1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
21 #include <linux/crc32.h>
22 #include <linux/slab.h>
25 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
26 struct ubifs_zbranch *zbr);
27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
28 struct ubifs_zbranch *zbr, void *node);
31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32 * @NAME_LESS: name corresponding to the first argument is less than second
33 * @NAME_MATCHES: names match
34 * @NAME_GREATER: name corresponding to the second argument is greater than
36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
38 * These constants were introduce to improve readability.
47 static void do_insert_old_idx(struct ubifs_info *c,
48 struct ubifs_old_idx *old_idx)
50 struct ubifs_old_idx *o;
51 struct rb_node **p, *parent = NULL;
53 p = &c->old_idx.rb_node;
56 o = rb_entry(parent, struct ubifs_old_idx, rb);
57 if (old_idx->lnum < o->lnum)
59 else if (old_idx->lnum > o->lnum)
61 else if (old_idx->offs < o->offs)
63 else if (old_idx->offs > o->offs)
66 ubifs_err(c, "old idx added twice!");
70 rb_link_node(&old_idx->rb, parent, p);
71 rb_insert_color(&old_idx->rb, &c->old_idx);
75 * insert_old_idx - record an index node obsoleted since the last commit start.
76 * @c: UBIFS file-system description object
77 * @lnum: LEB number of obsoleted index node
78 * @offs: offset of obsoleted index node
80 * Returns %0 on success, and a negative error code on failure.
82 * For recovery, there must always be a complete intact version of the index on
83 * flash at all times. That is called the "old index". It is the index as at the
84 * time of the last successful commit. Many of the index nodes in the old index
85 * may be dirty, but they must not be erased until the next successful commit
86 * (at which point that index becomes the old index).
88 * That means that the garbage collection and the in-the-gaps method of
89 * committing must be able to determine if an index node is in the old index.
90 * Most of the old index nodes can be found by looking up the TNC using the
91 * 'lookup_znode()' function. However, some of the old index nodes may have
92 * been deleted from the current index or may have been changed so much that
93 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
94 * That is what this function does. The RB-tree is ordered by LEB number and
95 * offset because they uniquely identify the old index node.
97 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
99 struct ubifs_old_idx *old_idx;
101 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
102 if (unlikely(!old_idx))
104 old_idx->lnum = lnum;
105 old_idx->offs = offs;
106 do_insert_old_idx(c, old_idx);
112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
113 * @c: UBIFS file-system description object
114 * @znode: znode of obsoleted index node
116 * Returns %0 on success, and a negative error code on failure.
118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
121 struct ubifs_zbranch *zbr;
123 zbr = &znode->parent->zbranch[znode->iip];
125 return insert_old_idx(c, zbr->lnum, zbr->offs);
128 return insert_old_idx(c, c->zroot.lnum,
134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135 * @c: UBIFS file-system description object
136 * @znode: znode of obsoleted index node
138 * Returns %0 on success, and a negative error code on failure.
140 static int ins_clr_old_idx_znode(struct ubifs_info *c,
141 struct ubifs_znode *znode)
146 struct ubifs_zbranch *zbr;
148 zbr = &znode->parent->zbranch[znode->iip];
150 err = insert_old_idx(c, zbr->lnum, zbr->offs);
159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
170 * destroy_old_idx - destroy the old_idx RB-tree.
171 * @c: UBIFS file-system description object
173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
174 * nodes that were in the index last commit but have since been deleted. This
175 * is necessary for recovery i.e. the old index must be kept intact until the
176 * new index is successfully written. The old-idx RB-tree is used for the
177 * in-the-gaps method of writing index nodes and is destroyed every commit.
179 void destroy_old_idx(struct ubifs_info *c)
181 struct ubifs_old_idx *old_idx, *n;
183 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
186 c->old_idx = RB_ROOT;
190 * copy_znode - copy a dirty znode.
191 * @c: UBIFS file-system description object
192 * @znode: znode to copy
194 * A dirty znode being committed may not be changed, so it is copied.
196 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
197 struct ubifs_znode *znode)
199 struct ubifs_znode *zn;
201 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
203 return ERR_PTR(-ENOMEM);
206 __set_bit(DIRTY_ZNODE, &zn->flags);
207 __clear_bit(COW_ZNODE, &zn->flags);
213 * add_idx_dirt - add dirt due to a dirty znode.
214 * @c: UBIFS file-system description object
215 * @lnum: LEB number of index node
216 * @dirt: size of index node
218 * This function updates lprops dirty space and the new size of the index.
220 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
222 c->calc_idx_sz -= ALIGN(dirt, 8);
223 return ubifs_add_dirt(c, lnum, dirt);
227 * replace_znode - replace old znode with new znode.
228 * @c: UBIFS file-system description object
231 * @zbr: the branch of parent znode
233 * Replace old znode with new znode in TNC.
235 static void replace_znode(struct ubifs_info *c, struct ubifs_znode *new_zn,
236 struct ubifs_znode *old_zn, struct ubifs_zbranch *zbr)
238 ubifs_assert(c, !ubifs_zn_obsolete(old_zn));
239 __set_bit(OBSOLETE_ZNODE, &old_zn->flags);
241 if (old_zn->level != 0) {
243 const int n = new_zn->child_cnt;
245 /* The children now have new parent */
246 for (i = 0; i < n; i++) {
247 struct ubifs_zbranch *child = &new_zn->zbranch[i];
250 child->znode->parent = new_zn;
259 atomic_long_inc(&c->dirty_zn_cnt);
263 * dirty_cow_znode - ensure a znode is not being committed.
264 * @c: UBIFS file-system description object
265 * @zbr: branch of znode to check
267 * Returns dirtied znode on success or negative error code on failure.
269 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
270 struct ubifs_zbranch *zbr)
272 struct ubifs_znode *znode = zbr->znode;
273 struct ubifs_znode *zn;
276 if (!ubifs_zn_cow(znode)) {
277 /* znode is not being committed */
278 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
279 atomic_long_inc(&c->dirty_zn_cnt);
280 atomic_long_dec(&c->clean_zn_cnt);
281 atomic_long_dec(&ubifs_clean_zn_cnt);
282 err = add_idx_dirt(c, zbr->lnum, zbr->len);
289 zn = copy_znode(c, znode);
294 struct ubifs_old_idx *old_idx;
296 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
297 if (unlikely(!old_idx)) {
301 old_idx->lnum = zbr->lnum;
302 old_idx->offs = zbr->offs;
304 err = add_idx_dirt(c, zbr->lnum, zbr->len);
310 do_insert_old_idx(c, old_idx);
313 replace_znode(c, zn, znode, zbr);
323 * lnc_add - add a leaf node to the leaf node cache.
324 * @c: UBIFS file-system description object
325 * @zbr: zbranch of leaf node
328 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
329 * purpose of the leaf node cache is to save re-reading the same leaf node over
330 * and over again. Most things are cached by VFS, however the file system must
331 * cache directory entries for readdir and for resolving hash collisions. The
332 * present implementation of the leaf node cache is extremely simple, and
333 * allows for error returns that are not used but that may be needed if a more
334 * complex implementation is created.
336 * Note, this function does not add the @node object to LNC directly, but
337 * allocates a copy of the object and adds the copy to LNC. The reason for this
338 * is that @node has been allocated outside of the TNC subsystem and will be
339 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
340 * may be changed at any time, e.g. freed by the shrinker.
342 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
347 const struct ubifs_dent_node *dent = node;
349 ubifs_assert(c, !zbr->leaf);
350 ubifs_assert(c, zbr->len != 0);
351 ubifs_assert(c, is_hash_key(c, &zbr->key));
353 err = ubifs_validate_entry(c, dent);
356 ubifs_dump_node(c, dent, zbr->len);
360 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
362 /* We don't have to have the cache, so no error */
365 zbr->leaf = lnc_node;
370 * lnc_add_directly - add a leaf node to the leaf-node-cache.
371 * @c: UBIFS file-system description object
372 * @zbr: zbranch of leaf node
375 * This function is similar to 'lnc_add()', but it does not create a copy of
376 * @node but inserts @node to TNC directly.
378 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
383 ubifs_assert(c, !zbr->leaf);
384 ubifs_assert(c, zbr->len != 0);
386 err = ubifs_validate_entry(c, node);
389 ubifs_dump_node(c, node, zbr->len);
398 * lnc_free - remove a leaf node from the leaf node cache.
399 * @zbr: zbranch of leaf node
401 static void lnc_free(struct ubifs_zbranch *zbr)
410 * tnc_read_hashed_node - read a "hashed" leaf node.
411 * @c: UBIFS file-system description object
412 * @zbr: key and position of the node
413 * @node: node is returned here
415 * This function reads a "hashed" node defined by @zbr from the leaf node cache
416 * (in it is there) or from the hash media, in which case the node is also
417 * added to LNC. Returns zero in case of success or a negative error
418 * code in case of failure.
420 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
425 ubifs_assert(c, is_hash_key(c, &zbr->key));
428 /* Read from the leaf node cache */
429 ubifs_assert(c, zbr->len != 0);
430 memcpy(node, zbr->leaf, zbr->len);
435 err = fallible_read_node(c, &zbr->key, zbr, node);
437 * When the node was not found, return -ENOENT, 0 otherwise.
438 * Negative return codes stay as-is.
445 err = ubifs_tnc_read_node(c, zbr, node);
450 /* Add the node to the leaf node cache */
451 err = lnc_add(c, zbr, node);
456 * try_read_node - read a node if it is a node.
