1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31 * allocating too much.
33 #define UBIFS_KMALLOC_OK (128*1024)
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache *ubifs_inode_slab;
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info = {
40 .scan_objects = ubifs_shrink_scan,
41 .count_objects = ubifs_shrink_count,
42 .seeks = DEFAULT_SEEKS,
46 * validate_inode - validate inode.
47 * @c: UBIFS file-system description object
48 * @inode: the inode to validate
50 * This is a helper function for 'ubifs_iget()' which validates various fields
51 * of a newly built inode to make sure they contain sane values and prevent
52 * possible vulnerabilities. Returns zero if the inode is all right and
53 * a non-zero error code if not.
55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
58 const struct ubifs_inode *ui = ubifs_inode(inode);
60 if (inode->i_size > c->max_inode_sz) {
61 ubifs_err(c, "inode is too large (%lld)",
62 (long long)inode->i_size);
66 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 ubifs_err(c, "unknown compression type %d", ui->compr_type);
71 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
74 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
77 if (ui->xattr && !S_ISREG(inode->i_mode))
80 if (!ubifs_compr_present(c, ui->compr_type)) {
81 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
85 err = dbg_check_dir(c, inode);
89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
93 struct ubifs_ino_node *ino;
94 struct ubifs_info *c = sb->s_fs_info;
96 struct ubifs_inode *ui;
98 dbg_gen("inode %lu", inum);
100 inode = iget_locked(sb, inum);
102 return ERR_PTR(-ENOMEM);
103 if (!(inode->i_state & I_NEW))
105 ui = ubifs_inode(inode);
107 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
113 ino_key_init(c, &key, inode->i_ino);
115 err = ubifs_tnc_lookup(c, &key, ino);
119 inode->i_flags |= S_NOCMTIME;
121 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 inode->i_flags |= S_NOATIME;
124 set_nlink(inode, le32_to_cpu(ino->nlink));
125 i_uid_write(inode, le32_to_cpu(ino->uid));
126 i_gid_write(inode, le32_to_cpu(ino->gid));
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
147 err = validate_inode(c, inode);
151 switch (inode->i_mode & S_IFMT) {
153 inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 inode->i_op = &ubifs_file_inode_operations;
155 inode->i_fop = &ubifs_file_operations;
157 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
162 memcpy(ui->data, ino->data, ui->data_len);
163 ((char *)ui->data)[ui->data_len] = '\0';
164 } else if (ui->data_len != 0) {
170 inode->i_op = &ubifs_dir_inode_operations;
171 inode->i_fop = &ubifs_dir_operations;
172 if (ui->data_len != 0) {
178 inode->i_op = &ubifs_symlink_inode_operations;
179 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
183 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
188 memcpy(ui->data, ino->data, ui->data_len);
189 ((char *)ui->data)[ui->data_len] = '\0';
195 union ubifs_dev_desc *dev;
197 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
203 dev = (union ubifs_dev_desc *)ino->data;
204 if (ui->data_len == sizeof(dev->new))
205 rdev = new_decode_dev(le32_to_cpu(dev->new));
206 else if (ui->data_len == sizeof(dev->huge))
207 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
212 memcpy(ui->data, ino->data, ui->data_len);
213 inode->i_op = &ubifs_file_inode_operations;
214 init_special_inode(inode, inode->i_mode, rdev);
219 inode->i_op = &ubifs_file_inode_operations;
220 init_special_inode(inode, inode->i_mode, 0);
221 if (ui->data_len != 0) {
232 ubifs_set_inode_flags(inode);
233 unlock_new_inode(inode);
237 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 ubifs_dump_node(c, ino);
239 ubifs_dump_inode(c, inode);
244 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
251 struct ubifs_inode *ui;
253 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
257 memset((void *)ui + sizeof(struct inode), 0,
258 sizeof(struct ubifs_inode) - sizeof(struct inode));
259 mutex_init(&ui->ui_mutex);
260 spin_lock_init(&ui->ui_lock);
261 return &ui->vfs_inode;
264 static void ubifs_free_inode(struct inode *inode)
266 struct ubifs_inode *ui = ubifs_inode(inode);
269 fscrypt_free_inode(inode);
271 kmem_cache_free(ubifs_inode_slab, ui);
275 * Note, Linux write-back code calls this without 'i_mutex'.
277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
280 struct ubifs_info *c = inode->i_sb->s_fs_info;
281 struct ubifs_inode *ui = ubifs_inode(inode);
283 ubifs_assert(c, !ui->xattr);
284 if (is_bad_inode(inode))
287 mutex_lock(&ui->ui_mutex);
289 * Due to races between write-back forced by budgeting
290 * (see 'sync_some_inodes()') and background write-back, the inode may
291 * have already been synchronized, do not do this again. This might
292 * also happen if it was synchronized in an VFS operation, e.g.
296 mutex_unlock(&ui->ui_mutex);
301 * As an optimization, do not write orphan inodes to the media just
302 * because this is not needed.
304 dbg_gen("inode %lu, mode %#x, nlink %u",
305 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
306 if (inode->i_nlink) {
307 err = ubifs_jnl_write_inode(c, inode);
309 ubifs_err(c, "can't write inode %lu, error %d",
312 err = dbg_check_inode_size(c, inode, ui->ui_size);
316 mutex_unlock(&ui->ui_mutex);
317 ubifs_release_dirty_inode_budget(c, ui);
321 static void ubifs_evict_inode(struct inode *inode)
324 struct ubifs_info *c = inode->i_sb->s_fs_info;
325 struct ubifs_inode *ui = ubifs_inode(inode);
329 * Extended attribute inode deletions are fully handled in
330 * 'ubifs_removexattr()'. These inodes are special and have
331 * limited usage, so there is nothing to do here.
335 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
336 ubifs_assert(c, !atomic_read(&inode->i_count));
338 truncate_inode_pages_final(&inode->i_data);
343 if (is_bad_inode(inode))
346 ui->ui_size = inode->i_size = 0;
347 err = ubifs_jnl_delete_inode(c, inode);
350 * Worst case we have a lost orphan inode wasting space, so a
351 * simple error message is OK here.
