1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
21 #include <linux/crc32.h>
22 #include <linux/slab.h>
25 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
26 struct ubifs_zbranch *zbr);
27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
28 struct ubifs_zbranch *zbr, void *node);
31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32 * @NAME_LESS: name corresponding to the first argument is less than second
33 * @NAME_MATCHES: names match
34 * @NAME_GREATER: name corresponding to the second argument is greater than
36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
38 * These constants were introduce to improve readability.
48 * insert_old_idx - record an index node obsoleted since the last commit start.
49 * @c: UBIFS file-system description object
50 * @lnum: LEB number of obsoleted index node
51 * @offs: offset of obsoleted index node
53 * Returns %0 on success, and a negative error code on failure.
55 * For recovery, there must always be a complete intact version of the index on
56 * flash at all times. That is called the "old index". It is the index as at the
57 * time of the last successful commit. Many of the index nodes in the old index
58 * may be dirty, but they must not be erased until the next successful commit
59 * (at which point that index becomes the old index).
61 * That means that the garbage collection and the in-the-gaps method of
62 * committing must be able to determine if an index node is in the old index.
63 * Most of the old index nodes can be found by looking up the TNC using the
64 * 'lookup_znode()' function. However, some of the old index nodes may have
65 * been deleted from the current index or may have been changed so much that
66 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
67 * That is what this function does. The RB-tree is ordered by LEB number and
68 * offset because they uniquely identify the old index node.
70 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
72 struct ubifs_old_idx *old_idx, *o;
73 struct rb_node **p, *parent = NULL;
75 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
76 if (unlikely(!old_idx))
81 p = &c->old_idx.rb_node;
84 o = rb_entry(parent, struct ubifs_old_idx, rb);
87 else if (lnum > o->lnum)
89 else if (offs < o->offs)
91 else if (offs > o->offs)
94 ubifs_err(c, "old idx added twice!");
99 rb_link_node(&old_idx->rb, parent, p);
100 rb_insert_color(&old_idx->rb, &c->old_idx);
105 * insert_old_idx_znode - record a znode obsoleted since last commit start.
106 * @c: UBIFS file-system description object
107 * @znode: znode of obsoleted index node
109 * Returns %0 on success, and a negative error code on failure.
111 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
114 struct ubifs_zbranch *zbr;
116 zbr = &znode->parent->zbranch[znode->iip];
118 return insert_old_idx(c, zbr->lnum, zbr->offs);
121 return insert_old_idx(c, c->zroot.lnum,
127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
128 * @c: UBIFS file-system description object
129 * @znode: znode of obsoleted index node
131 * Returns %0 on success, and a negative error code on failure.
133 static int ins_clr_old_idx_znode(struct ubifs_info *c,
134 struct ubifs_znode *znode)
139 struct ubifs_zbranch *zbr;
141 zbr = &znode->parent->zbranch[znode->iip];
143 err = insert_old_idx(c, zbr->lnum, zbr->offs);
152 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
163 * destroy_old_idx - destroy the old_idx RB-tree.
164 * @c: UBIFS file-system description object
166 * During start commit, the old_idx RB-tree is used to avoid overwriting index
167 * nodes that were in the index last commit but have since been deleted. This
168 * is necessary for recovery i.e. the old index must be kept intact until the
169 * new index is successfully written. The old-idx RB-tree is used for the
170 * in-the-gaps method of writing index nodes and is destroyed every commit.
172 void destroy_old_idx(struct ubifs_info *c)
174 struct ubifs_old_idx *old_idx, *n;
176 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
179 c->old_idx = RB_ROOT;
183 * copy_znode - copy a dirty znode.
184 * @c: UBIFS file-system description object
185 * @znode: znode to copy
187 * A dirty znode being committed may not be changed, so it is copied.
189 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
190 struct ubifs_znode *znode)
192 struct ubifs_znode *zn;
194 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
196 return ERR_PTR(-ENOMEM);
199 __set_bit(DIRTY_ZNODE, &zn->flags);
200 __clear_bit(COW_ZNODE, &zn->flags);
202 ubifs_assert(c, !ubifs_zn_obsolete(znode));
203 __set_bit(OBSOLETE_ZNODE, &znode->flags);
205 if (znode->level != 0) {
207 const int n = zn->child_cnt;
209 /* The children now have new parent */
210 for (i = 0; i < n; i++) {
211 struct ubifs_zbranch *zbr = &zn->zbranch[i];
214 zbr->znode->parent = zn;
218 atomic_long_inc(&c->dirty_zn_cnt);
223 * add_idx_dirt - add dirt due to a dirty znode.
224 * @c: UBIFS file-system description object
225 * @lnum: LEB number of index node
226 * @dirt: size of index node
228 * This function updates lprops dirty space and the new size of the index.
230 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
232 c->calc_idx_sz -= ALIGN(dirt, 8);
233 return ubifs_add_dirt(c, lnum, dirt);
237 * dirty_cow_znode - ensure a znode is not being committed.
238 * @c: UBIFS file-system description object
239 * @zbr: branch of znode to check
241 * Returns dirtied znode on success or negative error code on failure.
243 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
244 struct ubifs_zbranch *zbr)
246 struct ubifs_znode *znode = zbr->znode;
247 struct ubifs_znode *zn;
250 if (!ubifs_zn_cow(znode)) {
251 /* znode is not being committed */
252 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
253 atomic_long_inc(&c->dirty_zn_cnt);
254 atomic_long_dec(&c->clean_zn_cnt);
255 atomic_long_dec(&ubifs_clean_zn_cnt);
256 err = add_idx_dirt(c, zbr->lnum, zbr->len);
263 zn = copy_znode(c, znode);
268 err = insert_old_idx(c, zbr->lnum, zbr->offs);
271 * Obsolete znodes will be freed by tnc_destroy_cnext()
272 * or free_obsolete_znodes(), copied up znodes should
273 * be added back to tnc and freed by
274 * ubifs_destroy_tnc_subtree().
277 err = add_idx_dirt(c, zbr->lnum, zbr->len);
293 * lnc_add - add a leaf node to the leaf node cache.
294 * @c: UBIFS file-system description object
295 * @zbr: zbranch of leaf node
298 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
299 * purpose of the leaf node cache is to save re-reading the same leaf node over
300 * and over again. Most things are cached by VFS, however the file system must
301 * cache directory entries for readdir and for resolving hash collisions. The
302 * present implementation of the leaf node cache is extremely simple, and
303 * allows for error returns that are not used but that may be needed if a more
304 * complex implementation is created.
306 * Note, this function does not add the @node object to LNC directly, but
307 * allocates a copy of the object and adds the copy to LNC. The reason for this
308 * is that @node has been allocated outside of the TNC subsystem and will be
309 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
310 * may be changed at any time, e.g. freed by the shrinker.
312 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
317 const struct ubifs_dent_node *dent = node;
319 ubifs_assert(c, !zbr->leaf);
320 ubifs_assert(c, zbr->len != 0);
321 ubifs_assert(c, is_hash_key(c, &zbr->key));
323 err = ubifs_validate_entry(c, dent);
326 ubifs_dump_node(c, dent, zbr->len);
330 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
332 /* We don't have to have the cache, so no error */
335 zbr->leaf = lnc_node;
340 * lnc_add_directly - add a leaf node to the leaf-node-cache.
341 * @c: UBIFS file-system description object
342 * @zbr: zbranch of leaf node
345 * This function is similar to 'lnc_add()', but it does not create a copy of
346 * @node but inserts @node to TNC directly.
348 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
353 ubifs_assert(c, !zbr->leaf);
354 ubifs_assert(c, zbr->len != 0);
356 err = ubifs_validate_entry(c, node);
359 ubifs_dump_node(c, node, zbr->len);
368 * lnc_free - remove a leaf node from the leaf node cache.
369 * @zbr: zbranch of leaf node
371 static void lnc_free(struct ubifs_zbranch *zbr)
380 * tnc_read_hashed_node - read a "hashed" leaf node.
381 * @c: UBIFS file-system description object
382 * @zbr: key and position of the node
383 * @node: node is returned here
385 * This function reads a "hashed" node defined by @zbr from the leaf node cache
386 * (in it is there) or from the hash media, in which case the node is also
387 * added to LNC. Returns zero in case of success or a negative error
388 * code in case of failure.
390 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
395 ubifs_assert(c, is_hash_key(c, &zbr->key));
398 /* Read from the leaf node cache */
399 ubifs_assert(c, zbr->len != 0);
400 memcpy(node, zbr->leaf, zbr->len);
405 err = fallible_read_node(c, &zbr->key, zbr, node);
407 * When the node was not found, return -ENOENT, 0 otherwise.
408 * Negative return codes stay as-is.
415 err = ubifs_tnc_read_node(c, zbr, node);
420 /* Add the node to the leaf node cache */
421 err = lnc_add(c, zbr, node);
426 * try_read_node - read a node if it is a node.
427 * @c: UBIFS file-system description object
428 * @buf: buffer to read to
430 * @zbr: the zbranch describing the node to read
432 * This function tries to read a node of known type and length, checks it and
433 * stores it in @buf. This function returns %1 if a node is present and %0 if
434 * a node is not present. A negative error code is returned for I/O errors.
435 * This function performs that same function as ubifs_read_node except that
436 * it does not require that there is actually a node present and instead
437 * the return code indicates if a node was read.
