1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
21 #include <linux/crc32.h>
22 #include <linux/slab.h>
25 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
26 struct ubifs_zbranch *zbr);
27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
28 struct ubifs_zbranch *zbr, void *node);
31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32 * @NAME_LESS: name corresponding to the first argument is less than second
33 * @NAME_MATCHES: names match
34 * @NAME_GREATER: name corresponding to the second argument is greater than
36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
38 * These constants were introduce to improve readability.
48 * insert_old_idx - record an index node obsoleted since the last commit start.
49 * @c: UBIFS file-system description object
50 * @lnum: LEB number of obsoleted index node
51 * @offs: offset of obsoleted index node
53 * Returns %0 on success, and a negative error code on failure.
55 * For recovery, there must always be a complete intact version of the index on
56 * flash at all times. That is called the "old index". It is the index as at the
57 * time of the last successful commit. Many of the index nodes in the old index
58 * may be dirty, but they must not be erased until the next successful commit
59 * (at which point that index becomes the old index).
61 * That means that the garbage collection and the in-the-gaps method of
62 * committing must be able to determine if an index node is in the old index.
63 * Most of the old index nodes can be found by looking up the TNC using the
64 * 'lookup_znode()' function. However, some of the old index nodes may have
65 * been deleted from the current index or may have been changed so much that
66 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
67 * That is what this function does. The RB-tree is ordered by LEB number and
68 * offset because they uniquely identify the old index node.
70 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
72 struct ubifs_old_idx *old_idx, *o;
73 struct rb_node **p, *parent = NULL;
75 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
76 if (unlikely(!old_idx))
81 p = &c->old_idx.rb_node;
84 o = rb_entry(parent, struct ubifs_old_idx, rb);
87 else if (lnum > o->lnum)
89 else if (offs < o->offs)
91 else if (offs > o->offs)
94 ubifs_err(c, "old idx added twice!");
99 rb_link_node(&old_idx->rb, parent, p);
100 rb_insert_color(&old_idx->rb, &c->old_idx);
105 * insert_old_idx_znode - record a znode obsoleted since last commit start.
106 * @c: UBIFS file-system description object
107 * @znode: znode of obsoleted index node
109 * Returns %0 on success, and a negative error code on failure.
111 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
114 struct ubifs_zbranch *zbr;
116 zbr = &znode->parent->zbranch[znode->iip];
118 return insert_old_idx(c, zbr->lnum, zbr->offs);
121 return insert_old_idx(c, c->zroot.lnum,
127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
128 * @c: UBIFS file-system description object
129 * @znode: znode of obsoleted index node
131 * Returns %0 on success, and a negative error code on failure.
133 static int ins_clr_old_idx_znode(struct ubifs_info *c,
134 struct ubifs_znode *znode)
139 struct ubifs_zbranch *zbr;
141 zbr = &znode->parent->zbranch[znode->iip];
143 err = insert_old_idx(c, zbr->lnum, zbr->offs);
152 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
163 * destroy_old_idx - destroy the old_idx RB-tree.
164 * @c: UBIFS file-system description object
166 * During start commit, the old_idx RB-tree is used to avoid overwriting index
167 * nodes that were in the index last commit but have since been deleted. This
168 * is necessary for recovery i.e. the old index must be kept intact until the
169 * new index is successfully written. The old-idx RB-tree is used for the
170 * in-the-gaps method of writing index nodes and is destroyed every commit.
172 void destroy_old_idx(struct ubifs_info *c)
174 struct ubifs_old_idx *old_idx, *n;
176 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
179 c->old_idx = RB_ROOT;
183 * copy_znode - copy a dirty znode.
184 * @c: UBIFS file-system description object
185 * @znode: znode to copy
187 * A dirty znode being committed may not be changed, so it is copied.
189 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
190 struct ubifs_znode *znode)
192 struct ubifs_znode *zn;
194 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
196 return ERR_PTR(-ENOMEM);
199 __set_bit(DIRTY_ZNODE, &zn->flags);
200 __clear_bit(COW_ZNODE, &zn->flags);
202 ubifs_assert(c, !ubifs_zn_obsolete(znode));
203 __set_bit(OBSOLETE_ZNODE, &znode->flags);
205 if (znode->level != 0) {
207 const int n = zn->child_cnt;
209 /* The children now have new parent */
210 for (i = 0; i < n; i++) {
211 struct ubifs_zbranch *zbr = &zn->zbranch[i];
214 zbr->znode->parent = zn;
218 atomic_long_inc(&c->dirty_zn_cnt);
223 * add_idx_dirt - add dirt due to a dirty znode.
224 * @c: UBIFS file-system description object
225 * @lnum: LEB number of index node
226 * @dirt: size of index node
228 * This function updates lprops dirty space and the new size of the index.
230 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
232 c->calc_idx_sz -= ALIGN(dirt, 8);
233 return ubifs_add_dirt(c, lnum, dirt);
237 * dirty_cow_znode - ensure a znode is not being committed.
238 * @c: UBIFS file-system description object
239 * @zbr: branch of znode to check
241 * Returns dirtied znode on success or negative error code on failure.
243 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
244 struct ubifs_zbranch *zbr)
246 struct ubifs_znode *znode = zbr->znode;
247 struct ubifs_znode *zn;
250 if (!ubifs_zn_cow(znode)) {
251 /* znode is not being committed */
252 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
253 atomic_long_inc(&c->dirty_zn_cnt);
254 atomic_long_dec(&c->clean_zn_cnt);
255 atomic_long_dec(&ubifs_clean_zn_cnt);
256 err = add_idx_dirt(c, zbr->lnum, zbr->len);
263 zn = copy_znode(c, znode);
268 err = insert_old_idx(c, zbr->lnum, zbr->offs);
271 err = add_idx_dirt(c, zbr->lnum, zbr->len);
286 * lnc_add - add a leaf node to the leaf node cache.
287 * @c: UBIFS file-system description object
288 * @zbr: zbranch of leaf node
291 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
292 * purpose of the leaf node cache is to save re-reading the same leaf node over
293 * and over again. Most things are cached by VFS, however the file system must
294 * cache directory entries for readdir and for resolving hash collisions. The
295 * present implementation of the leaf node cache is extremely simple, and
296 * allows for error returns that are not used but that may be needed if a more
297 * complex implementation is created.
299 * Note, this function does not add the @node object to LNC directly, but
300 * allocates a copy of the object and adds the copy to LNC. The reason for this
301 * is that @node has been allocated outside of the TNC subsystem and will be
302 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
303 * may be changed at any time, e.g. freed by the shrinker.
305 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
310 const struct ubifs_dent_node *dent = node;
312 ubifs_assert(c, !zbr->leaf);
313 ubifs_assert(c, zbr->len != 0);
314 ubifs_assert(c, is_hash_key(c, &zbr->key));
316 err = ubifs_validate_entry(c, dent);
319 ubifs_dump_node(c, dent, zbr->len);
323 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
325 /* We don't have to have the cache, so no error */
328 zbr->leaf = lnc_node;
333 * lnc_add_directly - add a leaf node to the leaf-node-cache.
334 * @c: UBIFS file-system description object
335 * @zbr: zbranch of leaf node
338 * This function is similar to 'lnc_add()', but it does not create a copy of
339 * @node but inserts @node to TNC directly.
341 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
346 ubifs_assert(c, !zbr->leaf);
347 ubifs_assert(c, zbr->len != 0);
349 err = ubifs_validate_entry(c, node);
352 ubifs_dump_node(c, node, zbr->len);
361 * lnc_free - remove a leaf node from the leaf node cache.
362 * @zbr: zbranch of leaf node
364 static void lnc_free(struct ubifs_zbranch *zbr)
373 * tnc_read_hashed_node - read a "hashed" leaf node.
374 * @c: UBIFS file-system description object
375 * @zbr: key and position of the node
376 * @node: node is returned here
378 * This function reads a "hashed" node defined by @zbr from the leaf node cache
379 * (in it is there) or from the hash media, in which case the node is also
380 * added to LNC. Returns zero in case of success or a negative error
381 * code in case of failure.
383 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
388 ubifs_assert(c, is_hash_key(c, &zbr->key));
391 /* Read from the leaf node cache */
392 ubifs_assert(c, zbr->len != 0);
393 memcpy(node, zbr->leaf, zbr->len);
398 err = fallible_read_node(c, &zbr->key, zbr, node);
400 * When the node was not found, return -ENOENT, 0 otherwise.
401 * Negative return codes stay as-is.
408 err = ubifs_tnc_read_node(c, zbr, node);
413 /* Add the node to the leaf node cache */
414 err = lnc_add(c, zbr, node);
419 * try_read_node - read a node if it is a node.
420 * @c: UBIFS file-system description object
421 * @buf: buffer to read to
423 * @zbr: the zbranch describing the node to read
425 * This function tries to read a node of known type and length, checks it and
426 * stores it in @buf. This function returns %1 if a node is present and %0 if
427 * a node is not present. A negative error code is returned for I/O errors.
428 * This function performs that same function as ubifs_read_node except that
429 * it does not require that there is actually a node present and instead
430 * the return code indicates if a node was read.