353 ubifs_err(c, "can't delete inode %lu, error %d",
358 ubifs_release_dirty_inode_budget(c, ui);
360 /* We've deleted something - clean the "no space" flags */
361 c->bi.nospace = c->bi.nospace_rp = 0;
366 fscrypt_put_encryption_info(inode);
369 static void ubifs_dirty_inode(struct inode *inode, int flags)
371 struct ubifs_info *c = inode->i_sb->s_fs_info;
372 struct ubifs_inode *ui = ubifs_inode(inode);
374 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
377 dbg_gen("inode %lu", inode->i_ino);
381 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
383 struct ubifs_info *c = dentry->d_sb->s_fs_info;
384 unsigned long long free;
385 __le32 *uuid = (__le32 *)c->uuid;
387 free = ubifs_get_free_space(c);
388 dbg_gen("free space %lld bytes (%lld blocks)",
389 free, free >> UBIFS_BLOCK_SHIFT);
391 buf->f_type = UBIFS_SUPER_MAGIC;
392 buf->f_bsize = UBIFS_BLOCK_SIZE;
393 buf->f_blocks = c->block_cnt;
394 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
395 if (free > c->report_rp_size)
396 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
401 buf->f_namelen = UBIFS_MAX_NLEN;
402 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
403 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
404 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
408 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
410 struct ubifs_info *c = root->d_sb->s_fs_info;
412 if (c->mount_opts.unmount_mode == 2)
413 seq_puts(s, ",fast_unmount");
414 else if (c->mount_opts.unmount_mode == 1)
415 seq_puts(s, ",norm_unmount");
417 if (c->mount_opts.bulk_read == 2)
418 seq_puts(s, ",bulk_read");
419 else if (c->mount_opts.bulk_read == 1)
420 seq_puts(s, ",no_bulk_read");
422 if (c->mount_opts.chk_data_crc == 2)
423 seq_puts(s, ",chk_data_crc");
424 else if (c->mount_opts.chk_data_crc == 1)
425 seq_puts(s, ",no_chk_data_crc");
427 if (c->mount_opts.override_compr) {
428 seq_printf(s, ",compr=%s",
429 ubifs_compr_name(c, c->mount_opts.compr_type));
432 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
433 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
438 static int ubifs_sync_fs(struct super_block *sb, int wait)
441 struct ubifs_info *c = sb->s_fs_info;
444 * Zero @wait is just an advisory thing to help the file system shove
445 * lots of data into the queues, and there will be the second
446 * '->sync_fs()' call, with non-zero @wait.
452 * Synchronize write buffers, because 'ubifs_run_commit()' does not
453 * do this if it waits for an already running commit.
455 for (i = 0; i < c->jhead_cnt; i++) {
456 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
462 * Strictly speaking, it is not necessary to commit the journal here,
463 * synchronizing write-buffers would be enough. But committing makes
464 * UBIFS free space predictions much more accurate, so we want to let
465 * the user be able to get more accurate results of 'statfs()' after
466 * they synchronize the file system.
468 err = ubifs_run_commit(c);
472 return ubi_sync(c->vi.ubi_num);
476 * init_constants_early - initialize UBIFS constants.
477 * @c: UBIFS file-system description object
479 * This function initialize UBIFS constants which do not need the superblock to
480 * be read. It also checks that the UBI volume satisfies basic UBIFS
481 * requirements. Returns zero in case of success and a negative error code in
484 static int init_constants_early(struct ubifs_info *c)
486 if (c->vi.corrupted) {
487 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
492 ubifs_msg(c, "read-only UBI device");
496 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
497 ubifs_msg(c, "static UBI volume - read-only mode");
501 c->leb_cnt = c->vi.size;
502 c->leb_size = c->vi.usable_leb_size;
503 c->leb_start = c->di.leb_start;
504 c->half_leb_size = c->leb_size / 2;
505 c->min_io_size = c->di.min_io_size;
506 c->min_io_shift = fls(c->min_io_size) - 1;
507 c->max_write_size = c->di.max_write_size;
508 c->max_write_shift = fls(c->max_write_size) - 1;
510 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
511 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
512 c->leb_size, UBIFS_MIN_LEB_SZ);
516 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
517 ubifs_errc(c, "too few LEBs (%d), min. is %d",
518 c->leb_cnt, UBIFS_MIN_LEB_CNT);
522 if (!is_power_of_2(c->min_io_size)) {
523 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
528 * Maximum write size has to be greater or equivalent to min. I/O
529 * size, and be multiple of min. I/O size.
531 if (c->max_write_size < c->min_io_size ||
532 c->max_write_size % c->min_io_size ||
533 !is_power_of_2(c->max_write_size)) {
534 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
535 c->max_write_size, c->min_io_size);
540 * UBIFS aligns all node to 8-byte boundary, so to make function in
541 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
544 if (c->min_io_size < 8) {
547 if (c->max_write_size < c->min_io_size) {
548 c->max_write_size = c->min_io_size;
549 c->max_write_shift = c->min_io_shift;
553 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
554 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
557 * Initialize node length ranges which are mostly needed for node
560 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
561 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
562 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
563 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
564 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
565 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
566 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
567 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
570 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
571 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
572 c->ranges[UBIFS_ORPH_NODE].min_len =
573 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
574 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
575 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
576 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
577 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
578 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
579 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
580 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
582 * Minimum indexing node size is amended later when superblock is
583 * read and the key length is known.
585 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
587 * Maximum indexing node size is amended later when superblock is
588 * read and the fanout is known.
590 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
593 * Initialize dead and dark LEB space watermarks. See gc.c for comments
594 * about these values.
596 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
597 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
600 * Calculate how many bytes would be wasted at the end of LEB if it was
601 * fully filled with data nodes of maximum size. This is used in
602 * calculations when reporting free space.
604 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
606 /* Buffer size for bulk-reads */
607 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
608 if (c->max_bu_buf_len > c->leb_size)
609 c->max_bu_buf_len = c->leb_size;
614 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
615 * @c: UBIFS file-system description object
616 * @lnum: LEB the write-buffer was synchronized to
617 * @free: how many free bytes left in this LEB
618 * @pad: how many bytes were padded
620 * This is a callback function which is called by the I/O unit when the
621 * write-buffer is synchronized. We need this to correctly maintain space
622 * accounting in bud logical eraseblocks. This function returns zero in case of
623 * success and a negative error code in case of failure.
625 * This function actually belongs to the journal, but we keep it here because
626 * we want to keep it static.
628 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
630 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
634 * init_constants_sb - initialize UBIFS constants.