439 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
440 * is true (it is controlled by corresponding mount option). However, if
441 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
442 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
443 * because during mounting or re-mounting from R/O mode to R/W mode we may read
444 * journal nodes (when replying the journal or doing the recovery) and the
445 * journal nodes may potentially be corrupted, so checking is required.
447 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
448 struct ubifs_zbranch *zbr)
451 int lnum = zbr->lnum;
452 int offs = zbr->offs;
454 struct ubifs_ch *ch = buf;
455 uint32_t crc, node_crc;
457 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
459 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
461 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
462 type, lnum, offs, err);
466 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
469 if (ch->node_type != type)
472 node_len = le32_to_cpu(ch->len);
476 if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
478 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
479 node_crc = le32_to_cpu(ch->crc);
484 err = ubifs_node_check_hash(c, buf, zbr->hash);
486 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 struct ubifs_zbranch *zbr, void *node)
508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
510 ret = try_read_node(c, node, key_type(c, key), zbr);
512 union ubifs_key node_key;
513 struct ubifs_dent_node *dent = node;
515 /* All nodes have key in the same place */
516 key_read(c, &dent->key, &node_key);
517 if (keys_cmp(c, key, &node_key) != 0)
520 if (ret == 0 && c->replaying)
521 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
522 zbr->lnum, zbr->offs, zbr->len);
527 * matches_name - determine if a direntry or xattr entry matches a given name.
528 * @c: UBIFS file-system description object
529 * @zbr: zbranch of dent
532 * This function checks if xentry/direntry referred by zbranch @zbr matches name
533 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
534 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
535 * of failure, a negative error code is returned.
537 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
538 const struct fscrypt_name *nm)
540 struct ubifs_dent_node *dent;
543 /* If possible, match against the dent in the leaf node cache */
545 dent = kmalloc(zbr->len, GFP_NOFS);
549 err = ubifs_tnc_read_node(c, zbr, dent);
553 /* Add the node to the leaf node cache */
554 err = lnc_add_directly(c, zbr, dent);
560 nlen = le16_to_cpu(dent->nlen);
561 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
563 if (nlen == fname_len(nm))
565 else if (nlen < fname_len(nm))
580 * get_znode - get a TNC znode that may not be loaded yet.
581 * @c: UBIFS file-system description object
582 * @znode: parent znode
583 * @n: znode branch slot number
585 * This function returns the znode or a negative error code.
587 static struct ubifs_znode *get_znode(struct ubifs_info *c,
588 struct ubifs_znode *znode, int n)
590 struct ubifs_zbranch *zbr;
592 zbr = &znode->zbranch[n];
596 znode = ubifs_load_znode(c, zbr, znode, n);
601 * tnc_next - find next TNC entry.
602 * @c: UBIFS file-system description object
603 * @zn: znode is passed and returned here
604 * @n: znode branch slot number is passed and returned here
606 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
607 * no next entry, or a negative error code otherwise.
609 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611 struct ubifs_znode *znode = *zn;
615 if (nn < znode->child_cnt) {
620 struct ubifs_znode *zp;
627 if (nn < znode->child_cnt) {
628 znode = get_znode(c, znode, nn);
630 return PTR_ERR(znode);
631 while (znode->level != 0) {
632 znode = get_znode(c, znode, 0);
634 return PTR_ERR(znode);
646 * tnc_prev - find previous TNC entry.
647 * @c: UBIFS file-system description object
648 * @zn: znode is returned here
649 * @n: znode branch slot number is passed and returned here
651 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
652 * there is no next entry, or a negative error code otherwise.
654 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656 struct ubifs_znode *znode = *zn;
664 struct ubifs_znode *zp;
672 znode = get_znode(c, znode, nn);
674 return PTR_ERR(znode);
675 while (znode->level != 0) {
676 nn = znode->child_cnt - 1;
677 znode = get_znode(c, znode, nn);
679 return PTR_ERR(znode);
681 nn = znode->child_cnt - 1;
691 * resolve_collision - resolve a collision.
692 * @c: UBIFS file-system description object
693 * @key: key of a directory or extended attribute entry
694 * @zn: znode is returned here
695 * @n: zbranch number is passed and returned here
696 * @nm: name of the entry
698 * This function is called for "hashed" keys to make sure that the found key
699 * really corresponds to the looked up node (directory or extended attribute
700 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
701 * %0 is returned if @nm is not found and @zn and @n are set to the previous
702 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
703 * This means that @n may be set to %-1 if the leftmost key in @zn is the
704 * previous one. A negative error code is returned on failures.
706 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
707 struct ubifs_znode **zn, int *n,
708 const struct fscrypt_name *nm)
712 err = matches_name(c, &(*zn)->zbranch[*n], nm);
713 if (unlikely(err < 0))
715 if (err == NAME_MATCHES)
718 if (err == NAME_GREATER) {
721 err = tnc_prev(c, zn, n);
722 if (err == -ENOENT) {
723 ubifs_assert(c, *n == 0);
729 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 * We have found the branch after which we would
732 * like to insert, but inserting in this znode
733 * may still be wrong. Consider the following 3
734 * znodes, in the case where we are resolving a
735 * collision with Key2.
738 * ----------------------
739 * level 1 | Key0 | Key1 |
740 * -----------------------
742 * znode za | | znode zb
743 * ------------ ------------
744 * level 0 | Key0 | | Key2 |
745 * ------------ ------------
747 * The lookup finds Key2 in znode zb. Lets say
748 * there is no match and the name is greater so
749 * we look left. When we find Key0, we end up
750 * here. If we return now, we will insert into
751 * znode za at slot n = 1. But that is invalid
752 * according to the parent's keys. Key2 must
753 * be inserted into znode zb.
755 * Note, this problem is not relevant for the
756 * case when we go right, because
757 * 'tnc_insert()' would correct the parent key.
759 if (*n == (*zn)->child_cnt - 1) {
760 err = tnc_next(c, zn, n);
762 /* Should be impossible */
768 ubifs_assert(c, *n == 0);
773 err = matches_name(c, &(*zn)->zbranch[*n], nm);
776 if (err == NAME_LESS)
778 if (err == NAME_MATCHES)
780 ubifs_assert(c, err == NAME_GREATER);
784 struct ubifs_znode *znode = *zn;
788 err = tnc_next(c, &znode, &nn);
793 if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 err = matches_name(c, &znode->zbranch[nn], nm);
798 if (err == NAME_GREATER)
802 if (err == NAME_MATCHES)
804 ubifs_assert(c, err == NAME_LESS);
810 * fallible_matches_name - determine if a dent matches a given name.
811 * @c: UBIFS file-system description object
812 * @zbr: zbranch of dent
815 * This is a "fallible" version of 'matches_name()' function which does not
816 * panic if the direntry/xentry referred by @zbr does not exist on the media.
818 * This function checks if xentry/direntry referred by zbranch @zbr matches name
819 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
820 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
821 * if xentry/direntry referred by @zbr does not exist on the media. A negative
822 * error code is returned in case of failure.
824 static int fallible_matches_name(struct ubifs_info *c,
825 struct ubifs_zbranch *zbr,
826 const struct fscrypt_name *nm)
828 struct ubifs_dent_node *dent;
831 /* If possible, match against the dent in the leaf node cache */
833 dent = kmalloc(zbr->len, GFP_NOFS);
837 err = fallible_read_node(c, &zbr->key, zbr, dent);
841 /* The node was not present */
845 ubifs_assert(c, err == 1);
847 err = lnc_add_directly(c, zbr, dent);
853 nlen = le16_to_cpu(dent->nlen);
854 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
856 if (nlen == fname_len(nm))
858 else if (nlen < fname_len(nm))
873 * fallible_resolve_collision - resolve a collision even if nodes are missing.
874 * @c: UBIFS file-system description object
876 * @zn: znode is returned here
877 * @n: branch number is passed and returned here
878 * @nm: name of directory entry
879 * @adding: indicates caller is adding a key to the TNC
881 * This is a "fallible" version of the 'resolve_collision()' function which
882 * does not panic if one of the nodes referred to by TNC does not exist on the
883 * media. This may happen when replaying the journal if a deleted node was
884 * Garbage-collected and the commit was not done. A branch that refers to a node
885 * that is not present is called a dangling branch. The following are the return
886 * codes for this function:
887 * o if @nm was found, %1 is returned and @zn and @n are set to the found
889 * o if we are @adding and @nm was not found, %0 is returned;
890 * o if we are not @adding and @nm was not found, but a dangling branch was
891 * found, then %1 is returned and @zn and @n are set to the dangling branch;
892 * o a negative error code is returned in case of failure.
894 static int fallible_resolve_collision(struct ubifs_info *c,
895 const union ubifs_key *key,
896 struct ubifs_znode **zn, int *n,
897 const struct fscrypt_name *nm,
900 struct ubifs_znode *o_znode = NULL, *znode = *zn;
901 int o_n, err, cmp, unsure = 0, nn = *n;
903 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
904 if (unlikely(cmp < 0))
906 if (cmp == NAME_MATCHES)
908 if (cmp == NOT_ON_MEDIA) {
912 * We are unlucky and hit a dangling branch straight away.
913 * Now we do not really know where to go to find the needed
914 * branch - to the left or to the right. Well, let's try left.