457 * @c: UBIFS file-system description object
458 * @buf: buffer to read to
460 * @zbr: the zbranch describing the node to read
462 * This function tries to read a node of known type and length, checks it and
463 * stores it in @buf. This function returns %1 if a node is present and %0 if
464 * a node is not present. A negative error code is returned for I/O errors.
465 * This function performs that same function as ubifs_read_node except that
466 * it does not require that there is actually a node present and instead
467 * the return code indicates if a node was read.
469 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
470 * is true (it is controlled by corresponding mount option). However, if
471 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
472 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
473 * because during mounting or re-mounting from R/O mode to R/W mode we may read
474 * journal nodes (when replying the journal or doing the recovery) and the
475 * journal nodes may potentially be corrupted, so checking is required.
477 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
478 struct ubifs_zbranch *zbr)
481 int lnum = zbr->lnum;
482 int offs = zbr->offs;
484 struct ubifs_ch *ch = buf;
485 uint32_t crc, node_crc;
487 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
489 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
491 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
492 type, lnum, offs, err);
496 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
499 if (ch->node_type != type)
502 node_len = le32_to_cpu(ch->len);
506 if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
508 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
509 node_crc = le32_to_cpu(ch->crc);
514 err = ubifs_node_check_hash(c, buf, zbr->hash);
516 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
524 * fallible_read_node - try to read a leaf node.
525 * @c: UBIFS file-system description object
526 * @key: key of node to read
527 * @zbr: position of node
528 * @node: node returned
530 * This function tries to read a node and returns %1 if the node is read, %0
531 * if the node is not present, and a negative error code in the case of error.
533 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
534 struct ubifs_zbranch *zbr, void *node)
538 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
540 ret = try_read_node(c, node, key_type(c, key), zbr);
542 union ubifs_key node_key;
543 struct ubifs_dent_node *dent = node;
545 /* All nodes have key in the same place */
546 key_read(c, &dent->key, &node_key);
547 if (keys_cmp(c, key, &node_key) != 0)
550 if (ret == 0 && c->replaying)
551 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
552 zbr->lnum, zbr->offs, zbr->len);
557 * matches_name - determine if a direntry or xattr entry matches a given name.
558 * @c: UBIFS file-system description object
559 * @zbr: zbranch of dent
562 * This function checks if xentry/direntry referred by zbranch @zbr matches name
563 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
564 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
565 * of failure, a negative error code is returned.
567 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
568 const struct fscrypt_name *nm)
570 struct ubifs_dent_node *dent;
573 /* If possible, match against the dent in the leaf node cache */
575 dent = kmalloc(zbr->len, GFP_NOFS);
579 err = ubifs_tnc_read_node(c, zbr, dent);
583 /* Add the node to the leaf node cache */
584 err = lnc_add_directly(c, zbr, dent);
590 nlen = le16_to_cpu(dent->nlen);
591 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
593 if (nlen == fname_len(nm))
595 else if (nlen < fname_len(nm))
610 * get_znode - get a TNC znode that may not be loaded yet.
611 * @c: UBIFS file-system description object
612 * @znode: parent znode
613 * @n: znode branch slot number
615 * This function returns the znode or a negative error code.
617 static struct ubifs_znode *get_znode(struct ubifs_info *c,
618 struct ubifs_znode *znode, int n)
620 struct ubifs_zbranch *zbr;
622 zbr = &znode->zbranch[n];
626 znode = ubifs_load_znode(c, zbr, znode, n);
631 * tnc_next - find next TNC entry.
632 * @c: UBIFS file-system description object
633 * @zn: znode is passed and returned here
634 * @n: znode branch slot number is passed and returned here
636 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
637 * no next entry, or a negative error code otherwise.
639 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
641 struct ubifs_znode *znode = *zn;
645 if (nn < znode->child_cnt) {
650 struct ubifs_znode *zp;
657 if (nn < znode->child_cnt) {
658 znode = get_znode(c, znode, nn);
660 return PTR_ERR(znode);
661 while (znode->level != 0) {
662 znode = get_znode(c, znode, 0);
664 return PTR_ERR(znode);
676 * tnc_prev - find previous TNC entry.
677 * @c: UBIFS file-system description object
678 * @zn: znode is returned here
679 * @n: znode branch slot number is passed and returned here
681 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
682 * there is no next entry, or a negative error code otherwise.
684 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
686 struct ubifs_znode *znode = *zn;
694 struct ubifs_znode *zp;
702 znode = get_znode(c, znode, nn);
704 return PTR_ERR(znode);
705 while (znode->level != 0) {
706 nn = znode->child_cnt - 1;
707 znode = get_znode(c, znode, nn);
709 return PTR_ERR(znode);
711 nn = znode->child_cnt - 1;
721 * resolve_collision - resolve a collision.
722 * @c: UBIFS file-system description object
723 * @key: key of a directory or extended attribute entry
724 * @zn: znode is returned here
725 * @n: zbranch number is passed and returned here
726 * @nm: name of the entry
728 * This function is called for "hashed" keys to make sure that the found key
729 * really corresponds to the looked up node (directory or extended attribute
730 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
731 * %0 is returned if @nm is not found and @zn and @n are set to the previous
732 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
733 * This means that @n may be set to %-1 if the leftmost key in @zn is the
734 * previous one. A negative error code is returned on failures.
736 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
737 struct ubifs_znode **zn, int *n,
738 const struct fscrypt_name *nm)
742 err = matches_name(c, &(*zn)->zbranch[*n], nm);
743 if (unlikely(err < 0))
745 if (err == NAME_MATCHES)
748 if (err == NAME_GREATER) {
751 err = tnc_prev(c, zn, n);
752 if (err == -ENOENT) {
753 ubifs_assert(c, *n == 0);
759 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
761 * We have found the branch after which we would
762 * like to insert, but inserting in this znode
763 * may still be wrong. Consider the following 3
764 * znodes, in the case where we are resolving a
765 * collision with Key2.
768 * ----------------------
769 * level 1 | Key0 | Key1 |
770 * -----------------------
772 * znode za | | znode zb
773 * ------------ ------------
774 * level 0 | Key0 | | Key2 |
775 * ------------ ------------
777 * The lookup finds Key2 in znode zb. Lets say
778 * there is no match and the name is greater so
779 * we look left. When we find Key0, we end up
780 * here. If we return now, we will insert into
781 * znode za at slot n = 1. But that is invalid
782 * according to the parent's keys. Key2 must
783 * be inserted into znode zb.
785 * Note, this problem is not relevant for the
786 * case when we go right, because
787 * 'tnc_insert()' would correct the parent key.
789 if (*n == (*zn)->child_cnt - 1) {
790 err = tnc_next(c, zn, n);
792 /* Should be impossible */
798 ubifs_assert(c, *n == 0);
803 err = matches_name(c, &(*zn)->zbranch[*n], nm);
806 if (err == NAME_LESS)
808 if (err == NAME_MATCHES)
810 ubifs_assert(c, err == NAME_GREATER);
814 struct ubifs_znode *znode = *zn;
818 err = tnc_next(c, &znode, &nn);
823 if (keys_cmp(c, &znode->zbranch[nn].key, key))
825 err = matches_name(c, &znode->zbranch[nn], nm);
828 if (err == NAME_GREATER)
832 if (err == NAME_MATCHES)
834 ubifs_assert(c, err == NAME_LESS);
840 * fallible_matches_name - determine if a dent matches a given name.
841 * @c: UBIFS file-system description object
842 * @zbr: zbranch of dent
845 * This is a "fallible" version of 'matches_name()' function which does not
846 * panic if the direntry/xentry referred by @zbr does not exist on the media.
848 * This function checks if xentry/direntry referred by zbranch @zbr matches name
849 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
850 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
851 * if xentry/direntry referred by @zbr does not exist on the media. A negative
852 * error code is returned in case of failure.
854 static int fallible_matches_name(struct ubifs_info *c,
855 struct ubifs_zbranch *zbr,
856 const struct fscrypt_name *nm)
858 struct ubifs_dent_node *dent;
861 /* If possible, match against the dent in the leaf node cache */
863 dent = kmalloc(zbr->len, GFP_NOFS);
867 err = fallible_read_node(c, &zbr->key, zbr, dent);
871 /* The node was not present */
875 ubifs_assert(c, err == 1);
877 err = lnc_add_directly(c, zbr, dent);
883 nlen = le16_to_cpu(dent->nlen);
884 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
886 if (nlen == fname_len(nm))
888 else if (nlen < fname_len(nm))
903 * fallible_resolve_collision - resolve a collision even if nodes are missing.
904 * @c: UBIFS file-system description object
906 * @zn: znode is returned here
907 * @n: branch number is passed and returned here
908 * @nm: name of directory entry
909 * @adding: indicates caller is adding a key to the TNC
911 * This is a "fallible" version of the 'resolve_collision()' function which
912 * does not panic if one of the nodes referred to by TNC does not exist on the
913 * media. This may happen when replaying the journal if a deleted node was
914 * Garbage-collected and the commit was not done. A branch that refers to a node
915 * that is not present is called a dangling branch. The following are the return
916 * codes for this function:
917 * o if @nm was found, %1 is returned and @zn and @n are set to the found
919 * o if we are @adding and @nm was not found, %0 is returned;
920 * o if we are not @adding and @nm was not found, but a dangling branch was
921 * found, then %1 is returned and @zn and @n are set to the dangling branch;
922 * o a negative error code is returned in case of failure.