432 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
433 * is true (it is controlled by corresponding mount option). However, if
434 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
435 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
436 * because during mounting or re-mounting from R/O mode to R/W mode we may read
437 * journal nodes (when replying the journal or doing the recovery) and the
438 * journal nodes may potentially be corrupted, so checking is required.
440 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
441 struct ubifs_zbranch *zbr)
444 int lnum = zbr->lnum;
445 int offs = zbr->offs;
447 struct ubifs_ch *ch = buf;
448 uint32_t crc, node_crc;
450 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
452 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
454 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
455 type, lnum, offs, err);
459 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
462 if (ch->node_type != type)
465 node_len = le32_to_cpu(ch->len);
469 if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
471 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
472 node_crc = le32_to_cpu(ch->crc);
477 err = ubifs_node_check_hash(c, buf, zbr->hash);
479 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
487 * fallible_read_node - try to read a leaf node.
488 * @c: UBIFS file-system description object
489 * @key: key of node to read
490 * @zbr: position of node
491 * @node: node returned
493 * This function tries to read a node and returns %1 if the node is read, %0
494 * if the node is not present, and a negative error code in the case of error.
496 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
497 struct ubifs_zbranch *zbr, void *node)
501 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
503 ret = try_read_node(c, node, key_type(c, key), zbr);
505 union ubifs_key node_key;
506 struct ubifs_dent_node *dent = node;
508 /* All nodes have key in the same place */
509 key_read(c, &dent->key, &node_key);
510 if (keys_cmp(c, key, &node_key) != 0)
513 if (ret == 0 && c->replaying)
514 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
515 zbr->lnum, zbr->offs, zbr->len);
520 * matches_name - determine if a direntry or xattr entry matches a given name.
521 * @c: UBIFS file-system description object
522 * @zbr: zbranch of dent
525 * This function checks if xentry/direntry referred by zbranch @zbr matches name
526 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
527 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
528 * of failure, a negative error code is returned.
530 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
531 const struct fscrypt_name *nm)
533 struct ubifs_dent_node *dent;
536 /* If possible, match against the dent in the leaf node cache */
538 dent = kmalloc(zbr->len, GFP_NOFS);
542 err = ubifs_tnc_read_node(c, zbr, dent);
546 /* Add the node to the leaf node cache */
547 err = lnc_add_directly(c, zbr, dent);
553 nlen = le16_to_cpu(dent->nlen);
554 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
556 if (nlen == fname_len(nm))
558 else if (nlen < fname_len(nm))
573 * get_znode - get a TNC znode that may not be loaded yet.
574 * @c: UBIFS file-system description object
575 * @znode: parent znode
576 * @n: znode branch slot number
578 * This function returns the znode or a negative error code.
580 static struct ubifs_znode *get_znode(struct ubifs_info *c,
581 struct ubifs_znode *znode, int n)
583 struct ubifs_zbranch *zbr;
585 zbr = &znode->zbranch[n];
589 znode = ubifs_load_znode(c, zbr, znode, n);
594 * tnc_next - find next TNC entry.
595 * @c: UBIFS file-system description object
596 * @zn: znode is passed and returned here
597 * @n: znode branch slot number is passed and returned here
599 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
600 * no next entry, or a negative error code otherwise.
602 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
604 struct ubifs_znode *znode = *zn;
608 if (nn < znode->child_cnt) {
613 struct ubifs_znode *zp;
620 if (nn < znode->child_cnt) {
621 znode = get_znode(c, znode, nn);
623 return PTR_ERR(znode);
624 while (znode->level != 0) {
625 znode = get_znode(c, znode, 0);
627 return PTR_ERR(znode);
639 * tnc_prev - find previous TNC entry.
640 * @c: UBIFS file-system description object
641 * @zn: znode is returned here
642 * @n: znode branch slot number is passed and returned here
644 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
645 * there is no next entry, or a negative error code otherwise.
647 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
649 struct ubifs_znode *znode = *zn;
657 struct ubifs_znode *zp;
665 znode = get_znode(c, znode, nn);
667 return PTR_ERR(znode);
668 while (znode->level != 0) {
669 nn = znode->child_cnt - 1;
670 znode = get_znode(c, znode, nn);
672 return PTR_ERR(znode);
674 nn = znode->child_cnt - 1;
684 * resolve_collision - resolve a collision.
685 * @c: UBIFS file-system description object
686 * @key: key of a directory or extended attribute entry
687 * @zn: znode is returned here
688 * @n: zbranch number is passed and returned here
689 * @nm: name of the entry
691 * This function is called for "hashed" keys to make sure that the found key
692 * really corresponds to the looked up node (directory or extended attribute
693 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
694 * %0 is returned if @nm is not found and @zn and @n are set to the previous
695 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
696 * This means that @n may be set to %-1 if the leftmost key in @zn is the
697 * previous one. A negative error code is returned on failures.
699 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
700 struct ubifs_znode **zn, int *n,
701 const struct fscrypt_name *nm)
705 err = matches_name(c, &(*zn)->zbranch[*n], nm);
706 if (unlikely(err < 0))
708 if (err == NAME_MATCHES)
711 if (err == NAME_GREATER) {
714 err = tnc_prev(c, zn, n);
715 if (err == -ENOENT) {
716 ubifs_assert(c, *n == 0);
722 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
724 * We have found the branch after which we would
725 * like to insert, but inserting in this znode
726 * may still be wrong. Consider the following 3
727 * znodes, in the case where we are resolving a
728 * collision with Key2.
731 * ----------------------
732 * level 1 | Key0 | Key1 |
733 * -----------------------
735 * znode za | | znode zb
736 * ------------ ------------
737 * level 0 | Key0 | | Key2 |
738 * ------------ ------------
740 * The lookup finds Key2 in znode zb. Lets say
741 * there is no match and the name is greater so
742 * we look left. When we find Key0, we end up
743 * here. If we return now, we will insert into
744 * znode za at slot n = 1. But that is invalid
745 * according to the parent's keys. Key2 must
746 * be inserted into znode zb.
748 * Note, this problem is not relevant for the
749 * case when we go right, because
750 * 'tnc_insert()' would correct the parent key.
752 if (*n == (*zn)->child_cnt - 1) {
753 err = tnc_next(c, zn, n);
755 /* Should be impossible */
761 ubifs_assert(c, *n == 0);
766 err = matches_name(c, &(*zn)->zbranch[*n], nm);
769 if (err == NAME_LESS)
771 if (err == NAME_MATCHES)
773 ubifs_assert(c, err == NAME_GREATER);
777 struct ubifs_znode *znode = *zn;
781 err = tnc_next(c, &znode, &nn);
786 if (keys_cmp(c, &znode->zbranch[nn].key, key))
788 err = matches_name(c, &znode->zbranch[nn], nm);
791 if (err == NAME_GREATER)
795 if (err == NAME_MATCHES)
797 ubifs_assert(c, err == NAME_LESS);
803 * fallible_matches_name - determine if a dent matches a given name.
804 * @c: UBIFS file-system description object
805 * @zbr: zbranch of dent
808 * This is a "fallible" version of 'matches_name()' function which does not
809 * panic if the direntry/xentry referred by @zbr does not exist on the media.
811 * This function checks if xentry/direntry referred by zbranch @zbr matches name
812 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
813 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
814 * if xentry/direntry referred by @zbr does not exist on the media. A negative
815 * error code is returned in case of failure.
817 static int fallible_matches_name(struct ubifs_info *c,
818 struct ubifs_zbranch *zbr,
819 const struct fscrypt_name *nm)
821 struct ubifs_dent_node *dent;
824 /* If possible, match against the dent in the leaf node cache */
826 dent = kmalloc(zbr->len, GFP_NOFS);
830 err = fallible_read_node(c, &zbr->key, zbr, dent);
834 /* The node was not present */
838 ubifs_assert(c, err == 1);
840 err = lnc_add_directly(c, zbr, dent);
846 nlen = le16_to_cpu(dent->nlen);
847 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
849 if (nlen == fname_len(nm))
851 else if (nlen < fname_len(nm))
866 * fallible_resolve_collision - resolve a collision even if nodes are missing.
867 * @c: UBIFS file-system description object
869 * @zn: znode is returned here
870 * @n: branch number is passed and returned here
871 * @nm: name of directory entry
872 * @adding: indicates caller is adding a key to the TNC
874 * This is a "fallible" version of the 'resolve_collision()' function which
875 * does not panic if one of the nodes referred to by TNC does not exist on the
876 * media. This may happen when replaying the journal if a deleted node was
877 * Garbage-collected and the commit was not done. A branch that refers to a node
878 * that is not present is called a dangling branch. The following are the return
879 * codes for this function:
880 * o if @nm was found, %1 is returned and @zn and @n are set to the found
882 * o if we are @adding and @nm was not found, %0 is returned;
883 * o if we are not @adding and @nm was not found, but a dangling branch was
884 * found, then %1 is returned and @zn and @n are set to the dangling branch;
885 * o a negative error code is returned in case of failure.
887 static int fallible_resolve_collision(struct ubifs_info *c,
888 const union ubifs_key *key,
889 struct ubifs_znode **zn, int *n,
890 const struct fscrypt_name *nm,
893 struct ubifs_znode *o_znode = NULL, *znode = *zn;
894 int o_n, err, cmp, unsure = 0, nn = *n;
896 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
897 if (unlikely(cmp < 0))
899 if (cmp == NAME_MATCHES)
901 if (cmp == NOT_ON_MEDIA) {
905 * We are unlucky and hit a dangling branch straight away.