918 unsure = 1; /* Remove a dangling branch wherever it is */
920 if (cmp == NAME_GREATER || unsure) {
923 err = tnc_prev(c, zn, n);
924 if (err == -ENOENT) {
925 ubifs_assert(c, *n == 0);
931 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
932 /* See comments in 'resolve_collision()' */
933 if (*n == (*zn)->child_cnt - 1) {
934 err = tnc_next(c, zn, n);
936 /* Should be impossible */
942 ubifs_assert(c, *n == 0);
947 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
950 if (err == NAME_MATCHES)
952 if (err == NOT_ON_MEDIA) {
959 if (err == NAME_LESS)
966 if (cmp == NAME_LESS || unsure) {
971 err = tnc_next(c, &znode, &nn);
976 if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
981 if (err == NAME_GREATER)
985 if (err == NAME_MATCHES)
987 if (err == NOT_ON_MEDIA) {
994 /* Never match a dangling branch when adding */
995 if (adding || !o_znode)
998 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
999 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1000 o_znode->zbranch[o_n].len);
1007 * matches_position - determine if a zbranch matches a given position.
1008 * @zbr: zbranch of dent
1009 * @lnum: LEB number of dent to match
1010 * @offs: offset of dent to match
1012 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016 if (zbr->lnum == lnum && zbr->offs == offs)
1023 * resolve_collision_directly - resolve a collision directly.
1024 * @c: UBIFS file-system description object
1025 * @key: key of directory entry
1026 * @zn: znode is passed and returned here
1027 * @n: zbranch number is passed and returned here
1028 * @lnum: LEB number of dent node to match
1029 * @offs: offset of dent node to match
1031 * This function is used for "hashed" keys to make sure the found directory or
1032 * extended attribute entry node is what was looked for. It is used when the
1033 * flash address of the right node is known (@lnum:@offs) which makes it much
1034 * easier to resolve collisions (no need to read entries and match full
1035 * names). This function returns %1 and sets @zn and @n if the collision is
1036 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1037 * previous directory entry. Otherwise a negative error code is returned.
1039 static int resolve_collision_directly(struct ubifs_info *c,
1040 const union ubifs_key *key,
1041 struct ubifs_znode **zn, int *n,
1044 struct ubifs_znode *znode;
1049 if (matches_position(&znode->zbranch[nn], lnum, offs))
1054 err = tnc_prev(c, &znode, &nn);
1059 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1072 err = tnc_next(c, &znode, &nn);
1077 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1081 if (matches_position(&znode->zbranch[nn], lnum, offs))
1087 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1088 * @c: UBIFS file-system description object
1089 * @znode: znode to dirty
1091 * If we do not have a unique key that resides in a znode, then we cannot
1092 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1093 * This function records the path back to the last dirty ancestor, and then
1094 * dirties the znodes on that path.
1096 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1097 struct ubifs_znode *znode)
1099 struct ubifs_znode *zp;
1100 int *path = c->bottom_up_buf, p = 0;
1102 ubifs_assert(c, c->zroot.znode);
1103 ubifs_assert(c, znode);
1104 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1105 kfree(c->bottom_up_buf);
1106 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1109 if (!c->bottom_up_buf)
1110 return ERR_PTR(-ENOMEM);
1111 path = c->bottom_up_buf;
1113 if (c->zroot.znode->level) {
1114 /* Go up until parent is dirty */
1122 ubifs_assert(c, p < c->zroot.znode->level);
1124 if (!zp->cnext && ubifs_zn_dirty(znode))
1130 /* Come back down, dirtying as we go */
1132 struct ubifs_zbranch *zbr;
1136 ubifs_assert(c, path[p - 1] >= 0);
1137 ubifs_assert(c, path[p - 1] < zp->child_cnt);
1138 zbr = &zp->zbranch[path[--p]];
1139 znode = dirty_cow_znode(c, zbr);
1141 ubifs_assert(c, znode == c->zroot.znode);
1142 znode = dirty_cow_znode(c, &c->zroot);
1144 if (IS_ERR(znode) || !p)
1146 ubifs_assert(c, path[p - 1] >= 0);
1147 ubifs_assert(c, path[p - 1] < znode->child_cnt);
1148 znode = znode->zbranch[path[p - 1]].znode;
1155 * ubifs_lookup_level0 - search for zero-level znode.
1156 * @c: UBIFS file-system description object
1157 * @key: key to lookup
1158 * @zn: znode is returned here
1159 * @n: znode branch slot number is returned here
1161 * This function looks up the TNC tree and search for zero-level znode which
1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1164 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1165 * is returned and slot number of the matched branch is stored in @n;
1166 * o not exact match, which means that zero-level znode does not contain
1167 * @key, then %0 is returned and slot number of the closest branch or %-1
1168 * is stored in @n; In this case calling tnc_next() is mandatory.
1169 * o @key is so small that it is even less than the lowest key of the
1170 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173 * function reads corresponding indexing nodes and inserts them to TNC. In
1174 * case of failure, a negative error code is returned.
1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177 struct ubifs_znode **zn, int *n)
1180 struct ubifs_znode *znode;
1181 time64_t time = ktime_get_seconds();
1183 dbg_tnck(key, "search key ");
1184 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1186 znode = c->zroot.znode;
1187 if (unlikely(!znode)) {
1188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1190 return PTR_ERR(znode);
1196 struct ubifs_zbranch *zbr;
1198 exact = ubifs_search_zbranch(c, znode, key, n);
1200 if (znode->level == 0)
1205 zbr = &znode->zbranch[*n];
1213 /* znode is not in TNC cache, load it from the media */
1214 znode = ubifs_load_znode(c, zbr, znode, *n);
1216 return PTR_ERR(znode);
1220 if (exact || !is_hash_key(c, key) || *n != -1) {
1221 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1226 * Here is a tricky place. We have not found the key and this is a
1227 * "hashed" key, which may collide. The rest of the code deals with
1228 * situations like this:
1232 * | 3 | 5 | | 6 | 7 | (x)
1234 * Or more a complex example:
1238 * | 1 | 3 | | 5 | 8 |
1240 * | 5 | 5 | | 6 | 7 | (x)
1242 * In the examples, if we are looking for key "5", we may reach nodes
1243 * marked with "(x)". In this case what we have do is to look at the
1244 * left and see if there is "5" key there. If there is, we have to
1247 * Note, this whole situation is possible because we allow to have
1248 * elements which are equivalent to the next key in the parent in the
1249 * children of current znode. For example, this happens if we split a
1250 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1254 * | 3 | 5 | | 5 | 6 | 7 |
1256 * And this becomes what is at the first "picture" after key "5" marked
1257 * with "^" is removed. What could be done is we could prohibit
1258 * splitting in the middle of the colliding sequence. Also, when
1259 * removing the leftmost key, we would have to correct the key of the
1260 * parent node, which would introduce additional complications. Namely,
1261 * if we changed the leftmost key of the parent znode, the garbage
1262 * collector would be unable to find it (GC is doing this when GC'ing
1263 * indexing LEBs). Although we already have an additional RB-tree where
1264 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 * after the commit. But anyway, this does not look easy to implement
1266 * so we did not try this.
1268 err = tnc_prev(c, &znode, n);
1269 if (err == -ENOENT) {
1270 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1274 if (unlikely(err < 0))
1276 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1282 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1288 * lookup_level0_dirty - search for zero-level znode dirtying.
1289 * @c: UBIFS file-system description object
1290 * @key: key to lookup
1291 * @zn: znode is returned here
1292 * @n: znode branch slot number is returned here
1294 * This function looks up the TNC tree and search for zero-level znode which
1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1297 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1298 * is returned and slot number of the matched branch is stored in @n;
1299 * o not exact match, which means that zero-level znode does not contain @key
1300 * then %0 is returned and slot number of the closed branch is stored in
1302 * o @key is so small that it is even less than the lowest key of the
1303 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1305 * Additionally all znodes in the path from the root to the located zero-level
1306 * znode are marked as dirty.
1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309 * function reads corresponding indexing nodes and inserts them to TNC. In
1310 * case of failure, a negative error code is returned.
1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313 struct ubifs_znode **zn, int *n)
1316 struct ubifs_znode *znode;
1317 time64_t time = ktime_get_seconds();
1319 dbg_tnck(key, "search and dirty key ");
1321 znode = c->zroot.znode;
1322 if (unlikely(!znode)) {
1323 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1325 return PTR_ERR(znode);
1328 znode = dirty_cow_znode(c, &c->zroot);
1330 return PTR_ERR(znode);
1335 struct ubifs_zbranch *zbr;
1337 exact = ubifs_search_zbranch(c, znode, key, n);
1339 if (znode->level == 0)
1344 zbr = &znode->zbranch[*n];
1348 znode = dirty_cow_znode(c, zbr);
1350 return PTR_ERR(znode);
1354 /* znode is not in TNC cache, load it from the media */
1355 znode = ubifs_load_znode(c, zbr, znode, *n);
1357 return PTR_ERR(znode);
1358 znode = dirty_cow_znode(c, zbr);
1360 return PTR_ERR(znode);
1364 if (exact || !is_hash_key(c, key) || *n != -1) {
1365 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1370 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1373 err = tnc_prev(c, &znode, n);
1374 if (err == -ENOENT) {
1376 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1379 if (unlikely(err < 0))
1381 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1383 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1387 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388 znode = dirty_cow_bottom_up(c, znode);
1390 return PTR_ERR(znode);
1393 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1399 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400 * @c: UBIFS file-system description object
1402 * @gc_seq1: garbage collection sequence number
1404 * This function determines if @lnum may have been garbage collected since
1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1410 int gc_seq2, gced_lnum;
1412 gced_lnum = c->gced_lnum;
1414 gc_seq2 = c->gc_seq;
1415 /* Same seq means no GC */
1416 if (gc_seq1 == gc_seq2)
1418 /* Different by more than 1 means we don't know */
1419 if (gc_seq1 + 1 != gc_seq2)
1422 * We have seen the sequence number has increased by 1. Now we need to
1423 * be sure we read the right LEB number, so read it again.
