
1134                         li->extLocation.logicalBlockNum = 0;
1135                         li->extLocation.partitionReferenceNum = 0;
1136
1137                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1138                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1139                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1140                                 lip1->extLength = (lip1->extLength -
1141                                                    (li->extLength &
1142                                                    UDF_EXTENT_LENGTH_MASK) +
1143                                                    UDF_EXTENT_LENGTH_MASK) &
1144                                                    ~(blocksize - 1);
1145                                 li->extLength = (li->extLength &
1146                                                  UDF_EXTENT_FLAG_MASK) +
1147                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1148                                                 blocksize;
1149                         } else {
1150                                 li->extLength = lip1->extLength +
1151                                         (((li->extLength &
1152                                                 UDF_EXTENT_LENGTH_MASK) +
1153                                           blocksize - 1) & ~(blocksize - 1));
1154                                 if (*endnum > (i + 2))
1155                                         memmove(&laarr[i + 1], &laarr[i + 2],
1156                                                 sizeof(struct long_ad) *
1157                                                 (*endnum - (i + 2)));
1158                                 i--;
1159                                 (*endnum)--;
1160                         }
1161                 } else if ((li->extLength >> 30) ==
1162                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1163                         udf_free_blocks(inode->i_sb, inode,
1164                                         &li->extLocation, 0,
1165                                         ((li->extLength &
1166                                                 UDF_EXTENT_LENGTH_MASK) +
1167                                          blocksize - 1) >> blocksize_bits);
1168                         li->extLocation.logicalBlockNum = 0;
1169                         li->extLocation.partitionReferenceNum = 0;
1170                         li->extLength = (li->extLength &
1171                                                 UDF_EXTENT_LENGTH_MASK) |
1172                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1173                 }
1174         }
1175 }
1176
1177 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1178                                int startnum, int endnum,
1179                                struct extent_position *epos)
1180 {
1181         int start = 0, i;
1182         struct kernel_lb_addr tmploc;
1183         uint32_t tmplen;
1184
1185         if (startnum > endnum) {
1186                 for (i = 0; i < (startnum - endnum); i++)
1187                         udf_delete_aext(inode, *epos);
1188         } else if (startnum < endnum) {
1189                 for (i = 0; i < (endnum - startnum); i++) {
1190                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
1191                                         laarr[i].extLength);
1192                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1193                                       &laarr[i].extLength, 1);
1194                         start++;
1195                 }
1196         }
1197
1198         for (i = start; i < endnum; i++) {
1199                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1200                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1201                                laarr[i].extLength, 1);
1202         }
1203 }
1204
1205 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1206                               int create, int *err)
1207 {
1208         struct buffer_head *bh = NULL;
1209
1210         bh = udf_getblk(inode, block, create, err);
1211         if (!bh)
1212                 return NULL;
1213
1214         if (buffer_uptodate(bh))
1215                 return bh;
1216
1217         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1218
1219         wait_on_buffer(bh);
1220         if (buffer_uptodate(bh))
1221                 return bh;
1222
1223         brelse(bh);
1224         *err = -EIO;
1225         return NULL;
1226 }
1227
1228 int udf_setsize(struct inode *inode, loff_t newsize)
1229 {
1230         int err;
1231         struct udf_inode_info *iinfo;
1232         unsigned int bsize = i_blocksize(inode);
1233
1234         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1235               S_ISLNK(inode->i_mode)))
1236                 return -EINVAL;
1237         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1238                 return -EPERM;
1239
1240         iinfo = UDF_I(inode);
1241         if (newsize > inode->i_size) {
1242                 down_write(&iinfo->i_data_sem);
1243                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244                         if (bsize <
1245                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1246                                 err = udf_expand_file_adinicb(inode);
1247                                 if (err)
1248                                         return err;
1249                                 down_write(&iinfo->i_data_sem);
1250                         } else {
1251                                 iinfo->i_lenAlloc = newsize;
1252                                 goto set_size;
1253                         }
1254                 }
1255                 err = udf_extend_file(inode, newsize);
1256                 if (err) {
1257                         up_write(&iinfo->i_data_sem);
1258                         return err;
1259                 }
1260 set_size:
1261                 up_write(&iinfo->i_data_sem);
1262                 truncate_setsize(inode, newsize);
1263         } else {
1264                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1265                         down_write(&iinfo->i_data_sem);
1266                         udf_clear_extent_cache(inode);
1267                         memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1268                                0x00, bsize - newsize -
1269                                udf_file_entry_alloc_offset(inode));
1270                         iinfo->i_lenAlloc = newsize;
1271                         truncate_setsize(inode, newsize);
1272                         up_write(&iinfo->i_data_sem);
1273                         goto update_time;
1274                 }
1275                 err = block_truncate_page(inode->i_mapping, newsize,
1276                                           udf_get_block);
1277                 if (err)
1278                         return err;
1279                 truncate_setsize(inode, newsize);
1280                 down_write(&iinfo->i_data_sem);
1281                 udf_clear_extent_cache(inode);
1282                 err = udf_truncate_extents(inode);
1283                 up_write(&iinfo->i_data_sem);
1284                 if (err)
1285                         return err;
1286         }
1287 update_time:
1288         inode->i_mtime = inode->i_ctime = current_time(inode);
1289         if (IS_SYNC(inode))
1290                 udf_sync_inode(inode);
1291         else
1292                 mark_inode_dirty(inode);
1293         return 0;
1294 }
1295
1296 /*
1297  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1298  * arbitrary - just that we hopefully don't limit any real use of rewritten
1299  * inode on write-once media but avoid looping for too long on corrupted media.
