1 // SPDX-License-Identifier: GPL-2.0+
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
19 #include <dm/devres.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/ctype.h>
24 #include <linux/kthread.h>
25 #include <linux/parser.h>
26 #include <linux/seq_file.h>
27 #include <linux/mount.h>
28 #include <linux/math64.h>
29 #include <linux/writeback.h>
35 #include <linux/bitops.h>
36 #include <linux/bug.h>
37 #include <linux/log2.h>
38 #include <linux/stat.h>
39 #include <linux/err.h>
41 #include <ubi_uboot.h>
42 #include <linux/stringify.h>
43 #include <mtd/ubi-user.h>
51 #define INODE_LOCKED_MAX 64
53 struct super_block *ubifs_sb;
55 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
57 int set_anon_super(struct super_block *s, void *data)
62 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
66 inode = (struct inode *)malloc_cache_aligned(
67 sizeof(struct ubifs_inode));
71 list_add(&inode->i_sb_list, &sb->s_inodes);
72 inode->i_state = I_LOCK | I_NEW;
78 void iget_failed(struct inode *inode)
82 int ubifs_iput(struct inode *inode)
84 list_del_init(&inode->i_sb_list);
91 * Lock (save) inode in inode array for readback after recovery
93 void iput(struct inode *inode)
101 for (i = 0; i < INODE_LOCKED_MAX; i++) {
102 if (inodes_locked_down[i] == NULL)
106 if (i >= INODE_LOCKED_MAX) {
107 dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
112 * Allocate and use new inode
114 ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
115 memcpy(ino, inode, sizeof(struct ubifs_inode));
118 * Finally save inode in array
120 inodes_locked_down[i] = ino;
123 /* from fs/inode.c */
125 * clear_nlink - directly zero an inode's link count
128 * This is a low-level filesystem helper to replace any
129 * direct filesystem manipulation of i_nlink. See
130 * drop_nlink() for why we care about i_nlink hitting zero.
132 void clear_nlink(struct inode *inode)
134 if (inode->i_nlink) {
135 inode->__i_nlink = 0;
136 atomic_long_inc(&inode->i_sb->s_remove_count);
139 EXPORT_SYMBOL(clear_nlink);
142 * set_nlink - directly set an inode's link count
144 * @nlink: new nlink (should be non-zero)
146 * This is a low-level filesystem helper to replace any
147 * direct filesystem manipulation of i_nlink.
149 void set_nlink(struct inode *inode, unsigned int nlink)
154 /* Yes, some filesystems do change nlink from zero to one */
155 if (inode->i_nlink == 0)
156 atomic_long_dec(&inode->i_sb->s_remove_count);
158 inode->__i_nlink = nlink;
161 EXPORT_SYMBOL(set_nlink);
163 /* from include/linux/fs.h */
164 static inline void i_uid_write(struct inode *inode, uid_t uid)
166 inode->i_uid.val = uid;
169 static inline void i_gid_write(struct inode *inode, gid_t gid)
171 inode->i_gid.val = gid;
174 void unlock_new_inode(struct inode *inode)
181 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
182 * allocating too much.
184 #define UBIFS_KMALLOC_OK (128*1024)
186 /* Slab cache for UBIFS inodes */
187 struct kmem_cache *ubifs_inode_slab;
190 /* UBIFS TNC shrinker description */
191 static struct shrinker ubifs_shrinker_info = {
192 .scan_objects = ubifs_shrink_scan,
193 .count_objects = ubifs_shrink_count,
194 .seeks = DEFAULT_SEEKS,
199 * validate_inode - validate inode.
200 * @c: UBIFS file-system description object
201 * @inode: the inode to validate
203 * This is a helper function for 'ubifs_iget()' which validates various fields
204 * of a newly built inode to make sure they contain sane values and prevent
205 * possible vulnerabilities. Returns zero if the inode is all right and
206 * a non-zero error code if not.
208 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
211 const struct ubifs_inode *ui = ubifs_inode(inode);
213 if (inode->i_size > c->max_inode_sz) {
214 ubifs_err(c, "inode is too large (%lld)",
215 (long long)inode->i_size);
219 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
220 ubifs_err(c, "unknown compression type %d", ui->compr_type);
224 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
227 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
230 if (ui->xattr && !S_ISREG(inode->i_mode))
233 if (!ubifs_compr_present(ui->compr_type)) {
234 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
235 inode->i_ino, ubifs_compr_name(ui->compr_type));
238 err = dbg_check_dir(c, inode);
242 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
246 struct ubifs_ino_node *ino;
247 struct ubifs_info *c = sb->s_fs_info;
249 struct ubifs_inode *ui;
254 dbg_gen("inode %lu", inum);
258 * U-Boot special handling of locked down inodes via recovery
259 * e.g. ubifs_recover_size()
261 for (i = 0; i < INODE_LOCKED_MAX; i++) {
263 * Exit on last entry (NULL), inode not found in list
265 if (inodes_locked_down[i] == NULL)
268 if (inodes_locked_down[i]->i_ino == inum) {
270 * We found the locked down inode in our array,
271 * so just return this pointer instead of creating
274 return inodes_locked_down[i];
279 inode = iget_locked(sb, inum);
281 return ERR_PTR(-ENOMEM);
282 if (!(inode->i_state & I_NEW))
284 ui = ubifs_inode(inode);
286 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
292 ino_key_init(c, &key, inode->i_ino);
294 err = ubifs_tnc_lookup(c, &key, ino);
298 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
299 set_nlink(inode, le32_to_cpu(ino->nlink));
300 i_uid_write(inode, le32_to_cpu(ino->uid));
301 i_gid_write(inode, le32_to_cpu(ino->gid));
302 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
303 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
304 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
305 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
306 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
307 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
308 inode->i_mode = le32_to_cpu(ino->mode);
309 inode->i_size = le64_to_cpu(ino->size);
311 ui->data_len = le32_to_cpu(ino->data_len);
312 ui->flags = le32_to_cpu(ino->flags);
313 ui->compr_type = le16_to_cpu(ino->compr_type);
314 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
315 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
316 ui->xattr_size = le32_to_cpu(ino->xattr_size);
317 ui->xattr_names = le32_to_cpu(ino->xattr_names);
318 ui->synced_i_size = ui->ui_size = inode->i_size;
320 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
322 err = validate_inode(c, inode);
327 switch (inode->i_mode & S_IFMT) {
329 inode->i_mapping->a_ops = &ubifs_file_address_operations;
330 inode->i_op = &ubifs_file_inode_operations;
331 inode->i_fop = &ubifs_file_operations;
333 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
338 memcpy(ui->data, ino->data, ui->data_len);
339 ((char *)ui->data)[ui->data_len] = '\0';
340 } else if (ui->data_len != 0) {
346 inode->i_op = &ubifs_dir_inode_operations;
347 inode->i_fop = &ubifs_dir_operations;
348 if (ui->data_len != 0) {
354 inode->i_op = &ubifs_symlink_inode_operations;
355 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
359 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
364 memcpy(ui->data, ino->data, ui->data_len);
365 ((char *)ui->data)[ui->data_len] = '\0';
366 inode->i_link = ui->data;
372 union ubifs_dev_desc *dev;
374 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
380 dev = (union ubifs_dev_desc *)ino->data;
381 if (ui->data_len == sizeof(dev->new))
382 rdev = new_decode_dev(le32_to_cpu(dev->new));
383 else if (ui->data_len == sizeof(dev->huge))
384 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
389 memcpy(ui->data, ino->data, ui->data_len);
390 inode->i_op = &ubifs_file_inode_operations;
391 init_special_inode(inode, inode->i_mode, rdev);
396 inode->i_op = &ubifs_file_inode_operations;
397 init_special_inode(inode, inode->i_mode, 0);
398 if (ui->data_len != 0) {
408 if ((inode->i_mode & S_IFMT) == S_IFLNK) {
409 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
413 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
418 memcpy(ui->data, ino->data, ui->data_len);
419 ((char *)ui->data)[ui->data_len] = '\0';
425 ubifs_set_inode_flags(inode);
427 unlock_new_inode(inode);
431 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
432 ubifs_dump_node(c, ino);
433 ubifs_dump_inode(c, inode);
438 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
443 static struct inode *ubifs_alloc_inode(struct super_block *sb)
445 struct ubifs_inode *ui;
447 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
451 memset((void *)ui + sizeof(struct inode), 0,
452 sizeof(struct ubifs_inode) - sizeof(struct inode));
453 mutex_init(&ui->ui_mutex);
454 spin_lock_init(&ui->ui_lock);
455 return &ui->vfs_inode;
459 static void ubifs_i_callback(struct rcu_head *head)
461 struct inode *inode = container_of(head, struct inode, i_rcu);
462 struct ubifs_inode *ui = ubifs_inode(inode);
463 kmem_cache_free(ubifs_inode_slab, ui);
466 static void ubifs_destroy_inode(struct inode *inode)
468 struct ubifs_inode *ui = ubifs_inode(inode);
471 call_rcu(&inode->i_rcu, ubifs_i_callback);
475 * Note, Linux write-back code calls this without 'i_mutex'.