635 * @c: UBIFS file-system description object
637 * This is a helper function which initializes various UBIFS constants after
638 * the superblock has been read. It also checks various UBIFS parameters and
639 * makes sure they are all right. Returns zero in case of success and a
640 * negative error code in case of failure.
642 static int init_constants_sb(struct ubifs_info *c)
647 c->main_bytes = (long long)c->main_lebs * c->leb_size;
648 c->max_znode_sz = sizeof(struct ubifs_znode) +
649 c->fanout * sizeof(struct ubifs_zbranch);
651 tmp = ubifs_idx_node_sz(c, 1);
652 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
653 c->min_idx_node_sz = ALIGN(tmp, 8);
655 tmp = ubifs_idx_node_sz(c, c->fanout);
656 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
657 c->max_idx_node_sz = ALIGN(tmp, 8);
659 /* Make sure LEB size is large enough to fit full commit */
660 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
661 tmp = ALIGN(tmp, c->min_io_size);
662 if (tmp > c->leb_size) {
663 ubifs_err(c, "too small LEB size %d, at least %d needed",
669 * Make sure that the log is large enough to fit reference nodes for
670 * all buds plus one reserved LEB.
672 tmp64 = c->max_bud_bytes + c->leb_size - 1;
673 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
674 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
677 if (c->log_lebs < tmp) {
678 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
684 * When budgeting we assume worst-case scenarios when the pages are not
685 * be compressed and direntries are of the maximum size.
687 * Note, data, which may be stored in inodes is budgeted separately, so
688 * it is not included into 'c->bi.inode_budget'.
690 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
691 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
692 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
695 * When the amount of flash space used by buds becomes
696 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
697 * The writers are unblocked when the commit is finished. To avoid
698 * writers to be blocked UBIFS initiates background commit in advance,
699 * when number of bud bytes becomes above the limit defined below.
701 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
704 * Ensure minimum journal size. All the bytes in the journal heads are
705 * considered to be used, when calculating the current journal usage.
706 * Consequently, if the journal is too small, UBIFS will treat it as
709 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
710 if (c->bg_bud_bytes < tmp64)
711 c->bg_bud_bytes = tmp64;
712 if (c->max_bud_bytes < tmp64 + c->leb_size)
713 c->max_bud_bytes = tmp64 + c->leb_size;
715 err = ubifs_calc_lpt_geom(c);
719 /* Initialize effective LEB size used in budgeting calculations */
720 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
725 * init_constants_master - initialize UBIFS constants.
726 * @c: UBIFS file-system description object
728 * This is a helper function which initializes various UBIFS constants after
729 * the master node has been read. It also checks various UBIFS parameters and
730 * makes sure they are all right.
732 static void init_constants_master(struct ubifs_info *c)
736 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
737 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
740 * Calculate total amount of FS blocks. This number is not used
741 * internally because it does not make much sense for UBIFS, but it is
742 * necessary to report something for the 'statfs()' call.
744 * Subtract the LEB reserved for GC, the LEB which is reserved for
745 * deletions, minimum LEBs for the index, and assume only one journal
748 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
749 tmp64 *= (long long)c->leb_size - c->leb_overhead;
750 tmp64 = ubifs_reported_space(c, tmp64);
751 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
755 * take_gc_lnum - reserve GC LEB.
756 * @c: UBIFS file-system description object
758 * This function ensures that the LEB reserved for garbage collection is marked
759 * as "taken" in lprops. We also have to set free space to LEB size and dirty
760 * space to zero, because lprops may contain out-of-date information if the
761 * file-system was un-mounted before it has been committed. This function
762 * returns zero in case of success and a negative error code in case of
765 static int take_gc_lnum(struct ubifs_info *c)
769 if (c->gc_lnum == -1) {
770 ubifs_err(c, "no LEB for GC");
774 /* And we have to tell lprops that this LEB is taken */
775 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
781 * alloc_wbufs - allocate write-buffers.
782 * @c: UBIFS file-system description object
784 * This helper function allocates and initializes UBIFS write-buffers. Returns
785 * zero in case of success and %-ENOMEM in case of failure.
787 static int alloc_wbufs(struct ubifs_info *c)
791 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
796 /* Initialize journal heads */
797 for (i = 0; i < c->jhead_cnt; i++) {
798 INIT_LIST_HEAD(&c->jheads[i].buds_list);
799 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
803 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
804 c->jheads[i].wbuf.jhead = i;
805 c->jheads[i].grouped = 1;
806 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
807 if (IS_ERR(c->jheads[i].log_hash))
812 * Garbage Collector head does not need to be synchronized by timer.
813 * Also GC head nodes are not grouped.
815 c->jheads[GCHD].wbuf.no_timer = 1;
816 c->jheads[GCHD].grouped = 0;
822 kfree(c->jheads[i].log_hash);
828 * free_wbufs - free write-buffers.
829 * @c: UBIFS file-system description object
831 static void free_wbufs(struct ubifs_info *c)
836 for (i = 0; i < c->jhead_cnt; i++) {
837 kfree(c->jheads[i].wbuf.buf);
838 kfree(c->jheads[i].wbuf.inodes);
839 kfree(c->jheads[i].log_hash);
847 * free_orphans - free orphans.
848 * @c: UBIFS file-system description object
850 static void free_orphans(struct ubifs_info *c)
852 struct ubifs_orphan *orph;
854 while (c->orph_dnext) {
855 orph = c->orph_dnext;
856 c->orph_dnext = orph->dnext;
857 list_del(&orph->list);
861 while (!list_empty(&c->orph_list)) {
862 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
863 list_del(&orph->list);
865 ubifs_err(c, "orphan list not empty at unmount");
873 * free_buds - free per-bud objects.
874 * @c: UBIFS file-system description object
876 static void free_buds(struct ubifs_info *c)
878 struct ubifs_bud *bud, *n;
880 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
885 * check_volume_empty - check if the UBI volume is empty.
886 * @c: UBIFS file-system description object
888 * This function checks if the UBIFS volume is empty by looking if its LEBs are
889 * mapped or not. The result of checking is stored in the @c->empty variable.
890 * Returns zero in case of success and a negative error code in case of
893 static int check_volume_empty(struct ubifs_info *c)
898 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
899 err = ubifs_is_mapped(c, lnum);
900 if (unlikely(err < 0))
914 * UBIFS mount options.