1426 if (gced_lnum != c->gced_lnum)
1428 /* Finally we can check lnum */
1429 if (gced_lnum == lnum)
1435 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436 * @c: UBIFS file-system description object
1437 * @key: node key to lookup
1438 * @node: the node is returned here
1439 * @lnum: LEB number is returned here
1440 * @offs: offset is returned here
1442 * This function looks up and reads node with key @key. The caller has to make
1443 * sure the @node buffer is large enough to fit the node. Returns zero in case
1444 * of success, %-ENOENT if the node was not found, and a negative error code in
1445 * case of failure. The node location can be returned in @lnum and @offs.
1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448 void *node, int *lnum, int *offs)
1450 int found, n, err, safely = 0, gc_seq1;
1451 struct ubifs_znode *znode;
1452 struct ubifs_zbranch zbr, *zt;
1455 mutex_lock(&c->tnc_mutex);
1456 found = ubifs_lookup_level0(c, key, &znode, &n);
1460 } else if (found < 0) {
1464 zt = &znode->zbranch[n];
1469 if (is_hash_key(c, key)) {
1471 * In this case the leaf node cache gets used, so we pass the
1472 * address of the zbranch and keep the mutex locked
1474 err = tnc_read_hashed_node(c, zt, node);
1478 err = ubifs_tnc_read_node(c, zt, node);
1481 /* Drop the TNC mutex prematurely and race with garbage collection */
1482 zbr = znode->zbranch[n];
1483 gc_seq1 = c->gc_seq;
1484 mutex_unlock(&c->tnc_mutex);
1486 if (ubifs_get_wbuf(c, zbr.lnum)) {
1487 /* We do not GC journal heads */
1488 err = ubifs_tnc_read_node(c, &zbr, node);
1492 err = fallible_read_node(c, key, &zbr, node);
1493 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1495 * The node may have been GC'ed out from under us so try again
1496 * while keeping the TNC mutex locked.
1504 mutex_unlock(&c->tnc_mutex);
1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510 * @c: UBIFS file-system description object
1511 * @bu: bulk-read parameters and results
1513 * Lookup consecutive data node keys for the same inode that reside
1514 * consecutively in the same LEB. This function returns zero in case of success
1515 * and a negative error code in case of failure.
1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519 * maximum possible amount of nodes for bulk-read.
1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1523 int n, err = 0, lnum = -1, offs;
1525 unsigned int block = key_block(c, &bu->key);
1526 struct ubifs_znode *znode;
1532 mutex_lock(&c->tnc_mutex);
1533 /* Find first key */
1534 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1539 len = znode->zbranch[n].len;
1540 /* The buffer must be big enough for at least 1 node */
1541 if (len > bu->buf_len) {
1546 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1548 lnum = znode->zbranch[n].lnum;
1549 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1552 struct ubifs_zbranch *zbr;
1553 union ubifs_key *key;
1554 unsigned int next_block;
1557 err = tnc_next(c, &znode, &n);
1560 zbr = &znode->zbranch[n];
1562 /* See if there is another data key for this file */
1563 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564 key_type(c, key) != UBIFS_DATA_KEY) {
1569 /* First key found */
1571 offs = ALIGN(zbr->offs + zbr->len, 8);
1573 if (len > bu->buf_len) {
1579 * The data nodes must be in consecutive positions in
1582 if (zbr->lnum != lnum || zbr->offs != offs)
1584 offs += ALIGN(zbr->len, 8);
1585 len = ALIGN(len, 8) + zbr->len;
1586 /* Must not exceed buffer length */
1587 if (len > bu->buf_len)
1590 /* Allow for holes */
1591 next_block = key_block(c, key);
1592 bu->blk_cnt += (next_block - block - 1);
1593 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597 bu->zbranch[bu->cnt++] = *zbr;
1599 /* See if we have room for more */
1600 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1602 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1606 if (err == -ENOENT) {
1610 bu->gc_seq = c->gc_seq;
1611 mutex_unlock(&c->tnc_mutex);
1615 * An enormous hole could cause bulk-read to encompass too many
1616 * page cache pages, so limit the number here.
1618 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1621 * Ensure that bulk-read covers a whole number of page cache
1624 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1628 /* At the end of file we can round up */
1629 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1632 /* Exclude data nodes that do not make up a whole page cache page */
1633 block = key_block(c, &bu->key) + bu->blk_cnt;
1634 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1636 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1644 * read_wbuf - bulk-read from a LEB with a wbuf.
1645 * @wbuf: wbuf that may overlap the read
1646 * @buf: buffer into which to read
1648 * @lnum: LEB number from which to read
1649 * @offs: offset from which to read
1651 * This functions returns %0 on success or a negative error code on failure.
1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1656 const struct ubifs_info *c = wbuf->c;
1659 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1662 ubifs_assert(c, offs + len <= c->leb_size);
1664 spin_lock(&wbuf->lock);
1665 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1667 /* We may safely unlock the write-buffer and read the data */
1668 spin_unlock(&wbuf->lock);
1669 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1672 /* Don't read under wbuf */
1673 rlen = wbuf->offs - offs;
1677 /* Copy the rest from the write-buffer */
1678 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679 spin_unlock(&wbuf->lock);
1682 /* Read everything that goes before write-buffer */
1683 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1689 * validate_data_node - validate data nodes for bulk-read.
1690 * @c: UBIFS file-system description object
1691 * @buf: buffer containing data node to validate
1692 * @zbr: zbranch of data node to validate
1694 * This functions returns %0 on success or a negative error code on failure.
1696 static int validate_data_node(struct ubifs_info *c, void *buf,
1697 struct ubifs_zbranch *zbr)
1699 union ubifs_key key1;
1700 struct ubifs_ch *ch = buf;
1703 if (ch->node_type != UBIFS_DATA_NODE) {
1704 ubifs_err(c, "bad node type (%d but expected %d)",
1705 ch->node_type, UBIFS_DATA_NODE);
1709 err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1711 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1715 err = ubifs_node_check_hash(c, buf, zbr->hash);
1717 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1721 len = le32_to_cpu(ch->len);
1722 if (len != zbr->len) {
1723 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1727 /* Make sure the key of the read node is correct */
1728 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1729 if (!keys_eq(c, &zbr->key, &key1)) {
1730 ubifs_err(c, "bad key in node at LEB %d:%d",
1731 zbr->lnum, zbr->offs);
1732 dbg_tnck(&zbr->key, "looked for key ");
1733 dbg_tnck(&key1, "found node's key ");
1742 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1743 ubifs_dump_node(c, buf, zbr->len);
1749 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1750 * @c: UBIFS file-system description object
1751 * @bu: bulk-read parameters and results
1753 * This functions reads and validates the data nodes that were identified by the
1754 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1755 * -EAGAIN to indicate a race with GC, or another negative error code on
1758 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1760 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1761 struct ubifs_wbuf *wbuf;
1764 len = bu->zbranch[bu->cnt - 1].offs;
1765 len += bu->zbranch[bu->cnt - 1].len - offs;
1766 if (len > bu->buf_len) {
1767 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1772 wbuf = ubifs_get_wbuf(c, lnum);
1774 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1776 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1778 /* Check for a race with GC */
1779 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1782 if (err && err != -EBADMSG) {
1783 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1786 dbg_tnck(&bu->key, "key ");
1790 /* Validate the nodes read */
1792 for (i = 0; i < bu->cnt; i++) {
1793 err = validate_data_node(c, buf, &bu->zbranch[i]);
1796 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1803 * do_lookup_nm- look up a "hashed" node.
1804 * @c: UBIFS file-system description object
1805 * @key: node key to lookup
1806 * @node: the node is returned here
1809 * This function looks up and reads a node which contains name hash in the key.
1810 * Since the hash may have collisions, there may be many nodes with the same
1811 * key, so we have to sequentially look to all of them until the needed one is
1812 * found. This function returns zero in case of success, %-ENOENT if the node
1813 * was not found, and a negative error code in case of failure.
1815 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1816 void *node, const struct fscrypt_name *nm)
1819 struct ubifs_znode *znode;
1821 dbg_tnck(key, "key ");
1822 mutex_lock(&c->tnc_mutex);
1823 found = ubifs_lookup_level0(c, key, &znode, &n);
1827 } else if (found < 0) {
1832 ubifs_assert(c, n >= 0);
1834 err = resolve_collision(c, key, &znode, &n, nm);
1835 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1836 if (unlikely(err < 0))
1843 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1846 mutex_unlock(&c->tnc_mutex);
1851 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1852 * @c: UBIFS file-system description object
1853 * @key: node key to lookup
1854 * @node: the node is returned here
1857 * This function looks up and reads a node which contains name hash in the key.