906 * Now we do not really know where to go to find the needed
907 * branch - to the left or to the right. Well, let's try left.
911 unsure = 1; /* Remove a dangling branch wherever it is */
913 if (cmp == NAME_GREATER || unsure) {
916 err = tnc_prev(c, zn, n);
917 if (err == -ENOENT) {
918 ubifs_assert(c, *n == 0);
924 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
925 /* See comments in 'resolve_collision()' */
926 if (*n == (*zn)->child_cnt - 1) {
927 err = tnc_next(c, zn, n);
929 /* Should be impossible */
935 ubifs_assert(c, *n == 0);
940 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
943 if (err == NAME_MATCHES)
945 if (err == NOT_ON_MEDIA) {
952 if (err == NAME_LESS)
959 if (cmp == NAME_LESS || unsure) {
964 err = tnc_next(c, &znode, &nn);
969 if (keys_cmp(c, &znode->zbranch[nn].key, key))
971 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
974 if (err == NAME_GREATER)
978 if (err == NAME_MATCHES)
980 if (err == NOT_ON_MEDIA) {
987 /* Never match a dangling branch when adding */
988 if (adding || !o_znode)
991 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
992 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
993 o_znode->zbranch[o_n].len);
1000 * matches_position - determine if a zbranch matches a given position.
1001 * @zbr: zbranch of dent
1002 * @lnum: LEB number of dent to match
1003 * @offs: offset of dent to match
1005 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1007 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1009 if (zbr->lnum == lnum && zbr->offs == offs)
1016 * resolve_collision_directly - resolve a collision directly.
1017 * @c: UBIFS file-system description object
1018 * @key: key of directory entry
1019 * @zn: znode is passed and returned here
1020 * @n: zbranch number is passed and returned here
1021 * @lnum: LEB number of dent node to match
1022 * @offs: offset of dent node to match
1024 * This function is used for "hashed" keys to make sure the found directory or
1025 * extended attribute entry node is what was looked for. It is used when the
1026 * flash address of the right node is known (@lnum:@offs) which makes it much
1027 * easier to resolve collisions (no need to read entries and match full
1028 * names). This function returns %1 and sets @zn and @n if the collision is
1029 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1030 * previous directory entry. Otherwise a negative error code is returned.
1032 static int resolve_collision_directly(struct ubifs_info *c,
1033 const union ubifs_key *key,
1034 struct ubifs_znode **zn, int *n,
1037 struct ubifs_znode *znode;
1042 if (matches_position(&znode->zbranch[nn], lnum, offs))
1047 err = tnc_prev(c, &znode, &nn);
1052 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1054 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1065 err = tnc_next(c, &znode, &nn);
1070 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1074 if (matches_position(&znode->zbranch[nn], lnum, offs))
1080 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1081 * @c: UBIFS file-system description object
1082 * @znode: znode to dirty
1084 * If we do not have a unique key that resides in a znode, then we cannot
1085 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1086 * This function records the path back to the last dirty ancestor, and then
1087 * dirties the znodes on that path.
1089 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1090 struct ubifs_znode *znode)
1092 struct ubifs_znode *zp;
1093 int *path = c->bottom_up_buf, p = 0;
1095 ubifs_assert(c, c->zroot.znode);
1096 ubifs_assert(c, znode);
1097 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1098 kfree(c->bottom_up_buf);
1099 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1102 if (!c->bottom_up_buf)
1103 return ERR_PTR(-ENOMEM);
1104 path = c->bottom_up_buf;
1106 if (c->zroot.znode->level) {
1107 /* Go up until parent is dirty */
1115 ubifs_assert(c, p < c->zroot.znode->level);
1117 if (!zp->cnext && ubifs_zn_dirty(znode))
1123 /* Come back down, dirtying as we go */
1125 struct ubifs_zbranch *zbr;
1129 ubifs_assert(c, path[p - 1] >= 0);
1130 ubifs_assert(c, path[p - 1] < zp->child_cnt);
1131 zbr = &zp->zbranch[path[--p]];
1132 znode = dirty_cow_znode(c, zbr);
1134 ubifs_assert(c, znode == c->zroot.znode);
1135 znode = dirty_cow_znode(c, &c->zroot);
1137 if (IS_ERR(znode) || !p)
1139 ubifs_assert(c, path[p - 1] >= 0);
1140 ubifs_assert(c, path[p - 1] < znode->child_cnt);
1141 znode = znode->zbranch[path[p - 1]].znode;
1148 * ubifs_lookup_level0 - search for zero-level znode.
1149 * @c: UBIFS file-system description object
1150 * @key: key to lookup
1151 * @zn: znode is returned here
1152 * @n: znode branch slot number is returned here
1154 * This function looks up the TNC tree and search for zero-level znode which
1155 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1157 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1158 * is returned and slot number of the matched branch is stored in @n;
1159 * o not exact match, which means that zero-level znode does not contain
1160 * @key, then %0 is returned and slot number of the closest branch or %-1
1161 * is stored in @n; In this case calling tnc_next() is mandatory.
1162 * o @key is so small that it is even less than the lowest key of the
1163 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1165 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1166 * function reads corresponding indexing nodes and inserts them to TNC. In
1167 * case of failure, a negative error code is returned.
1169 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1170 struct ubifs_znode **zn, int *n)
1173 struct ubifs_znode *znode;
1174 time64_t time = ktime_get_seconds();
1176 dbg_tnck(key, "search key ");
1177 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1179 znode = c->zroot.znode;
1180 if (unlikely(!znode)) {
1181 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1183 return PTR_ERR(znode);
1189 struct ubifs_zbranch *zbr;
1191 exact = ubifs_search_zbranch(c, znode, key, n);
1193 if (znode->level == 0)
1198 zbr = &znode->zbranch[*n];
1206 /* znode is not in TNC cache, load it from the media */
1207 znode = ubifs_load_znode(c, zbr, znode, *n);
1209 return PTR_ERR(znode);
1213 if (exact || !is_hash_key(c, key) || *n != -1) {
1214 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1219 * Here is a tricky place. We have not found the key and this is a
1220 * "hashed" key, which may collide. The rest of the code deals with
1221 * situations like this:
1225 * | 3 | 5 | | 6 | 7 | (x)
1227 * Or more a complex example:
1231 * | 1 | 3 | | 5 | 8 |
1233 * | 5 | 5 | | 6 | 7 | (x)
1235 * In the examples, if we are looking for key "5", we may reach nodes
1236 * marked with "(x)". In this case what we have do is to look at the
1237 * left and see if there is "5" key there. If there is, we have to
1240 * Note, this whole situation is possible because we allow to have
1241 * elements which are equivalent to the next key in the parent in the
1242 * children of current znode. For example, this happens if we split a
1243 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1247 * | 3 | 5 | | 5 | 6 | 7 |
1249 * And this becomes what is at the first "picture" after key "5" marked
1250 * with "^" is removed. What could be done is we could prohibit
1251 * splitting in the middle of the colliding sequence. Also, when
1252 * removing the leftmost key, we would have to correct the key of the
1253 * parent node, which would introduce additional complications. Namely,
1254 * if we changed the leftmost key of the parent znode, the garbage
1255 * collector would be unable to find it (GC is doing this when GC'ing
1256 * indexing LEBs). Although we already have an additional RB-tree where
1257 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1258 * after the commit. But anyway, this does not look easy to implement
1259 * so we did not try this.
1261 err = tnc_prev(c, &znode, n);
1262 if (err == -ENOENT) {
1263 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1267 if (unlikely(err < 0))
1269 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1270 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1275 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1281 * lookup_level0_dirty - search for zero-level znode dirtying.
1282 * @c: UBIFS file-system description object
1283 * @key: key to lookup
1284 * @zn: znode is returned here
1285 * @n: znode branch slot number is returned here
1287 * This function looks up the TNC tree and search for zero-level znode which
1288 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1290 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1291 * is returned and slot number of the matched branch is stored in @n;
1292 * o not exact match, which means that zero-level znode does not contain @key
1293 * then %0 is returned and slot number of the closed branch is stored in
1295 * o @key is so small that it is even less than the lowest key of the
1296 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1298 * Additionally all znodes in the path from the root to the located zero-level
1299 * znode are marked as dirty.
1301 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1302 * function reads corresponding indexing nodes and inserts them to TNC. In
1303 * case of failure, a negative error code is returned.