924 static int fallible_resolve_collision(struct ubifs_info *c,
925 const union ubifs_key *key,
926 struct ubifs_znode **zn, int *n,
927 const struct fscrypt_name *nm,
930 struct ubifs_znode *o_znode = NULL, *znode = *zn;
931 int o_n, err, cmp, unsure = 0, nn = *n;
933 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
934 if (unlikely(cmp < 0))
936 if (cmp == NAME_MATCHES)
938 if (cmp == NOT_ON_MEDIA) {
942 * We are unlucky and hit a dangling branch straight away.
943 * Now we do not really know where to go to find the needed
944 * branch - to the left or to the right. Well, let's try left.
948 unsure = 1; /* Remove a dangling branch wherever it is */
950 if (cmp == NAME_GREATER || unsure) {
953 err = tnc_prev(c, zn, n);
954 if (err == -ENOENT) {
955 ubifs_assert(c, *n == 0);
961 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
962 /* See comments in 'resolve_collision()' */
963 if (*n == (*zn)->child_cnt - 1) {
964 err = tnc_next(c, zn, n);
966 /* Should be impossible */
972 ubifs_assert(c, *n == 0);
977 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
980 if (err == NAME_MATCHES)
982 if (err == NOT_ON_MEDIA) {
989 if (err == NAME_LESS)
996 if (cmp == NAME_LESS || unsure) {
1001 err = tnc_next(c, &znode, &nn);
1006 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1008 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
1011 if (err == NAME_GREATER)
1015 if (err == NAME_MATCHES)
1017 if (err == NOT_ON_MEDIA) {
1024 /* Never match a dangling branch when adding */
1025 if (adding || !o_znode)
1028 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1029 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1030 o_znode->zbranch[o_n].len);
1037 * matches_position - determine if a zbranch matches a given position.
1038 * @zbr: zbranch of dent
1039 * @lnum: LEB number of dent to match
1040 * @offs: offset of dent to match
1042 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1044 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1046 if (zbr->lnum == lnum && zbr->offs == offs)
1053 * resolve_collision_directly - resolve a collision directly.
1054 * @c: UBIFS file-system description object
1055 * @key: key of directory entry
1056 * @zn: znode is passed and returned here
1057 * @n: zbranch number is passed and returned here
1058 * @lnum: LEB number of dent node to match
1059 * @offs: offset of dent node to match
1061 * This function is used for "hashed" keys to make sure the found directory or
1062 * extended attribute entry node is what was looked for. It is used when the
1063 * flash address of the right node is known (@lnum:@offs) which makes it much
1064 * easier to resolve collisions (no need to read entries and match full
1065 * names). This function returns %1 and sets @zn and @n if the collision is
1066 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1067 * previous directory entry. Otherwise a negative error code is returned.
1069 static int resolve_collision_directly(struct ubifs_info *c,
1070 const union ubifs_key *key,
1071 struct ubifs_znode **zn, int *n,
1074 struct ubifs_znode *znode;
1079 if (matches_position(&znode->zbranch[nn], lnum, offs))
1084 err = tnc_prev(c, &znode, &nn);
1089 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1091 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1102 err = tnc_next(c, &znode, &nn);
1107 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1111 if (matches_position(&znode->zbranch[nn], lnum, offs))
1117 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1118 * @c: UBIFS file-system description object
1119 * @znode: znode to dirty
1121 * If we do not have a unique key that resides in a znode, then we cannot
1122 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1123 * This function records the path back to the last dirty ancestor, and then
1124 * dirties the znodes on that path.
1126 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1127 struct ubifs_znode *znode)
1129 struct ubifs_znode *zp;
1130 int *path = c->bottom_up_buf, p = 0;
1132 ubifs_assert(c, c->zroot.znode);
1133 ubifs_assert(c, znode);
1134 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1135 kfree(c->bottom_up_buf);
1136 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1139 if (!c->bottom_up_buf)
1140 return ERR_PTR(-ENOMEM);
1141 path = c->bottom_up_buf;
1143 if (c->zroot.znode->level) {
1144 /* Go up until parent is dirty */
1152 ubifs_assert(c, p < c->zroot.znode->level);
1154 if (!zp->cnext && ubifs_zn_dirty(znode))
1160 /* Come back down, dirtying as we go */
1162 struct ubifs_zbranch *zbr;
1166 ubifs_assert(c, path[p - 1] >= 0);
1167 ubifs_assert(c, path[p - 1] < zp->child_cnt);
1168 zbr = &zp->zbranch[path[--p]];
1169 znode = dirty_cow_znode(c, zbr);
1171 ubifs_assert(c, znode == c->zroot.znode);
1172 znode = dirty_cow_znode(c, &c->zroot);
1174 if (IS_ERR(znode) || !p)
1176 ubifs_assert(c, path[p - 1] >= 0);
1177 ubifs_assert(c, path[p - 1] < znode->child_cnt);
1178 znode = znode->zbranch[path[p - 1]].znode;
1185 * ubifs_lookup_level0 - search for zero-level znode.
1186 * @c: UBIFS file-system description object
1187 * @key: key to lookup
1188 * @zn: znode is returned here
1189 * @n: znode branch slot number is returned here
1191 * This function looks up the TNC tree and search for zero-level znode which
1192 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1194 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1195 * is returned and slot number of the matched branch is stored in @n;
1196 * o not exact match, which means that zero-level znode does not contain
1197 * @key, then %0 is returned and slot number of the closest branch or %-1
1198 * is stored in @n; In this case calling tnc_next() is mandatory.
1199 * o @key is so small that it is even less than the lowest key of the
1200 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1202 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1203 * function reads corresponding indexing nodes and inserts them to TNC. In
1204 * case of failure, a negative error code is returned.
1206 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1207 struct ubifs_znode **zn, int *n)
1210 struct ubifs_znode *znode;
1211 time64_t time = ktime_get_seconds();
1213 dbg_tnck(key, "search key ");
1214 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1216 znode = c->zroot.znode;
1217 if (unlikely(!znode)) {
1218 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1220 return PTR_ERR(znode);
1226 struct ubifs_zbranch *zbr;
1228 exact = ubifs_search_zbranch(c, znode, key, n);
1230 if (znode->level == 0)
1235 zbr = &znode->zbranch[*n];
1243 /* znode is not in TNC cache, load it from the media */
1244 znode = ubifs_load_znode(c, zbr, znode, *n);
1246 return PTR_ERR(znode);
1250 if (exact || !is_hash_key(c, key) || *n != -1) {
1251 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1256 * Here is a tricky place. We have not found the key and this is a
1257 * "hashed" key, which may collide. The rest of the code deals with
1258 * situations like this:
1262 * | 3 | 5 | | 6 | 7 | (x)
1264 * Or more a complex example:
1268 * | 1 | 3 | | 5 | 8 |
1270 * | 5 | 5 | | 6 | 7 | (x)
1272 * In the examples, if we are looking for key "5", we may reach nodes
1273 * marked with "(x)". In this case what we have do is to look at the
1274 * left and see if there is "5" key there. If there is, we have to
1277 * Note, this whole situation is possible because we allow to have
1278 * elements which are equivalent to the next key in the parent in the
1279 * children of current znode. For example, this happens if we split a
1280 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1284 * | 3 | 5 | | 5 | 6 | 7 |
1286 * And this becomes what is at the first "picture" after key "5" marked
1287 * with "^" is removed. What could be done is we could prohibit
1288 * splitting in the middle of the colliding sequence. Also, when
1289 * removing the leftmost key, we would have to correct the key of the
1290 * parent node, which would introduce additional complications. Namely,
1291 * if we changed the leftmost key of the parent znode, the garbage
1292 * collector would be unable to find it (GC is doing this when GC'ing
1293 * indexing LEBs). Although we already have an additional RB-tree where
1294 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1295 * after the commit. But anyway, this does not look easy to implement
1296 * so we did not try this.
1298 err = tnc_prev(c, &znode, n);
1299 if (err == -ENOENT) {
1300 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1304 if (unlikely(err < 0))
1306 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1307 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1312 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1318 * lookup_level0_dirty - search for zero-level znode dirtying.
1319 * @c: UBIFS file-system description object
1320 * @key: key to lookup
1321 * @zn: znode is returned here
1322 * @n: znode branch slot number is returned here
1324 * This function looks up the TNC tree and search for zero-level znode which
1325 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1327 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1328 * is returned and slot number of the matched branch is stored in @n;
1329 * o not exact match, which means that zero-level znode does not contain @key
1330 * then %0 is returned and slot number of the closed branch is stored in
1332 * o @key is so small that it is even less than the lowest key of the
1333 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1335 * Additionally all znodes in the path from the root to the located zero-level
1336 * znode are marked as dirty.
1338 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1339 * function reads corresponding indexing nodes and inserts them to TNC. In
1340 * case of failure, a negative error code is returned.