1300  */
1301 #define UDF_MAX_ICB_NESTING 1024
1302
1303 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1304 {
1305         struct buffer_head *bh = NULL;
1306         struct fileEntry *fe;
1307         struct extendedFileEntry *efe;
1308         uint16_t ident;
1309         struct udf_inode_info *iinfo = UDF_I(inode);
1310         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1311         struct kernel_lb_addr *iloc = &iinfo->i_location;
1312         unsigned int link_count;
1313         unsigned int indirections = 0;
1314         int bs = inode->i_sb->s_blocksize;
1315         int ret = -EIO;
1316         uint32_t uid, gid;
1317
1318 reread:
1319         if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1320                 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1321                           iloc->partitionReferenceNum, sbi->s_partitions);
1322                 return -EIO;
1323         }
1324
1325         if (iloc->logicalBlockNum >=
1326             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1327                 udf_debug("block=%u, partition=%u out of range\n",
1328                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1329                 return -EIO;
1330         }
1331
1332         /*
1333          * Set defaults, but the inode is still incomplete!
1334          * Note: get_new_inode() sets the following on a new inode:
1335          *      i_sb = sb
1336          *      i_no = ino
1337          *      i_flags = sb->s_flags
1338          *      i_state = 0
1339          * clean_inode(): zero fills and sets
1340          *      i_count = 1
1341          *      i_nlink = 1
1342          *      i_op = NULL;
1343          */
1344         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1345         if (!bh) {
1346                 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1347                 return -EIO;
1348         }
1349
1350         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1351             ident != TAG_IDENT_USE) {
1352                 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1353                         inode->i_ino, ident);
1354                 goto out;
1355         }
1356
1357         fe = (struct fileEntry *)bh->b_data;
1358         efe = (struct extendedFileEntry *)bh->b_data;
1359
1360         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1361                 struct buffer_head *ibh;
1362
1363                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1364                 if (ident == TAG_IDENT_IE && ibh) {
1365                         struct kernel_lb_addr loc;
1366                         struct indirectEntry *ie;
1367
1368                         ie = (struct indirectEntry *)ibh->b_data;
1369                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1370
1371                         if (ie->indirectICB.extLength) {
1372                                 brelse(ibh);
1373                                 memcpy(&iinfo->i_location, &loc,
1374                                        sizeof(struct kernel_lb_addr));
1375                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1376                                         udf_err(inode->i_sb,
1377                                                 "too many ICBs in ICB hierarchy"
1378                                                 " (max %d supported)\n",
1379                                                 UDF_MAX_ICB_NESTING);
1380                                         goto out;
1381                                 }
1382                                 brelse(bh);
1383                                 goto reread;
1384                         }
1385                 }
1386                 brelse(ibh);
1387         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1388                 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1389                         le16_to_cpu(fe->icbTag.strategyType));
1390                 goto out;
1391         }
1392         if (fe->icbTag.strategyType == cpu_to_le16(4))
1393                 iinfo->i_strat4096 = 0;
1394         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1395                 iinfo->i_strat4096 = 1;
1396
1397         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1398                                                         ICBTAG_FLAG_AD_MASK;
1399         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1400             iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1401             iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1402                 ret = -EIO;
1403                 goto out;
1404         }
1405         iinfo->i_unique = 0;
1406         iinfo->i_lenEAttr = 0;
1407         iinfo->i_lenExtents = 0;
1408         iinfo->i_lenAlloc = 0;
1409         iinfo->i_next_alloc_block = 0;
1410         iinfo->i_next_alloc_goal = 0;
1411         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1412                 iinfo->i_efe = 1;
1413                 iinfo->i_use = 0;
1414                 ret = udf_alloc_i_data(inode, bs -
1415                                         sizeof(struct extendedFileEntry));
1416                 if (ret)
1417                         goto out;
1418                 memcpy(iinfo->i_data,
1419                        bh->b_data + sizeof(struct extendedFileEntry),
1420                        bs - sizeof(struct extendedFileEntry));
1421         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1422                 iinfo->i_efe = 0;
1423                 iinfo->i_use = 0;
1424                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1425                 if (ret)
1426                         goto out;
1427                 memcpy(iinfo->i_data,
1428                        bh->b_data + sizeof(struct fileEntry),
1429                        bs - sizeof(struct fileEntry));
1430         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1431                 iinfo->i_efe = 0;
1432                 iinfo->i_use = 1;
1433                 iinfo->i_lenAlloc = le32_to_cpu(
1434                                 ((struct unallocSpaceEntry *)bh->b_data)->
1435                                  lengthAllocDescs);
1436                 ret = udf_alloc_i_data(inode, bs -
1437                                         sizeof(struct unallocSpaceEntry));
1438                 if (ret)
1439                         goto out;
1440                 memcpy(iinfo->i_data,
1441                        bh->b_data + sizeof(struct unallocSpaceEntry),
1442                        bs - sizeof(struct unallocSpaceEntry));
1443                 return 0;
1444         }
1445
1446         ret = -EIO;