1305 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1306 struct ubifs_znode **zn, int *n)
1309 struct ubifs_znode *znode;
1310 time64_t time = ktime_get_seconds();
1312 dbg_tnck(key, "search and dirty key ");
1314 znode = c->zroot.znode;
1315 if (unlikely(!znode)) {
1316 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1318 return PTR_ERR(znode);
1321 znode = dirty_cow_znode(c, &c->zroot);
1323 return PTR_ERR(znode);
1328 struct ubifs_zbranch *zbr;
1330 exact = ubifs_search_zbranch(c, znode, key, n);
1332 if (znode->level == 0)
1337 zbr = &znode->zbranch[*n];
1341 znode = dirty_cow_znode(c, zbr);
1343 return PTR_ERR(znode);
1347 /* znode is not in TNC cache, load it from the media */
1348 znode = ubifs_load_znode(c, zbr, znode, *n);
1350 return PTR_ERR(znode);
1351 znode = dirty_cow_znode(c, zbr);
1353 return PTR_ERR(znode);
1357 if (exact || !is_hash_key(c, key) || *n != -1) {
1358 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1363 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1366 err = tnc_prev(c, &znode, n);
1367 if (err == -ENOENT) {
1369 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1372 if (unlikely(err < 0))
1374 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1376 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1380 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1381 znode = dirty_cow_bottom_up(c, znode);
1383 return PTR_ERR(znode);
1386 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1392 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1393 * @c: UBIFS file-system description object
1395 * @gc_seq1: garbage collection sequence number
1397 * This function determines if @lnum may have been garbage collected since
1398 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1401 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1403 int gc_seq2, gced_lnum;
1405 gced_lnum = c->gced_lnum;
1407 gc_seq2 = c->gc_seq;
1408 /* Same seq means no GC */
1409 if (gc_seq1 == gc_seq2)
1411 /* Different by more than 1 means we don't know */
1412 if (gc_seq1 + 1 != gc_seq2)
1415 * We have seen the sequence number has increased by 1. Now we need to
1416 * be sure we read the right LEB number, so read it again.
1419 if (gced_lnum != c->gced_lnum)
1421 /* Finally we can check lnum */
1422 if (gced_lnum == lnum)
1428 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1429 * @c: UBIFS file-system description object
1430 * @key: node key to lookup
1431 * @node: the node is returned here
1432 * @lnum: LEB number is returned here
1433 * @offs: offset is returned here
1435 * This function looks up and reads node with key @key. The caller has to make
1436 * sure the @node buffer is large enough to fit the node. Returns zero in case
1437 * of success, %-ENOENT if the node was not found, and a negative error code in
1438 * case of failure. The node location can be returned in @lnum and @offs.
1440 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1441 void *node, int *lnum, int *offs)
1443 int found, n, err, safely = 0, gc_seq1;
1444 struct ubifs_znode *znode;
1445 struct ubifs_zbranch zbr, *zt;
1448 mutex_lock(&c->tnc_mutex);
1449 found = ubifs_lookup_level0(c, key, &znode, &n);
1453 } else if (found < 0) {
1457 zt = &znode->zbranch[n];
1462 if (is_hash_key(c, key)) {
1464 * In this case the leaf node cache gets used, so we pass the
1465 * address of the zbranch and keep the mutex locked
1467 err = tnc_read_hashed_node(c, zt, node);
1471 err = ubifs_tnc_read_node(c, zt, node);
1474 /* Drop the TNC mutex prematurely and race with garbage collection */
1475 zbr = znode->zbranch[n];
1476 gc_seq1 = c->gc_seq;
1477 mutex_unlock(&c->tnc_mutex);
1479 if (ubifs_get_wbuf(c, zbr.lnum)) {
1480 /* We do not GC journal heads */
1481 err = ubifs_tnc_read_node(c, &zbr, node);
1485 err = fallible_read_node(c, key, &zbr, node);
1486 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1488 * The node may have been GC'ed out from under us so try again
1489 * while keeping the TNC mutex locked.
1497 mutex_unlock(&c->tnc_mutex);
1502 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1503 * @c: UBIFS file-system description object
1504 * @bu: bulk-read parameters and results
1506 * Lookup consecutive data node keys for the same inode that reside
1507 * consecutively in the same LEB. This function returns zero in case of success
1508 * and a negative error code in case of failure.
1510 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1511 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1512 * maximum possible amount of nodes for bulk-read.
1514 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1516 int n, err = 0, lnum = -1, offs;
1518 unsigned int block = key_block(c, &bu->key);
1519 struct ubifs_znode *znode;
1525 mutex_lock(&c->tnc_mutex);
1526 /* Find first key */
1527 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1532 len = znode->zbranch[n].len;
1533 /* The buffer must be big enough for at least 1 node */
1534 if (len > bu->buf_len) {
1539 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1541 lnum = znode->zbranch[n].lnum;
1542 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1545 struct ubifs_zbranch *zbr;
1546 union ubifs_key *key;
1547 unsigned int next_block;
1550 err = tnc_next(c, &znode, &n);
1553 zbr = &znode->zbranch[n];
1555 /* See if there is another data key for this file */
1556 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1557 key_type(c, key) != UBIFS_DATA_KEY) {
1562 /* First key found */
1564 offs = ALIGN(zbr->offs + zbr->len, 8);
1566 if (len > bu->buf_len) {
1572 * The data nodes must be in consecutive positions in
1575 if (zbr->lnum != lnum || zbr->offs != offs)
1577 offs += ALIGN(zbr->len, 8);
1578 len = ALIGN(len, 8) + zbr->len;
1579 /* Must not exceed buffer length */
1580 if (len > bu->buf_len)
1583 /* Allow for holes */
1584 next_block = key_block(c, key);
1585 bu->blk_cnt += (next_block - block - 1);
1586 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1590 bu->zbranch[bu->cnt++] = *zbr;
1592 /* See if we have room for more */
1593 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1595 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1599 if (err == -ENOENT) {
1603 bu->gc_seq = c->gc_seq;
1604 mutex_unlock(&c->tnc_mutex);
1608 * An enormous hole could cause bulk-read to encompass too many
1609 * page cache pages, so limit the number here.
1611 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1612 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1614 * Ensure that bulk-read covers a whole number of page cache
1617 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1618 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1621 /* At the end of file we can round up */
1622 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1625 /* Exclude data nodes that do not make up a whole page cache page */
1626 block = key_block(c, &bu->key) + bu->blk_cnt;
1627 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1629 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637 * read_wbuf - bulk-read from a LEB with a wbuf.
1638 * @wbuf: wbuf that may overlap the read
1639 * @buf: buffer into which to read
1641 * @lnum: LEB number from which to read
1642 * @offs: offset from which to read
1644 * This functions returns %0 on success or a negative error code on failure.
1646 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1649 const struct ubifs_info *c = wbuf->c;
1652 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1653 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1654 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1655 ubifs_assert(c, offs + len <= c->leb_size);
1657 spin_lock(&wbuf->lock);
1658 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1660 /* We may safely unlock the write-buffer and read the data */
1661 spin_unlock(&wbuf->lock);
1662 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1665 /* Don't read under wbuf */
1666 rlen = wbuf->offs - offs;
1670 /* Copy the rest from the write-buffer */
1671 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1672 spin_unlock(&wbuf->lock);
1675 /* Read everything that goes before write-buffer */
1676 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1682 * validate_data_node - validate data nodes for bulk-read.
1683 * @c: UBIFS file-system description object
1684 * @buf: buffer containing data node to validate
1685 * @zbr: zbranch of data node to validate
1687 * This functions returns %0 on success or a negative error code on failure.
1689 static int validate_data_node(struct ubifs_info *c, void *buf,
1690 struct ubifs_zbranch *zbr)
1692 union ubifs_key key1;
1693 struct ubifs_ch *ch = buf;
1696 if (ch->node_type != UBIFS_DATA_NODE) {
1697 ubifs_err(c, "bad node type (%d but expected %d)",
1698 ch->node_type, UBIFS_DATA_NODE);
1702 err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1704 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1708 err = ubifs_node_check_hash(c, buf, zbr->hash);
1710 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1714 len = le32_to_cpu(ch->len);
1715 if (len != zbr->len) {
1716 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1720 /* Make sure the key of the read node is correct */
1721 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1722 if (!keys_eq(c, &zbr->key, &key1)) {
1723 ubifs_err(c, "bad key in node at LEB %d:%d",
1724 zbr->lnum, zbr->offs);
1725 dbg_tnck(&zbr->key, "looked for key ");
1726 dbg_tnck(&key1, "found node's key ");
1735 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1736 ubifs_dump_node(c, buf, zbr->len);
1742 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1743 * @c: UBIFS file-system description object
1744 * @bu: bulk-read parameters and results
1746 * This functions reads and validates the data nodes that were identified by the
1747 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1748 * -EAGAIN to indicate a race with GC, or another negative error code on
1751 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1754 struct ubifs_wbuf *wbuf;
1757 len = bu->zbranch[bu->cnt - 1].offs;
1758 len += bu->zbranch[bu->cnt - 1].len - offs;
1759 if (len > bu->buf_len) {
1760 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1765 wbuf = ubifs_get_wbuf(c, lnum);
1767 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771 /* Check for a race with GC */
1772 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1775 if (err && err != -EBADMSG) {
1776 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1779 dbg_tnck(&bu->key, "key ");
1783 /* Validate the nodes read */
1785 for (i = 0; i < bu->cnt; i++) {
1786 err = validate_data_node(c, buf, &bu->zbranch[i]);
1789 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1796 * do_lookup_nm- look up a "hashed" node.
1797 * @c: UBIFS file-system description object
1798 * @key: node key to lookup
1799 * @node: the node is returned here
1802 * This function looks up and reads a node which contains name hash in the key.
1803 * Since the hash may have collisions, there may be many nodes with the same
1804 * key, so we have to sequentially look to all of them until the needed one is
1805 * found. This function returns zero in case of success, %-ENOENT if the node
1806 * was not found, and a negative error code in case of failure.