1342 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1343 struct ubifs_znode **zn, int *n)
1346 struct ubifs_znode *znode;
1347 time64_t time = ktime_get_seconds();
1349 dbg_tnck(key, "search and dirty key ");
1351 znode = c->zroot.znode;
1352 if (unlikely(!znode)) {
1353 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1355 return PTR_ERR(znode);
1358 znode = dirty_cow_znode(c, &c->zroot);
1360 return PTR_ERR(znode);
1365 struct ubifs_zbranch *zbr;
1367 exact = ubifs_search_zbranch(c, znode, key, n);
1369 if (znode->level == 0)
1374 zbr = &znode->zbranch[*n];
1378 znode = dirty_cow_znode(c, zbr);
1380 return PTR_ERR(znode);
1384 /* znode is not in TNC cache, load it from the media */
1385 znode = ubifs_load_znode(c, zbr, znode, *n);
1387 return PTR_ERR(znode);
1388 znode = dirty_cow_znode(c, zbr);
1390 return PTR_ERR(znode);
1394 if (exact || !is_hash_key(c, key) || *n != -1) {
1395 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1400 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1403 err = tnc_prev(c, &znode, n);
1404 if (err == -ENOENT) {
1406 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1409 if (unlikely(err < 0))
1411 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1413 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1417 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1418 znode = dirty_cow_bottom_up(c, znode);
1420 return PTR_ERR(znode);
1423 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1429 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1430 * @c: UBIFS file-system description object
1432 * @gc_seq1: garbage collection sequence number
1434 * This function determines if @lnum may have been garbage collected since
1435 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1438 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1440 int gc_seq2, gced_lnum;
1442 gced_lnum = c->gced_lnum;
1444 gc_seq2 = c->gc_seq;
1445 /* Same seq means no GC */
1446 if (gc_seq1 == gc_seq2)
1448 /* Different by more than 1 means we don't know */
1449 if (gc_seq1 + 1 != gc_seq2)
1452 * We have seen the sequence number has increased by 1. Now we need to
1453 * be sure we read the right LEB number, so read it again.
1456 if (gced_lnum != c->gced_lnum)
1458 /* Finally we can check lnum */
1459 if (gced_lnum == lnum)
1465 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1466 * @c: UBIFS file-system description object
1467 * @key: node key to lookup
1468 * @node: the node is returned here
1469 * @lnum: LEB number is returned here
1470 * @offs: offset is returned here
1472 * This function looks up and reads node with key @key. The caller has to make
1473 * sure the @node buffer is large enough to fit the node. Returns zero in case
1474 * of success, %-ENOENT if the node was not found, and a negative error code in
1475 * case of failure. The node location can be returned in @lnum and @offs.
1477 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1478 void *node, int *lnum, int *offs)
1480 int found, n, err, safely = 0, gc_seq1;
1481 struct ubifs_znode *znode;
1482 struct ubifs_zbranch zbr, *zt;
1485 mutex_lock(&c->tnc_mutex);
1486 found = ubifs_lookup_level0(c, key, &znode, &n);
1490 } else if (found < 0) {
1494 zt = &znode->zbranch[n];
1499 if (is_hash_key(c, key)) {
1501 * In this case the leaf node cache gets used, so we pass the
1502 * address of the zbranch and keep the mutex locked
1504 err = tnc_read_hashed_node(c, zt, node);
1508 err = ubifs_tnc_read_node(c, zt, node);
1511 /* Drop the TNC mutex prematurely and race with garbage collection */
1512 zbr = znode->zbranch[n];
1513 gc_seq1 = c->gc_seq;
1514 mutex_unlock(&c->tnc_mutex);
1516 if (ubifs_get_wbuf(c, zbr.lnum)) {
1517 /* We do not GC journal heads */
1518 err = ubifs_tnc_read_node(c, &zbr, node);
1522 err = fallible_read_node(c, key, &zbr, node);
1523 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1525 * The node may have been GC'ed out from under us so try again
1526 * while keeping the TNC mutex locked.
1534 mutex_unlock(&c->tnc_mutex);
1539 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1540 * @c: UBIFS file-system description object
1541 * @bu: bulk-read parameters and results
1543 * Lookup consecutive data node keys for the same inode that reside
1544 * consecutively in the same LEB. This function returns zero in case of success
1545 * and a negative error code in case of failure.
1547 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1548 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1549 * maximum possible amount of nodes for bulk-read.
1551 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1553 int n, err = 0, lnum = -1, offs;
1555 unsigned int block = key_block(c, &bu->key);
1556 struct ubifs_znode *znode;
1562 mutex_lock(&c->tnc_mutex);
1563 /* Find first key */
1564 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1569 len = znode->zbranch[n].len;
1570 /* The buffer must be big enough for at least 1 node */
1571 if (len > bu->buf_len) {
1576 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1578 lnum = znode->zbranch[n].lnum;
1579 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1582 struct ubifs_zbranch *zbr;
1583 union ubifs_key *key;
1584 unsigned int next_block;
1587 err = tnc_next(c, &znode, &n);
1590 zbr = &znode->zbranch[n];
1592 /* See if there is another data key for this file */
1593 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1594 key_type(c, key) != UBIFS_DATA_KEY) {
1599 /* First key found */
1601 offs = ALIGN(zbr->offs + zbr->len, 8);
1603 if (len > bu->buf_len) {
1609 * The data nodes must be in consecutive positions in
1612 if (zbr->lnum != lnum || zbr->offs != offs)
1614 offs += ALIGN(zbr->len, 8);
1615 len = ALIGN(len, 8) + zbr->len;
1616 /* Must not exceed buffer length */
1617 if (len > bu->buf_len)
1620 /* Allow for holes */
1621 next_block = key_block(c, key);
1622 bu->blk_cnt += (next_block - block - 1);
1623 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1627 bu->zbranch[bu->cnt++] = *zbr;
1629 /* See if we have room for more */
1630 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1632 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1636 if (err == -ENOENT) {
1640 bu->gc_seq = c->gc_seq;
1641 mutex_unlock(&c->tnc_mutex);
1645 * An enormous hole could cause bulk-read to encompass too many
1646 * page cache pages, so limit the number here.
1648 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1649 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1651 * Ensure that bulk-read covers a whole number of page cache
1654 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1655 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1658 /* At the end of file we can round up */
1659 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1662 /* Exclude data nodes that do not make up a whole page cache page */
1663 block = key_block(c, &bu->key) + bu->blk_cnt;
1664 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1666 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1674 * read_wbuf - bulk-read from a LEB with a wbuf.
1675 * @wbuf: wbuf that may overlap the read
1676 * @buf: buffer into which to read
1678 * @lnum: LEB number from which to read
1679 * @offs: offset from which to read
1681 * This functions returns %0 on success or a negative error code on failure.
1683 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1686 const struct ubifs_info *c = wbuf->c;
1689 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1690 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1691 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1692 ubifs_assert(c, offs + len <= c->leb_size);
1694 spin_lock(&wbuf->lock);
1695 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1697 /* We may safely unlock the write-buffer and read the data */
1698 spin_unlock(&wbuf->lock);
1699 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1702 /* Don't read under wbuf */
1703 rlen = wbuf->offs - offs;
1707 /* Copy the rest from the write-buffer */
1708 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1709 spin_unlock(&wbuf->lock);
1712 /* Read everything that goes before write-buffer */
1713 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1719 * validate_data_node - validate data nodes for bulk-read.
1720 * @c: UBIFS file-system description object
1721 * @buf: buffer containing data node to validate
1722 * @zbr: zbranch of data node to validate
1724 * This functions returns %0 on success or a negative error code on failure.
1726 static int validate_data_node(struct ubifs_info *c, void *buf,
1727 struct ubifs_zbranch *zbr)
1729 union ubifs_key key1;
1730 struct ubifs_ch *ch = buf;
1733 if (ch->node_type != UBIFS_DATA_NODE) {
1734 ubifs_err(c, "bad node type (%d but expected %d)",
1735 ch->node_type, UBIFS_DATA_NODE);
1739 err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1741 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1745 err = ubifs_node_check_hash(c, buf, zbr->hash);
1747 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1751 len = le32_to_cpu(ch->len);
1752 if (len != zbr->len) {
1753 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1757 /* Make sure the key of the read node is correct */
1758 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1759 if (!keys_eq(c, &zbr->key, &key1)) {
1760 ubifs_err(c, "bad key in node at LEB %d:%d",
1761 zbr->lnum, zbr->offs);
1762 dbg_tnck(&zbr->key, "looked for key ");
1763 dbg_tnck(&key1, "found node's key ");
1772 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1773 ubifs_dump_node(c, buf, zbr->len);
1779 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1780 * @c: UBIFS file-system description object
1781 * @bu: bulk-read parameters and results
1783 * This functions reads and validates the data nodes that were identified by the
1784 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1785 * -EAGAIN to indicate a race with GC, or another negative error code on
1788 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1790 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1791 struct ubifs_wbuf *wbuf;
1794 len = bu->zbranch[bu->cnt - 1].offs;
1795 len += bu->zbranch[bu->cnt - 1].len - offs;
1796 if (len > bu->buf_len) {
1797 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1802 wbuf = ubifs_get_wbuf(c, lnum);
1804 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1806 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1808 /* Check for a race with GC */
1809 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1812 if (err && err != -EBADMSG) {
1813 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1816 dbg_tnck(&bu->key, "key ");
1820 /* Validate the nodes read */
1822 for (i = 0; i < bu->cnt; i++) {
1823 err = validate_data_node(c, buf, &bu->zbranch[i]);
1826 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1833 * do_lookup_nm- look up a "hashed" node.
1834 * @c: UBIFS file-system description object
1835 * @key: node key to lookup
1836 * @node: the node is returned here
1839 * This function looks up and reads a node which contains name hash in the key.
1840 * Since the hash may have collisions, there may be many nodes with the same
1841 * key, so we have to sequentially look to all of them until the needed one is
1842 * found. This function returns zero in case of success, %-ENOENT if the node
1843 * was not found, and a negative error code in case of failure.