916 * Opt_fast_unmount: do not run a journal commit before un-mounting
917 * Opt_norm_unmount: run a journal commit before un-mounting
918 * Opt_bulk_read: enable bulk-reads
919 * Opt_no_bulk_read: disable bulk-reads
920 * Opt_chk_data_crc: check CRCs when reading data nodes
921 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
922 * Opt_override_compr: override default compressor
923 * Opt_assert: set ubifs_assert() action
924 * Opt_auth_key: The key name used for authentication
925 * Opt_auth_hash_name: The hash type used for authentication
926 * Opt_err: just end of array marker
943 static const match_table_t tokens = {
944 {Opt_fast_unmount, "fast_unmount"},
945 {Opt_norm_unmount, "norm_unmount"},
946 {Opt_bulk_read, "bulk_read"},
947 {Opt_no_bulk_read, "no_bulk_read"},
948 {Opt_chk_data_crc, "chk_data_crc"},
949 {Opt_no_chk_data_crc, "no_chk_data_crc"},
950 {Opt_override_compr, "compr=%s"},
951 {Opt_auth_key, "auth_key=%s"},
952 {Opt_auth_hash_name, "auth_hash_name=%s"},
953 {Opt_ignore, "ubi=%s"},
954 {Opt_ignore, "vol=%s"},
955 {Opt_assert, "assert=%s"},
960 * parse_standard_option - parse a standard mount option.
961 * @option: the option to parse
963 * Normally, standard mount options like "sync" are passed to file-systems as
964 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
965 * be present in the options string. This function tries to deal with this
966 * situation and parse standard options. Returns 0 if the option was not
967 * recognized, and the corresponding integer flag if it was.
969 * UBIFS is only interested in the "sync" option, so do not check for anything
972 static int parse_standard_option(const char *option)
975 pr_notice("UBIFS: parse %s\n", option);
976 if (!strcmp(option, "sync"))
977 return SB_SYNCHRONOUS;
982 * ubifs_parse_options - parse mount parameters.
983 * @c: UBIFS file-system description object
984 * @options: parameters to parse
985 * @is_remount: non-zero if this is FS re-mount
987 * This function parses UBIFS mount options and returns zero in case success
988 * and a negative error code in case of failure.
990 static int ubifs_parse_options(struct ubifs_info *c, char *options,
994 substring_t args[MAX_OPT_ARGS];
999 while ((p = strsep(&options, ","))) {
1005 token = match_token(p, tokens, args);
1008 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1009 * We accept them in order to be backward-compatible. But this
1010 * should be removed at some point.
1012 case Opt_fast_unmount:
1013 c->mount_opts.unmount_mode = 2;
1015 case Opt_norm_unmount:
1016 c->mount_opts.unmount_mode = 1;
1019 c->mount_opts.bulk_read = 2;
1022 case Opt_no_bulk_read:
1023 c->mount_opts.bulk_read = 1;
1026 case Opt_chk_data_crc:
1027 c->mount_opts.chk_data_crc = 2;
1028 c->no_chk_data_crc = 0;
1030 case Opt_no_chk_data_crc:
1031 c->mount_opts.chk_data_crc = 1;
1032 c->no_chk_data_crc = 1;
1034 case Opt_override_compr:
1036 char *name = match_strdup(&args[0]);
1040 if (!strcmp(name, "none"))
1041 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1042 else if (!strcmp(name, "lzo"))
1043 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1044 else if (!strcmp(name, "zlib"))
1045 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1047 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1052 c->mount_opts.override_compr = 1;
1053 c->default_compr = c->mount_opts.compr_type;
1058 char *act = match_strdup(&args[0]);
1062 if (!strcmp(act, "report"))
1063 c->assert_action = ASSACT_REPORT;
1064 else if (!strcmp(act, "read-only"))
1065 c->assert_action = ASSACT_RO;
1066 else if (!strcmp(act, "panic"))
1067 c->assert_action = ASSACT_PANIC;
1069 ubifs_err(c, "unknown assert action \"%s\"", act);
1077 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1078 if (!c->auth_key_name)
1081 case Opt_auth_hash_name:
1082 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1083 if (!c->auth_hash_name)
1091 struct super_block *sb = c->vfs_sb;
1093 flag = parse_standard_option(p);
1095 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1099 sb->s_flags |= flag;
1109 * destroy_journal - destroy journal data structures.
1110 * @c: UBIFS file-system description object
1112 * This function destroys journal data structures including those that may have
1113 * been created by recovery functions.
1115 static void destroy_journal(struct ubifs_info *c)
1117 while (!list_empty(&c->unclean_leb_list)) {
1118 struct ubifs_unclean_leb *ucleb;
1120 ucleb = list_entry(c->unclean_leb_list.next,
1121 struct ubifs_unclean_leb, list);
1122 list_del(&ucleb->list);
1125 while (!list_empty(&c->old_buds)) {
1126 struct ubifs_bud *bud;
1128 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1129 list_del(&bud->list);
1132 ubifs_destroy_idx_gc(c);
1133 ubifs_destroy_size_tree(c);
1139 * bu_init - initialize bulk-read information.
1140 * @c: UBIFS file-system description object
1142 static void bu_init(struct ubifs_info *c)
1144 ubifs_assert(c, c->bulk_read == 1);
1147 return; /* Already initialized */
1150 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1152 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1153 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1157 /* Just disable bulk-read */
1158 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1160 c->mount_opts.bulk_read = 1;
1167 * check_free_space - check if there is enough free space to mount.
1168 * @c: UBIFS file-system description object
1170 * This function makes sure UBIFS has enough free space to be mounted in
1171 * read/write mode. UBIFS must always have some free space to allow deletions.
1173 static int check_free_space(struct ubifs_info *c)
1175 ubifs_assert(c, c->dark_wm > 0);
1176 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1177 ubifs_err(c, "insufficient free space to mount in R/W mode");
1178 ubifs_dump_budg(c, &c->bi);
1179 ubifs_dump_lprops(c);
1186 * mount_ubifs - mount UBIFS file-system.
1187 * @c: UBIFS file-system description object
1189 * This function mounts UBIFS file system. Returns zero in case of success and
1190 * a negative error code in case of failure.
1192 static int mount_ubifs(struct ubifs_info *c)
1198 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1199 /* Suppress error messages while probing if SB_SILENT is set */
1200 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1202 err = init_constants_early(c);
1206 err = ubifs_debugging_init(c);
1210 err = check_volume_empty(c);
1214 if (c->empty && (c->ro_mount || c->ro_media)) {
1216 * This UBI volume is empty, and read-only, or the file system
1217 * is mounted read-only - we cannot format it.