1808 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1809 void *node, const struct fscrypt_name *nm)
1812 struct ubifs_znode *znode;
1814 dbg_tnck(key, "key ");
1815 mutex_lock(&c->tnc_mutex);
1816 found = ubifs_lookup_level0(c, key, &znode, &n);
1820 } else if (found < 0) {
1825 ubifs_assert(c, n >= 0);
1827 err = resolve_collision(c, key, &znode, &n, nm);
1828 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1829 if (unlikely(err < 0))
1836 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1839 mutex_unlock(&c->tnc_mutex);
1844 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1845 * @c: UBIFS file-system description object
1846 * @key: node key to lookup
1847 * @node: the node is returned here
1850 * This function looks up and reads a node which contains name hash in the key.
1851 * Since the hash may have collisions, there may be many nodes with the same
1852 * key, so we have to sequentially look to all of them until the needed one is
1853 * found. This function returns zero in case of success, %-ENOENT if the node
1854 * was not found, and a negative error code in case of failure.
1856 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1857 void *node, const struct fscrypt_name *nm)
1860 const struct ubifs_dent_node *dent = node;
1863 * We assume that in most of the cases there are no name collisions and
1864 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866 err = ubifs_tnc_lookup(c, key, node);
1870 len = le16_to_cpu(dent->nlen);
1871 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1875 * Unluckily, there are hash collisions and we have to iterate over
1876 * them look at each direntry with colliding name hash sequentially.
1879 return do_lookup_nm(c, key, node, nm);
1882 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1883 struct ubifs_dent_node *dent, uint32_t cookie,
1884 struct ubifs_znode **zn, int *n, int exact)
1887 struct ubifs_znode *znode = *zn;
1888 struct ubifs_zbranch *zbr;
1889 union ubifs_key *dkey;
1892 err = tnc_next(c, &znode, n);
1898 zbr = &znode->zbranch[*n];
1901 if (key_inum(c, dkey) != key_inum(c, key) ||
1902 key_type(c, dkey) != key_type(c, key)) {
1906 err = tnc_read_hashed_node(c, zbr, dent);
1910 if (key_hash(c, key) == key_hash(c, dkey) &&
1911 le32_to_cpu(dent->cookie) == cookie) {
1916 err = tnc_next(c, &znode, n);
1922 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1923 struct ubifs_dent_node *dent, uint32_t cookie)
1926 struct ubifs_znode *znode;
1927 union ubifs_key start_key;
1929 ubifs_assert(c, is_hash_key(c, key));
1931 lowest_dent_key(c, &start_key, key_inum(c, key));
1933 mutex_lock(&c->tnc_mutex);
1934 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1935 if (unlikely(err < 0))
1938 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1941 mutex_unlock(&c->tnc_mutex);
1946 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1947 * @c: UBIFS file-system description object
1948 * @key: node key to lookup
1949 * @node: the node is returned here
1950 * @cookie: node cookie for collision resolution
1952 * This function looks up and reads a node which contains name hash in the key.
1953 * Since the hash may have collisions, there may be many nodes with the same
1954 * key, so we have to sequentially look to all of them until the needed one
1955 * with the same cookie value is found.
1956 * This function returns zero in case of success, %-ENOENT if the node
1957 * was not found, and a negative error code in case of failure.
1959 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1960 void *node, uint32_t cookie)
1963 const struct ubifs_dent_node *dent = node;
1965 if (!c->double_hash)
1969 * We assume that in most of the cases there are no name collisions and
1970 * 'ubifs_tnc_lookup()' returns us the right direntry.
1972 err = ubifs_tnc_lookup(c, key, node);
1976 if (le32_to_cpu(dent->cookie) == cookie)
1980 * Unluckily, there are hash collisions and we have to iterate over
1981 * them look at each direntry with colliding name hash sequentially.
1983 return do_lookup_dh(c, key, node, cookie);
1987 * correct_parent_keys - correct parent znodes' keys.
1988 * @c: UBIFS file-system description object
1989 * @znode: znode to correct parent znodes for
1991 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1992 * zbranch changes, keys of parent znodes have to be corrected. This helper
1993 * function is called in such situations and corrects the keys if needed.
1995 static void correct_parent_keys(const struct ubifs_info *c,
1996 struct ubifs_znode *znode)
1998 union ubifs_key *key, *key1;
2000 ubifs_assert(c, znode->parent);
2001 ubifs_assert(c, znode->iip == 0);
2003 key = &znode->zbranch[0].key;
2004 key1 = &znode->parent->zbranch[0].key;
2006 while (keys_cmp(c, key, key1) < 0) {
2007 key_copy(c, key, key1);
2008 znode = znode->parent;
2010 if (!znode->parent || znode->iip)
2012 key1 = &znode->parent->zbranch[0].key;
2017 * insert_zbranch - insert a zbranch into a znode.
2018 * @c: UBIFS file-system description object
2019 * @znode: znode into which to insert
2020 * @zbr: zbranch to insert
2021 * @n: slot number to insert to
2023 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2024 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2025 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2026 * slot, zbranches starting from @n have to be moved right.
2028 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2029 const struct ubifs_zbranch *zbr, int n)
2033 ubifs_assert(c, ubifs_zn_dirty(znode));
2036 for (i = znode->child_cnt; i > n; i--) {
2037 znode->zbranch[i] = znode->zbranch[i - 1];
2038 if (znode->zbranch[i].znode)
2039 znode->zbranch[i].znode->iip = i;
2042 zbr->znode->iip = n;
2044 for (i = znode->child_cnt; i > n; i--)
2045 znode->zbranch[i] = znode->zbranch[i - 1];
2047 znode->zbranch[n] = *zbr;
2048 znode->child_cnt += 1;
2051 * After inserting at slot zero, the lower bound of the key range of
2052 * this znode may have changed. If this znode is subsequently split
2053 * then the upper bound of the key range may change, and furthermore
2054 * it could change to be lower than the original lower bound. If that
2055 * happens, then it will no longer be possible to find this znode in the
2056 * TNC using the key from the index node on flash. That is bad because
2057 * if it is not found, we will assume it is obsolete and may overwrite
2058 * it. Then if there is an unclean unmount, we will start using the
2059 * old index which will be broken.
2061 * So we first mark znodes that have insertions at slot zero, and then
2062 * if they are split we add their lnum/offs to the old_idx tree.
2069 * tnc_insert - insert a node into TNC.
2070 * @c: UBIFS file-system description object
2071 * @znode: znode to insert into
2072 * @zbr: branch to insert
2073 * @n: slot number to insert new zbranch to
2075 * This function inserts a new node described by @zbr into znode @znode. If
2076 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2077 * are splat as well if needed. Returns zero in case of success or a negative
2078 * error code in case of failure.
2080 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2081 struct ubifs_zbranch *zbr, int n)
2083 struct ubifs_znode *zn, *zi, *zp;
2084 int i, keep, move, appending = 0;
2085 union ubifs_key *key = &zbr->key, *key1;
2087 ubifs_assert(c, n >= 0 && n <= c->fanout);
2089 /* Implement naive insert for now */
2092 if (znode->child_cnt < c->fanout) {
2093 ubifs_assert(c, n != c->fanout);
2094 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2096 insert_zbranch(c, znode, zbr, n);
2098 /* Ensure parent's key is correct */
2099 if (n == 0 && zp && znode->iip == 0)
2100 correct_parent_keys(c, znode);
2106 * Unfortunately, @znode does not have more empty slots and we have to
2109 dbg_tnck(key, "splitting level %d, key ", znode->level);
2113 * We can no longer be sure of finding this znode by key, so we
2114 * record it in the old_idx tree.
2116 ins_clr_old_idx_znode(c, znode);
2118 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2122 zn->level = znode->level;
2124 /* Decide where to split */
2125 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2126 /* Try not to split consecutive data keys */
2127 if (n == c->fanout) {
2128 key1 = &znode->zbranch[n - 1].key;
2129 if (key_inum(c, key1) == key_inum(c, key) &&
2130 key_type(c, key1) == UBIFS_DATA_KEY)
2134 } else if (appending && n != c->fanout) {
2135 /* Try not to split consecutive data keys */
2138 if (n >= (c->fanout + 1) / 2) {
2139 key1 = &znode->zbranch[0].key;
2140 if (key_inum(c, key1) == key_inum(c, key) &&
2141 key_type(c, key1) == UBIFS_DATA_KEY) {
2142 key1 = &znode->zbranch[n].key;
2143 if (key_inum(c, key1) != key_inum(c, key) ||
2144 key_type(c, key1) != UBIFS_DATA_KEY) {
2146 move = c->fanout - keep;
2158 keep = (c->fanout + 1) / 2;
2159 move = c->fanout - keep;
2163 * Although we don't at present, we could look at the neighbors and see
2164 * if we can move some zbranches there.