1845 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1846 void *node, const struct fscrypt_name *nm)
1849 struct ubifs_znode *znode;
1851 dbg_tnck(key, "key ");
1852 mutex_lock(&c->tnc_mutex);
1853 found = ubifs_lookup_level0(c, key, &znode, &n);
1857 } else if (found < 0) {
1862 ubifs_assert(c, n >= 0);
1864 err = resolve_collision(c, key, &znode, &n, nm);
1865 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1866 if (unlikely(err < 0))
1873 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1876 mutex_unlock(&c->tnc_mutex);
1881 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1882 * @c: UBIFS file-system description object
1883 * @key: node key to lookup
1884 * @node: the node is returned here
1887 * This function looks up and reads a node which contains name hash in the key.
1888 * Since the hash may have collisions, there may be many nodes with the same
1889 * key, so we have to sequentially look to all of them until the needed one is
1890 * found. This function returns zero in case of success, %-ENOENT if the node
1891 * was not found, and a negative error code in case of failure.
1893 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1894 void *node, const struct fscrypt_name *nm)
1897 const struct ubifs_dent_node *dent = node;
1900 * We assume that in most of the cases there are no name collisions and
1901 * 'ubifs_tnc_lookup()' returns us the right direntry.
1903 err = ubifs_tnc_lookup(c, key, node);
1907 len = le16_to_cpu(dent->nlen);
1908 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1912 * Unluckily, there are hash collisions and we have to iterate over
1913 * them look at each direntry with colliding name hash sequentially.
1916 return do_lookup_nm(c, key, node, nm);
1919 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1920 struct ubifs_dent_node *dent, uint32_t cookie,
1921 struct ubifs_znode **zn, int *n, int exact)
1924 struct ubifs_znode *znode = *zn;
1925 struct ubifs_zbranch *zbr;
1926 union ubifs_key *dkey;
1929 err = tnc_next(c, &znode, n);
1935 zbr = &znode->zbranch[*n];
1938 if (key_inum(c, dkey) != key_inum(c, key) ||
1939 key_type(c, dkey) != key_type(c, key)) {
1943 err = tnc_read_hashed_node(c, zbr, dent);
1947 if (key_hash(c, key) == key_hash(c, dkey) &&
1948 le32_to_cpu(dent->cookie) == cookie) {
1953 err = tnc_next(c, &znode, n);
1959 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1960 struct ubifs_dent_node *dent, uint32_t cookie)
1963 struct ubifs_znode *znode;
1964 union ubifs_key start_key;
1966 ubifs_assert(c, is_hash_key(c, key));
1968 lowest_dent_key(c, &start_key, key_inum(c, key));
1970 mutex_lock(&c->tnc_mutex);
1971 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1972 if (unlikely(err < 0))
1975 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1978 mutex_unlock(&c->tnc_mutex);
1983 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1984 * @c: UBIFS file-system description object
1985 * @key: node key to lookup
1986 * @node: the node is returned here
1987 * @cookie: node cookie for collision resolution
1989 * This function looks up and reads a node which contains name hash in the key.
1990 * Since the hash may have collisions, there may be many nodes with the same
1991 * key, so we have to sequentially look to all of them until the needed one
1992 * with the same cookie value is found.
1993 * This function returns zero in case of success, %-ENOENT if the node
1994 * was not found, and a negative error code in case of failure.
1996 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1997 void *node, uint32_t cookie)
2000 const struct ubifs_dent_node *dent = node;
2002 if (!c->double_hash)
2006 * We assume that in most of the cases there are no name collisions and
2007 * 'ubifs_tnc_lookup()' returns us the right direntry.
2009 err = ubifs_tnc_lookup(c, key, node);
2013 if (le32_to_cpu(dent->cookie) == cookie)
2017 * Unluckily, there are hash collisions and we have to iterate over
2018 * them look at each direntry with colliding name hash sequentially.
2020 return do_lookup_dh(c, key, node, cookie);
2024 * correct_parent_keys - correct parent znodes' keys.
2025 * @c: UBIFS file-system description object
2026 * @znode: znode to correct parent znodes for
2028 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
2029 * zbranch changes, keys of parent znodes have to be corrected. This helper
2030 * function is called in such situations and corrects the keys if needed.
2032 static void correct_parent_keys(const struct ubifs_info *c,
2033 struct ubifs_znode *znode)
2035 union ubifs_key *key, *key1;
2037 ubifs_assert(c, znode->parent);
2038 ubifs_assert(c, znode->iip == 0);
2040 key = &znode->zbranch[0].key;
2041 key1 = &znode->parent->zbranch[0].key;
2043 while (keys_cmp(c, key, key1) < 0) {
2044 key_copy(c, key, key1);
2045 znode = znode->parent;
2047 if (!znode->parent || znode->iip)
2049 key1 = &znode->parent->zbranch[0].key;
2054 * insert_zbranch - insert a zbranch into a znode.
2055 * @c: UBIFS file-system description object
2056 * @znode: znode into which to insert
2057 * @zbr: zbranch to insert
2058 * @n: slot number to insert to
2060 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2061 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2062 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2063 * slot, zbranches starting from @n have to be moved right.
2065 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2066 const struct ubifs_zbranch *zbr, int n)
2070 ubifs_assert(c, ubifs_zn_dirty(znode));
2073 for (i = znode->child_cnt; i > n; i--) {
2074 znode->zbranch[i] = znode->zbranch[i - 1];
2075 if (znode->zbranch[i].znode)
2076 znode->zbranch[i].znode->iip = i;
2079 zbr->znode->iip = n;
2081 for (i = znode->child_cnt; i > n; i--)
2082 znode->zbranch[i] = znode->zbranch[i - 1];
2084 znode->zbranch[n] = *zbr;
2085 znode->child_cnt += 1;
2088 * After inserting at slot zero, the lower bound of the key range of
2089 * this znode may have changed. If this znode is subsequently split
2090 * then the upper bound of the key range may change, and furthermore
2091 * it could change to be lower than the original lower bound. If that
2092 * happens, then it will no longer be possible to find this znode in the
2093 * TNC using the key from the index node on flash. That is bad because
2094 * if it is not found, we will assume it is obsolete and may overwrite
2095 * it. Then if there is an unclean unmount, we will start using the
2096 * old index which will be broken.
2098 * So we first mark znodes that have insertions at slot zero, and then
2099 * if they are split we add their lnum/offs to the old_idx tree.
2106 * tnc_insert - insert a node into TNC.
2107 * @c: UBIFS file-system description object
2108 * @znode: znode to insert into
2109 * @zbr: branch to insert
2110 * @n: slot number to insert new zbranch to
2112 * This function inserts a new node described by @zbr into znode @znode. If
2113 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2114 * are splat as well if needed. Returns zero in case of success or a negative
2115 * error code in case of failure.
2117 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2118 struct ubifs_zbranch *zbr, int n)
2120 struct ubifs_znode *zn, *zi, *zp;
2121 int i, keep, move, appending = 0;
2122 union ubifs_key *key = &zbr->key, *key1;
2124 ubifs_assert(c, n >= 0 && n <= c->fanout);
2126 /* Implement naive insert for now */
2129 if (znode->child_cnt < c->fanout) {
2130 ubifs_assert(c, n != c->fanout);
2131 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2133 insert_zbranch(c, znode, zbr, n);
2135 /* Ensure parent's key is correct */
2136 if (n == 0 && zp && znode->iip == 0)
2137 correct_parent_keys(c, znode);
2143 * Unfortunately, @znode does not have more empty slots and we have to
2146 dbg_tnck(key, "splitting level %d, key ", znode->level);
2150 * We can no longer be sure of finding this znode by key, so we
2151 * record it in the old_idx tree.
2153 ins_clr_old_idx_znode(c, znode);
2155 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2159 zn->level = znode->level;
2161 /* Decide where to split */
2162 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2163 /* Try not to split consecutive data keys */
2164 if (n == c->fanout) {
2165 key1 = &znode->zbranch[n - 1].key;
2166 if (key_inum(c, key1) == key_inum(c, key) &&
2167 key_type(c, key1) == UBIFS_DATA_KEY)
2171 } else if (appending && n != c->fanout) {
2172 /* Try not to split consecutive data keys */
2175 if (n >= (c->fanout + 1) / 2) {
2176 key1 = &znode->zbranch[0].key;
2177 if (key_inum(c, key1) == key_inum(c, key) &&
2178 key_type(c, key1) == UBIFS_DATA_KEY) {
2179 key1 = &znode->zbranch[n].key;
2180 if (key_inum(c, key1) != key_inum(c, key) ||
2181 key_type(c, key1) != UBIFS_DATA_KEY) {
2183 move = c->fanout - keep;
2195 keep = (c->fanout + 1) / 2;
2196 move = c->fanout - keep;
2200 * Although we don't at present, we could look at the neighbors and see
2201 * if we can move some zbranches there.