477 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
480 struct ubifs_info *c = inode->i_sb->s_fs_info;
481 struct ubifs_inode *ui = ubifs_inode(inode);
483 ubifs_assert(!ui->xattr);
484 if (is_bad_inode(inode))
487 mutex_lock(&ui->ui_mutex);
489 * Due to races between write-back forced by budgeting
490 * (see 'sync_some_inodes()') and background write-back, the inode may
491 * have already been synchronized, do not do this again. This might
492 * also happen if it was synchronized in an VFS operation, e.g.
496 mutex_unlock(&ui->ui_mutex);
501 * As an optimization, do not write orphan inodes to the media just
502 * because this is not needed.
504 dbg_gen("inode %lu, mode %#x, nlink %u",
505 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
506 if (inode->i_nlink) {
507 err = ubifs_jnl_write_inode(c, inode);
509 ubifs_err(c, "can't write inode %lu, error %d",
512 err = dbg_check_inode_size(c, inode, ui->ui_size);
516 mutex_unlock(&ui->ui_mutex);
517 ubifs_release_dirty_inode_budget(c, ui);
521 static void ubifs_evict_inode(struct inode *inode)
524 struct ubifs_info *c = inode->i_sb->s_fs_info;
525 struct ubifs_inode *ui = ubifs_inode(inode);
529 * Extended attribute inode deletions are fully handled in
530 * 'ubifs_removexattr()'. These inodes are special and have
531 * limited usage, so there is nothing to do here.
535 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
536 ubifs_assert(!atomic_read(&inode->i_count));
538 truncate_inode_pages_final(&inode->i_data);
543 if (is_bad_inode(inode))
546 ui->ui_size = inode->i_size = 0;
547 err = ubifs_jnl_delete_inode(c, inode);
550 * Worst case we have a lost orphan inode wasting space, so a
551 * simple error message is OK here.
553 ubifs_err(c, "can't delete inode %lu, error %d",
558 ubifs_release_dirty_inode_budget(c, ui);
560 /* We've deleted something - clean the "no space" flags */
561 c->bi.nospace = c->bi.nospace_rp = 0;
569 static void ubifs_dirty_inode(struct inode *inode, int flags)
571 struct ubifs_inode *ui = ubifs_inode(inode);
573 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
576 dbg_gen("inode %lu", inode->i_ino);
581 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
583 struct ubifs_info *c = dentry->d_sb->s_fs_info;
584 unsigned long long free;
585 __le32 *uuid = (__le32 *)c->uuid;
587 free = ubifs_get_free_space(c);
588 dbg_gen("free space %lld bytes (%lld blocks)",
589 free, free >> UBIFS_BLOCK_SHIFT);
591 buf->f_type = UBIFS_SUPER_MAGIC;
592 buf->f_bsize = UBIFS_BLOCK_SIZE;
593 buf->f_blocks = c->block_cnt;
594 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
595 if (free > c->report_rp_size)
596 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
601 buf->f_namelen = UBIFS_MAX_NLEN;
602 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
603 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
604 ubifs_assert(buf->f_bfree <= c->block_cnt);
608 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
610 struct ubifs_info *c = root->d_sb->s_fs_info;
612 if (c->mount_opts.unmount_mode == 2)
613 seq_puts(s, ",fast_unmount");
614 else if (c->mount_opts.unmount_mode == 1)
615 seq_puts(s, ",norm_unmount");
617 if (c->mount_opts.bulk_read == 2)
618 seq_puts(s, ",bulk_read");
619 else if (c->mount_opts.bulk_read == 1)
620 seq_puts(s, ",no_bulk_read");
622 if (c->mount_opts.chk_data_crc == 2)
623 seq_puts(s, ",chk_data_crc");
624 else if (c->mount_opts.chk_data_crc == 1)
625 seq_puts(s, ",no_chk_data_crc");
627 if (c->mount_opts.override_compr) {
628 seq_printf(s, ",compr=%s",
629 ubifs_compr_name(c->mount_opts.compr_type));
635 static int ubifs_sync_fs(struct super_block *sb, int wait)
638 struct ubifs_info *c = sb->s_fs_info;
641 * Zero @wait is just an advisory thing to help the file system shove
642 * lots of data into the queues, and there will be the second
643 * '->sync_fs()' call, with non-zero @wait.
649 * Synchronize write buffers, because 'ubifs_run_commit()' does not
650 * do this if it waits for an already running commit.
652 for (i = 0; i < c->jhead_cnt; i++) {
653 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
659 * Strictly speaking, it is not necessary to commit the journal here,
660 * synchronizing write-buffers would be enough. But committing makes
661 * UBIFS free space predictions much more accurate, so we want to let
662 * the user be able to get more accurate results of 'statfs()' after
663 * they synchronize the file system.
665 err = ubifs_run_commit(c);
669 return ubi_sync(c->vi.ubi_num);
674 * init_constants_early - initialize UBIFS constants.