2168 /* Insert into existing znode */
2173 /* Insert into new znode */
2178 zbr->znode->parent = zn;
2183 __set_bit(DIRTY_ZNODE, &zn->flags);
2184 atomic_long_inc(&c->dirty_zn_cnt);
2186 zn->child_cnt = move;
2187 znode->child_cnt = keep;
2189 dbg_tnc("moving %d, keeping %d", move, keep);
2192 for (i = 0; i < move; i++) {
2193 zn->zbranch[i] = znode->zbranch[keep + i];
2196 if (zn->zbranch[i].znode) {
2197 zn->zbranch[i].znode->parent = zn;
2198 zn->zbranch[i].znode->iip = i;
2202 /* Insert new key and branch */
2203 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2205 insert_zbranch(c, zi, zbr, n);
2207 /* Insert new znode (produced by spitting) into the parent */
2209 if (n == 0 && zi == znode && znode->iip == 0)
2210 correct_parent_keys(c, znode);
2212 /* Locate insertion point */
2215 /* Tail recursion */
2216 zbr->key = zn->zbranch[0].key;
2226 /* We have to split root znode */
2227 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2229 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2234 zi->level = znode->level + 1;
2236 __set_bit(DIRTY_ZNODE, &zi->flags);
2237 atomic_long_inc(&c->dirty_zn_cnt);
2239 zi->zbranch[0].key = znode->zbranch[0].key;
2240 zi->zbranch[0].znode = znode;
2241 zi->zbranch[0].lnum = c->zroot.lnum;
2242 zi->zbranch[0].offs = c->zroot.offs;
2243 zi->zbranch[0].len = c->zroot.len;
2244 zi->zbranch[1].key = zn->zbranch[0].key;
2245 zi->zbranch[1].znode = zn;
2250 c->zroot.znode = zi;
2261 * ubifs_tnc_add - add a node to TNC.
2262 * @c: UBIFS file-system description object
2264 * @lnum: LEB number of node
2265 * @offs: node offset
2267 * @hash: The hash over the node
2269 * This function adds a node with key @key to TNC. The node may be new or it may
2270 * obsolete some existing one. Returns %0 on success or negative error code on
2273 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2274 int offs, int len, const u8 *hash)
2276 int found, n, err = 0;
2277 struct ubifs_znode *znode;
2279 mutex_lock(&c->tnc_mutex);
2280 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2281 found = lookup_level0_dirty(c, key, &znode, &n);
2283 struct ubifs_zbranch zbr;
2289 ubifs_copy_hash(c, hash, zbr.hash);
2290 key_copy(c, key, &zbr.key);
2291 err = tnc_insert(c, znode, &zbr, n + 1);
2292 } else if (found == 1) {
2293 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2296 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2300 ubifs_copy_hash(c, hash, zbr->hash);
2304 err = dbg_check_tnc(c, 0);
2305 mutex_unlock(&c->tnc_mutex);
2311 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2312 * @c: UBIFS file-system description object
2314 * @old_lnum: LEB number of old node
2315 * @old_offs: old node offset
2316 * @lnum: LEB number of node
2317 * @offs: node offset
2320 * This function replaces a node with key @key in the TNC only if the old node
2321 * is found. This function is called by garbage collection when node are moved.
2322 * Returns %0 on success or negative error code on failure.
2324 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2325 int old_lnum, int old_offs, int lnum, int offs, int len)
2327 int found, n, err = 0;
2328 struct ubifs_znode *znode;
2330 mutex_lock(&c->tnc_mutex);
2331 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2332 old_offs, lnum, offs, len);
2333 found = lookup_level0_dirty(c, key, &znode, &n);
2340 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2343 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2345 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2352 } else if (is_hash_key(c, key)) {
2353 found = resolve_collision_directly(c, key, &znode, &n,
2354 old_lnum, old_offs);
2355 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2356 found, znode, n, old_lnum, old_offs);
2363 /* Ensure the znode is dirtied */
2364 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2365 znode = dirty_cow_bottom_up(c, znode);
2366 if (IS_ERR(znode)) {
2367 err = PTR_ERR(znode);
2371 zbr = &znode->zbranch[n];
2373 err = ubifs_add_dirt(c, zbr->lnum,
2385 err = ubifs_add_dirt(c, lnum, len);
2388 err = dbg_check_tnc(c, 0);
2391 mutex_unlock(&c->tnc_mutex);
2396 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2397 * @c: UBIFS file-system description object
2399 * @lnum: LEB number of node
2400 * @offs: node offset
2402 * @hash: The hash over the node
2405 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2406 * may have collisions, like directory entry keys.
2408 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2409 int lnum, int offs, int len, const u8 *hash,
2410 const struct fscrypt_name *nm)
2412 int found, n, err = 0;
2413 struct ubifs_znode *znode;
2415 mutex_lock(&c->tnc_mutex);
2416 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2417 found = lookup_level0_dirty(c, key, &znode, &n);
2425 found = fallible_resolve_collision(c, key, &znode, &n,
2428 found = resolve_collision(c, key, &znode, &n, nm);
2429 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2435 /* Ensure the znode is dirtied */
2436 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2437 znode = dirty_cow_bottom_up(c, znode);
2438 if (IS_ERR(znode)) {
2439 err = PTR_ERR(znode);
2445 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2448 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2452 ubifs_copy_hash(c, hash, zbr->hash);
2458 struct ubifs_zbranch zbr;
2464 ubifs_copy_hash(c, hash, zbr.hash);
2465 key_copy(c, key, &zbr.key);
2466 err = tnc_insert(c, znode, &zbr, n + 1);
2471 * We did not find it in the index so there may be a
2472 * dangling branch still in the index. So we remove it
2473 * by passing 'ubifs_tnc_remove_nm()' the same key but
2474 * an unmatchable name.
2476 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2478 err = dbg_check_tnc(c, 0);
2479 mutex_unlock(&c->tnc_mutex);
2482 return ubifs_tnc_remove_nm(c, key, &noname);
2488 err = dbg_check_tnc(c, 0);
2489 mutex_unlock(&c->tnc_mutex);
2494 * tnc_delete - delete a znode form TNC.
2495 * @c: UBIFS file-system description object
2496 * @znode: znode to delete from
2497 * @n: zbranch slot number to delete
2499 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2500 * case of success and a negative error code in case of failure.
2502 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2504 struct ubifs_zbranch *zbr;
2505 struct ubifs_znode *zp;
2508 /* Delete without merge for now */
2509 ubifs_assert(c, znode->level == 0);
2510 ubifs_assert(c, n >= 0 && n < c->fanout);
2511 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2513 zbr = &znode->zbranch[n];
2516 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2518 ubifs_dump_znode(c, znode);
2522 /* We do not "gap" zbranch slots */
2523 for (i = n; i < znode->child_cnt - 1; i++)
2524 znode->zbranch[i] = znode->zbranch[i + 1];
2525 znode->child_cnt -= 1;
2527 if (znode->child_cnt > 0)
2531 * This was the last zbranch, we have to delete this znode from the
2536 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2537 ubifs_assert(c, ubifs_zn_dirty(znode));
2542 atomic_long_dec(&c->dirty_zn_cnt);
2544 err = insert_old_idx_znode(c, znode);
2549 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2550 atomic_long_inc(&c->clean_zn_cnt);
2551 atomic_long_inc(&ubifs_clean_zn_cnt);
2555 } while (znode->child_cnt == 1); /* while removing last child */
2557 /* Remove from znode, entry n - 1 */
2558 znode->child_cnt -= 1;
2559 ubifs_assert(c, znode->level != 0);
2560 for (i = n; i < znode->child_cnt; i++) {
2561 znode->zbranch[i] = znode->zbranch[i + 1];
2562 if (znode->zbranch[i].znode)
2563 znode->zbranch[i].znode->iip = i;
2567 * If this is the root and it has only 1 child then
2568 * collapse the tree.
2570 if (!znode->parent) {
2571 while (znode->child_cnt == 1 && znode->level != 0) {
2573 zbr = &znode->zbranch[0];
2574 znode = get_znode(c, znode, 0);
2576 return PTR_ERR(znode);
2577 znode = dirty_cow_znode(c, zbr);
2579 return PTR_ERR(znode);
2580 znode->parent = NULL;
2583 err = insert_old_idx(c, c->zroot.lnum,
2588 c->zroot.lnum = zbr->lnum;
2589 c->zroot.offs = zbr->offs;
2590 c->zroot.len = zbr->len;
2591 c->zroot.znode = znode;
2592 ubifs_assert(c, !ubifs_zn_obsolete(zp));
2593 ubifs_assert(c, ubifs_zn_dirty(zp));
2594 atomic_long_dec(&c->dirty_zn_cnt);
2597 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2598 atomic_long_inc(&c->clean_zn_cnt);
2599 atomic_long_inc(&ubifs_clean_zn_cnt);
2609 * ubifs_tnc_remove - remove an index entry of a node.
2610 * @c: UBIFS file-system description object
2613 * Returns %0 on success or negative error code on failure.
2615 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2617 int found, n, err = 0;
2618 struct ubifs_znode *znode;
2620 mutex_lock(&c->tnc_mutex);
2621 dbg_tnck(key, "key ");
2622 found = lookup_level0_dirty(c, key, &znode, &n);
2628 err = tnc_delete(c, znode, n);
2630 err = dbg_check_tnc(c, 0);
2633 mutex_unlock(&c->tnc_mutex);
2638 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2639 * @c: UBIFS file-system description object
2641 * @nm: directory entry name
2643 * Returns %0 on success or negative error code on failure.