1447         read_lock(&sbi->s_cred_lock);
1448         uid = le32_to_cpu(fe->uid);
1449         if (uid == UDF_INVALID_ID ||
1450             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1451                 inode->i_uid = sbi->s_uid;
1452         else
1453                 i_uid_write(inode, uid);
1454
1455         gid = le32_to_cpu(fe->gid);
1456         if (gid == UDF_INVALID_ID ||
1457             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1458                 inode->i_gid = sbi->s_gid;
1459         else
1460                 i_gid_write(inode, gid);
1461
1462         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1463                         sbi->s_fmode != UDF_INVALID_MODE)
1464                 inode->i_mode = sbi->s_fmode;
1465         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1466                         sbi->s_dmode != UDF_INVALID_MODE)
1467                 inode->i_mode = sbi->s_dmode;
1468         else
1469                 inode->i_mode = udf_convert_permissions(fe);
1470         inode->i_mode &= ~sbi->s_umask;
1471         iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1472
1473         read_unlock(&sbi->s_cred_lock);
1474
1475         link_count = le16_to_cpu(fe->fileLinkCount);
1476         if (!link_count) {
1477                 if (!hidden_inode) {
1478                         ret = -ESTALE;
1479                         goto out;
1480                 }
1481                 link_count = 1;
1482         }
1483         set_nlink(inode, link_count);
1484
1485         inode->i_size = le64_to_cpu(fe->informationLength);
1486         iinfo->i_lenExtents = inode->i_size;
1487
1488         if (iinfo->i_efe == 0) {
1489                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1490                         (inode->i_sb->s_blocksize_bits - 9);
1491
1492                 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1493                 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1494                 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1495
1496                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1497                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1498                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1499                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1500                 iinfo->i_streamdir = 0;
1501                 iinfo->i_lenStreams = 0;
1502         } else {
1503                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1504                     (inode->i_sb->s_blocksize_bits - 9);
1505
1506                 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1507                 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1508                 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1509                 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1510
1511                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1512                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1513                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1514                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1515
1516                 /* Named streams */
1517                 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1518                 iinfo->i_locStreamdir =
1519                         lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1520                 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1521                 if (iinfo->i_lenStreams >= inode->i_size)
1522                         iinfo->i_lenStreams -= inode->i_size;
1523                 else
1524                         iinfo->i_lenStreams = 0;
1525         }
1526         inode->i_generation = iinfo->i_unique;
1527
1528         /*
1529          * Sanity check length of allocation descriptors and extended attrs to
1530          * avoid integer overflows
1531          */
1532         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1533                 goto out;
1534         /* Now do exact checks */
1535         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1536                 goto out;
1537         /* Sanity checks for files in ICB so that we don't get confused later */
1538         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1539                 /*
1540                  * For file in ICB data is stored in allocation descriptor
1541                  * so sizes should match
1542                  */
1543                 if (iinfo->i_lenAlloc != inode->i_size)
1544                         goto out;
1545                 /* File in ICB has to fit in there... */
1546                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1547                         goto out;
1548         }
1549
1550         switch (fe->icbTag.fileType) {
1551         case ICBTAG_FILE_TYPE_DIRECTORY:
1552                 inode->i_op = &udf_dir_inode_operations;
1553                 inode->i_fop = &udf_dir_operations;
1554                 inode->i_mode |= S_IFDIR;
1555                 inc_nlink(inode);
1556                 break;
1557         case ICBTAG_FILE_TYPE_REALTIME:
1558         case ICBTAG_FILE_TYPE_REGULAR:
1559         case ICBTAG_FILE_TYPE_UNDEF:
1560         case ICBTAG_FILE_TYPE_VAT20:
1561                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1562                         inode->i_data.a_ops = &udf_adinicb_aops;
1563                 else
1564                         inode->i_data.a_ops = &udf_aops;
1565                 inode->i_op = &udf_file_inode_operations;
1566                 inode->i_fop = &udf_file_operations;
1567                 inode->i_mode |= S_IFREG;
1568                 break;
1569         case ICBTAG_FILE_TYPE_BLOCK:
1570                 inode->i_mode |= S_IFBLK;
1571                 break;
1572         case ICBTAG_FILE_TYPE_CHAR:
1573                 inode->i_mode |= S_IFCHR;
1574                 break;
1575         case ICBTAG_FILE_TYPE_FIFO:
1576                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1577                 break;
1578         case ICBTAG_FILE_TYPE_SOCKET:
1579                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1580                 break;
1581         case ICBTAG_FILE_TYPE_SYMLINK:
1582                 inode->i_data.a_ops = &udf_symlink_aops;
1583                 inode->i_op = &udf_symlink_inode_operations;
1584                 inode_nohighmem(inode);
1585                 inode->i_mode = S_IFLNK | 0777;
1586                 break;
1587         case ICBTAG_FILE_TYPE_MAIN:
1588                 udf_debug("METADATA FILE-----\n");
1589                 break;
1590         case ICBTAG_FILE_TYPE_MIRROR:
1591                 udf_debug("METADATA MIRROR FILE-----\n");
1592                 break;
1593         case ICBTAG_FILE_TYPE_BITMAP:
1594                 udf_debug("METADATA BITMAP FILE-----\n");
1595                 break;
1596         default:
1597                 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1598                         inode->i_ino, fe->icbTag.fileType);
1599                 goto out;
1600         }
1601         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1602                 struct deviceSpec *dsea =
1603                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1604                 if (dsea) {
1605                         init_special_inode(inode, inode->i_mode,
1606                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1607                                       le32_to_cpu(dsea->minorDeviceIdent)));
1608                         /* Developer ID ??? */
1609                 } else
1610                         goto out;
1611         }
1612         ret = 0;
1613 out:
1614         brelse(bh);
1615         return ret;
1616 }
1617
1618 static int udf_alloc_i_data(struct inode *inode, size_t size)
1619 {
1620         struct udf_inode_info *iinfo = UDF_I(inode);
1621         iinfo->i_data = kmalloc(size, GFP_KERNEL);
1622         if (!iinfo->i_data)
1623                 return -ENOMEM;
1624         return 0;
1625 }
1626
1627 static umode_t udf_convert_permissions(struct fileEntry *fe)
1628 {
1629         umode_t mode;
1630         uint32_t permissions;
1631         uint32_t flags;
1632
1633         permissions = le32_to_cpu(fe->permissions);
1634         flags = le16_to_cpu(fe->icbTag.flags);
1635
1636         mode =  ((permissions) & 0007) |
1637                 ((permissions >> 2) & 0070) |
1638                 ((permissions >> 4) & 0700) |
1639                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1640                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1641                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1642
1643         return mode;
1644 }
1645
1646 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1647 {
1648         struct udf_inode_info *iinfo = UDF_I(inode);
1649
1650         /*
1651          * UDF 2.01 sec. 3.3.3.3 Note 2:
1652          * In Unix, delete permission tracks write
1653          */
1654         iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1655         if (mode & 0200)
1656                 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1657         if (mode & 0020)
1658                 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1659         if (mode & 0002)
1660                 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1661 }
1662
1663 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1664 {
1665         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1666 }
1667
1668 static int udf_sync_inode(struct inode *inode)
1669 {
1670         return udf_update_inode(inode, 1);
1671 }
1672
1673 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1674 {
1675         if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1676             (iinfo->i_crtime.tv_sec == time.tv_sec &&
1677              iinfo->i_crtime.tv_nsec > time.tv_nsec))
1678                 iinfo->i_crtime = time;
1679 }
1680
1681 static int udf_update_inode(struct inode *inode, int do_sync)
1682 {
1683         struct buffer_head *bh = NULL;
1684         struct fileEntry *fe;
1685         struct extendedFileEntry *efe;
1686         uint64_t lb_recorded;
1687         uint32_t udfperms;
1688         uint16_t icbflags;
1689         uint16_t crclen;
1690         int err = 0;
1691         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1692         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1693         struct udf_inode_info *iinfo = UDF_I(inode);
1694
1695         bh = udf_tgetblk(inode->i_sb,
1696                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1697         if (!bh) {
1698                 udf_debug("getblk failure\n");
1699                 return -EIO;
1700         }
1701
1702         lock_buffer(bh);
1703         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1704         fe = (struct fileEntry *)bh->b_data;
1705         efe = (struct extendedFileEntry *)bh->b_data;
1706
1707         if (iinfo->i_use) {
1708                 struct unallocSpaceEntry *use =
1709                         (struct unallocSpaceEntry *)bh->b_data;
1710
1711                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1712                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1713                        iinfo->i_data, inode->i_sb->s_blocksize -
1714                                         sizeof(struct unallocSpaceEntry));
1715                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1716                 crclen = sizeof(struct unallocSpaceEntry);
1717
1718                 goto finish;
1719         }
1720
1721         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1722                 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1723         else
1724                 fe->uid = cpu_to_le32(i_uid_read(inode));
1725
1726         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1727                 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1728         else
1729                 fe->gid = cpu_to_le32(i_gid_read(inode));
1730
1731         udfperms = ((inode->i_mode & 0007)) |
1732                    ((inode->i_mode & 0070) << 2) |
1733                    ((inode->i_mode & 0700) << 4);
1734
1735         udfperms |= iinfo->i_extraPerms;
1736         fe->permissions = cpu_to_le32(udfperms);
1737
1738         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1739                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1740         else
1741                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1742
1743         fe->informationLength = cpu_to_le64(inode->i_size);
1744
1745         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1746                 struct regid *eid;
1747                 struct deviceSpec *dsea =
1748                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1749                 if (!dsea) {
1750                         dsea = (struct deviceSpec *)
1751                                 udf_add_extendedattr(inode,
1752                                                      sizeof(struct deviceSpec) +
1753                                                      sizeof(struct regid), 12, 0x3);
1754                         dsea->attrType = cpu_to_le32(12);
1755                         dsea->attrSubtype = 1;
1756                         dsea->attrLength = cpu_to_le32(