675 * @c: UBIFS file-system description object
677 * This function initialize UBIFS constants which do not need the superblock to
678 * be read. It also checks that the UBI volume satisfies basic UBIFS
679 * requirements. Returns zero in case of success and a negative error code in
682 static int init_constants_early(struct ubifs_info *c)
684 if (c->vi.corrupted) {
685 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
690 ubifs_msg(c, "read-only UBI device");
694 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
695 ubifs_msg(c, "static UBI volume - read-only mode");
699 c->leb_cnt = c->vi.size;
700 c->leb_size = c->vi.usable_leb_size;
701 c->leb_start = c->di.leb_start;
702 c->half_leb_size = c->leb_size / 2;
703 c->min_io_size = c->di.min_io_size;
704 c->min_io_shift = fls(c->min_io_size) - 1;
705 c->max_write_size = c->di.max_write_size;
706 c->max_write_shift = fls(c->max_write_size) - 1;
708 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
709 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
710 c->leb_size, UBIFS_MIN_LEB_SZ);
714 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
715 ubifs_err(c, "too few LEBs (%d), min. is %d",
716 c->leb_cnt, UBIFS_MIN_LEB_CNT);
720 if (!is_power_of_2(c->min_io_size)) {
721 ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
726 * Maximum write size has to be greater or equivalent to min. I/O
727 * size, and be multiple of min. I/O size.
729 if (c->max_write_size < c->min_io_size ||
730 c->max_write_size % c->min_io_size ||
731 !is_power_of_2(c->max_write_size)) {
732 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
733 c->max_write_size, c->min_io_size);
738 * UBIFS aligns all node to 8-byte boundary, so to make function in
739 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
742 if (c->min_io_size < 8) {
745 if (c->max_write_size < c->min_io_size) {
746 c->max_write_size = c->min_io_size;
747 c->max_write_shift = c->min_io_shift;
751 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
752 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
755 * Initialize node length ranges which are mostly needed for node
758 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
759 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
760 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
761 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
762 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
763 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
765 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
766 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
767 c->ranges[UBIFS_ORPH_NODE].min_len =
768 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
769 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
770 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
771 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
772 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
773 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
774 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
775 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
777 * Minimum indexing node size is amended later when superblock is
778 * read and the key length is known.
780 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
782 * Maximum indexing node size is amended later when superblock is
783 * read and the fanout is known.
785 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
788 * Initialize dead and dark LEB space watermarks. See gc.c for comments
789 * about these values.
791 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
792 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
795 * Calculate how many bytes would be wasted at the end of LEB if it was
796 * fully filled with data nodes of maximum size. This is used in
797 * calculations when reporting free space.
799 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
801 /* Buffer size for bulk-reads */
802 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
803 if (c->max_bu_buf_len > c->leb_size)
804 c->max_bu_buf_len = c->leb_size;
809 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
810 * @c: UBIFS file-system description object
811 * @lnum: LEB the write-buffer was synchronized to
812 * @free: how many free bytes left in this LEB
813 * @pad: how many bytes were padded
815 * This is a callback function which is called by the I/O unit when the
816 * write-buffer is synchronized. We need this to correctly maintain space
817 * accounting in bud logical eraseblocks. This function returns zero in case of
818 * success and a negative error code in case of failure.
820 * This function actually belongs to the journal, but we keep it here because
821 * we want to keep it static.
823 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
825 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
829 * init_constants_sb - initialize UBIFS constants.
830 * @c: UBIFS file-system description object
832 * This is a helper function which initializes various UBIFS constants after
833 * the superblock has been read. It also checks various UBIFS parameters and
834 * makes sure they are all right. Returns zero in case of success and a
835 * negative error code in case of failure.
837 static int init_constants_sb(struct ubifs_info *c)
842 c->main_bytes = (long long)c->main_lebs * c->leb_size;
843 c->max_znode_sz = sizeof(struct ubifs_znode) +
844 c->fanout * sizeof(struct ubifs_zbranch);
846 tmp = ubifs_idx_node_sz(c, 1);
847 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
848 c->min_idx_node_sz = ALIGN(tmp, 8);
850 tmp = ubifs_idx_node_sz(c, c->fanout);
851 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
852 c->max_idx_node_sz = ALIGN(tmp, 8);
854 /* Make sure LEB size is large enough to fit full commit */
855 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
856 tmp = ALIGN(tmp, c->min_io_size);
857 if (tmp > c->leb_size) {
858 ubifs_err(c, "too small LEB size %d, at least %d needed",
864 * Make sure that the log is large enough to fit reference nodes for
865 * all buds plus one reserved LEB.
867 tmp64 = c->max_bud_bytes + c->leb_size - 1;
868 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
869 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
872 if (c->log_lebs < tmp) {
873 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
879 * When budgeting we assume worst-case scenarios when the pages are not
880 * be compressed and direntries are of the maximum size.
882 * Note, data, which may be stored in inodes is budgeted separately, so
883 * it is not included into 'c->bi.inode_budget'.
885 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
886 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
887 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
890 * When the amount of flash space used by buds becomes
891 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
892 * The writers are unblocked when the commit is finished. To avoid
893 * writers to be blocked UBIFS initiates background commit in advance,
894 * when number of bud bytes becomes above the limit defined below.
896 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
899 * Ensure minimum journal size. All the bytes in the journal heads are
900 * considered to be used, when calculating the current journal usage.
901 * Consequently, if the journal is too small, UBIFS will treat it as
904 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
905 if (c->bg_bud_bytes < tmp64)
906 c->bg_bud_bytes = tmp64;
907 if (c->max_bud_bytes < tmp64 + c->leb_size)
908 c->max_bud_bytes = tmp64 + c->leb_size;
910 err = ubifs_calc_lpt_geom(c);
914 /* Initialize effective LEB size used in budgeting calculations */
915 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
920 * init_constants_master - initialize UBIFS constants.
921 * @c: UBIFS file-system description object
923 * This is a helper function which initializes various UBIFS constants after
924 * the master node has been read. It also checks various UBIFS parameters and
925 * makes sure they are all right.
927 static void init_constants_master(struct ubifs_info *c)
931 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
932 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
935 * Calculate total amount of FS blocks. This number is not used
936 * internally because it does not make much sense for UBIFS, but it is
937 * necessary to report something for the 'statfs()' call.
939 * Subtract the LEB reserved for GC, the LEB which is reserved for
940 * deletions, minimum LEBs for the index, and assume only one journal
943 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
944 tmp64 *= (long long)c->leb_size - c->leb_overhead;
945 tmp64 = ubifs_reported_space(c, tmp64);
946 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
950 * take_gc_lnum - reserve GC LEB.
951 * @c: UBIFS file-system description object
953 * This function ensures that the LEB reserved for garbage collection is marked
954 * as "taken" in lprops. We also have to set free space to LEB size and dirty
955 * space to zero, because lprops may contain out-of-date information if the
956 * file-system was un-mounted before it has been committed. This function
957 * returns zero in case of success and a negative error code in case of
960 static int take_gc_lnum(struct ubifs_info *c)
964 if (c->gc_lnum == -1) {
965 ubifs_err(c, "no LEB for GC");
969 /* And we have to tell lprops that this LEB is taken */
970 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
976 * alloc_wbufs - allocate write-buffers.