1219 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1220 c->ro_media ? "UBI volume" : "mount");
1225 if (c->ro_media && !c->ro_mount) {
1226 ubifs_err(c, "cannot mount read-write - read-only media");
1232 * The requirement for the buffer is that it should fit indexing B-tree
1233 * height amount of integers. We assume the height if the TNC tree will
1237 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1239 if (!c->bottom_up_buf)
1242 c->sbuf = vmalloc(c->leb_size);
1247 c->ileb_buf = vmalloc(c->leb_size);
1252 if (c->bulk_read == 1)
1256 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1257 UBIFS_CIPHER_BLOCK_SIZE,
1259 if (!c->write_reserve_buf)
1265 if (c->auth_key_name) {
1266 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1267 err = ubifs_init_authentication(c);
1271 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1272 " authentication support");
1278 err = ubifs_read_superblock(c);
1285 * Make sure the compressor which is set as default in the superblock
1286 * or overridden by mount options is actually compiled in.
1288 if (!ubifs_compr_present(c, c->default_compr)) {
1289 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1290 ubifs_compr_name(c, c->default_compr));
1295 err = init_constants_sb(c);
1299 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1300 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1301 c->cbuf = kmalloc(sz, GFP_NOFS);
1307 err = alloc_wbufs(c);
1311 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1313 /* Create background thread */
1314 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1315 if (IS_ERR(c->bgt)) {
1316 err = PTR_ERR(c->bgt);
1318 ubifs_err(c, "cannot spawn \"%s\", error %d",
1322 wake_up_process(c->bgt);
1325 err = ubifs_read_master(c);
1329 init_constants_master(c);
1331 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1332 ubifs_msg(c, "recovery needed");
1333 c->need_recovery = 1;
1336 if (c->need_recovery && !c->ro_mount) {
1337 err = ubifs_recover_inl_heads(c, c->sbuf);
1342 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1346 if (!c->ro_mount && c->space_fixup) {
1347 err = ubifs_fixup_free_space(c);
1352 if (!c->ro_mount && !c->need_recovery) {
1354 * Set the "dirty" flag so that if we reboot uncleanly we
1355 * will notice this immediately on the next mount.
1357 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1358 err = ubifs_write_master(c);
1363 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1367 err = ubifs_replay_journal(c);
1371 /* Calculate 'min_idx_lebs' after journal replay */
1372 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1374 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1381 err = check_free_space(c);
1385 /* Check for enough log space */
1386 lnum = c->lhead_lnum + 1;
1387 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1388 lnum = UBIFS_LOG_LNUM;
1389 if (lnum == c->ltail_lnum) {
1390 err = ubifs_consolidate_log(c);
1395 if (c->need_recovery) {
1396 if (!ubifs_authenticated(c)) {
1397 err = ubifs_recover_size(c, true);
1402 err = ubifs_rcvry_gc_commit(c);
1406 if (ubifs_authenticated(c)) {
1407 err = ubifs_recover_size(c, false);
1412 err = take_gc_lnum(c);
1417 * GC LEB may contain garbage if there was an unclean
1418 * reboot, and it should be un-mapped.
1420 err = ubifs_leb_unmap(c, c->gc_lnum);
1425 err = dbg_check_lprops(c);
1428 } else if (c->need_recovery) {
1429 err = ubifs_recover_size(c, false);
1434 * Even if we mount read-only, we have to set space in GC LEB
1435 * to proper value because this affects UBIFS free space
1436 * reporting. We do not want to have a situation when
1437 * re-mounting from R/O to R/W changes amount of free space.
1439 err = take_gc_lnum(c);
1444 spin_lock(&ubifs_infos_lock);
1445 list_add_tail(&c->infos_list, &ubifs_infos);
1446 spin_unlock(&ubifs_infos_lock);
1448 if (c->need_recovery) {
1450 ubifs_msg(c, "recovery deferred");
1452 c->need_recovery = 0;
1453 ubifs_msg(c, "recovery completed");
1455 * GC LEB has to be empty and taken at this point. But
1456 * the journal head LEBs may also be accounted as
1457 * "empty taken" if they are empty.
1459 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1462 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1464 err = dbg_check_filesystem(c);
1468 err = dbg_debugfs_init_fs(c);
1474 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1475 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1476 c->ro_mount ? ", R/O mode" : "");
1477 x = (long long)c->main_lebs * c->leb_size;
1478 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1479 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1480 c->leb_size, c->leb_size >> 10, c->min_io_size,
1482 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1483 x, x >> 20, c->main_lebs,
1484 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1485 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1486 c->report_rp_size, c->report_rp_size >> 10);
1487 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1488 c->fmt_version, c->ro_compat_version,
1489 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1490 c->big_lpt ? ", big LPT model" : ", small LPT model");
1492 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1493 dbg_gen("data journal heads: %d",
1494 c->jhead_cnt - NONDATA_JHEADS_CNT);
1495 dbg_gen("log LEBs: %d (%d - %d)",
1496 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1497 dbg_gen("LPT area LEBs: %d (%d - %d)",
1498 c->lpt_lebs, c->lpt_first, c->lpt_last);
1499 dbg_gen("orphan area LEBs: %d (%d - %d)",
1500 c->orph_lebs, c->orph_first, c->orph_last);
1501 dbg_gen("main area LEBs: %d (%d - %d)",
1502 c->main_lebs, c->main_first, c->leb_cnt - 1);
1503 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1504 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1505 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1506 c->bi.old_idx_sz >> 20);
1507 dbg_gen("key hash type: %d", c->key_hash_type);
1508 dbg_gen("tree fanout: %d", c->fanout);
1509 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1510 dbg_gen("max. znode size %d", c->max_znode_sz);
1511 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1512 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1513 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1514 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1515 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1516 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1517 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1518 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1519 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1520 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1521 dbg_gen("dead watermark: %d", c->dead_wm);
1522 dbg_gen("dark watermark: %d", c->dark_wm);
1523 dbg_gen("LEB overhead: %d", c->leb_overhead);
1524 x = (long long)c->main_lebs * c->dark_wm;
1525 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1526 x, x >> 10, x >> 20);
1527 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1528 c->max_bud_bytes, c->max_bud_bytes >> 10,
1529 c->max_bud_bytes >> 20);
1530 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1531 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1532 c->bg_bud_bytes >> 20);
1533 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1534 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1535 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1536 dbg_gen("commit number: %llu", c->cmt_no);
1537 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1538 dbg_gen("max orphans: %d", c->max_orphans);
1543 spin_lock(&ubifs_infos_lock);
1544 list_del(&c->infos_list);
1545 spin_unlock(&ubifs_infos_lock);
1551 ubifs_lpt_free(c, 0);
1554 kfree(c->rcvrd_mst_node);
1556 kthread_stop(c->bgt);
1562 kfree(c->write_reserve_buf);
1566 kfree(c->bottom_up_buf);
1567 ubifs_debugging_exit(c);
1572 * ubifs_umount - un-mount UBIFS file-system.