2645 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2646 const struct fscrypt_name *nm)
2649 struct ubifs_znode *znode;
2651 mutex_lock(&c->tnc_mutex);
2652 dbg_tnck(key, "key ");
2653 err = lookup_level0_dirty(c, key, &znode, &n);
2659 err = fallible_resolve_collision(c, key, &znode, &n,
2662 err = resolve_collision(c, key, &znode, &n, nm);
2663 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2667 /* Ensure the znode is dirtied */
2668 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2669 znode = dirty_cow_bottom_up(c, znode);
2670 if (IS_ERR(znode)) {
2671 err = PTR_ERR(znode);
2675 err = tnc_delete(c, znode, n);
2681 err = dbg_check_tnc(c, 0);
2682 mutex_unlock(&c->tnc_mutex);
2687 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2688 * @c: UBIFS file-system description object
2690 * @cookie: node cookie for collision resolution
2692 * Returns %0 on success or negative error code on failure.
2694 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2698 struct ubifs_znode *znode;
2699 struct ubifs_dent_node *dent;
2700 struct ubifs_zbranch *zbr;
2702 if (!c->double_hash)
2705 mutex_lock(&c->tnc_mutex);
2706 err = lookup_level0_dirty(c, key, &znode, &n);
2710 zbr = &znode->zbranch[n];
2711 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2717 err = tnc_read_hashed_node(c, zbr, dent);
2721 /* If the cookie does not match, we're facing a hash collision. */
2722 if (le32_to_cpu(dent->cookie) != cookie) {
2723 union ubifs_key start_key;
2725 lowest_dent_key(c, &start_key, key_inum(c, key));
2727 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2728 if (unlikely(err < 0))
2731 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2736 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2737 znode = dirty_cow_bottom_up(c, znode);
2738 if (IS_ERR(znode)) {
2739 err = PTR_ERR(znode);
2743 err = tnc_delete(c, znode, n);
2749 err = dbg_check_tnc(c, 0);
2750 mutex_unlock(&c->tnc_mutex);
2755 * key_in_range - determine if a key falls within a range of keys.
2756 * @c: UBIFS file-system description object
2757 * @key: key to check
2758 * @from_key: lowest key in range
2759 * @to_key: highest key in range
2761 * This function returns %1 if the key is in range and %0 otherwise.
2763 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2764 union ubifs_key *from_key, union ubifs_key *to_key)
2766 if (keys_cmp(c, key, from_key) < 0)
2768 if (keys_cmp(c, key, to_key) > 0)
2774 * ubifs_tnc_remove_range - remove index entries in range.
2775 * @c: UBIFS file-system description object
2776 * @from_key: lowest key to remove
2777 * @to_key: highest key to remove
2779 * This function removes index entries starting at @from_key and ending at
2780 * @to_key. This function returns zero in case of success and a negative error
2781 * code in case of failure.
2783 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2784 union ubifs_key *to_key)
2786 int i, n, k, err = 0;
2787 struct ubifs_znode *znode;
2788 union ubifs_key *key;
2790 mutex_lock(&c->tnc_mutex);
2792 /* Find first level 0 znode that contains keys to remove */
2793 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2800 err = tnc_next(c, &znode, &n);
2801 if (err == -ENOENT) {
2807 key = &znode->zbranch[n].key;
2808 if (!key_in_range(c, key, from_key, to_key)) {
2814 /* Ensure the znode is dirtied */
2815 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2816 znode = dirty_cow_bottom_up(c, znode);
2817 if (IS_ERR(znode)) {
2818 err = PTR_ERR(znode);
2823 /* Remove all keys in range except the first */
2824 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2825 key = &znode->zbranch[i].key;
2826 if (!key_in_range(c, key, from_key, to_key))
2828 lnc_free(&znode->zbranch[i]);
2829 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2830 znode->zbranch[i].len);
2832 ubifs_dump_znode(c, znode);
2835 dbg_tnck(key, "removing key ");
2838 for (i = n + 1 + k; i < znode->child_cnt; i++)
2839 znode->zbranch[i - k] = znode->zbranch[i];
2840 znode->child_cnt -= k;
2843 /* Now delete the first */
2844 err = tnc_delete(c, znode, n);
2851 err = dbg_check_tnc(c, 0);
2852 mutex_unlock(&c->tnc_mutex);
2857 * ubifs_tnc_remove_ino - remove an inode from TNC.
2858 * @c: UBIFS file-system description object
2859 * @inum: inode number to remove
2861 * This function remove inode @inum and all the extended attributes associated
2862 * with the anode from TNC and returns zero in case of success or a negative
2863 * error code in case of failure.
2865 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2867 union ubifs_key key1, key2;
2868 struct ubifs_dent_node *xent, *pxent = NULL;
2869 struct fscrypt_name nm = {0};
2871 dbg_tnc("ino %lu", (unsigned long)inum);
2874 * Walk all extended attribute entries and remove them together with
2875 * corresponding extended attribute inodes.
2877 lowest_xent_key(c, &key1, inum);
2882 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2884 err = PTR_ERR(xent);
2891 xattr_inum = le64_to_cpu(xent->inum);
2892 dbg_tnc("xent '%s', ino %lu", xent->name,
2893 (unsigned long)xattr_inum);
2895 ubifs_evict_xattr_inode(c, xattr_inum);
2897 fname_name(&nm) = xent->name;
2898 fname_len(&nm) = le16_to_cpu(xent->nlen);
2899 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2906 lowest_ino_key(c, &key1, xattr_inum);
2907 highest_ino_key(c, &key2, xattr_inum);
2908 err = ubifs_tnc_remove_range(c, &key1, &key2);
2917 key_read(c, &xent->key, &key1);
2921 lowest_ino_key(c, &key1, inum);
2922 highest_ino_key(c, &key2, inum);
2924 return ubifs_tnc_remove_range(c, &key1, &key2);
2928 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2929 * @c: UBIFS file-system description object
2930 * @key: key of last entry
2931 * @nm: name of last entry found or %NULL
2933 * This function finds and reads the next directory or extended attribute entry
2934 * after the given key (@key) if there is one. @nm is used to resolve
2937 * If the name of the current entry is not known and only the key is known,
2938 * @nm->name has to be %NULL. In this case the semantics of this function is a
2939 * little bit different and it returns the entry corresponding to this key, not
2940 * the next one. If the key was not found, the closest "right" entry is
2943 * If the fist entry has to be found, @key has to contain the lowest possible
2944 * key value for this inode and @name has to be %NULL.
2946 * This function returns the found directory or extended attribute entry node
2947 * in case of success, %-ENOENT is returned if no entry was found, and a
2948 * negative error code is returned in case of failure.
2950 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2951 union ubifs_key *key,
2952 const struct fscrypt_name *nm)
2954 int n, err, type = key_type(c, key);
2955 struct ubifs_znode *znode;
2956 struct ubifs_dent_node *dent;
2957 struct ubifs_zbranch *zbr;
2958 union ubifs_key *dkey;
2960 dbg_tnck(key, "key ");
2961 ubifs_assert(c, is_hash_key(c, key));
2963 mutex_lock(&c->tnc_mutex);
2964 err = ubifs_lookup_level0(c, key, &znode, &n);
2965 if (unlikely(err < 0))
2968 if (fname_len(nm) > 0) {
2970 /* Handle collisions */
2972 err = fallible_resolve_collision(c, key, &znode, &n,
2975 err = resolve_collision(c, key, &znode, &n, nm);
2976 dbg_tnc("rc returned %d, znode %p, n %d",
2978 if (unlikely(err < 0))
2982 /* Now find next entry */
2983 err = tnc_next(c, &znode, &n);
2988 * The full name of the entry was not given, in which case the
2989 * behavior of this function is a little different and it
2990 * returns current entry, not the next one.
2994 * However, the given key does not exist in the TNC
2995 * tree and @znode/@n variables contain the closest
2996 * "preceding" element. Switch to the next one.
2998 err = tnc_next(c, &znode, &n);
3004 zbr = &znode->zbranch[n];
3005 dent = kmalloc(zbr->len, GFP_NOFS);
3006 if (unlikely(!dent)) {
3012 * The above 'tnc_next()' call could lead us to the next inode, check
3016 if (key_inum(c, dkey) != key_inum(c, key) ||
3017 key_type(c, dkey) != type) {
3022 err = tnc_read_hashed_node(c, zbr, dent);
3026 mutex_unlock(&c->tnc_mutex);
3032 mutex_unlock(&c->tnc_mutex);
3033 return ERR_PTR(err);
3037 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3038 * @c: UBIFS file-system description object
3040 * Destroy left-over obsolete znodes from a failed commit.
3042 static void tnc_destroy_cnext(struct ubifs_info *c)
3044 struct ubifs_znode *cnext;
3048 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3051 struct ubifs_znode *znode = cnext;
3053 cnext = cnext->cnext;
3054 if (ubifs_zn_obsolete(znode))
3056 } while (cnext && cnext != c->cnext);
3060 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3061 * @c: UBIFS file-system description object
3063 void ubifs_tnc_close(struct ubifs_info *c)
3065 tnc_destroy_cnext(c);
3066 if (c->zroot.znode) {
3069 n = atomic_long_read(&c->clean_zn_cnt);
3070 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3071 ubifs_assert(c, freed == n);
3072 atomic_long_sub(n, &ubifs_clean_zn_cnt);
3080 * left_znode - get the znode to the left.