977 * @c: UBIFS file-system description object
979 * This helper function allocates and initializes UBIFS write-buffers. Returns
980 * zero in case of success and %-ENOMEM in case of failure.
982 static int alloc_wbufs(struct ubifs_info *c)
986 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
991 /* Initialize journal heads */
992 for (i = 0; i < c->jhead_cnt; i++) {
993 INIT_LIST_HEAD(&c->jheads[i].buds_list);
994 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
998 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
999 c->jheads[i].wbuf.jhead = i;
1000 c->jheads[i].grouped = 1;
1004 * Garbage Collector head does not need to be synchronized by timer.
1005 * Also GC head nodes are not grouped.
1007 c->jheads[GCHD].wbuf.no_timer = 1;
1008 c->jheads[GCHD].grouped = 0;
1014 * free_wbufs - free write-buffers.
1015 * @c: UBIFS file-system description object
1017 static void free_wbufs(struct ubifs_info *c)
1022 for (i = 0; i < c->jhead_cnt; i++) {
1023 kfree(c->jheads[i].wbuf.buf);
1024 kfree(c->jheads[i].wbuf.inodes);
1032 * free_orphans - free orphans.
1033 * @c: UBIFS file-system description object
1035 static void free_orphans(struct ubifs_info *c)
1037 struct ubifs_orphan *orph;
1039 while (c->orph_dnext) {
1040 orph = c->orph_dnext;
1041 c->orph_dnext = orph->dnext;
1042 list_del(&orph->list);
1046 while (!list_empty(&c->orph_list)) {
1047 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1048 list_del(&orph->list);
1050 ubifs_err(c, "orphan list not empty at unmount");
1058 * free_buds - free per-bud objects.
1059 * @c: UBIFS file-system description object
1061 static void free_buds(struct ubifs_info *c)
1063 struct ubifs_bud *bud, *n;
1065 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1070 * check_volume_empty - check if the UBI volume is empty.
1071 * @c: UBIFS file-system description object
1073 * This function checks if the UBIFS volume is empty by looking if its LEBs are
1074 * mapped or not. The result of checking is stored in the @c->empty variable.
1075 * Returns zero in case of success and a negative error code in case of
1078 static int check_volume_empty(struct ubifs_info *c)
1083 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1084 err = ubifs_is_mapped(c, lnum);
1085 if (unlikely(err < 0))
1099 * UBIFS mount options.
1101 * Opt_fast_unmount: do not run a journal commit before un-mounting
1102 * Opt_norm_unmount: run a journal commit before un-mounting
1103 * Opt_bulk_read: enable bulk-reads
1104 * Opt_no_bulk_read: disable bulk-reads
1105 * Opt_chk_data_crc: check CRCs when reading data nodes
1106 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1107 * Opt_override_compr: override default compressor
1108 * Opt_err: just end of array marker
1116 Opt_no_chk_data_crc,
1122 static const match_table_t tokens = {
1123 {Opt_fast_unmount, "fast_unmount"},
1124 {Opt_norm_unmount, "norm_unmount"},
1125 {Opt_bulk_read, "bulk_read"},
1126 {Opt_no_bulk_read, "no_bulk_read"},
1127 {Opt_chk_data_crc, "chk_data_crc"},
1128 {Opt_no_chk_data_crc, "no_chk_data_crc"},
1129 {Opt_override_compr, "compr=%s"},
1134 * parse_standard_option - parse a standard mount option.
1135 * @option: the option to parse
1137 * Normally, standard mount options like "sync" are passed to file-systems as
1138 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1139 * be present in the options string. This function tries to deal with this
1140 * situation and parse standard options. Returns 0 if the option was not
1141 * recognized, and the corresponding integer flag if it was.
1143 * UBIFS is only interested in the "sync" option, so do not check for anything
1146 static int parse_standard_option(const char *option)
1149 pr_notice("UBIFS: parse %s\n", option);
1150 if (!strcmp(option, "sync"))
1151 return MS_SYNCHRONOUS;
1156 * ubifs_parse_options - parse mount parameters.
1157 * @c: UBIFS file-system description object
1158 * @options: parameters to parse
1159 * @is_remount: non-zero if this is FS re-mount
1161 * This function parses UBIFS mount options and returns zero in case success
1162 * and a negative error code in case of failure.
1164 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1168 substring_t args[MAX_OPT_ARGS];
1173 while ((p = strsep(&options, ","))) {
1179 token = match_token(p, tokens, args);
1182 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1183 * We accept them in order to be backward-compatible. But this
1184 * should be removed at some point.
1186 case Opt_fast_unmount:
1187 c->mount_opts.unmount_mode = 2;
1189 case Opt_norm_unmount:
1190 c->mount_opts.unmount_mode = 1;
1193 c->mount_opts.bulk_read = 2;
1196 case Opt_no_bulk_read:
1197 c->mount_opts.bulk_read = 1;
1200 case Opt_chk_data_crc:
1201 c->mount_opts.chk_data_crc = 2;
1202 c->no_chk_data_crc = 0;
1204 case Opt_no_chk_data_crc:
1205 c->mount_opts.chk_data_crc = 1;
1206 c->no_chk_data_crc = 1;
1208 case Opt_override_compr:
1210 char *name = match_strdup(&args[0]);
1214 if (!strcmp(name, "none"))
1215 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1216 else if (!strcmp(name, "lzo"))
1217 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1218 else if (!strcmp(name, "zlib"))
1219 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1221 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1226 c->mount_opts.override_compr = 1;
1227 c->default_compr = c->mount_opts.compr_type;
1233 struct super_block *sb = c->vfs_sb;
1235 flag = parse_standard_option(p);
1237 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1241 sb->s_flags |= flag;
1252 * destroy_journal - destroy journal data structures.
1253 * @c: UBIFS file-system description object
1255 * This function destroys journal data structures including those that may have
1256 * been created by recovery functions.
1258 static void destroy_journal(struct ubifs_info *c)
1260 while (!list_empty(&c->unclean_leb_list)) {
1261 struct ubifs_unclean_leb *ucleb;
1263 ucleb = list_entry(c->unclean_leb_list.next,
1264 struct ubifs_unclean_leb, list);
1265 list_del(&ucleb->list);
1268 while (!list_empty(&c->old_buds)) {
1269 struct ubifs_bud *bud;
1271 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1272 list_del(&bud->list);
1275 ubifs_destroy_idx_gc(c);
1276 ubifs_destroy_size_tree(c);
1282 * bu_init - initialize bulk-read information.
1283 * @c: UBIFS file-system description object
1285 static void bu_init(struct ubifs_info *c)
1287 ubifs_assert(c->bulk_read == 1);
1290 return; /* Already initialized */
1293 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1295 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1296 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1300 /* Just disable bulk-read */
1301 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1303 c->mount_opts.bulk_read = 1;
1311 * check_free_space - check if there is enough free space to mount.