1573 * @c: UBIFS file-system description object
1575 * Note, this function is called to free allocated resourced when un-mounting,
1576 * as well as free resources when an error occurred while we were half way
1577 * through mounting (error path cleanup function). So it has to make sure the
1578 * resource was actually allocated before freeing it.
1580 static void ubifs_umount(struct ubifs_info *c)
1582 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1585 dbg_debugfs_exit_fs(c);
1586 spin_lock(&ubifs_infos_lock);
1587 list_del(&c->infos_list);
1588 spin_unlock(&ubifs_infos_lock);
1591 kthread_stop(c->bgt);
1596 ubifs_lpt_free(c, 0);
1597 ubifs_exit_authentication(c);
1599 kfree(c->auth_key_name);
1600 kfree(c->auth_hash_name);
1602 kfree(c->rcvrd_mst_node);
1604 kfree(c->write_reserve_buf);
1608 kfree(c->bottom_up_buf);
1609 ubifs_debugging_exit(c);
1613 * ubifs_remount_rw - re-mount in read-write mode.
1614 * @c: UBIFS file-system description object
1616 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1617 * mode. This function allocates the needed resources and re-mounts UBIFS in
1620 static int ubifs_remount_rw(struct ubifs_info *c)
1624 if (c->rw_incompat) {
1625 ubifs_err(c, "the file-system is not R/W-compatible");
1626 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1627 c->fmt_version, c->ro_compat_version,
1628 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1632 mutex_lock(&c->umount_mutex);
1633 dbg_save_space_info(c);
1634 c->remounting_rw = 1;
1637 if (c->space_fixup) {
1638 err = ubifs_fixup_free_space(c);
1643 err = check_free_space(c);
1647 if (c->old_leb_cnt != c->leb_cnt) {
1648 struct ubifs_sb_node *sup = c->sup_node;
1650 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1651 err = ubifs_write_sb_node(c, sup);
1656 if (c->need_recovery) {
1657 ubifs_msg(c, "completing deferred recovery");
1658 err = ubifs_write_rcvrd_mst_node(c);
1661 if (!ubifs_authenticated(c)) {
1662 err = ubifs_recover_size(c, true);
1666 err = ubifs_clean_lebs(c, c->sbuf);
1669 err = ubifs_recover_inl_heads(c, c->sbuf);
1673 /* A readonly mount is not allowed to have orphans */
1674 ubifs_assert(c, c->tot_orphans == 0);
1675 err = ubifs_clear_orphans(c);
1680 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1681 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1682 err = ubifs_write_master(c);
1687 c->ileb_buf = vmalloc(c->leb_size);
1693 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1694 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1695 if (!c->write_reserve_buf) {
1700 err = ubifs_lpt_init(c, 0, 1);
1704 /* Create background thread */
1705 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1706 if (IS_ERR(c->bgt)) {
1707 err = PTR_ERR(c->bgt);
1709 ubifs_err(c, "cannot spawn \"%s\", error %d",
1713 wake_up_process(c->bgt);
1715 c->orph_buf = vmalloc(c->leb_size);
1721 /* Check for enough log space */
1722 lnum = c->lhead_lnum + 1;
1723 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1724 lnum = UBIFS_LOG_LNUM;
1725 if (lnum == c->ltail_lnum) {
1726 err = ubifs_consolidate_log(c);
1731 if (c->need_recovery) {
1732 err = ubifs_rcvry_gc_commit(c);
1736 if (ubifs_authenticated(c)) {
1737 err = ubifs_recover_size(c, false);
1742 err = ubifs_leb_unmap(c, c->gc_lnum);
1747 dbg_gen("re-mounted read-write");
1748 c->remounting_rw = 0;
1750 if (c->need_recovery) {
1751 c->need_recovery = 0;
1752 ubifs_msg(c, "deferred recovery completed");
1755 * Do not run the debugging space check if the were doing
1756 * recovery, because when we saved the information we had the
1757 * file-system in a state where the TNC and lprops has been
1758 * modified in memory, but all the I/O operations (including a
1759 * commit) were deferred. So the file-system was in
1760 * "non-committed" state. Now the file-system is in committed
1761 * state, and of course the amount of free space will change
1762 * because, for example, the old index size was imprecise.
1764 err = dbg_check_space_info(c);
1767 mutex_unlock(&c->umount_mutex);
1775 kthread_stop(c->bgt);
1779 kfree(c->write_reserve_buf);
1780 c->write_reserve_buf = NULL;
1783 ubifs_lpt_free(c, 1);
1784 c->remounting_rw = 0;
1785 mutex_unlock(&c->umount_mutex);
1790 * ubifs_remount_ro - re-mount in read-only mode.
1791 * @c: UBIFS file-system description object
1793 * We assume VFS has stopped writing. Possibly the background thread could be
1794 * running a commit, however kthread_stop will wait in that case.
1796 static void ubifs_remount_ro(struct ubifs_info *c)
1800 ubifs_assert(c, !c->need_recovery);
1801 ubifs_assert(c, !c->ro_mount);
1803 mutex_lock(&c->umount_mutex);
1805 kthread_stop(c->bgt);
1809 dbg_save_space_info(c);
1811 for (i = 0; i < c->jhead_cnt; i++) {
1812 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1814 ubifs_ro_mode(c, err);
1817 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1818 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1819 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1820 err = ubifs_write_master(c);
1822 ubifs_ro_mode(c, err);
1826 kfree(c->write_reserve_buf);
1827 c->write_reserve_buf = NULL;
1830 ubifs_lpt_free(c, 1);
1832 err = dbg_check_space_info(c);
1834 ubifs_ro_mode(c, err);
1835 mutex_unlock(&c->umount_mutex);
1838 static void ubifs_put_super(struct super_block *sb)
1841 struct ubifs_info *c = sb->s_fs_info;
1843 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1846 * The following asserts are only valid if there has not been a failure
1847 * of the media. For example, there will be dirty inodes if we failed
1848 * to write them back because of I/O errors.