1858 * Since the hash may have collisions, there may be many nodes with the same
1859 * key, so we have to sequentially look to all of them until the needed one is
1860 * found. This function returns zero in case of success, %-ENOENT if the node
1861 * was not found, and a negative error code in case of failure.
1863 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1864 void *node, const struct fscrypt_name *nm)
1867 const struct ubifs_dent_node *dent = node;
1870 * We assume that in most of the cases there are no name collisions and
1871 * 'ubifs_tnc_lookup()' returns us the right direntry.
1873 err = ubifs_tnc_lookup(c, key, node);
1877 len = le16_to_cpu(dent->nlen);
1878 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1882 * Unluckily, there are hash collisions and we have to iterate over
1883 * them look at each direntry with colliding name hash sequentially.
1886 return do_lookup_nm(c, key, node, nm);
1889 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1890 struct ubifs_dent_node *dent, uint32_t cookie,
1891 struct ubifs_znode **zn, int *n, int exact)
1894 struct ubifs_znode *znode = *zn;
1895 struct ubifs_zbranch *zbr;
1896 union ubifs_key *dkey;
1899 err = tnc_next(c, &znode, n);
1905 zbr = &znode->zbranch[*n];
1908 if (key_inum(c, dkey) != key_inum(c, key) ||
1909 key_type(c, dkey) != key_type(c, key)) {
1913 err = tnc_read_hashed_node(c, zbr, dent);
1917 if (key_hash(c, key) == key_hash(c, dkey) &&
1918 le32_to_cpu(dent->cookie) == cookie) {
1923 err = tnc_next(c, &znode, n);
1929 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1930 struct ubifs_dent_node *dent, uint32_t cookie)
1933 struct ubifs_znode *znode;
1934 union ubifs_key start_key;
1936 ubifs_assert(c, is_hash_key(c, key));
1938 lowest_dent_key(c, &start_key, key_inum(c, key));
1940 mutex_lock(&c->tnc_mutex);
1941 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1942 if (unlikely(err < 0))
1945 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1948 mutex_unlock(&c->tnc_mutex);
1953 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1954 * @c: UBIFS file-system description object
1955 * @key: node key to lookup
1956 * @node: the node is returned here
1957 * @cookie: node cookie for collision resolution
1959 * This function looks up and reads a node which contains name hash in the key.
1960 * Since the hash may have collisions, there may be many nodes with the same
1961 * key, so we have to sequentially look to all of them until the needed one
1962 * with the same cookie value is found.
1963 * This function returns zero in case of success, %-ENOENT if the node
1964 * was not found, and a negative error code in case of failure.
1966 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1967 void *node, uint32_t cookie)
1970 const struct ubifs_dent_node *dent = node;
1972 if (!c->double_hash)
1976 * We assume that in most of the cases there are no name collisions and
1977 * 'ubifs_tnc_lookup()' returns us the right direntry.
1979 err = ubifs_tnc_lookup(c, key, node);
1983 if (le32_to_cpu(dent->cookie) == cookie)
1987 * Unluckily, there are hash collisions and we have to iterate over
1988 * them look at each direntry with colliding name hash sequentially.
1990 return do_lookup_dh(c, key, node, cookie);
1994 * correct_parent_keys - correct parent znodes' keys.
1995 * @c: UBIFS file-system description object
1996 * @znode: znode to correct parent znodes for
1998 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1999 * zbranch changes, keys of parent znodes have to be corrected. This helper
2000 * function is called in such situations and corrects the keys if needed.
2002 static void correct_parent_keys(const struct ubifs_info *c,
2003 struct ubifs_znode *znode)
2005 union ubifs_key *key, *key1;
2007 ubifs_assert(c, znode->parent);
2008 ubifs_assert(c, znode->iip == 0);
2010 key = &znode->zbranch[0].key;
2011 key1 = &znode->parent->zbranch[0].key;
2013 while (keys_cmp(c, key, key1) < 0) {
2014 key_copy(c, key, key1);
2015 znode = znode->parent;
2017 if (!znode->parent || znode->iip)
2019 key1 = &znode->parent->zbranch[0].key;
2024 * insert_zbranch - insert a zbranch into a znode.
2025 * @c: UBIFS file-system description object
2026 * @znode: znode into which to insert
2027 * @zbr: zbranch to insert
2028 * @n: slot number to insert to
2030 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2031 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2032 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2033 * slot, zbranches starting from @n have to be moved right.
2035 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2036 const struct ubifs_zbranch *zbr, int n)
2040 ubifs_assert(c, ubifs_zn_dirty(znode));
2043 for (i = znode->child_cnt; i > n; i--) {
2044 znode->zbranch[i] = znode->zbranch[i - 1];
2045 if (znode->zbranch[i].znode)
2046 znode->zbranch[i].znode->iip = i;
2049 zbr->znode->iip = n;
2051 for (i = znode->child_cnt; i > n; i--)
2052 znode->zbranch[i] = znode->zbranch[i - 1];
2054 znode->zbranch[n] = *zbr;
2055 znode->child_cnt += 1;
2058 * After inserting at slot zero, the lower bound of the key range of
2059 * this znode may have changed. If this znode is subsequently split
2060 * then the upper bound of the key range may change, and furthermore
2061 * it could change to be lower than the original lower bound. If that
2062 * happens, then it will no longer be possible to find this znode in the
2063 * TNC using the key from the index node on flash. That is bad because
2064 * if it is not found, we will assume it is obsolete and may overwrite
2065 * it. Then if there is an unclean unmount, we will start using the
2066 * old index which will be broken.
2068 * So we first mark znodes that have insertions at slot zero, and then
2069 * if they are split we add their lnum/offs to the old_idx tree.
2076 * tnc_insert - insert a node into TNC.
2077 * @c: UBIFS file-system description object
2078 * @znode: znode to insert into
2079 * @zbr: branch to insert
2080 * @n: slot number to insert new zbranch to
2082 * This function inserts a new node described by @zbr into znode @znode. If
2083 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2084 * are splat as well if needed. Returns zero in case of success or a negative
2085 * error code in case of failure.
2087 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2088 struct ubifs_zbranch *zbr, int n)
2090 struct ubifs_znode *zn, *zi, *zp;
2091 int i, keep, move, appending = 0;
2092 union ubifs_key *key = &zbr->key, *key1;
2094 ubifs_assert(c, n >= 0 && n <= c->fanout);
2096 /* Implement naive insert for now */
2099 if (znode->child_cnt < c->fanout) {
2100 ubifs_assert(c, n != c->fanout);
2101 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2103 insert_zbranch(c, znode, zbr, n);
2105 /* Ensure parent's key is correct */
2106 if (n == 0 && zp && znode->iip == 0)
2107 correct_parent_keys(c, znode);
2113 * Unfortunately, @znode does not have more empty slots and we have to
2116 dbg_tnck(key, "splitting level %d, key ", znode->level);
2120 * We can no longer be sure of finding this znode by key, so we
2121 * record it in the old_idx tree.
2123 ins_clr_old_idx_znode(c, znode);
2125 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2129 zn->level = znode->level;
2131 /* Decide where to split */
2132 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2133 /* Try not to split consecutive data keys */
2134 if (n == c->fanout) {
2135 key1 = &znode->zbranch[n - 1].key;
2136 if (key_inum(c, key1) == key_inum(c, key) &&
2137 key_type(c, key1) == UBIFS_DATA_KEY)
2141 } else if (appending && n != c->fanout) {
2142 /* Try not to split consecutive data keys */
2145 if (n >= (c->fanout + 1) / 2) {
2146 key1 = &znode->zbranch[0].key;
2147 if (key_inum(c, key1) == key_inum(c, key) &&
2148 key_type(c, key1) == UBIFS_DATA_KEY) {
2149 key1 = &znode->zbranch[n].key;
2150 if (key_inum(c, key1) != key_inum(c, key) ||
2151 key_type(c, key1) != UBIFS_DATA_KEY) {
2153 move = c->fanout - keep;
2165 keep = (c->fanout + 1) / 2;
2166 move = c->fanout - keep;
2170 * Although we don't at present, we could look at the neighbors and see
2171 * if we can move some zbranches there.
2175 /* Insert into existing znode */
2180 /* Insert into new znode */
2185 zbr->znode->parent = zn;
2190 __set_bit(DIRTY_ZNODE, &zn->flags);
2191 atomic_long_inc(&c->dirty_zn_cnt);
2193 zn->child_cnt = move;
2194 znode->child_cnt = keep;
2196 dbg_tnc("moving %d, keeping %d", move, keep);
2199 for (i = 0; i < move; i++) {
2200 zn->zbranch[i] = znode->zbranch[keep + i];
2203 if (zn->zbranch[i].znode) {
2204 zn->zbranch[i].znode->parent = zn;
2205 zn->zbranch[i].znode->iip = i;
2209 /* Insert new key and branch */
2210 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2212 insert_zbranch(c, zi, zbr, n);
2214 /* Insert new znode (produced by spitting) into the parent */
2216 if (n == 0 && zi == znode && znode->iip == 0)
2217 correct_parent_keys(c, znode);
2219 /* Locate insertion point */
2222 /* Tail recursion */
2223 zbr->key = zn->zbranch[0].key;
2233 /* We have to split root znode */
2234 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2236 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2241 zi->level = znode->level + 1;
2243 __set_bit(DIRTY_ZNODE, &zi->flags);
2244 atomic_long_inc(&c->dirty_zn_cnt);
2246 zi->zbranch[0].key = znode->zbranch[0].key;
2247 zi->zbranch[0].znode = znode;
2248 zi->zbranch[0].lnum = c->zroot.lnum;
2249 zi->zbranch[0].offs = c->zroot.offs;
2250 zi->zbranch[0].len = c->zroot.len;
2251 zi->zbranch[1].key = zn->zbranch[0].key;
2252 zi->zbranch[1].znode = zn;
2257 c->zroot.znode = zi;
2268 * ubifs_tnc_add - add a node to TNC.