2205 /* Insert into existing znode */
2210 /* Insert into new znode */
2215 zbr->znode->parent = zn;
2220 __set_bit(DIRTY_ZNODE, &zn->flags);
2221 atomic_long_inc(&c->dirty_zn_cnt);
2223 zn->child_cnt = move;
2224 znode->child_cnt = keep;
2226 dbg_tnc("moving %d, keeping %d", move, keep);
2229 for (i = 0; i < move; i++) {
2230 zn->zbranch[i] = znode->zbranch[keep + i];
2233 if (zn->zbranch[i].znode) {
2234 zn->zbranch[i].znode->parent = zn;
2235 zn->zbranch[i].znode->iip = i;
2239 /* Insert new key and branch */
2240 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2242 insert_zbranch(c, zi, zbr, n);
2244 /* Insert new znode (produced by spitting) into the parent */
2246 if (n == 0 && zi == znode && znode->iip == 0)
2247 correct_parent_keys(c, znode);
2249 /* Locate insertion point */
2252 /* Tail recursion */
2253 zbr->key = zn->zbranch[0].key;
2263 /* We have to split root znode */
2264 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2266 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2271 zi->level = znode->level + 1;
2273 __set_bit(DIRTY_ZNODE, &zi->flags);
2274 atomic_long_inc(&c->dirty_zn_cnt);
2276 zi->zbranch[0].key = znode->zbranch[0].key;
2277 zi->zbranch[0].znode = znode;
2278 zi->zbranch[0].lnum = c->zroot.lnum;
2279 zi->zbranch[0].offs = c->zroot.offs;
2280 zi->zbranch[0].len = c->zroot.len;
2281 zi->zbranch[1].key = zn->zbranch[0].key;
2282 zi->zbranch[1].znode = zn;
2287 c->zroot.znode = zi;
2298 * ubifs_tnc_add - add a node to TNC.
2299 * @c: UBIFS file-system description object
2301 * @lnum: LEB number of node
2302 * @offs: node offset
2304 * @hash: The hash over the node
2306 * This function adds a node with key @key to TNC. The node may be new or it may
2307 * obsolete some existing one. Returns %0 on success or negative error code on
2310 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2311 int offs, int len, const u8 *hash)
2313 int found, n, err = 0;
2314 struct ubifs_znode *znode;
2316 mutex_lock(&c->tnc_mutex);
2317 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2318 found = lookup_level0_dirty(c, key, &znode, &n);
2320 struct ubifs_zbranch zbr;
2326 ubifs_copy_hash(c, hash, zbr.hash);
2327 key_copy(c, key, &zbr.key);
2328 err = tnc_insert(c, znode, &zbr, n + 1);
2329 } else if (found == 1) {
2330 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2333 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2337 ubifs_copy_hash(c, hash, zbr->hash);
2341 err = dbg_check_tnc(c, 0);
2342 mutex_unlock(&c->tnc_mutex);
2348 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2349 * @c: UBIFS file-system description object
2351 * @old_lnum: LEB number of old node
2352 * @old_offs: old node offset
2353 * @lnum: LEB number of node
2354 * @offs: node offset
2357 * This function replaces a node with key @key in the TNC only if the old node
2358 * is found. This function is called by garbage collection when node are moved.
2359 * Returns %0 on success or negative error code on failure.
2361 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2362 int old_lnum, int old_offs, int lnum, int offs, int len)
2364 int found, n, err = 0;
2365 struct ubifs_znode *znode;
2367 mutex_lock(&c->tnc_mutex);
2368 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2369 old_offs, lnum, offs, len);
2370 found = lookup_level0_dirty(c, key, &znode, &n);
2377 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2380 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2382 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2389 } else if (is_hash_key(c, key)) {
2390 found = resolve_collision_directly(c, key, &znode, &n,
2391 old_lnum, old_offs);
2392 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2393 found, znode, n, old_lnum, old_offs);
2400 /* Ensure the znode is dirtied */
2401 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2402 znode = dirty_cow_bottom_up(c, znode);
2403 if (IS_ERR(znode)) {
2404 err = PTR_ERR(znode);
2408 zbr = &znode->zbranch[n];
2410 err = ubifs_add_dirt(c, zbr->lnum,
2422 err = ubifs_add_dirt(c, lnum, len);
2425 err = dbg_check_tnc(c, 0);
2428 mutex_unlock(&c->tnc_mutex);
2433 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2434 * @c: UBIFS file-system description object
2436 * @lnum: LEB number of node
2437 * @offs: node offset
2439 * @hash: The hash over the node
2442 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2443 * may have collisions, like directory entry keys.
2445 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2446 int lnum, int offs, int len, const u8 *hash,
2447 const struct fscrypt_name *nm)
2449 int found, n, err = 0;
2450 struct ubifs_znode *znode;
2452 mutex_lock(&c->tnc_mutex);
2453 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2454 found = lookup_level0_dirty(c, key, &znode, &n);
2462 found = fallible_resolve_collision(c, key, &znode, &n,
2465 found = resolve_collision(c, key, &znode, &n, nm);
2466 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2472 /* Ensure the znode is dirtied */
2473 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2474 znode = dirty_cow_bottom_up(c, znode);
2475 if (IS_ERR(znode)) {
2476 err = PTR_ERR(znode);
2482 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2485 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2489 ubifs_copy_hash(c, hash, zbr->hash);
2495 struct ubifs_zbranch zbr;
2501 ubifs_copy_hash(c, hash, zbr.hash);
2502 key_copy(c, key, &zbr.key);
2503 err = tnc_insert(c, znode, &zbr, n + 1);
2508 * We did not find it in the index so there may be a
2509 * dangling branch still in the index. So we remove it
2510 * by passing 'ubifs_tnc_remove_nm()' the same key but
2511 * an unmatchable name.
2513 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2515 err = dbg_check_tnc(c, 0);
2516 mutex_unlock(&c->tnc_mutex);
2519 return ubifs_tnc_remove_nm(c, key, &noname);
2525 err = dbg_check_tnc(c, 0);
2526 mutex_unlock(&c->tnc_mutex);
2531 * tnc_delete - delete a znode form TNC.
2532 * @c: UBIFS file-system description object
2533 * @znode: znode to delete from
2534 * @n: zbranch slot number to delete
2536 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2537 * case of success and a negative error code in case of failure.
2539 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2541 struct ubifs_zbranch *zbr;
2542 struct ubifs_znode *zp;
2545 /* Delete without merge for now */
2546 ubifs_assert(c, znode->level == 0);
2547 ubifs_assert(c, n >= 0 && n < c->fanout);
2548 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2550 zbr = &znode->zbranch[n];
2553 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2555 ubifs_dump_znode(c, znode);
2559 /* We do not "gap" zbranch slots */
2560 for (i = n; i < znode->child_cnt - 1; i++)
2561 znode->zbranch[i] = znode->zbranch[i + 1];
2562 znode->child_cnt -= 1;
2564 if (znode->child_cnt > 0)
2568 * This was the last zbranch, we have to delete this znode from the
2573 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2574 ubifs_assert(c, ubifs_zn_dirty(znode));
2579 atomic_long_dec(&c->dirty_zn_cnt);
2581 err = insert_old_idx_znode(c, znode);
2586 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2587 atomic_long_inc(&c->clean_zn_cnt);
2588 atomic_long_inc(&ubifs_clean_zn_cnt);
2592 } while (znode->child_cnt == 1); /* while removing last child */
2594 /* Remove from znode, entry n - 1 */
2595 znode->child_cnt -= 1;
2596 ubifs_assert(c, znode->level != 0);
2597 for (i = n; i < znode->child_cnt; i++) {
2598 znode->zbranch[i] = znode->zbranch[i + 1];
2599 if (znode->zbranch[i].znode)
2600 znode->zbranch[i].znode->iip = i;
2604 * If this is the root and it has only 1 child then
2605 * collapse the tree.
2607 if (!znode->parent) {
2608 while (znode->child_cnt == 1 && znode->level != 0) {
2610 zbr = &znode->zbranch[0];
2611 znode = get_znode(c, znode, 0);
2613 return PTR_ERR(znode);
2614 znode = dirty_cow_znode(c, zbr);
2616 return PTR_ERR(znode);
2617 znode->parent = NULL;
2620 err = insert_old_idx(c, c->zroot.lnum,
2625 c->zroot.lnum = zbr->lnum;
2626 c->zroot.offs = zbr->offs;
2627 c->zroot.len = zbr->len;
2628 c->zroot.znode = znode;
2629 ubifs_assert(c, !ubifs_zn_obsolete(zp));
2630 ubifs_assert(c, ubifs_zn_dirty(zp));
2631 atomic_long_dec(&c->dirty_zn_cnt);
2634 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2635 atomic_long_inc(&c->clean_zn_cnt);
2636 atomic_long_inc(&ubifs_clean_zn_cnt);
2646 * ubifs_tnc_remove - remove an index entry of a node.
2647 * @c: UBIFS file-system description object
2650 * Returns %0 on success or negative error code on failure.
2652 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2654 int found, n, err = 0;
2655 struct ubifs_znode *znode;
2657 mutex_lock(&c->tnc_mutex);
2658 dbg_tnck(key, "key ");
2659 found = lookup_level0_dirty(c, key, &znode, &n);
2665 err = tnc_delete(c, znode, n);
2667 err = dbg_check_tnc(c, 0);
2670 mutex_unlock(&c->tnc_mutex);
2675 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2676 * @c: UBIFS file-system description object
2678 * @nm: directory entry name
2680 * Returns %0 on success or negative error code on failure.