1757                                                 sizeof(struct deviceSpec) +
1758                                                 sizeof(struct regid));
1759                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1760                 }
1761                 eid = (struct regid *)dsea->impUse;
1762                 memset(eid, 0, sizeof(*eid));
1763                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1764                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1765                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1766                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1767                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1768         }
1769
1770         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1771                 lb_recorded = 0; /* No extents => no blocks! */
1772         else
1773                 lb_recorded =
1774                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1775                         (blocksize_bits - 9);
1776
1777         if (iinfo->i_efe == 0) {
1778                 memcpy(bh->b_data + sizeof(struct fileEntry),
1779                        iinfo->i_data,
1780                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1781                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1782
1783                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1784                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1785                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1786                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1787                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1788                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1791                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1792                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1793                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1794                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1795                 crclen = sizeof(struct fileEntry);
1796         } else {
1797                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1798                        iinfo->i_data,
1799                        inode->i_sb->s_blocksize -
1800                                         sizeof(struct extendedFileEntry));
1801                 efe->objectSize =
1802                         cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1803                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1804
1805                 if (iinfo->i_streamdir) {
1806                         struct long_ad *icb_lad = &efe->streamDirectoryICB;
1807
1808                         icb_lad->extLocation =
1809                                 cpu_to_lelb(iinfo->i_locStreamdir);
1810                         icb_lad->extLength =
1811                                 cpu_to_le32(inode->i_sb->s_blocksize);
1812                 }
1813
1814                 udf_adjust_time(iinfo, inode->i_atime);
1815                 udf_adjust_time(iinfo, inode->i_mtime);
1816                 udf_adjust_time(iinfo, inode->i_ctime);
1817
1818                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1819                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1820                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1821                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1822
1823                 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1824                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1825                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1826                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1827                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1828                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1829                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1830                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1831                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1832                 crclen = sizeof(struct extendedFileEntry);
1833         }
1834
1835 finish:
1836         if (iinfo->i_strat4096) {
1837                 fe->icbTag.strategyType = cpu_to_le16(4096);
1838                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1839                 fe->icbTag.numEntries = cpu_to_le16(2);
1840         } else {
1841                 fe->icbTag.strategyType = cpu_to_le16(4);
1842                 fe->icbTag.numEntries = cpu_to_le16(1);
1843         }
1844
1845         if (iinfo->i_use)
1846                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1847         else if (S_ISDIR(inode->i_mode))
1848                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1849         else if (S_ISREG(inode->i_mode))
1850                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1851         else if (S_ISLNK(inode->i_mode))
1852                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1853         else if (S_ISBLK(inode->i_mode))
1854                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1855         else if (S_ISCHR(inode->i_mode))
1856                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1857         else if (S_ISFIFO(inode->i_mode))
1858                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1859         else if (S_ISSOCK(inode->i_mode))
1860                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1861
1862         icbflags =      iinfo->i_alloc_type |
1863                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1864                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1865                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1866                         (le16_to_cpu(fe->icbTag.flags) &
1867                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1868                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1869
1870         fe->icbTag.flags = cpu_to_le16(icbflags);
1871         if (sbi->s_udfrev >= 0x0200)
1872                 fe->descTag.descVersion = cpu_to_le16(3);
1873         else
1874                 fe->descTag.descVersion = cpu_to_le16(2);
1875         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1876         fe->descTag.tagLocation = cpu_to_le32(
1877                                         iinfo->i_location.logicalBlockNum);
1878         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1879         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1880         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1881                                                   crclen));