1312 * @c: UBIFS file-system description object
1314 * This function makes sure UBIFS has enough free space to be mounted in
1315 * read/write mode. UBIFS must always have some free space to allow deletions.
1317 static int check_free_space(struct ubifs_info *c)
1319 ubifs_assert(c->dark_wm > 0);
1320 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1321 ubifs_err(c, "insufficient free space to mount in R/W mode");
1322 ubifs_dump_budg(c, &c->bi);
1323 ubifs_dump_lprops(c);
1331 * mount_ubifs - mount UBIFS file-system.
1332 * @c: UBIFS file-system description object
1334 * This function mounts UBIFS file system. Returns zero in case of success and
1335 * a negative error code in case of failure.
1337 static int mount_ubifs(struct ubifs_info *c)
1341 #ifndef CONFIG_UBIFS_SILENCE_MSG
1346 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1347 /* Suppress error messages while probing if MS_SILENT is set */
1348 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1351 printf("UBIFS: only ro mode in U-Boot allowed.\n");
1356 err = init_constants_early(c);
1360 err = ubifs_debugging_init(c);
1364 err = check_volume_empty(c);
1368 if (c->empty && (c->ro_mount || c->ro_media)) {
1370 * This UBI volume is empty, and read-only, or the file system
1371 * is mounted read-only - we cannot format it.
1373 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1374 c->ro_media ? "UBI volume" : "mount");
1379 if (c->ro_media && !c->ro_mount) {
1380 ubifs_err(c, "cannot mount read-write - read-only media");
1386 * The requirement for the buffer is that it should fit indexing B-tree
1387 * height amount of integers. We assume the height if the TNC tree will
1391 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1392 if (!c->bottom_up_buf)
1395 c->sbuf = vmalloc(c->leb_size);
1401 c->ileb_buf = vmalloc(c->leb_size);
1407 if (c->bulk_read == 1)
1412 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1414 if (!c->write_reserve_buf)
1421 err = ubifs_read_superblock(c);
1428 * Make sure the compressor which is set as default in the superblock
1429 * or overridden by mount options is actually compiled in.
1431 if (!ubifs_compr_present(c->default_compr)) {
1432 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1433 ubifs_compr_name(c->default_compr));
1438 err = init_constants_sb(c);
1442 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1443 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1444 c->cbuf = kmalloc(sz, GFP_NOFS);
1450 err = alloc_wbufs(c);
1454 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1457 /* Create background thread */
1458 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1459 if (IS_ERR(c->bgt)) {
1460 err = PTR_ERR(c->bgt);
1462 ubifs_err(c, "cannot spawn \"%s\", error %d",
1466 wake_up_process(c->bgt);
1470 err = ubifs_read_master(c);
1474 init_constants_master(c);
1476 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1477 ubifs_msg(c, "recovery needed");
1478 c->need_recovery = 1;
1482 if (c->need_recovery && !c->ro_mount) {
1483 err = ubifs_recover_inl_heads(c, c->sbuf);
1489 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1494 if (!c->ro_mount && c->space_fixup) {
1495 err = ubifs_fixup_free_space(c);
1500 if (!c->ro_mount && !c->need_recovery) {
1502 * Set the "dirty" flag so that if we reboot uncleanly we
1503 * will notice this immediately on the next mount.
1505 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1506 err = ubifs_write_master(c);
1512 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1516 err = ubifs_replay_journal(c);
1520 /* Calculate 'min_idx_lebs' after journal replay */
1521 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1523 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1531 err = check_free_space(c);
1535 /* Check for enough log space */
1536 lnum = c->lhead_lnum + 1;
1537 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1538 lnum = UBIFS_LOG_LNUM;
1539 if (lnum == c->ltail_lnum) {
1540 err = ubifs_consolidate_log(c);
1545 if (c->need_recovery) {
1546 err = ubifs_recover_size(c);
1549 err = ubifs_rcvry_gc_commit(c);
1553 err = take_gc_lnum(c);
1558 * GC LEB may contain garbage if there was an unclean
1559 * reboot, and it should be un-mapped.
1561 err = ubifs_leb_unmap(c, c->gc_lnum);
1566 err = dbg_check_lprops(c);
1570 } else if (c->need_recovery) {
1571 err = ubifs_recover_size(c);
1576 * Even if we mount read-only, we have to set space in GC LEB
1577 * to proper value because this affects UBIFS free space
1578 * reporting. We do not want to have a situation when
1579 * re-mounting from R/O to R/W changes amount of free space.
1581 err = take_gc_lnum(c);
1587 spin_lock(&ubifs_infos_lock);
1588 list_add_tail(&c->infos_list, &ubifs_infos);
1589 spin_unlock(&ubifs_infos_lock);
1592 if (c->need_recovery) {
1594 ubifs_msg(c, "recovery deferred");
1596 c->need_recovery = 0;
1597 ubifs_msg(c, "recovery completed");
1599 * GC LEB has to be empty and taken at this point. But
1600 * the journal head LEBs may also be accounted as
1601 * "empty taken" if they are empty.
1603 ubifs_assert(c->lst.taken_empty_lebs > 0);
1606 ubifs_assert(c->lst.taken_empty_lebs > 0);
1608 err = dbg_check_filesystem(c);
1612 err = dbg_debugfs_init_fs(c);
1618 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1619 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1620 c->ro_mount ? ", R/O mode" : "");
1621 x = (long long)c->main_lebs * c->leb_size;
1622 #ifndef CONFIG_UBIFS_SILENCE_MSG
1623 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1625 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1626 c->leb_size, c->leb_size >> 10, c->min_io_size,
1628 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1629 x, x >> 20, c->main_lebs,
1630 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1631 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1632 c->report_rp_size, c->report_rp_size >> 10);
1633 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1634 c->fmt_version, c->ro_compat_version,
1635 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1636 c->big_lpt ? ", big LPT model" : ", small LPT model");
1638 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1639 dbg_gen("data journal heads: %d",
1640 c->jhead_cnt - NONDATA_JHEADS_CNT);
1641 dbg_gen("log LEBs: %d (%d - %d)",
1642 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1643 dbg_gen("LPT area LEBs: %d (%d - %d)",
1644 c->lpt_lebs, c->lpt_first, c->lpt_last);
1645 dbg_gen("orphan area LEBs: %d (%d - %d)",
1646 c->orph_lebs, c->orph_first, c->orph_last);
1647 dbg_gen("main area LEBs: %d (%d - %d)",
1648 c->main_lebs, c->main_first, c->leb_cnt - 1);
1649 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1650 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1651 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1652 c->bi.old_idx_sz >> 20);
1653 dbg_gen("key hash type: %d", c->key_hash_type);
1654 dbg_gen("tree fanout: %d", c->fanout);
1655 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1656 dbg_gen("max. znode size %d", c->max_znode_sz);
1657 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1658 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1659 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1660 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1661 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1662 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1663 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1664 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1665 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1666 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1667 dbg_gen("dead watermark: %d", c->dead_wm);
1668 dbg_gen("dark watermark: %d", c->dark_wm);
1669 dbg_gen("LEB overhead: %d", c->leb_overhead);
1670 x = (long long)c->main_lebs * c->dark_wm;
1671 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1672 x, x >> 10, x >> 20);
1673 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1674 c->max_bud_bytes, c->max_bud_bytes >> 10,
1675 c->max_bud_bytes >> 20);
1676 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1677 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1678 c->bg_bud_bytes >> 20);
1679 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1680 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1681 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1682 dbg_gen("commit number: %llu", c->cmt_no);
1687 spin_lock(&ubifs_infos_lock);
1688 list_del(&c->infos_list);
1689 spin_unlock(&ubifs_infos_lock);
1695 ubifs_lpt_free(c, 0);
1698 kfree(c->rcvrd_mst_node);
1700 kthread_stop(c->bgt);
1708 kfree(c->write_reserve_buf);
1712 kfree(c->bottom_up_buf);
1713 ubifs_debugging_exit(c);
1718 * ubifs_umount - un-mount UBIFS file-system.