1851 ubifs_assert(c, c->bi.idx_growth == 0);
1852 ubifs_assert(c, c->bi.dd_growth == 0);
1853 ubifs_assert(c, c->bi.data_growth == 0);
1857 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1858 * and file system un-mount. Namely, it prevents the shrinker from
1859 * picking this superblock for shrinking - it will be just skipped if
1860 * the mutex is locked.
1862 mutex_lock(&c->umount_mutex);
1865 * First of all kill the background thread to make sure it does
1866 * not interfere with un-mounting and freeing resources.
1869 kthread_stop(c->bgt);
1874 * On fatal errors c->ro_error is set to 1, in which case we do
1875 * not write the master node.
1880 /* Synchronize write-buffers */
1881 for (i = 0; i < c->jhead_cnt; i++) {
1882 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1884 ubifs_ro_mode(c, err);
1888 * We are being cleanly unmounted which means the
1889 * orphans were killed - indicate this in the master
1890 * node. Also save the reserved GC LEB number.
1892 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1893 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1894 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1895 err = ubifs_write_master(c);
1898 * Recovery will attempt to fix the master area
1899 * next mount, so we just print a message and
1900 * continue to unmount normally.
1902 ubifs_err(c, "failed to write master node, error %d",
1905 for (i = 0; i < c->jhead_cnt; i++)
1906 /* Make sure write-buffer timers are canceled */
1907 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1912 ubi_close_volume(c->ubi);
1913 mutex_unlock(&c->umount_mutex);
1916 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1919 struct ubifs_info *c = sb->s_fs_info;
1921 sync_filesystem(sb);
1922 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1924 err = ubifs_parse_options(c, data, 1);
1926 ubifs_err(c, "invalid or unknown remount parameter");
1930 if (c->ro_mount && !(*flags & SB_RDONLY)) {
1932 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1936 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1939 err = ubifs_remount_rw(c);
1942 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1944 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1947 ubifs_remount_ro(c);
1950 if (c->bulk_read == 1)
1953 dbg_gen("disable bulk-read");
1954 mutex_lock(&c->bu_mutex);
1957 mutex_unlock(&c->bu_mutex);
1960 if (!c->need_recovery)
1961 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1966 const struct super_operations ubifs_super_operations = {
1967 .alloc_inode = ubifs_alloc_inode,
1968 .free_inode = ubifs_free_inode,
1969 .put_super = ubifs_put_super,
1970 .write_inode = ubifs_write_inode,
1971 .evict_inode = ubifs_evict_inode,
1972 .statfs = ubifs_statfs,
1973 .dirty_inode = ubifs_dirty_inode,
1974 .remount_fs = ubifs_remount_fs,
1975 .show_options = ubifs_show_options,
1976 .sync_fs = ubifs_sync_fs,
1980 * open_ubi - parse UBI device name string and open the UBI device.
1981 * @name: UBI volume name
1982 * @mode: UBI volume open mode
1984 * The primary method of mounting UBIFS is by specifying the UBI volume
1985 * character device node path. However, UBIFS may also be mounted withoug any
1986 * character device node using one of the following methods:
1988 * o ubiX_Y - mount UBI device number X, volume Y;
1989 * o ubiY - mount UBI device number 0, volume Y;
1990 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1991 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1993 * Alternative '!' separator may be used instead of ':' (because some shells
1994 * like busybox may interpret ':' as an NFS host name separator). This function
1995 * returns UBI volume description object in case of success and a negative
1996 * error code in case of failure.
1998 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2000 struct ubi_volume_desc *ubi;
2004 if (!name || !*name)
2005 return ERR_PTR(-EINVAL);
2007 /* First, try to open using the device node path method */
2008 ubi = ubi_open_volume_path(name, mode);
2012 /* Try the "nodev" method */
2013 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2014 return ERR_PTR(-EINVAL);
2016 /* ubi:NAME method */
2017 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2018 return ubi_open_volume_nm(0, name + 4, mode);
2020 if (!isdigit(name[3]))
2021 return ERR_PTR(-EINVAL);
2023 dev = simple_strtoul(name + 3, &endptr, 0);
2026 if (*endptr == '\0')
2027 return ubi_open_volume(0, dev, mode);
2030 if (*endptr == '_' && isdigit(endptr[1])) {
2031 vol = simple_strtoul(endptr + 1, &endptr, 0);
2032 if (*endptr != '\0')
2033 return ERR_PTR(-EINVAL);
2034 return ubi_open_volume(dev, vol, mode);
2037 /* ubiX:NAME method */
2038 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2039 return ubi_open_volume_nm(dev, ++endptr, mode);
2041 return ERR_PTR(-EINVAL);
2044 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2046 struct ubifs_info *c;
2048 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2050 spin_lock_init(&c->cnt_lock);
2051 spin_lock_init(&c->cs_lock);
2052 spin_lock_init(&c->buds_lock);
2053 spin_lock_init(&c->space_lock);
2054 spin_lock_init(&c->orphan_lock);
2055 init_rwsem(&c->commit_sem);
2056 mutex_init(&c->lp_mutex);
2057 mutex_init(&c->tnc_mutex);
2058 mutex_init(&c->log_mutex);
2059 mutex_init(&c->umount_mutex);
2060 mutex_init(&c->bu_mutex);
2061 mutex_init(&c->write_reserve_mutex);
2062 init_waitqueue_head(&c->cmt_wq);
2064 c->old_idx = RB_ROOT;
2065 c->size_tree = RB_ROOT;
2066 c->orph_tree = RB_ROOT;
2067 INIT_LIST_HEAD(&c->infos_list);
2068 INIT_LIST_HEAD(&c->idx_gc);
2069 INIT_LIST_HEAD(&c->replay_list);
2070 INIT_LIST_HEAD(&c->replay_buds);
2071 INIT_LIST_HEAD(&c->uncat_list);
2072 INIT_LIST_HEAD(&c->empty_list);
2073 INIT_LIST_HEAD(&c->freeable_list);
2074 INIT_LIST_HEAD(&c->frdi_idx_list);
2075 INIT_LIST_HEAD(&c->unclean_leb_list);
2076 INIT_LIST_HEAD(&c->old_buds);
2077 INIT_LIST_HEAD(&c->orph_list);
2078 INIT_LIST_HEAD(&c->orph_new);
2079 c->no_chk_data_crc = 1;
2080 c->assert_action = ASSACT_RO;
2082 c->highest_inum = UBIFS_FIRST_INO;
2083 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2085 ubi_get_volume_info(ubi, &c->vi);
2086 ubi_get_device_info(c->vi.ubi_num, &c->di);
2091 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2093 struct ubifs_info *c = sb->s_fs_info;
2098 /* Re-open the UBI device in read-write mode */
2099 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2100 if (IS_ERR(c->ubi)) {
2101 err = PTR_ERR(c->ubi);
2105 err = ubifs_parse_options(c, data, 0);
2110 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2111 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2112 * which means the user would have to wait not just for their own I/O
2113 * but the read-ahead I/O as well i.e. completely pointless.