1882         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1883
1884         set_buffer_uptodate(bh);
1885         unlock_buffer(bh);
1886
1887         /* write the data blocks */
1888         mark_buffer_dirty(bh);
1889         if (do_sync) {
1890                 sync_dirty_buffer(bh);
1891                 if (buffer_write_io_error(bh)) {
1892                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1893                                  inode->i_ino);
1894                         err = -EIO;
1895                 }
1896         }
1897         brelse(bh);
1898
1899         return err;
1900 }
1901
1902 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1903                          bool hidden_inode)
1904 {
1905         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1906         struct inode *inode = iget_locked(sb, block);
1907         int err;
1908
1909         if (!inode)
1910                 return ERR_PTR(-ENOMEM);
1911
1912         if (!(inode->i_state & I_NEW))
1913                 return inode;
1914
1915         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1916         err = udf_read_inode(inode, hidden_inode);
1917         if (err < 0) {
1918                 iget_failed(inode);
1919                 return ERR_PTR(err);
1920         }
1921         unlock_new_inode(inode);
1922
1923         return inode;
1924 }
1925
1926 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1927                             struct extent_position *epos)
1928 {
1929         struct super_block *sb = inode->i_sb;
1930         struct buffer_head *bh;
1931         struct allocExtDesc *aed;
1932         struct extent_position nepos;
1933         struct kernel_lb_addr neloc;
1934         int ver, adsize;
1935
1936         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1937                 adsize = sizeof(struct short_ad);
1938         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1939                 adsize = sizeof(struct long_ad);
1940         else
1941                 return -EIO;
1942
1943         neloc.logicalBlockNum = block;
1944         neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1945
1946         bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1947         if (!bh)
1948                 return -EIO;
1949         lock_buffer(bh);
1950         memset(bh->b_data, 0x00, sb->s_blocksize);
1951         set_buffer_uptodate(bh);
1952         unlock_buffer(bh);
1953         mark_buffer_dirty_inode(bh, inode);
1954
1955         aed = (struct allocExtDesc *)(bh->b_data);
1956         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1957                 aed->previousAllocExtLocation =
1958                                 cpu_to_le32(epos->block.logicalBlockNum);
1959         }
1960         aed->lengthAllocDescs = cpu_to_le32(0);
1961         if (UDF_SB(sb)->s_udfrev >= 0x0200)
1962                 ver = 3;
1963         else
1964                 ver = 2;
1965         udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1966                     sizeof(struct tag));
1967
1968         nepos.block = neloc;
1969         nepos.offset = sizeof(struct allocExtDesc);
1970         nepos.bh = bh;
1971
1972         /*
1973          * Do we have to copy current last extent to make space for indirect
1974          * one?
1975          */
1976         if (epos->offset + adsize > sb->s_blocksize) {
1977                 struct kernel_lb_addr cp_loc;
1978                 uint32_t cp_len;
1979                 int cp_type;
1980
1981                 epos->offset -= adsize;
1982                 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1983                 cp_len |= ((uint32_t)cp_type) << 30;
1984
1985                 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1986                 udf_write_aext(inode, epos, &nepos.block,
1987                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1988         } else {
1989                 __udf_add_aext(inode, epos, &nepos.block,
1990                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1991         }
1992
1993         brelse(epos->bh);
1994         *epos = nepos;
1995
1996         return 0;
1997 }
1998
1999 /*
2000  * Append extent at the given position - should be the first free one in inode
2001  * / indirect extent. This function assumes there is enough space in the inode
2002  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2003  */
2004 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2005                    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2006 {
2007         struct udf_inode_info *iinfo = UDF_I(inode);
2008         struct allocExtDesc *aed;
2009         int adsize;
2010
2011         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2012                 adsize = sizeof(struct short_ad);
2013         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2014                 adsize = sizeof(struct long_ad);
2015         else
2016                 return -EIO;
2017
2018         if (!epos->bh) {
2019                 WARN_ON(iinfo->i_lenAlloc !=
2020                         epos->offset - udf_file_entry_alloc_offset(inode));
2021         } else {
2022                 aed = (struct allocExtDesc *)epos->bh->b_data;
2023                 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2024                         epos->offset - sizeof(struct allocExtDesc));
2025                 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2026         }
2027
2028         udf_write_aext(inode, epos, eloc, elen, inc);
2029
2030         if (!epos->bh) {
2031                 iinfo->i_lenAlloc += adsize;
2032                 mark_inode_dirty(inode);
2033         } else {
2034                 aed = (struct allocExtDesc *)epos->bh->b_data;
2035                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2036                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2037                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2038                         udf_update_tag(epos->bh->b_data,
2039                                         epos->offset + (inc ? 0 : adsize));
2040                 else
2041                         udf_update_tag(epos->bh->b_data,
2042                                         sizeof(struct allocExtDesc));
2043                 mark_buffer_dirty_inode(epos->bh, inode);
2044         }
2045
2046         return 0;
2047 }
2048
2049 /*
2050  * Append extent at given position - should be the first free one in inode
2051  * / indirect extent. Takes care of allocating and linking indirect blocks.