2269 * @c: UBIFS file-system description object
2271 * @lnum: LEB number of node
2272 * @offs: node offset
2274 * @hash: The hash over the node
2276 * This function adds a node with key @key to TNC. The node may be new or it may
2277 * obsolete some existing one. Returns %0 on success or negative error code on
2280 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2281 int offs, int len, const u8 *hash)
2283 int found, n, err = 0;
2284 struct ubifs_znode *znode;
2286 mutex_lock(&c->tnc_mutex);
2287 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2288 found = lookup_level0_dirty(c, key, &znode, &n);
2290 struct ubifs_zbranch zbr;
2296 ubifs_copy_hash(c, hash, zbr.hash);
2297 key_copy(c, key, &zbr.key);
2298 err = tnc_insert(c, znode, &zbr, n + 1);
2299 } else if (found == 1) {
2300 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2303 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2307 ubifs_copy_hash(c, hash, zbr->hash);
2311 err = dbg_check_tnc(c, 0);
2312 mutex_unlock(&c->tnc_mutex);
2318 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2319 * @c: UBIFS file-system description object
2321 * @old_lnum: LEB number of old node
2322 * @old_offs: old node offset
2323 * @lnum: LEB number of node
2324 * @offs: node offset
2327 * This function replaces a node with key @key in the TNC only if the old node
2328 * is found. This function is called by garbage collection when node are moved.
2329 * Returns %0 on success or negative error code on failure.
2331 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2332 int old_lnum, int old_offs, int lnum, int offs, int len)
2334 int found, n, err = 0;
2335 struct ubifs_znode *znode;
2337 mutex_lock(&c->tnc_mutex);
2338 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2339 old_offs, lnum, offs, len);
2340 found = lookup_level0_dirty(c, key, &znode, &n);
2347 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2350 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2352 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2359 } else if (is_hash_key(c, key)) {
2360 found = resolve_collision_directly(c, key, &znode, &n,
2361 old_lnum, old_offs);
2362 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2363 found, znode, n, old_lnum, old_offs);
2370 /* Ensure the znode is dirtied */
2371 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2372 znode = dirty_cow_bottom_up(c, znode);
2373 if (IS_ERR(znode)) {
2374 err = PTR_ERR(znode);
2378 zbr = &znode->zbranch[n];
2380 err = ubifs_add_dirt(c, zbr->lnum,
2392 err = ubifs_add_dirt(c, lnum, len);
2395 err = dbg_check_tnc(c, 0);
2398 mutex_unlock(&c->tnc_mutex);
2403 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2404 * @c: UBIFS file-system description object
2406 * @lnum: LEB number of node
2407 * @offs: node offset
2409 * @hash: The hash over the node
2412 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2413 * may have collisions, like directory entry keys.
2415 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2416 int lnum, int offs, int len, const u8 *hash,
2417 const struct fscrypt_name *nm)
2419 int found, n, err = 0;
2420 struct ubifs_znode *znode;
2422 mutex_lock(&c->tnc_mutex);
2423 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2424 found = lookup_level0_dirty(c, key, &znode, &n);
2432 found = fallible_resolve_collision(c, key, &znode, &n,
2435 found = resolve_collision(c, key, &znode, &n, nm);
2436 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2442 /* Ensure the znode is dirtied */
2443 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2444 znode = dirty_cow_bottom_up(c, znode);
2445 if (IS_ERR(znode)) {
2446 err = PTR_ERR(znode);
2452 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2455 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2459 ubifs_copy_hash(c, hash, zbr->hash);
2465 struct ubifs_zbranch zbr;
2471 ubifs_copy_hash(c, hash, zbr.hash);
2472 key_copy(c, key, &zbr.key);
2473 err = tnc_insert(c, znode, &zbr, n + 1);
2478 * We did not find it in the index so there may be a
2479 * dangling branch still in the index. So we remove it
2480 * by passing 'ubifs_tnc_remove_nm()' the same key but
2481 * an unmatchable name.
2483 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2485 err = dbg_check_tnc(c, 0);
2486 mutex_unlock(&c->tnc_mutex);
2489 return ubifs_tnc_remove_nm(c, key, &noname);
2495 err = dbg_check_tnc(c, 0);
2496 mutex_unlock(&c->tnc_mutex);
2501 * tnc_delete - delete a znode form TNC.
2502 * @c: UBIFS file-system description object
2503 * @znode: znode to delete from
2504 * @n: zbranch slot number to delete
2506 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2507 * case of success and a negative error code in case of failure.
2509 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2511 struct ubifs_zbranch *zbr;
2512 struct ubifs_znode *zp;
2515 /* Delete without merge for now */
2516 ubifs_assert(c, znode->level == 0);
2517 ubifs_assert(c, n >= 0 && n < c->fanout);
2518 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2520 zbr = &znode->zbranch[n];
2523 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2525 ubifs_dump_znode(c, znode);
2529 /* We do not "gap" zbranch slots */
2530 for (i = n; i < znode->child_cnt - 1; i++)
2531 znode->zbranch[i] = znode->zbranch[i + 1];
2532 znode->child_cnt -= 1;
2534 if (znode->child_cnt > 0)
2538 * This was the last zbranch, we have to delete this znode from the
2543 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2544 ubifs_assert(c, ubifs_zn_dirty(znode));
2549 atomic_long_dec(&c->dirty_zn_cnt);
2551 err = insert_old_idx_znode(c, znode);
2556 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2557 atomic_long_inc(&c->clean_zn_cnt);
2558 atomic_long_inc(&ubifs_clean_zn_cnt);
2562 } while (znode->child_cnt == 1); /* while removing last child */
2564 /* Remove from znode, entry n - 1 */
2565 znode->child_cnt -= 1;
2566 ubifs_assert(c, znode->level != 0);
2567 for (i = n; i < znode->child_cnt; i++) {
2568 znode->zbranch[i] = znode->zbranch[i + 1];
2569 if (znode->zbranch[i].znode)
2570 znode->zbranch[i].znode->iip = i;
2574 * If this is the root and it has only 1 child then
2575 * collapse the tree.
2577 if (!znode->parent) {
2578 while (znode->child_cnt == 1 && znode->level != 0) {
2580 zbr = &znode->zbranch[0];
2581 znode = get_znode(c, znode, 0);
2583 return PTR_ERR(znode);
2584 znode = dirty_cow_znode(c, zbr);
2586 return PTR_ERR(znode);
2587 znode->parent = NULL;
2590 err = insert_old_idx(c, c->zroot.lnum,
2595 c->zroot.lnum = zbr->lnum;
2596 c->zroot.offs = zbr->offs;
2597 c->zroot.len = zbr->len;
2598 c->zroot.znode = znode;
2599 ubifs_assert(c, !ubifs_zn_obsolete(zp));
2600 ubifs_assert(c, ubifs_zn_dirty(zp));
2601 atomic_long_dec(&c->dirty_zn_cnt);
2604 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2605 atomic_long_inc(&c->clean_zn_cnt);
2606 atomic_long_inc(&ubifs_clean_zn_cnt);
2616 * ubifs_tnc_remove - remove an index entry of a node.
2617 * @c: UBIFS file-system description object
2620 * Returns %0 on success or negative error code on failure.
2622 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2624 int found, n, err = 0;
2625 struct ubifs_znode *znode;
2627 mutex_lock(&c->tnc_mutex);
2628 dbg_tnck(key, "key ");
2629 found = lookup_level0_dirty(c, key, &znode, &n);
2635 err = tnc_delete(c, znode, n);
2637 err = dbg_check_tnc(c, 0);
2640 mutex_unlock(&c->tnc_mutex);
2645 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2646 * @c: UBIFS file-system description object
2648 * @nm: directory entry name
2650 * Returns %0 on success or negative error code on failure.
2652 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2653 const struct fscrypt_name *nm)
2656 struct ubifs_znode *znode;
2658 mutex_lock(&c->tnc_mutex);
2659 dbg_tnck(key, "key ");
2660 err = lookup_level0_dirty(c, key, &znode, &n);
2666 err = fallible_resolve_collision(c, key, &znode, &n,
2669 err = resolve_collision(c, key, &znode, &n, nm);
2670 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2674 /* Ensure the znode is dirtied */
2675 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2676 znode = dirty_cow_bottom_up(c, znode);
2677 if (IS_ERR(znode)) {
2678 err = PTR_ERR(znode);
2682 err = tnc_delete(c, znode, n);
2688 err = dbg_check_tnc(c, 0);
2689 mutex_unlock(&c->tnc_mutex);
2694 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2695 * @c: UBIFS file-system description object
2697 * @cookie: node cookie for collision resolution
2699 * Returns %0 on success or negative error code on failure.