1719 * @c: UBIFS file-system description object
1721 * Note, this function is called to free allocated resourced when un-mounting,
1722 * as well as free resources when an error occurred while we were half way
1723 * through mounting (error path cleanup function). So it has to make sure the
1724 * resource was actually allocated before freeing it.
1727 static void ubifs_umount(struct ubifs_info *c)
1729 void ubifs_umount(struct ubifs_info *c)
1732 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1735 dbg_debugfs_exit_fs(c);
1736 spin_lock(&ubifs_infos_lock);
1737 list_del(&c->infos_list);
1738 spin_unlock(&ubifs_infos_lock);
1742 kthread_stop(c->bgt);
1748 ubifs_lpt_free(c, 0);
1751 kfree(c->rcvrd_mst_node);
1753 kfree(c->write_reserve_buf);
1757 kfree(c->bottom_up_buf);
1758 ubifs_debugging_exit(c);
1760 /* Finally free U-Boot's global copy of superblock */
1761 if (ubifs_sb != NULL) {
1762 free(ubifs_sb->s_fs_info);
1770 * ubifs_remount_rw - re-mount in read-write mode.
1771 * @c: UBIFS file-system description object
1773 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1774 * mode. This function allocates the needed resources and re-mounts UBIFS in
1777 static int ubifs_remount_rw(struct ubifs_info *c)
1781 if (c->rw_incompat) {
1782 ubifs_err(c, "the file-system is not R/W-compatible");
1783 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1784 c->fmt_version, c->ro_compat_version,
1785 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1789 mutex_lock(&c->umount_mutex);
1790 dbg_save_space_info(c);
1791 c->remounting_rw = 1;
1794 if (c->space_fixup) {
1795 err = ubifs_fixup_free_space(c);
1800 err = check_free_space(c);
1804 if (c->old_leb_cnt != c->leb_cnt) {
1805 struct ubifs_sb_node *sup;
1807 sup = ubifs_read_sb_node(c);
1812 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1813 err = ubifs_write_sb_node(c, sup);
1819 if (c->need_recovery) {
1820 ubifs_msg(c, "completing deferred recovery");
1821 err = ubifs_write_rcvrd_mst_node(c);
1824 err = ubifs_recover_size(c);
1827 err = ubifs_clean_lebs(c, c->sbuf);
1830 err = ubifs_recover_inl_heads(c, c->sbuf);
1834 /* A readonly mount is not allowed to have orphans */
1835 ubifs_assert(c->tot_orphans == 0);
1836 err = ubifs_clear_orphans(c);
1841 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1842 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1843 err = ubifs_write_master(c);
1848 c->ileb_buf = vmalloc(c->leb_size);
1854 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1855 if (!c->write_reserve_buf) {
1860 err = ubifs_lpt_init(c, 0, 1);
1864 /* Create background thread */
1865 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1866 if (IS_ERR(c->bgt)) {
1867 err = PTR_ERR(c->bgt);
1869 ubifs_err(c, "cannot spawn \"%s\", error %d",
1873 wake_up_process(c->bgt);
1875 c->orph_buf = vmalloc(c->leb_size);
1881 /* Check for enough log space */
1882 lnum = c->lhead_lnum + 1;
1883 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1884 lnum = UBIFS_LOG_LNUM;
1885 if (lnum == c->ltail_lnum) {
1886 err = ubifs_consolidate_log(c);
1891 if (c->need_recovery)
1892 err = ubifs_rcvry_gc_commit(c);
1894 err = ubifs_leb_unmap(c, c->gc_lnum);
1898 dbg_gen("re-mounted read-write");
1899 c->remounting_rw = 0;
1901 if (c->need_recovery) {
1902 c->need_recovery = 0;
1903 ubifs_msg(c, "deferred recovery completed");
1906 * Do not run the debugging space check if the were doing
1907 * recovery, because when we saved the information we had the
1908 * file-system in a state where the TNC and lprops has been
1909 * modified in memory, but all the I/O operations (including a
1910 * commit) were deferred. So the file-system was in
1911 * "non-committed" state. Now the file-system is in committed
1912 * state, and of course the amount of free space will change
1913 * because, for example, the old index size was imprecise.
1915 err = dbg_check_space_info(c);
1918 mutex_unlock(&c->umount_mutex);
1926 kthread_stop(c->bgt);
1930 kfree(c->write_reserve_buf);
1931 c->write_reserve_buf = NULL;
1934 ubifs_lpt_free(c, 1);
1935 c->remounting_rw = 0;
1936 mutex_unlock(&c->umount_mutex);
1941 * ubifs_remount_ro - re-mount in read-only mode.
1942 * @c: UBIFS file-system description object
1944 * We assume VFS has stopped writing. Possibly the background thread could be
1945 * running a commit, however kthread_stop will wait in that case.
1947 static void ubifs_remount_ro(struct ubifs_info *c)
1951 ubifs_assert(!c->need_recovery);
1952 ubifs_assert(!c->ro_mount);
1954 mutex_lock(&c->umount_mutex);
1956 kthread_stop(c->bgt);
1960 dbg_save_space_info(c);
1962 for (i = 0; i < c->jhead_cnt; i++)
1963 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1965 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1966 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1967 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1968 err = ubifs_write_master(c);
1970 ubifs_ro_mode(c, err);
1974 kfree(c->write_reserve_buf);
1975 c->write_reserve_buf = NULL;
1978 ubifs_lpt_free(c, 1);
1980 err = dbg_check_space_info(c);
1982 ubifs_ro_mode(c, err);
1983 mutex_unlock(&c->umount_mutex);
1986 static void ubifs_put_super(struct super_block *sb)
1989 struct ubifs_info *c = sb->s_fs_info;
1991 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1994 * The following asserts are only valid if there has not been a failure
1995 * of the media. For example, there will be dirty inodes if we failed
1996 * to write them back because of I/O errors.
1999 ubifs_assert(c->bi.idx_growth == 0);
2000 ubifs_assert(c->bi.dd_growth == 0);
2001 ubifs_assert(c->bi.data_growth == 0);
2005 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
2006 * and file system un-mount. Namely, it prevents the shrinker from
2007 * picking this superblock for shrinking - it will be just skipped if
2008 * the mutex is locked.