3081 * @c: UBIFS file-system description object
3084 * This function returns a pointer to the znode to the left of @znode or NULL if
3085 * there is not one. A negative error code is returned on failure.
3087 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3088 struct ubifs_znode *znode)
3090 int level = znode->level;
3093 int n = znode->iip - 1;
3095 /* Go up until we can go left */
3096 znode = znode->parent;
3100 /* Now go down the rightmost branch to 'level' */
3101 znode = get_znode(c, znode, n);
3104 while (znode->level != level) {
3105 n = znode->child_cnt - 1;
3106 znode = get_znode(c, znode, n);
3117 * right_znode - get the znode to the right.
3118 * @c: UBIFS file-system description object
3121 * This function returns a pointer to the znode to the right of @znode or NULL
3122 * if there is not one. A negative error code is returned on failure.
3124 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3125 struct ubifs_znode *znode)
3127 int level = znode->level;
3130 int n = znode->iip + 1;
3132 /* Go up until we can go right */
3133 znode = znode->parent;
3136 if (n < znode->child_cnt) {
3137 /* Now go down the leftmost branch to 'level' */
3138 znode = get_znode(c, znode, n);
3141 while (znode->level != level) {
3142 znode = get_znode(c, znode, 0);
3153 * lookup_znode - find a particular indexing node from TNC.
3154 * @c: UBIFS file-system description object
3155 * @key: index node key to lookup
3156 * @level: index node level
3157 * @lnum: index node LEB number
3158 * @offs: index node offset
3160 * This function searches an indexing node by its first key @key and its
3161 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3162 * nodes it traverses to TNC. This function is called for indexing nodes which
3163 * were found on the media by scanning, for example when garbage-collecting or
3164 * when doing in-the-gaps commit. This means that the indexing node which is
3165 * looked for does not have to have exactly the same leftmost key @key, because
3166 * the leftmost key may have been changed, in which case TNC will contain a
3167 * dirty znode which still refers the same @lnum:@offs. This function is clever
3168 * enough to recognize such indexing nodes.
3170 * Note, if a znode was deleted or changed too much, then this function will
3171 * not find it. For situations like this UBIFS has the old index RB-tree
3172 * (indexed by @lnum:@offs).
3174 * This function returns a pointer to the znode found or %NULL if it is not
3175 * found. A negative error code is returned on failure.
3177 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3178 union ubifs_key *key, int level,
3181 struct ubifs_znode *znode, *zn;
3184 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3187 * The arguments have probably been read off flash, so don't assume
3191 return ERR_PTR(-EINVAL);
3193 /* Get the root znode */
3194 znode = c->zroot.znode;
3196 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3200 /* Check if it is the one we are looking for */
3201 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3203 /* Descend to the parent level i.e. (level + 1) */
3204 if (level >= znode->level)
3207 ubifs_search_zbranch(c, znode, key, &n);
3210 * We reached a znode where the leftmost key is greater
3211 * than the key we are searching for. This is the same
3212 * situation as the one described in a huge comment at
3213 * the end of the 'ubifs_lookup_level0()' function. And
3214 * for exactly the same reasons we have to try to look
3215 * left before giving up.
3217 znode = left_znode(c, znode);
3222 ubifs_search_zbranch(c, znode, key, &n);
3223 ubifs_assert(c, n >= 0);
3225 if (znode->level == level + 1)
3227 znode = get_znode(c, znode, n);
3231 /* Check if the child is the one we are looking for */
3232 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3233 return get_znode(c, znode, n);
3234 /* If the key is unique, there is nowhere else to look */
3235 if (!is_hash_key(c, key))
3238 * The key is not unique and so may be also in the znodes to either
3245 /* Move one branch to the left */
3249 znode = left_znode(c, znode);
3254 n = znode->child_cnt - 1;
3257 if (znode->zbranch[n].lnum == lnum &&
3258 znode->zbranch[n].offs == offs)
3259 return get_znode(c, znode, n);
3260 /* Stop if the key is less than the one we are looking for */
3261 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3264 /* Back to the middle */
3269 /* Move one branch to the right */
3270 if (++n >= znode->child_cnt) {
3271 znode = right_znode(c, znode);
3279 if (znode->zbranch[n].lnum == lnum &&
3280 znode->zbranch[n].offs == offs)
3281 return get_znode(c, znode, n);
3282 /* Stop if the key is greater than the one we are looking for */
3283 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3290 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3291 * @c: UBIFS file-system description object
3292 * @key: key of index node
3293 * @level: index node level
3294 * @lnum: LEB number of index node
3295 * @offs: offset of index node
3297 * This function returns %0 if the index node is not referred to in the TNC, %1
3298 * if the index node is referred to in the TNC and the corresponding znode is
3299 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3300 * znode is clean, and a negative error code in case of failure.
3302 * Note, the @key argument has to be the key of the first child. Also note,
3303 * this function relies on the fact that 0:0 is never a valid LEB number and
3304 * offset for a main-area node.
3306 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3309 struct ubifs_znode *znode;
3311 znode = lookup_znode(c, key, level, lnum, offs);
3315 return PTR_ERR(znode);
3317 return ubifs_zn_dirty(znode) ? 1 : 2;
3321 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3322 * @c: UBIFS file-system description object
3324 * @lnum: node LEB number
3325 * @offs: node offset
3327 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3328 * not, and a negative error code in case of failure.
3330 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3331 * and offset for a main-area node.
3333 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3336 struct ubifs_zbranch *zbr;
3337 struct ubifs_znode *znode, *zn;
3338 int n, found, err, nn;
3339 const int unique = !is_hash_key(c, key);
3341 found = ubifs_lookup_level0(c, key, &znode, &n);
3343 return found; /* Error code */
3346 zbr = &znode->zbranch[n];
3347 if (lnum == zbr->lnum && offs == zbr->offs)
3348 return 1; /* Found it */
3352 * Because the key is not unique, we have to look left
3359 err = tnc_prev(c, &znode, &n);
3364 if (keys_cmp(c, key, &znode->zbranch[n].key))
3366 zbr = &znode->zbranch[n];
3367 if (lnum == zbr->lnum && offs == zbr->offs)
3368 return 1; /* Found it */
3374 err = tnc_next(c, &znode, &n);
3380 if (keys_cmp(c, key, &znode->zbranch[n].key))
3382 zbr = &znode->zbranch[n];
3383 if (lnum == zbr->lnum && offs == zbr->offs)
3384 return 1; /* Found it */
3390 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3391 * @c: UBIFS file-system description object
3393 * @level: index node level (if it is an index node)
3394 * @lnum: node LEB number
3395 * @offs: node offset
3396 * @is_idx: non-zero if the node is an index node
3398 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3399 * negative error code in case of failure. For index nodes, @key has to be the
3400 * key of the first child. An index node is considered to be in the TNC only if
3401 * the corresponding znode is clean or has not been loaded.
3403 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3404 int lnum, int offs, int is_idx)
3408 mutex_lock(&c->tnc_mutex);
3410 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3414 /* The index node was found but it was dirty */
3417 /* The index node was found and it was clean */
3422 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3425 mutex_unlock(&c->tnc_mutex);
3430 * ubifs_dirty_idx_node - dirty an index node.
3431 * @c: UBIFS file-system description object
3432 * @key: index node key
3433 * @level: index node level
3434 * @lnum: index node LEB number
3435 * @offs: index node offset
3437 * This function loads and dirties an index node so that it can be garbage
3438 * collected. The @key argument has to be the key of the first child. This
3439 * function relies on the fact that 0:0 is never a valid LEB number and offset
3440 * for a main-area node. Returns %0 on success and a negative error code on
3443 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3446 struct ubifs_znode *znode;
3449 mutex_lock(&c->tnc_mutex);
3450 znode = lookup_znode(c, key, level, lnum, offs);
3453 if (IS_ERR(znode)) {
3454 err = PTR_ERR(znode);
3457 znode = dirty_cow_bottom_up(c, znode);
3458 if (IS_ERR(znode)) {
3459 err = PTR_ERR(znode);
3464 mutex_unlock(&c->tnc_mutex);
3469 * dbg_check_inode_size - check if inode size is correct.
3470 * @c: UBIFS file-system description object
3471 * @inode: inode to check
3474 * This function makes sure that the inode size (@size) is correct and it does
3475 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3476 * if it has a data page beyond @size, and other negative error code in case of
3479 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3483 union ubifs_key from_key, to_key, *key;
3484 struct ubifs_znode *znode;
3487 if (!S_ISREG(inode->i_mode))
3489 if (!dbg_is_chk_gen(c))
3492 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3493 data_key_init(c, &from_key, inode->i_ino, block);
3494 highest_data_key(c, &to_key, inode->i_ino);
3496 mutex_lock(&c->tnc_mutex);
3497 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3506 err = tnc_next(c, &znode, &n);
3507 if (err == -ENOENT) {
3514 ubifs_assert(c, err == 0);
3515 key = &znode->zbranch[n].key;
3516 if (!key_in_range(c, key, &from_key, &to_key))
3520 block = key_block(c, key);
3521 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3522 (unsigned long)inode->i_ino, size,
3523 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3524 mutex_unlock(&c->tnc_mutex);
3525 ubifs_dump_inode(c, inode);
3530 mutex_unlock(&c->tnc_mutex);