2052  */
2053 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2054                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2055 {
2056         int adsize;
2057         struct super_block *sb = inode->i_sb;
2058
2059         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2060                 adsize = sizeof(struct short_ad);
2061         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2062                 adsize = sizeof(struct long_ad);
2063         else
2064                 return -EIO;
2065
2066         if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2067                 int err;
2068                 udf_pblk_t new_block;
2069
2070                 new_block = udf_new_block(sb, NULL,
2071                                           epos->block.partitionReferenceNum,
2072                                           epos->block.logicalBlockNum, &err);
2073                 if (!new_block)
2074                         return -ENOSPC;
2075
2076                 err = udf_setup_indirect_aext(inode, new_block, epos);
2077                 if (err)
2078                         return err;
2079         }
2080
2081         return __udf_add_aext(inode, epos, eloc, elen, inc);
2082 }
2083
2084 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2085                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2086 {
2087         int adsize;
2088         uint8_t *ptr;
2089         struct short_ad *sad;
2090         struct long_ad *lad;
2091         struct udf_inode_info *iinfo = UDF_I(inode);
2092
2093         if (!epos->bh)
2094                 ptr = iinfo->i_data + epos->offset -
2095                         udf_file_entry_alloc_offset(inode) +
2096                         iinfo->i_lenEAttr;
2097         else
2098                 ptr = epos->bh->b_data + epos->offset;
2099
2100         switch (iinfo->i_alloc_type) {
2101         case ICBTAG_FLAG_AD_SHORT:
2102                 sad = (struct short_ad *)ptr;
2103                 sad->extLength = cpu_to_le32(elen);
2104                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2105                 adsize = sizeof(struct short_ad);
2106                 break;
2107         case ICBTAG_FLAG_AD_LONG:
2108                 lad = (struct long_ad *)ptr;
2109                 lad->extLength = cpu_to_le32(elen);
2110                 lad->extLocation = cpu_to_lelb(*eloc);
2111                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2112                 adsize = sizeof(struct long_ad);
2113                 break;
2114         default:
2115                 return;
2116         }
2117
2118         if (epos->bh) {
2119                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2120                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2121                         struct allocExtDesc *aed =
2122                                 (struct allocExtDesc *)epos->bh->b_data;
2123                         udf_update_tag(epos->bh->b_data,
2124                                        le32_to_cpu(aed->lengthAllocDescs) +
2125                                        sizeof(struct allocExtDesc));
2126                 }
2127                 mark_buffer_dirty_inode(epos->bh, inode);
2128         } else {
2129                 mark_inode_dirty(inode);
2130         }
2131
2132         if (inc)
2133                 epos->offset += adsize;
2134 }
2135
2136 /*
2137  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2138  * someone does some weird stuff.
2139  */
2140 #define UDF_MAX_INDIR_EXTS 16
2141
2142 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2143                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2144 {
2145         int8_t etype;
2146         unsigned int indirections = 0;
2147
2148         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2149                (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2150                 udf_pblk_t block;
2151
2152                 if (++indirections > UDF_MAX_INDIR_EXTS) {
2153                         udf_err(inode->i_sb,
2154                                 "too many indirect extents in inode %lu\n",
2155                                 inode->i_ino);
2156                         return -1;
2157                 }
2158
2159                 epos->block = *eloc;
2160                 epos->offset = sizeof(struct allocExtDesc);
2161                 brelse(epos->bh);
2162                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2163                 epos->bh = udf_tread(inode->i_sb, block);
2164                 if (!epos->bh) {
2165                         udf_debug("reading block %u failed!\n", block);
2166                         return -1;
2167                 }
2168         }
2169
2170         return etype;
2171 }
2172
2173 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2174                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2175 {
2176         int alen;
2177         int8_t etype;
2178         uint8_t *ptr;
2179         struct short_ad *sad;
2180         struct long_ad *lad;
2181         struct udf_inode_info *iinfo = UDF_I(inode);
2182
2183         if (!epos->bh) {
2184                 if (!epos->offset)
2185                         epos->offset = udf_file_entry_alloc_offset(inode);
2186                 ptr = iinfo->i_data + epos->offset -
2187                         udf_file_entry_alloc_offset(inode) +
2188                         iinfo->i_lenEAttr;
2189                 alen = udf_file_entry_alloc_offset(inode) +
2190                                                         iinfo->i_lenAlloc;
2191         } else {
2192                 if (!epos->offset)
2193                         epos->offset = sizeof(struct allocExtDesc);
2194                 ptr = epos->bh->b_data + epos->offset;
2195                 alen = sizeof(struct allocExtDesc) +
2196                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2197                                                         lengthAllocDescs);
2198         }
2199
2200         switch (iinfo->i_alloc_type) {
2201         case ICBTAG_FLAG_AD_SHORT:
2202                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2203                 if (!sad)
2204                         return -1;
2205                 etype = le32_to_cpu(sad->extLength) >> 30;
2206                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2207                 eloc->partitionReferenceNum =
2208                                 iinfo->i_location.partitionReferenceNum;
2209                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2210                 break;
2211         case ICBTAG_FLAG_AD_LONG:
2212                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2213                 if (!lad)
2214                         return -1;
2215                 etype = le32_to_cpu(lad->extLength) >> 30;
2216                 *eloc = lelb_to_cpu(lad->extLocation);