2010 mutex_lock(&c->umount_mutex);
2013 * First of all kill the background thread to make sure it does
2014 * not interfere with un-mounting and freeing resources.
2017 kthread_stop(c->bgt);
2022 * On fatal errors c->ro_error is set to 1, in which case we do
2023 * not write the master node.
2028 /* Synchronize write-buffers */
2029 for (i = 0; i < c->jhead_cnt; i++)
2030 ubifs_wbuf_sync(&c->jheads[i].wbuf);
2033 * We are being cleanly unmounted which means the
2034 * orphans were killed - indicate this in the master
2035 * node. Also save the reserved GC LEB number.
2037 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2038 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2039 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2040 err = ubifs_write_master(c);
2043 * Recovery will attempt to fix the master area
2044 * next mount, so we just print a message and
2045 * continue to unmount normally.
2047 ubifs_err(c, "failed to write master node, error %d",
2051 for (i = 0; i < c->jhead_cnt; i++)
2052 /* Make sure write-buffer timers are canceled */
2053 hrtimer_cancel(&c->jheads[i].wbuf.timer);
2060 bdi_destroy(&c->bdi);
2062 ubi_close_volume(c->ubi);
2063 mutex_unlock(&c->umount_mutex);
2068 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2071 struct ubifs_info *c = sb->s_fs_info;
2073 sync_filesystem(sb);
2074 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2076 err = ubifs_parse_options(c, data, 1);
2078 ubifs_err(c, "invalid or unknown remount parameter");
2082 if (c->ro_mount && !(*flags & MS_RDONLY)) {
2084 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2088 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2091 err = ubifs_remount_rw(c);
2094 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2096 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2099 ubifs_remount_ro(c);
2102 if (c->bulk_read == 1)
2105 dbg_gen("disable bulk-read");
2110 ubifs_assert(c->lst.taken_empty_lebs > 0);
2115 const struct super_operations ubifs_super_operations = {
2116 .alloc_inode = ubifs_alloc_inode,
2118 .destroy_inode = ubifs_destroy_inode,
2119 .put_super = ubifs_put_super,
2120 .write_inode = ubifs_write_inode,
2121 .evict_inode = ubifs_evict_inode,
2122 .statfs = ubifs_statfs,
2124 .dirty_inode = ubifs_dirty_inode,
2126 .remount_fs = ubifs_remount_fs,
2127 .show_options = ubifs_show_options,
2128 .sync_fs = ubifs_sync_fs,
2133 * open_ubi - parse UBI device name string and open the UBI device.
2134 * @name: UBI volume name
2135 * @mode: UBI volume open mode
2137 * The primary method of mounting UBIFS is by specifying the UBI volume
2138 * character device node path. However, UBIFS may also be mounted withoug any
2139 * character device node using one of the following methods:
2141 * o ubiX_Y - mount UBI device number X, volume Y;
2142 * o ubiY - mount UBI device number 0, volume Y;
2143 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2144 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2146 * Alternative '!' separator may be used instead of ':' (because some shells
2147 * like busybox may interpret ':' as an NFS host name separator). This function
2148 * returns UBI volume description object in case of success and a negative
2149 * error code in case of failure.
2151 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2154 struct ubi_volume_desc *ubi;
2160 /* First, try to open using the device node path method */
2161 ubi = ubi_open_volume_path(name, mode);
2166 /* Try the "nodev" method */
2167 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2168 return ERR_PTR(-EINVAL);
2170 /* ubi:NAME method */
2171 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2172 return ubi_open_volume_nm(0, name + 4, mode);
2174 if (!isdigit(name[3]))
2175 return ERR_PTR(-EINVAL);
2177 dev = simple_strtoul(name + 3, &endptr, 0);
2180 if (*endptr == '\0')
2181 return ubi_open_volume(0, dev, mode);
2184 if (*endptr == '_' && isdigit(endptr[1])) {
2185 vol = simple_strtoul(endptr + 1, &endptr, 0);
2186 if (*endptr != '\0')
2187 return ERR_PTR(-EINVAL);
2188 return ubi_open_volume(dev, vol, mode);
2191 /* ubiX:NAME method */
2192 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2193 return ubi_open_volume_nm(dev, ++endptr, mode);
2195 return ERR_PTR(-EINVAL);
2198 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2200 struct ubifs_info *c;
2202 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2204 spin_lock_init(&c->cnt_lock);
2205 spin_lock_init(&c->cs_lock);
2206 spin_lock_init(&c->buds_lock);
2207 spin_lock_init(&c->space_lock);
2208 spin_lock_init(&c->orphan_lock);
2209 init_rwsem(&c->commit_sem);
2210 mutex_init(&c->lp_mutex);
2211 mutex_init(&c->tnc_mutex);
2212 mutex_init(&c->log_mutex);
2213 mutex_init(&c->umount_mutex);
2214 mutex_init(&c->bu_mutex);
2215 mutex_init(&c->write_reserve_mutex);
2216 init_waitqueue_head(&c->cmt_wq);
2218 c->old_idx = RB_ROOT;
2219 c->size_tree = RB_ROOT;
2220 c->orph_tree = RB_ROOT;
2221 INIT_LIST_HEAD(&c->infos_list);
2222 INIT_LIST_HEAD(&c->idx_gc);
2223 INIT_LIST_HEAD(&c->replay_list);
2224 INIT_LIST_HEAD(&c->replay_buds);
2225 INIT_LIST_HEAD(&c->uncat_list);
2226 INIT_LIST_HEAD(&c->empty_list);
2227 INIT_LIST_HEAD(&c->freeable_list);
2228 INIT_LIST_HEAD(&c->frdi_idx_list);
2229 INIT_LIST_HEAD(&c->unclean_leb_list);
2230 INIT_LIST_HEAD(&c->old_buds);
2231 INIT_LIST_HEAD(&c->orph_list);
2232 INIT_LIST_HEAD(&c->orph_new);
2233 c->no_chk_data_crc = 1;
2235 c->highest_inum = UBIFS_FIRST_INO;
2236 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2238 ubi_get_volume_info(ubi, &c->vi);
2239 ubi_get_device_info(c->vi.ubi_num, &c->di);
2244 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2246 struct ubifs_info *c = sb->s_fs_info;
2252 /* Re-open the UBI device in read-write mode */
2253 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2255 /* U-Boot read only mode */
2256 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2259 if (IS_ERR(c->ubi)) {
2260 err = PTR_ERR(c->ubi);
2266 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2267 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2268 * which means the user would have to wait not just for their own I/O
2269 * but the read-ahead I/O as well i.e. completely pointless.