2701 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2705 struct ubifs_znode *znode;
2706 struct ubifs_dent_node *dent;
2707 struct ubifs_zbranch *zbr;
2709 if (!c->double_hash)
2712 mutex_lock(&c->tnc_mutex);
2713 err = lookup_level0_dirty(c, key, &znode, &n);
2717 zbr = &znode->zbranch[n];
2718 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2724 err = tnc_read_hashed_node(c, zbr, dent);
2728 /* If the cookie does not match, we're facing a hash collision. */
2729 if (le32_to_cpu(dent->cookie) != cookie) {
2730 union ubifs_key start_key;
2732 lowest_dent_key(c, &start_key, key_inum(c, key));
2734 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2735 if (unlikely(err < 0))
2738 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2743 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2744 znode = dirty_cow_bottom_up(c, znode);
2745 if (IS_ERR(znode)) {
2746 err = PTR_ERR(znode);
2750 err = tnc_delete(c, znode, n);
2756 err = dbg_check_tnc(c, 0);
2757 mutex_unlock(&c->tnc_mutex);
2762 * key_in_range - determine if a key falls within a range of keys.
2763 * @c: UBIFS file-system description object
2764 * @key: key to check
2765 * @from_key: lowest key in range
2766 * @to_key: highest key in range
2768 * This function returns %1 if the key is in range and %0 otherwise.
2770 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2771 union ubifs_key *from_key, union ubifs_key *to_key)
2773 if (keys_cmp(c, key, from_key) < 0)
2775 if (keys_cmp(c, key, to_key) > 0)
2781 * ubifs_tnc_remove_range - remove index entries in range.
2782 * @c: UBIFS file-system description object
2783 * @from_key: lowest key to remove
2784 * @to_key: highest key to remove
2786 * This function removes index entries starting at @from_key and ending at
2787 * @to_key. This function returns zero in case of success and a negative error
2788 * code in case of failure.
2790 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2791 union ubifs_key *to_key)
2793 int i, n, k, err = 0;
2794 struct ubifs_znode *znode;
2795 union ubifs_key *key;
2797 mutex_lock(&c->tnc_mutex);
2799 /* Find first level 0 znode that contains keys to remove */
2800 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2807 err = tnc_next(c, &znode, &n);
2808 if (err == -ENOENT) {
2814 key = &znode->zbranch[n].key;
2815 if (!key_in_range(c, key, from_key, to_key)) {
2821 /* Ensure the znode is dirtied */
2822 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2823 znode = dirty_cow_bottom_up(c, znode);
2824 if (IS_ERR(znode)) {
2825 err = PTR_ERR(znode);
2830 /* Remove all keys in range except the first */
2831 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2832 key = &znode->zbranch[i].key;
2833 if (!key_in_range(c, key, from_key, to_key))
2835 lnc_free(&znode->zbranch[i]);
2836 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2837 znode->zbranch[i].len);
2839 ubifs_dump_znode(c, znode);
2842 dbg_tnck(key, "removing key ");
2845 for (i = n + 1 + k; i < znode->child_cnt; i++)
2846 znode->zbranch[i - k] = znode->zbranch[i];
2847 znode->child_cnt -= k;
2850 /* Now delete the first */
2851 err = tnc_delete(c, znode, n);
2858 err = dbg_check_tnc(c, 0);
2859 mutex_unlock(&c->tnc_mutex);
2864 * ubifs_tnc_remove_ino - remove an inode from TNC.
2865 * @c: UBIFS file-system description object
2866 * @inum: inode number to remove
2868 * This function remove inode @inum and all the extended attributes associated
2869 * with the anode from TNC and returns zero in case of success or a negative
2870 * error code in case of failure.
2872 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2874 union ubifs_key key1, key2;
2875 struct ubifs_dent_node *xent, *pxent = NULL;
2876 struct fscrypt_name nm = {0};
2878 dbg_tnc("ino %lu", (unsigned long)inum);
2881 * Walk all extended attribute entries and remove them together with
2882 * corresponding extended attribute inodes.
2884 lowest_xent_key(c, &key1, inum);
2889 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2891 err = PTR_ERR(xent);
2898 xattr_inum = le64_to_cpu(xent->inum);
2899 dbg_tnc("xent '%s', ino %lu", xent->name,
2900 (unsigned long)xattr_inum);
2902 ubifs_evict_xattr_inode(c, xattr_inum);
2904 fname_name(&nm) = xent->name;
2905 fname_len(&nm) = le16_to_cpu(xent->nlen);
2906 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2913 lowest_ino_key(c, &key1, xattr_inum);
2914 highest_ino_key(c, &key2, xattr_inum);
2915 err = ubifs_tnc_remove_range(c, &key1, &key2);
2924 key_read(c, &xent->key, &key1);
2928 lowest_ino_key(c, &key1, inum);
2929 highest_ino_key(c, &key2, inum);
2931 return ubifs_tnc_remove_range(c, &key1, &key2);
2935 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2936 * @c: UBIFS file-system description object
2937 * @key: key of last entry
2938 * @nm: name of last entry found or %NULL
2940 * This function finds and reads the next directory or extended attribute entry
2941 * after the given key (@key) if there is one. @nm is used to resolve
2944 * If the name of the current entry is not known and only the key is known,
2945 * @nm->name has to be %NULL. In this case the semantics of this function is a
2946 * little bit different and it returns the entry corresponding to this key, not
2947 * the next one. If the key was not found, the closest "right" entry is
2950 * If the fist entry has to be found, @key has to contain the lowest possible
2951 * key value for this inode and @name has to be %NULL.
2953 * This function returns the found directory or extended attribute entry node
2954 * in case of success, %-ENOENT is returned if no entry was found, and a
2955 * negative error code is returned in case of failure.
2957 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2958 union ubifs_key *key,
2959 const struct fscrypt_name *nm)
2961 int n, err, type = key_type(c, key);
2962 struct ubifs_znode *znode;
2963 struct ubifs_dent_node *dent;
2964 struct ubifs_zbranch *zbr;
2965 union ubifs_key *dkey;
2967 dbg_tnck(key, "key ");
2968 ubifs_assert(c, is_hash_key(c, key));
2970 mutex_lock(&c->tnc_mutex);
2971 err = ubifs_lookup_level0(c, key, &znode, &n);
2972 if (unlikely(err < 0))
2975 if (fname_len(nm) > 0) {
2977 /* Handle collisions */
2979 err = fallible_resolve_collision(c, key, &znode, &n,
2982 err = resolve_collision(c, key, &znode, &n, nm);
2983 dbg_tnc("rc returned %d, znode %p, n %d",
2985 if (unlikely(err < 0))
2989 /* Now find next entry */
2990 err = tnc_next(c, &znode, &n);
2995 * The full name of the entry was not given, in which case the
2996 * behavior of this function is a little different and it
2997 * returns current entry, not the next one.
3001 * However, the given key does not exist in the TNC
3002 * tree and @znode/@n variables contain the closest
3003 * "preceding" element. Switch to the next one.
3005 err = tnc_next(c, &znode, &n);
3011 zbr = &znode->zbranch[n];
3012 dent = kmalloc(zbr->len, GFP_NOFS);
3013 if (unlikely(!dent)) {
3019 * The above 'tnc_next()' call could lead us to the next inode, check
3023 if (key_inum(c, dkey) != key_inum(c, key) ||
3024 key_type(c, dkey) != type) {
3029 err = tnc_read_hashed_node(c, zbr, dent);
3033 mutex_unlock(&c->tnc_mutex);
3039 mutex_unlock(&c->tnc_mutex);
3040 return ERR_PTR(err);
3044 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3045 * @c: UBIFS file-system description object
3047 * Destroy left-over obsolete znodes from a failed commit.
3049 static void tnc_destroy_cnext(struct ubifs_info *c)
3051 struct ubifs_znode *cnext;
3055 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3058 struct ubifs_znode *znode = cnext;
3060 cnext = cnext->cnext;
3061 if (ubifs_zn_obsolete(znode))
3063 else if (!ubifs_zn_cow(znode)) {
3065 * Don't forget to update clean znode count after
3066 * committing failed, because ubifs will check this
3067 * count while closing tnc. Non-obsolete znode could
3068 * be re-dirtied during committing process, so dirty
3069 * flag is untrustable. The flag 'COW_ZNODE' is set
3070 * for each dirty znode before committing, and it is
3071 * cleared as long as the znode become clean, so we
3072 * can statistic clean znode count according to this
3075 atomic_long_inc(&c->clean_zn_cnt);
3076 atomic_long_inc(&ubifs_clean_zn_cnt);
3078 } while (cnext && cnext != c->cnext);
3082 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3083 * @c: UBIFS file-system description object
3085 void ubifs_tnc_close(struct ubifs_info *c)
3087 tnc_destroy_cnext(c);
3088 if (c->zroot.znode) {
3091 n = atomic_long_read(&c->clean_zn_cnt);
3092 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3093 ubifs_assert(c, freed == n);
3094 atomic_long_sub(n, &ubifs_clean_zn_cnt);
3102 * left_znode - get the znode to the left.