2217                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2218                 break;
2219         default:
2220                 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2221                 return -1;
2222         }
2223
2224         return etype;
2225 }
2226
2227 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2228                               struct kernel_lb_addr neloc, uint32_t nelen)
2229 {
2230         struct kernel_lb_addr oeloc;
2231         uint32_t oelen;
2232         int8_t etype;
2233
2234         if (epos.bh)
2235                 get_bh(epos.bh);
2236
2237         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2238                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2239                 neloc = oeloc;
2240                 nelen = (etype << 30) | oelen;
2241         }
2242         udf_add_aext(inode, &epos, &neloc, nelen, 1);
2243         brelse(epos.bh);
2244
2245         return (nelen >> 30);
2246 }
2247
2248 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2249 {
2250         struct extent_position oepos;
2251         int adsize;
2252         int8_t etype;
2253         struct allocExtDesc *aed;
2254         struct udf_inode_info *iinfo;
2255         struct kernel_lb_addr eloc;
2256         uint32_t elen;
2257
2258         if (epos.bh) {
2259                 get_bh(epos.bh);
2260                 get_bh(epos.bh);
2261         }
2262
2263         iinfo = UDF_I(inode);
2264         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2265                 adsize = sizeof(struct short_ad);
2266         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2267                 adsize = sizeof(struct long_ad);
2268         else
2269                 adsize = 0;
2270
2271         oepos = epos;
2272         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2273                 return -1;
2274
2275         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2276                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2277                 if (oepos.bh != epos.bh) {
2278                         oepos.block = epos.block;
2279                         brelse(oepos.bh);
2280                         get_bh(epos.bh);
2281                         oepos.bh = epos.bh;
2282                         oepos.offset = epos.offset - adsize;
2283                 }
2284         }
2285         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2286         elen = 0;
2287
2288         if (epos.bh != oepos.bh) {
2289                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2290                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2291                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292                 if (!oepos.bh) {
2293                         iinfo->i_lenAlloc -= (adsize * 2);
2294                         mark_inode_dirty(inode);
2295                 } else {
2296                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2297                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2298                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2299                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2300                                 udf_update_tag(oepos.bh->b_data,
2301                                                 oepos.offset - (2 * adsize));
2302                         else
2303                                 udf_update_tag(oepos.bh->b_data,
2304                                                 sizeof(struct allocExtDesc));
2305                         mark_buffer_dirty_inode(oepos.bh, inode);
2306                 }
2307         } else {
2308                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2309                 if (!oepos.bh) {
2310                         iinfo->i_lenAlloc -= adsize;
2311                         mark_inode_dirty(inode);
2312                 } else {
2313                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2314                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2315                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2316                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2317                                 udf_update_tag(oepos.bh->b_data,
2318                                                 epos.offset - adsize);
2319                         else
2320                                 udf_update_tag(oepos.bh->b_data,
2321                                                 sizeof(struct allocExtDesc));
2322                         mark_buffer_dirty_inode(oepos.bh, inode);
2323                 }
2324         }
2325
2326         brelse(epos.bh);
2327         brelse(oepos.bh);
2328
2329         return (elen >> 30);
2330 }
2331
2332 int8_t inode_bmap(struct inode *inode, sector_t block,
2333                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2334                   uint32_t *elen, sector_t *offset)
2335 {
2336         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2337         loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2338         int8_t etype;
2339         struct udf_inode_info *iinfo;
2340
2341         iinfo = UDF_I(inode);
2342         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2343                 pos->offset = 0;
2344                 pos->block = iinfo->i_location;
2345                 pos->bh = NULL;
2346         }
2347         *elen = 0;
2348         do {
2349                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2350                 if (etype == -1) {
2351                         *offset = (bcount - lbcount) >> blocksize_bits;
2352                         iinfo->i_lenExtents = lbcount;
2353                         return -1;
2354                 }
2355                 lbcount += *elen;
2356         } while (lbcount <= bcount);
2357         /* update extent cache */
2358         udf_update_extent_cache(inode, lbcount - *elen, pos);
2359         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2360
2361         return etype;
2362 }
2363
2364 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2365 {
2366         struct kernel_lb_addr eloc;
2367         uint32_t elen;
2368         sector_t offset;
2369         struct extent_position epos = {};
2370         udf_pblk_t ret;
2371
2372         down_read(&UDF_I(inode)->i_data_sem);
2373
2374         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2375                                                 (EXT_RECORDED_ALLOCATED >> 30))
2376                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2377         else
2378                 ret = 0;
2379
2380         up_read(&UDF_I(inode)->i_data_sem);
2381         brelse(epos.bh);
2382
2383         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2384                 return udf_fixed_to_variable(ret);
2385         else
2386                 return ret;
2387 }