2271 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2273 c->bdi.name = "ubifs",
2274 c->bdi.capabilities = 0;
2275 err = bdi_init(&c->bdi);
2278 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2279 c->vi.ubi_num, c->vi.vol_id);
2283 err = ubifs_parse_options(c, data, 0);
2287 sb->s_bdi = &c->bdi;
2290 sb->s_magic = UBIFS_SUPER_MAGIC;
2291 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2292 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2293 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2294 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2295 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2296 sb->s_op = &ubifs_super_operations;
2298 sb->s_xattr = ubifs_xattr_handlers;
2301 mutex_lock(&c->umount_mutex);
2302 err = mount_ubifs(c);
2304 ubifs_assert(err < 0);
2308 /* Read the root inode */
2309 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2311 err = PTR_ERR(root);
2316 sb->s_root = d_make_root(root);
2325 mutex_unlock(&c->umount_mutex);
2331 mutex_unlock(&c->umount_mutex);
2334 bdi_destroy(&c->bdi);
2337 ubi_close_volume(c->ubi);
2342 static int sb_test(struct super_block *sb, void *data)
2344 struct ubifs_info *c1 = data;
2345 struct ubifs_info *c = sb->s_fs_info;
2347 return c->vi.cdev == c1->vi.cdev;
2350 static int sb_set(struct super_block *sb, void *data)
2352 sb->s_fs_info = data;
2353 return set_anon_super(sb, NULL);
2356 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2358 struct super_block *s;
2361 s = kzalloc(sizeof(struct super_block), GFP_USER);
2364 return ERR_PTR(err);
2368 INIT_HLIST_NODE(&s->s_instances);
2370 INIT_LIST_HEAD(&s->s_inodes);
2371 s->s_time_gran = 1000000000;
2378 * sget - find or create a superblock
2379 * @type: filesystem type superblock should belong to
2380 * @test: comparison callback
2381 * @set: setup callback
2382 * @flags: mount flags
2383 * @data: argument to each of them
2385 struct super_block *sget(struct file_system_type *type,
2386 int (*test)(struct super_block *,void *),
2387 int (*set)(struct super_block *,void *),
2391 struct super_block *s = NULL;
2393 struct super_block *old;
2399 spin_lock(&sb_lock);
2401 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2402 if (!test(old, data))
2404 if (!grab_super(old))
2407 up_write(&s->s_umount);
2416 spin_unlock(&sb_lock);
2417 s = alloc_super(type, flags);
2419 return ERR_PTR(-ENOMEM);
2428 spin_unlock(&sb_lock);
2429 up_write(&s->s_umount);
2432 return ERR_PTR(err);
2436 strlcpy(s->s_id, type->name, sizeof(s->s_id));
2437 list_add_tail(&s->s_list, &super_blocks);
2438 hlist_add_head(&s->s_instances, &type->fs_supers);
2439 spin_unlock(&sb_lock);
2440 get_filesystem(type);
2441 register_shrinker(&s->s_shrink);
2443 strncpy(s->s_id, type->name, sizeof(s->s_id));
2448 EXPORT_SYMBOL(sget);
2451 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2452 const char *name, void *data)
2454 struct ubi_volume_desc *ubi;
2455 struct ubifs_info *c;
2456 struct super_block *sb;
2459 dbg_gen("name %s, flags %#x", name, flags);
2462 * Get UBI device number and volume ID. Mount it read-only so far
2463 * because this might be a new mount point, and UBI allows only one
2464 * read-write user at a time.
2466 ubi = open_ubi(name, UBI_READONLY);
2468 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d\n",
2469 current->pid, name, (int)PTR_ERR(ubi));
2470 return ERR_CAST(ubi);
2473 c = alloc_ubifs_info(ubi);
2479 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2481 sb = sget(fs_type, sb_test, sb_set, flags, c);
2489 struct ubifs_info *c1 = sb->s_fs_info;
2491 /* A new mount point for already mounted UBIFS */
2492 dbg_gen("this ubi volume is already mounted");
2493 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2498 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2501 /* We do not support atime */
2502 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2505 /* 'fill_super()' opens ubi again so we must close it here */
2506 ubi_close_volume(ubi);
2512 return dget(sb->s_root);
2517 deactivate_locked_super(sb);
2520 ubi_close_volume(ubi);
2521 return ERR_PTR(err);
2524 static void kill_ubifs_super(struct super_block *s)
2526 struct ubifs_info *c = s->s_fs_info;
2533 static struct file_system_type ubifs_fs_type = {
2535 .owner = THIS_MODULE,
2536 .mount = ubifs_mount,
2537 .kill_sb = kill_ubifs_super,
2540 MODULE_ALIAS_FS("ubifs");
2543 * Inode slab cache constructor.
2545 static void inode_slab_ctor(void *obj)
2547 struct ubifs_inode *ui = obj;
2548 inode_init_once(&ui->vfs_inode);
2551 static int __init ubifs_init(void)
2553 int ubifs_init(void)
2558 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2560 /* Make sure node sizes are 8-byte aligned */
2561 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2562 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2563 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2564 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2565 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2566 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2567 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2568 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2569 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2570 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2571 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2573 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2574 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2575 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2576 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2577 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2578 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2580 /* Check min. node size */
2581 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2582 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2583 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2584 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2586 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2587 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2588 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2589 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2591 /* Defined node sizes */
2592 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2593 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2594 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2595 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2598 * We use 2 bit wide bit-fields to store compression type, which should
2599 * be amended if more compressors are added. The bit-fields are:
2600 * @compr_type in 'struct ubifs_inode', @default_compr in
2601 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2603 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2606 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2607 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2609 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2610 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes\n",
2611 current->pid, (unsigned int)PAGE_CACHE_SIZE);
2616 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2617 sizeof(struct ubifs_inode), 0,
2618 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2620 if (!ubifs_inode_slab)
2623 err = register_shrinker(&ubifs_shrinker_info);
2628 err = ubifs_compressors_init();
2633 err = dbg_debugfs_init();
2637 err = register_filesystem(&ubifs_fs_type);
2639 pr_err("UBIFS error (pid %d): cannot register file system, error %d\n",
2650 ubifs_compressors_exit();
2654 unregister_shrinker(&ubifs_shrinker_info);
2657 kmem_cache_destroy(ubifs_inode_slab);
2660 /* late_initcall to let compressors initialize first */
2661 late_initcall(ubifs_init);
2664 static void __exit ubifs_exit(void)
2666 ubifs_assert(list_empty(&ubifs_infos));
2667 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2670 ubifs_compressors_exit();
2671 unregister_shrinker(&ubifs_shrinker_info);
2674 * Make sure all delayed rcu free inodes are flushed before we
2678 kmem_cache_destroy(ubifs_inode_slab);
2679 unregister_filesystem(&ubifs_fs_type);
2681 module_exit(ubifs_exit);
2683 MODULE_LICENSE("GPL");
2684 MODULE_VERSION(__stringify(UBIFS_VERSION));
2685 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2686 MODULE_DESCRIPTION("UBIFS - UBI File System");
2688 int uboot_ubifs_mount(char *vol_name)
2694 * First unmount if allready mounted
2697 ubifs_umount(ubifs_sb->s_fs_info);
2700 * Mount in read-only mode
2703 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2705 printf("Error reading superblock on volume '%s' " \
2706 "errno=%d!\n", vol_name, (int)PTR_ERR(ret));