2682 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2683 const struct fscrypt_name *nm)
2686 struct ubifs_znode *znode;
2688 mutex_lock(&c->tnc_mutex);
2689 dbg_tnck(key, "key ");
2690 err = lookup_level0_dirty(c, key, &znode, &n);
2696 err = fallible_resolve_collision(c, key, &znode, &n,
2699 err = resolve_collision(c, key, &znode, &n, nm);
2700 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2704 /* Ensure the znode is dirtied */
2705 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2706 znode = dirty_cow_bottom_up(c, znode);
2707 if (IS_ERR(znode)) {
2708 err = PTR_ERR(znode);
2712 err = tnc_delete(c, znode, n);
2718 err = dbg_check_tnc(c, 0);
2719 mutex_unlock(&c->tnc_mutex);
2724 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2725 * @c: UBIFS file-system description object
2727 * @cookie: node cookie for collision resolution
2729 * Returns %0 on success or negative error code on failure.
2731 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2735 struct ubifs_znode *znode;
2736 struct ubifs_dent_node *dent;
2737 struct ubifs_zbranch *zbr;
2739 if (!c->double_hash)
2742 mutex_lock(&c->tnc_mutex);
2743 err = lookup_level0_dirty(c, key, &znode, &n);
2747 zbr = &znode->zbranch[n];
2748 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2754 err = tnc_read_hashed_node(c, zbr, dent);
2758 /* If the cookie does not match, we're facing a hash collision. */
2759 if (le32_to_cpu(dent->cookie) != cookie) {
2760 union ubifs_key start_key;
2762 lowest_dent_key(c, &start_key, key_inum(c, key));
2764 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2765 if (unlikely(err < 0))
2768 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2773 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2774 znode = dirty_cow_bottom_up(c, znode);
2775 if (IS_ERR(znode)) {
2776 err = PTR_ERR(znode);
2780 err = tnc_delete(c, znode, n);
2786 err = dbg_check_tnc(c, 0);
2787 mutex_unlock(&c->tnc_mutex);
2792 * key_in_range - determine if a key falls within a range of keys.
2793 * @c: UBIFS file-system description object
2794 * @key: key to check
2795 * @from_key: lowest key in range
2796 * @to_key: highest key in range
2798 * This function returns %1 if the key is in range and %0 otherwise.
2800 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2801 union ubifs_key *from_key, union ubifs_key *to_key)
2803 if (keys_cmp(c, key, from_key) < 0)
2805 if (keys_cmp(c, key, to_key) > 0)
2811 * ubifs_tnc_remove_range - remove index entries in range.
2812 * @c: UBIFS file-system description object
2813 * @from_key: lowest key to remove
2814 * @to_key: highest key to remove
2816 * This function removes index entries starting at @from_key and ending at
2817 * @to_key. This function returns zero in case of success and a negative error
2818 * code in case of failure.
2820 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2821 union ubifs_key *to_key)
2823 int i, n, k, err = 0;
2824 struct ubifs_znode *znode;
2825 union ubifs_key *key;
2827 mutex_lock(&c->tnc_mutex);
2829 /* Find first level 0 znode that contains keys to remove */
2830 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2837 err = tnc_next(c, &znode, &n);
2838 if (err == -ENOENT) {
2844 key = &znode->zbranch[n].key;
2845 if (!key_in_range(c, key, from_key, to_key)) {
2851 /* Ensure the znode is dirtied */
2852 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2853 znode = dirty_cow_bottom_up(c, znode);
2854 if (IS_ERR(znode)) {
2855 err = PTR_ERR(znode);
2860 /* Remove all keys in range except the first */
2861 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2862 key = &znode->zbranch[i].key;
2863 if (!key_in_range(c, key, from_key, to_key))
2865 lnc_free(&znode->zbranch[i]);
2866 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2867 znode->zbranch[i].len);
2869 ubifs_dump_znode(c, znode);
2872 dbg_tnck(key, "removing key ");
2875 for (i = n + 1 + k; i < znode->child_cnt; i++)
2876 znode->zbranch[i - k] = znode->zbranch[i];
2877 znode->child_cnt -= k;
2880 /* Now delete the first */
2881 err = tnc_delete(c, znode, n);
2888 err = dbg_check_tnc(c, 0);
2889 mutex_unlock(&c->tnc_mutex);
2894 * ubifs_tnc_remove_ino - remove an inode from TNC.
2895 * @c: UBIFS file-system description object
2896 * @inum: inode number to remove
2898 * This function remove inode @inum and all the extended attributes associated
2899 * with the anode from TNC and returns zero in case of success or a negative
2900 * error code in case of failure.
2902 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2904 union ubifs_key key1, key2;
2905 struct ubifs_dent_node *xent, *pxent = NULL;
2906 struct fscrypt_name nm = {0};
2908 dbg_tnc("ino %lu", (unsigned long)inum);
2911 * Walk all extended attribute entries and remove them together with
2912 * corresponding extended attribute inodes.
2914 lowest_xent_key(c, &key1, inum);
2919 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2921 err = PTR_ERR(xent);
2928 xattr_inum = le64_to_cpu(xent->inum);
2929 dbg_tnc("xent '%s', ino %lu", xent->name,
2930 (unsigned long)xattr_inum);
2932 ubifs_evict_xattr_inode(c, xattr_inum);
2934 fname_name(&nm) = xent->name;
2935 fname_len(&nm) = le16_to_cpu(xent->nlen);
2936 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2943 lowest_ino_key(c, &key1, xattr_inum);
2944 highest_ino_key(c, &key2, xattr_inum);
2945 err = ubifs_tnc_remove_range(c, &key1, &key2);
2954 key_read(c, &xent->key, &key1);
2958 lowest_ino_key(c, &key1, inum);
2959 highest_ino_key(c, &key2, inum);
2961 return ubifs_tnc_remove_range(c, &key1, &key2);
2965 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2966 * @c: UBIFS file-system description object
2967 * @key: key of last entry
2968 * @nm: name of last entry found or %NULL
2970 * This function finds and reads the next directory or extended attribute entry
2971 * after the given key (@key) if there is one. @nm is used to resolve
2974 * If the name of the current entry is not known and only the key is known,
2975 * @nm->name has to be %NULL. In this case the semantics of this function is a
2976 * little bit different and it returns the entry corresponding to this key, not
2977 * the next one. If the key was not found, the closest "right" entry is
2980 * If the fist entry has to be found, @key has to contain the lowest possible
2981 * key value for this inode and @name has to be %NULL.
2983 * This function returns the found directory or extended attribute entry node
2984 * in case of success, %-ENOENT is returned if no entry was found, and a
2985 * negative error code is returned in case of failure.
2987 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2988 union ubifs_key *key,
2989 const struct fscrypt_name *nm)
2991 int n, err, type = key_type(c, key);
2992 struct ubifs_znode *znode;
2993 struct ubifs_dent_node *dent;
2994 struct ubifs_zbranch *zbr;
2995 union ubifs_key *dkey;
2997 dbg_tnck(key, "key ");
2998 ubifs_assert(c, is_hash_key(c, key));
3000 mutex_lock(&c->tnc_mutex);
3001 err = ubifs_lookup_level0(c, key, &znode, &n);
3002 if (unlikely(err < 0))
3005 if (fname_len(nm) > 0) {
3007 /* Handle collisions */
3009 err = fallible_resolve_collision(c, key, &znode, &n,
3012 err = resolve_collision(c, key, &znode, &n, nm);
3013 dbg_tnc("rc returned %d, znode %p, n %d",
3015 if (unlikely(err < 0))
3019 /* Now find next entry */
3020 err = tnc_next(c, &znode, &n);
3025 * The full name of the entry was not given, in which case the
3026 * behavior of this function is a little different and it
3027 * returns current entry, not the next one.
3031 * However, the given key does not exist in the TNC
3032 * tree and @znode/@n variables contain the closest
3033 * "preceding" element. Switch to the next one.
3035 err = tnc_next(c, &znode, &n);
3041 zbr = &znode->zbranch[n];
3042 dent = kmalloc(zbr->len, GFP_NOFS);
3043 if (unlikely(!dent)) {
3049 * The above 'tnc_next()' call could lead us to the next inode, check
3053 if (key_inum(c, dkey) != key_inum(c, key) ||
3054 key_type(c, dkey) != type) {
3059 err = tnc_read_hashed_node(c, zbr, dent);
3063 mutex_unlock(&c->tnc_mutex);
3069 mutex_unlock(&c->tnc_mutex);
3070 return ERR_PTR(err);
3074 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3075 * @c: UBIFS file-system description object
3077 * Destroy left-over obsolete znodes from a failed commit.
3079 static void tnc_destroy_cnext(struct ubifs_info *c)
3081 struct ubifs_znode *cnext;
3085 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3088 struct ubifs_znode *znode = cnext;
3090 cnext = cnext->cnext;
3091 if (ubifs_zn_obsolete(znode))
3093 else if (!ubifs_zn_cow(znode)) {
3095 * Don't forget to update clean znode count after
3096 * committing failed, because ubifs will check this
3097 * count while closing tnc. Non-obsolete znode could
3098 * be re-dirtied during committing process, so dirty
3099 * flag is untrustable. The flag 'COW_ZNODE' is set
3100 * for each dirty znode before committing, and it is
3101 * cleared as long as the znode become clean, so we
3102 * can statistic clean znode count according to this
3105 atomic_long_inc(&c->clean_zn_cnt);
3106 atomic_long_inc(&ubifs_clean_zn_cnt);
3108 } while (cnext && cnext != c->cnext);
3112 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3113 * @c: UBIFS file-system description object
3115 void ubifs_tnc_close(struct ubifs_info *c)
3117 tnc_destroy_cnext(c);
3118 if (c->zroot.znode) {
3121 n = atomic_long_read(&c->clean_zn_cnt);
3122 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3123 ubifs_assert(c, freed == n);
3124 atomic_long_sub(n, &ubifs_clean_zn_cnt);
3132 * left_znode - get the znode to the left.
