2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * SPDX-License-Identifier: GPL-2.0+
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
13 * This file implements UBIFS superblock. The superblock is stored at the first
14 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
15 * change it. The superblock node mostly contains geometry information.
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/math64.h>
25 #include <linux/compat.h>
26 #include <linux/err.h>
27 #include <ubi_uboot.h>
28 #include <linux/stat.h>
32 * Default journal size in logical eraseblocks as a percent of total
35 #define DEFAULT_JNL_PERCENT 5
37 /* Default maximum journal size in bytes */
38 #define DEFAULT_MAX_JNL (32*1024*1024)
40 /* Default indexing tree fanout */
41 #define DEFAULT_FANOUT 8
43 /* Default number of data journal heads */
44 #define DEFAULT_JHEADS_CNT 1
46 /* Default positions of different LEBs in the main area */
47 #define DEFAULT_IDX_LEB 0
48 #define DEFAULT_DATA_LEB 1
49 #define DEFAULT_GC_LEB 2
51 /* Default number of LEB numbers in LPT's save table */
52 #define DEFAULT_LSAVE_CNT 256
54 /* Default reserved pool size as a percent of maximum free space */
55 #define DEFAULT_RP_PERCENT 5
57 /* The default maximum size of reserved pool in bytes */
58 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
60 /* Default time granularity in nanoseconds */
61 #define DEFAULT_TIME_GRAN 1000000000
65 * create_default_filesystem - format empty UBI volume.
66 * @c: UBIFS file-system description object
68 * This function creates default empty file-system. Returns zero in case of
69 * success and a negative error code in case of failure.
71 static int create_default_filesystem(struct ubifs_info *c)
73 struct ubifs_sb_node *sup;
74 struct ubifs_mst_node *mst;
75 struct ubifs_idx_node *idx;
76 struct ubifs_branch *br;
77 struct ubifs_ino_node *ino;
78 struct ubifs_cs_node *cs;
80 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
81 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
82 int min_leb_cnt = UBIFS_MIN_LEB_CNT;
83 long long tmp64, main_bytes;
86 /* Some functions called from here depend on the @c->key_len filed */
87 c->key_len = UBIFS_SK_LEN;
90 * First of all, we have to calculate default file-system geometry -
91 * log size, journal size, etc.
93 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
94 /* We can first multiply then divide and have no overflow */
95 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
97 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
99 if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
100 jnl_lebs = UBIFS_MIN_JNL_LEBS;
101 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
102 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
105 * The log should be large enough to fit reference nodes for all bud
106 * LEBs. Because buds do not have to start from the beginning of LEBs
107 * (half of the LEB may contain committed data), the log should
108 * generally be larger, make it twice as large.
110 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
111 log_lebs = tmp / c->leb_size;
112 /* Plus one LEB reserved for commit */
114 if (c->leb_cnt - min_leb_cnt > 8) {
115 /* And some extra space to allow writes while committing */
120 max_buds = jnl_lebs - log_lebs;
121 if (max_buds < UBIFS_MIN_BUD_LEBS)
122 max_buds = UBIFS_MIN_BUD_LEBS;
125 * Orphan nodes are stored in a separate area. One node can store a lot
126 * of orphan inode numbers, but when new orphan comes we just add a new
127 * orphan node. At some point the nodes are consolidated into one
130 orph_lebs = UBIFS_MIN_ORPH_LEBS;
131 if (c->leb_cnt - min_leb_cnt > 1)
133 * For debugging purposes it is better to have at least 2
134 * orphan LEBs, because the orphan subsystem would need to do
135 * consolidations and would be stressed more.