2115 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2116 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2117 * writeback happening.
2119 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2125 sb->s_magic = UBIFS_SUPER_MAGIC;
2126 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2127 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2128 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2129 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2130 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2131 sb->s_op = &ubifs_super_operations;
2132 #ifdef CONFIG_UBIFS_FS_XATTR
2133 sb->s_xattr = ubifs_xattr_handlers;
2135 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2137 mutex_lock(&c->umount_mutex);
2138 err = mount_ubifs(c);
2140 ubifs_assert(c, err < 0);
2144 /* Read the root inode */
2145 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2147 err = PTR_ERR(root);
2151 sb->s_root = d_make_root(root);
2157 mutex_unlock(&c->umount_mutex);
2163 mutex_unlock(&c->umount_mutex);
2165 ubi_close_volume(c->ubi);
2170 static int sb_test(struct super_block *sb, void *data)
2172 struct ubifs_info *c1 = data;
2173 struct ubifs_info *c = sb->s_fs_info;
2175 return c->vi.cdev == c1->vi.cdev;
2178 static int sb_set(struct super_block *sb, void *data)
2180 sb->s_fs_info = data;
2181 return set_anon_super(sb, NULL);
2184 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2185 const char *name, void *data)
2187 struct ubi_volume_desc *ubi;
2188 struct ubifs_info *c;
2189 struct super_block *sb;
2192 dbg_gen("name %s, flags %#x", name, flags);
2195 * Get UBI device number and volume ID. Mount it read-only so far
2196 * because this might be a new mount point, and UBI allows only one
2197 * read-write user at a time.
2199 ubi = open_ubi(name, UBI_READONLY);
2201 if (!(flags & SB_SILENT))
2202 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2203 current->pid, name, (int)PTR_ERR(ubi));
2204 return ERR_CAST(ubi);
2207 c = alloc_ubifs_info(ubi);
2213 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2215 sb = sget(fs_type, sb_test, sb_set, flags, c);
2223 struct ubifs_info *c1 = sb->s_fs_info;
2225 /* A new mount point for already mounted UBIFS */
2226 dbg_gen("this ubi volume is already mounted");
2227 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2232 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2235 /* We do not support atime */
2236 sb->s_flags |= SB_ACTIVE;
2237 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2238 ubifs_msg(c, "full atime support is enabled.");
2240 sb->s_flags |= SB_NOATIME;
2243 /* 'fill_super()' opens ubi again so we must close it here */
2244 ubi_close_volume(ubi);
2246 return dget(sb->s_root);
2249 deactivate_locked_super(sb);
2251 ubi_close_volume(ubi);
2252 return ERR_PTR(err);
2255 static void kill_ubifs_super(struct super_block *s)
2257 struct ubifs_info *c = s->s_fs_info;
2262 static struct file_system_type ubifs_fs_type = {
2264 .owner = THIS_MODULE,
2265 .mount = ubifs_mount,
2266 .kill_sb = kill_ubifs_super,
2268 MODULE_ALIAS_FS("ubifs");
2271 * Inode slab cache constructor.
2273 static void inode_slab_ctor(void *obj)
2275 struct ubifs_inode *ui = obj;
2276 inode_init_once(&ui->vfs_inode);
2279 static int __init ubifs_init(void)
2283 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2285 /* Make sure node sizes are 8-byte aligned */
2286 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2287 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2288 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2289 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2290 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2291 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2292 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2293 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2294 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2295 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2296 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2298 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2299 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2300 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2301 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2302 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2303 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2305 /* Check min. node size */
2306 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2307 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2308 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2309 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2311 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2312 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2313 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2314 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2316 /* Defined node sizes */
2317 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2318 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2319 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2320 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2323 * We use 2 bit wide bit-fields to store compression type, which should
2324 * be amended if more compressors are added. The bit-fields are:
2325 * @compr_type in 'struct ubifs_inode', @default_compr in
2326 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2328 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2331 * We require that PAGE_SIZE is greater-than-or-equal-to
2332 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2334 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2335 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2336 current->pid, (unsigned int)PAGE_SIZE);
2340 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2341 sizeof(struct ubifs_inode), 0,
2342 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2343 SLAB_ACCOUNT, &inode_slab_ctor);
2344 if (!ubifs_inode_slab)
2347 err = register_shrinker(&ubifs_shrinker_info);
2351 err = ubifs_compressors_init();
2355 err = dbg_debugfs_init();
2359 err = register_filesystem(&ubifs_fs_type);
2361 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2370 ubifs_compressors_exit();
2372 unregister_shrinker(&ubifs_shrinker_info);
2374 kmem_cache_destroy(ubifs_inode_slab);
2377 /* late_initcall to let compressors initialize first */
2378 late_initcall(ubifs_init);
2380 static void __exit ubifs_exit(void)
2382 WARN_ON(!list_empty(&ubifs_infos));
2383 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2386 ubifs_compressors_exit();
2387 unregister_shrinker(&ubifs_shrinker_info);
2390 * Make sure all delayed rcu free inodes are flushed before we
2394 kmem_cache_destroy(ubifs_inode_slab);
2395 unregister_filesystem(&ubifs_fs_type);
2397 module_exit(ubifs_exit);
2399 MODULE_LICENSE("GPL");
2400 MODULE_VERSION(__stringify(UBIFS_VERSION));
2401 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2402 MODULE_DESCRIPTION("UBIFS - UBI File System");