3133 * @c: UBIFS file-system description object
3136 * This function returns a pointer to the znode to the left of @znode or NULL if
3137 * there is not one. A negative error code is returned on failure.
3139 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3140 struct ubifs_znode *znode)
3142 int level = znode->level;
3145 int n = znode->iip - 1;
3147 /* Go up until we can go left */
3148 znode = znode->parent;
3152 /* Now go down the rightmost branch to 'level' */
3153 znode = get_znode(c, znode, n);
3156 while (znode->level != level) {
3157 n = znode->child_cnt - 1;
3158 znode = get_znode(c, znode, n);
3169 * right_znode - get the znode to the right.
3170 * @c: UBIFS file-system description object
3173 * This function returns a pointer to the znode to the right of @znode or NULL
3174 * if there is not one. A negative error code is returned on failure.
3176 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3177 struct ubifs_znode *znode)
3179 int level = znode->level;
3182 int n = znode->iip + 1;
3184 /* Go up until we can go right */
3185 znode = znode->parent;
3188 if (n < znode->child_cnt) {
3189 /* Now go down the leftmost branch to 'level' */
3190 znode = get_znode(c, znode, n);
3193 while (znode->level != level) {
3194 znode = get_znode(c, znode, 0);
3205 * lookup_znode - find a particular indexing node from TNC.
3206 * @c: UBIFS file-system description object
3207 * @key: index node key to lookup
3208 * @level: index node level
3209 * @lnum: index node LEB number
3210 * @offs: index node offset
3212 * This function searches an indexing node by its first key @key and its
3213 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3214 * nodes it traverses to TNC. This function is called for indexing nodes which
3215 * were found on the media by scanning, for example when garbage-collecting or
3216 * when doing in-the-gaps commit. This means that the indexing node which is
3217 * looked for does not have to have exactly the same leftmost key @key, because
3218 * the leftmost key may have been changed, in which case TNC will contain a
3219 * dirty znode which still refers the same @lnum:@offs. This function is clever
3220 * enough to recognize such indexing nodes.
3222 * Note, if a znode was deleted or changed too much, then this function will
3223 * not find it. For situations like this UBIFS has the old index RB-tree
3224 * (indexed by @lnum:@offs).
3226 * This function returns a pointer to the znode found or %NULL if it is not
3227 * found. A negative error code is returned on failure.
3229 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3230 union ubifs_key *key, int level,
3233 struct ubifs_znode *znode, *zn;
3236 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3239 * The arguments have probably been read off flash, so don't assume
3243 return ERR_PTR(-EINVAL);
3245 /* Get the root znode */
3246 znode = c->zroot.znode;
3248 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3252 /* Check if it is the one we are looking for */
3253 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3255 /* Descend to the parent level i.e. (level + 1) */
3256 if (level >= znode->level)
3259 ubifs_search_zbranch(c, znode, key, &n);
3262 * We reached a znode where the leftmost key is greater
3263 * than the key we are searching for. This is the same
3264 * situation as the one described in a huge comment at
3265 * the end of the 'ubifs_lookup_level0()' function. And
3266 * for exactly the same reasons we have to try to look
3267 * left before giving up.
3269 znode = left_znode(c, znode);
3274 ubifs_search_zbranch(c, znode, key, &n);
3275 ubifs_assert(c, n >= 0);
3277 if (znode->level == level + 1)
3279 znode = get_znode(c, znode, n);
3283 /* Check if the child is the one we are looking for */
3284 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3285 return get_znode(c, znode, n);
3286 /* If the key is unique, there is nowhere else to look */
3287 if (!is_hash_key(c, key))
3290 * The key is not unique and so may be also in the znodes to either
3297 /* Move one branch to the left */
3301 znode = left_znode(c, znode);
3306 n = znode->child_cnt - 1;
3309 if (znode->zbranch[n].lnum == lnum &&
3310 znode->zbranch[n].offs == offs)
3311 return get_znode(c, znode, n);
3312 /* Stop if the key is less than the one we are looking for */
3313 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3316 /* Back to the middle */
3321 /* Move one branch to the right */
3322 if (++n >= znode->child_cnt) {
3323 znode = right_znode(c, znode);
3331 if (znode->zbranch[n].lnum == lnum &&
3332 znode->zbranch[n].offs == offs)
3333 return get_znode(c, znode, n);
3334 /* Stop if the key is greater than the one we are looking for */
3335 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3342 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3343 * @c: UBIFS file-system description object
3344 * @key: key of index node
3345 * @level: index node level
3346 * @lnum: LEB number of index node
3347 * @offs: offset of index node
3349 * This function returns %0 if the index node is not referred to in the TNC, %1
3350 * if the index node is referred to in the TNC and the corresponding znode is
3351 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3352 * znode is clean, and a negative error code in case of failure.
3354 * Note, the @key argument has to be the key of the first child. Also note,
3355 * this function relies on the fact that 0:0 is never a valid LEB number and
3356 * offset for a main-area node.
3358 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3361 struct ubifs_znode *znode;
3363 znode = lookup_znode(c, key, level, lnum, offs);
3367 return PTR_ERR(znode);
3369 return ubifs_zn_dirty(znode) ? 1 : 2;
3373 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3374 * @c: UBIFS file-system description object
3376 * @lnum: node LEB number
3377 * @offs: node offset
3379 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3380 * not, and a negative error code in case of failure.
3382 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3383 * and offset for a main-area node.
3385 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3388 struct ubifs_zbranch *zbr;
3389 struct ubifs_znode *znode, *zn;
3390 int n, found, err, nn;
3391 const int unique = !is_hash_key(c, key);
3393 found = ubifs_lookup_level0(c, key, &znode, &n);
3395 return found; /* Error code */
3398 zbr = &znode->zbranch[n];
3399 if (lnum == zbr->lnum && offs == zbr->offs)
3400 return 1; /* Found it */
3404 * Because the key is not unique, we have to look left
3411 err = tnc_prev(c, &znode, &n);
3416 if (keys_cmp(c, key, &znode->zbranch[n].key))
3418 zbr = &znode->zbranch[n];
3419 if (lnum == zbr->lnum && offs == zbr->offs)
3420 return 1; /* Found it */
3426 err = tnc_next(c, &znode, &n);
3432 if (keys_cmp(c, key, &znode->zbranch[n].key))
3434 zbr = &znode->zbranch[n];
3435 if (lnum == zbr->lnum && offs == zbr->offs)
3436 return 1; /* Found it */
3442 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3443 * @c: UBIFS file-system description object
3445 * @level: index node level (if it is an index node)
3446 * @lnum: node LEB number
3447 * @offs: node offset
3448 * @is_idx: non-zero if the node is an index node
3450 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3451 * negative error code in case of failure. For index nodes, @key has to be the
3452 * key of the first child. An index node is considered to be in the TNC only if
3453 * the corresponding znode is clean or has not been loaded.
3455 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3456 int lnum, int offs, int is_idx)
3460 mutex_lock(&c->tnc_mutex);
3462 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3466 /* The index node was found but it was dirty */
3469 /* The index node was found and it was clean */
3474 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3477 mutex_unlock(&c->tnc_mutex);
3482 * ubifs_dirty_idx_node - dirty an index node.
3483 * @c: UBIFS file-system description object
3484 * @key: index node key
3485 * @level: index node level
3486 * @lnum: index node LEB number
3487 * @offs: index node offset
3489 * This function loads and dirties an index node so that it can be garbage
3490 * collected. The @key argument has to be the key of the first child. This
3491 * function relies on the fact that 0:0 is never a valid LEB number and offset
3492 * for a main-area node. Returns %0 on success and a negative error code on
3495 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3498 struct ubifs_znode *znode;
3501 mutex_lock(&c->tnc_mutex);
3502 znode = lookup_znode(c, key, level, lnum, offs);
3505 if (IS_ERR(znode)) {
3506 err = PTR_ERR(znode);
3509 znode = dirty_cow_bottom_up(c, znode);
3510 if (IS_ERR(znode)) {
3511 err = PTR_ERR(znode);
3516 mutex_unlock(&c->tnc_mutex);
3521 * dbg_check_inode_size - check if inode size is correct.
3522 * @c: UBIFS file-system description object
3523 * @inode: inode to check
3526 * This function makes sure that the inode size (@size) is correct and it does
3527 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3528 * if it has a data page beyond @size, and other negative error code in case of
3531 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3535 union ubifs_key from_key, to_key, *key;
3536 struct ubifs_znode *znode;
3539 if (!S_ISREG(inode->i_mode))
3541 if (!dbg_is_chk_gen(c))
3544 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3545 data_key_init(c, &from_key, inode->i_ino, block);
3546 highest_data_key(c, &to_key, inode->i_ino);
3548 mutex_lock(&c->tnc_mutex);
3549 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3558 err = tnc_next(c, &znode, &n);
3559 if (err == -ENOENT) {
3566 ubifs_assert(c, err == 0);
3567 key = &znode->zbranch[n].key;
3568 if (!key_in_range(c, key, &from_key, &to_key))
3572 block = key_block(c, key);
3573 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3574 (unsigned long)inode->i_ino, size,
3575 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3576 mutex_unlock(&c->tnc_mutex);
3577 ubifs_dump_inode(c, inode);
3582 mutex_unlock(&c->tnc_mutex);