3103 * @c: UBIFS file-system description object
3106 * This function returns a pointer to the znode to the left of @znode or NULL if
3107 * there is not one. A negative error code is returned on failure.
3109 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3110 struct ubifs_znode *znode)
3112 int level = znode->level;
3115 int n = znode->iip - 1;
3117 /* Go up until we can go left */
3118 znode = znode->parent;
3122 /* Now go down the rightmost branch to 'level' */
3123 znode = get_znode(c, znode, n);
3126 while (znode->level != level) {
3127 n = znode->child_cnt - 1;
3128 znode = get_znode(c, znode, n);
3139 * right_znode - get the znode to the right.
3140 * @c: UBIFS file-system description object
3143 * This function returns a pointer to the znode to the right of @znode or NULL
3144 * if there is not one. A negative error code is returned on failure.
3146 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3147 struct ubifs_znode *znode)
3149 int level = znode->level;
3152 int n = znode->iip + 1;
3154 /* Go up until we can go right */
3155 znode = znode->parent;
3158 if (n < znode->child_cnt) {
3159 /* Now go down the leftmost branch to 'level' */
3160 znode = get_znode(c, znode, n);
3163 while (znode->level != level) {
3164 znode = get_znode(c, znode, 0);
3175 * lookup_znode - find a particular indexing node from TNC.
3176 * @c: UBIFS file-system description object
3177 * @key: index node key to lookup
3178 * @level: index node level
3179 * @lnum: index node LEB number
3180 * @offs: index node offset
3182 * This function searches an indexing node by its first key @key and its
3183 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3184 * nodes it traverses to TNC. This function is called for indexing nodes which
3185 * were found on the media by scanning, for example when garbage-collecting or
3186 * when doing in-the-gaps commit. This means that the indexing node which is
3187 * looked for does not have to have exactly the same leftmost key @key, because
3188 * the leftmost key may have been changed, in which case TNC will contain a
3189 * dirty znode which still refers the same @lnum:@offs. This function is clever
3190 * enough to recognize such indexing nodes.
3192 * Note, if a znode was deleted or changed too much, then this function will
3193 * not find it. For situations like this UBIFS has the old index RB-tree
3194 * (indexed by @lnum:@offs).
3196 * This function returns a pointer to the znode found or %NULL if it is not
3197 * found. A negative error code is returned on failure.
3199 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3200 union ubifs_key *key, int level,
3203 struct ubifs_znode *znode, *zn;
3206 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3209 * The arguments have probably been read off flash, so don't assume
3213 return ERR_PTR(-EINVAL);
3215 /* Get the root znode */
3216 znode = c->zroot.znode;
3218 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3222 /* Check if it is the one we are looking for */
3223 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3225 /* Descend to the parent level i.e. (level + 1) */
3226 if (level >= znode->level)
3229 ubifs_search_zbranch(c, znode, key, &n);
3232 * We reached a znode where the leftmost key is greater
3233 * than the key we are searching for. This is the same
3234 * situation as the one described in a huge comment at
3235 * the end of the 'ubifs_lookup_level0()' function. And
3236 * for exactly the same reasons we have to try to look
3237 * left before giving up.
3239 znode = left_znode(c, znode);
3244 ubifs_search_zbranch(c, znode, key, &n);
3245 ubifs_assert(c, n >= 0);
3247 if (znode->level == level + 1)
3249 znode = get_znode(c, znode, n);
3253 /* Check if the child is the one we are looking for */
3254 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3255 return get_znode(c, znode, n);
3256 /* If the key is unique, there is nowhere else to look */
3257 if (!is_hash_key(c, key))
3260 * The key is not unique and so may be also in the znodes to either
3267 /* Move one branch to the left */
3271 znode = left_znode(c, znode);
3276 n = znode->child_cnt - 1;
3279 if (znode->zbranch[n].lnum == lnum &&
3280 znode->zbranch[n].offs == offs)
3281 return get_znode(c, znode, n);
3282 /* Stop if the key is less than the one we are looking for */
3283 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3286 /* Back to the middle */
3291 /* Move one branch to the right */
3292 if (++n >= znode->child_cnt) {
3293 znode = right_znode(c, znode);
3301 if (znode->zbranch[n].lnum == lnum &&
3302 znode->zbranch[n].offs == offs)
3303 return get_znode(c, znode, n);
3304 /* Stop if the key is greater than the one we are looking for */
3305 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3312 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3313 * @c: UBIFS file-system description object
3314 * @key: key of index node
3315 * @level: index node level
3316 * @lnum: LEB number of index node
3317 * @offs: offset of index node
3319 * This function returns %0 if the index node is not referred to in the TNC, %1
3320 * if the index node is referred to in the TNC and the corresponding znode is
3321 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3322 * znode is clean, and a negative error code in case of failure.
3324 * Note, the @key argument has to be the key of the first child. Also note,
3325 * this function relies on the fact that 0:0 is never a valid LEB number and
3326 * offset for a main-area node.
3328 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3331 struct ubifs_znode *znode;
3333 znode = lookup_znode(c, key, level, lnum, offs);
3337 return PTR_ERR(znode);
3339 return ubifs_zn_dirty(znode) ? 1 : 2;
3343 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3344 * @c: UBIFS file-system description object
3346 * @lnum: node LEB number
3347 * @offs: node offset
3349 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3350 * not, and a negative error code in case of failure.
3352 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3353 * and offset for a main-area node.
3355 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3358 struct ubifs_zbranch *zbr;
3359 struct ubifs_znode *znode, *zn;
3360 int n, found, err, nn;
3361 const int unique = !is_hash_key(c, key);
3363 found = ubifs_lookup_level0(c, key, &znode, &n);
3365 return found; /* Error code */
3368 zbr = &znode->zbranch[n];
3369 if (lnum == zbr->lnum && offs == zbr->offs)
3370 return 1; /* Found it */
3374 * Because the key is not unique, we have to look left
3381 err = tnc_prev(c, &znode, &n);
3386 if (keys_cmp(c, key, &znode->zbranch[n].key))
3388 zbr = &znode->zbranch[n];
3389 if (lnum == zbr->lnum && offs == zbr->offs)
3390 return 1; /* Found it */
3396 err = tnc_next(c, &znode, &n);
3402 if (keys_cmp(c, key, &znode->zbranch[n].key))
3404 zbr = &znode->zbranch[n];
3405 if (lnum == zbr->lnum && offs == zbr->offs)
3406 return 1; /* Found it */
3412 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3413 * @c: UBIFS file-system description object
3415 * @level: index node level (if it is an index node)
3416 * @lnum: node LEB number
3417 * @offs: node offset
3418 * @is_idx: non-zero if the node is an index node
3420 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3421 * negative error code in case of failure. For index nodes, @key has to be the
3422 * key of the first child. An index node is considered to be in the TNC only if
3423 * the corresponding znode is clean or has not been loaded.
3425 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3426 int lnum, int offs, int is_idx)
3430 mutex_lock(&c->tnc_mutex);
3432 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3436 /* The index node was found but it was dirty */
3439 /* The index node was found and it was clean */
3444 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3447 mutex_unlock(&c->tnc_mutex);
3452 * ubifs_dirty_idx_node - dirty an index node.
3453 * @c: UBIFS file-system description object
3454 * @key: index node key
3455 * @level: index node level
3456 * @lnum: index node LEB number
3457 * @offs: index node offset
3459 * This function loads and dirties an index node so that it can be garbage
3460 * collected. The @key argument has to be the key of the first child. This
3461 * function relies on the fact that 0:0 is never a valid LEB number and offset
3462 * for a main-area node. Returns %0 on success and a negative error code on
3465 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3468 struct ubifs_znode *znode;
3471 mutex_lock(&c->tnc_mutex);
3472 znode = lookup_znode(c, key, level, lnum, offs);
3475 if (IS_ERR(znode)) {
3476 err = PTR_ERR(znode);
3479 znode = dirty_cow_bottom_up(c, znode);
3480 if (IS_ERR(znode)) {
3481 err = PTR_ERR(znode);
3486 mutex_unlock(&c->tnc_mutex);
3491 * dbg_check_inode_size - check if inode size is correct.
3492 * @c: UBIFS file-system description object
3493 * @inode: inode to check
3496 * This function makes sure that the inode size (@size) is correct and it does
3497 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3498 * if it has a data page beyond @size, and other negative error code in case of
3501 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3505 union ubifs_key from_key, to_key, *key;
3506 struct ubifs_znode *znode;
3509 if (!S_ISREG(inode->i_mode))
3511 if (!dbg_is_chk_gen(c))
3514 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3515 data_key_init(c, &from_key, inode->i_ino, block);
3516 highest_data_key(c, &to_key, inode->i_ino);
3518 mutex_lock(&c->tnc_mutex);
3519 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3528 err = tnc_next(c, &znode, &n);
3529 if (err == -ENOENT) {
3536 ubifs_assert(c, err == 0);
3537 key = &znode->zbranch[n].key;
3538 if (!key_in_range(c, key, &from_key, &to_key))
3542 block = key_block(c, key);
3543 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3544 (unsigned long)inode->i_ino, size,
3545 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3546 mutex_unlock(&c->tnc_mutex);
3547 ubifs_dump_inode(c, inode);
3552 mutex_unlock(&c->tnc_mutex);