139 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
140 main_lebs -= orph_lebs;
142 lpt_first = UBIFS_LOG_LNUM + log_lebs;
143 c->lsave_cnt = DEFAULT_LSAVE_CNT;
144 c->max_leb_cnt = c->leb_cnt;
145 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
150 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
151 lpt_first + lpt_lebs - 1);
153 main_first = c->leb_cnt - main_lebs;
155 /* Create default superblock */
156 tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
157 sup = kzalloc(tmp, GFP_KERNEL);
161 tmp64 = (long long)max_buds * c->leb_size;
163 sup_flags |= UBIFS_FLG_BIGLPT;
165 sup->ch.node_type = UBIFS_SB_NODE;
166 sup->key_hash = UBIFS_KEY_HASH_R5;
167 sup->flags = cpu_to_le32(sup_flags);
168 sup->min_io_size = cpu_to_le32(c->min_io_size);
169 sup->leb_size = cpu_to_le32(c->leb_size);
170 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
171 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
172 sup->max_bud_bytes = cpu_to_le64(tmp64);
173 sup->log_lebs = cpu_to_le32(log_lebs);
174 sup->lpt_lebs = cpu_to_le32(lpt_lebs);
175 sup->orph_lebs = cpu_to_le32(orph_lebs);
176 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
177 sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
178 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
179 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
180 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
181 if (c->mount_opts.override_compr)
182 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
184 sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
186 generate_random_uuid(sup->uuid);
188 main_bytes = (long long)main_lebs * c->leb_size;
189 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
190 if (tmp64 > DEFAULT_MAX_RP_SIZE)
191 tmp64 = DEFAULT_MAX_RP_SIZE;
192 sup->rp_size = cpu_to_le64(tmp64);
193 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
195 err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
200 dbg_gen("default superblock created at LEB 0:0");
202 /* Create default master node */
203 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
207 mst->ch.node_type = UBIFS_MST_NODE;
208 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
209 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
211 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
213 tmp = ubifs_idx_node_sz(c, 1);
214 mst->root_len = cpu_to_le32(tmp);
215 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
216 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
217 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
218 mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
219 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
220 mst->lpt_offs = cpu_to_le32(c->lpt_offs);
221 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
222 mst->nhead_offs = cpu_to_le32(c->nhead_offs);
223 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
224 mst->ltab_offs = cpu_to_le32(c->ltab_offs);
225 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
226 mst->lsave_offs = cpu_to_le32(c->lsave_offs);
227 mst->lscan_lnum = cpu_to_le32(main_first);
228 mst->empty_lebs = cpu_to_le32(main_lebs - 2);
229 mst->idx_lebs = cpu_to_le32(1);
230 mst->leb_cnt = cpu_to_le32(c->leb_cnt);
232 /* Calculate lprops statistics */
234 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
235 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
236 mst->total_free = cpu_to_le64(tmp64);
238 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
239 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
242 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
243 mst->total_dirty = cpu_to_le64(tmp64);
245 /* The indexing LEB does not contribute to dark space */
246 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
247 mst->total_dark = cpu_to_le64(tmp64);
249 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
251 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
256 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
262 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
264 /* Create the root indexing node */
265 tmp = ubifs_idx_node_sz(c, 1);
266 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
270 c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
271 c->key_hash = key_r5_hash;
273 idx->ch.node_type = UBIFS_IDX_NODE;
274 idx->child_cnt = cpu_to_le16(1);
275 ino_key_init(c, &key, UBIFS_ROOT_INO);
276 br = ubifs_idx_branch(c, idx, 0);
277 key_write_idx(c, &key, &br->key);
278 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
279 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
280 err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
285 dbg_gen("default root indexing node created LEB %d:0",
286 main_first + DEFAULT_IDX_LEB);
288 /* Create default root inode */
289 tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
290 ino = kzalloc(tmp, GFP_KERNEL);
294 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
295 ino->ch.node_type = UBIFS_INO_NODE;
296 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
297 ino->nlink = cpu_to_le32(2);
298 tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
299 ino->atime_sec = tmp_le64;
300 ino->ctime_sec = tmp_le64;
301 ino->mtime_sec = tmp_le64;
305 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
306 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
308 /* Set compression enabled by default */
309 ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
311 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
312 main_first + DEFAULT_DATA_LEB, 0);
317 dbg_gen("root inode created at LEB %d:0",
318 main_first + DEFAULT_DATA_LEB);
321 * The first node in the log has to be the commit start node. This is
322 * always the case during normal file-system operation. Write a fake
323 * commit start node to the log.
325 tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
326 cs = kzalloc(tmp, GFP_KERNEL);
330 cs->ch.node_type = UBIFS_CS_NODE;
331 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
336 ubifs_msg(c, "default file-system created");
342 * validate_sb - validate superblock node.
343 * @c: UBIFS file-system description object
344 * @sup: superblock node
346 * This function validates superblock node @sup. Since most of data was read
347 * from the superblock and stored in @c, the function validates fields in @c
348 * instead. Returns zero in case of success and %-EINVAL in case of validation
351 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
354 int err = 1, min_leb_cnt;
361 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
366 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
367 ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
368 le32_to_cpu(sup->min_io_size), c->min_io_size);
372 if (le32_to_cpu(sup->leb_size) != c->leb_size) {
373 ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
374 le32_to_cpu(sup->leb_size), c->leb_size);
378 if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
379 c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
380 c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
381 c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
387 * Calculate minimum allowed amount of main area LEBs. This is very
388 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
389 * have just read from the superblock.
391 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
392 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
394 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
395 ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
396 c->leb_cnt, c->vi.size, min_leb_cnt);
400 if (c->max_leb_cnt < c->leb_cnt) {
401 ubifs_err(c, "max. LEB count %d less than LEB count %d",
402 c->max_leb_cnt, c->leb_cnt);
406 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
407 ubifs_err(c, "too few main LEBs count %d, must be at least %d",
408 c->main_lebs, UBIFS_MIN_MAIN_LEBS);
412 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
413 if (c->max_bud_bytes < max_bytes) {
414 ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
415 c->max_bud_bytes, max_bytes);
419 max_bytes = (long long)c->leb_size * c->main_lebs;
420 if (c->max_bud_bytes > max_bytes) {
421 ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
422 c->max_bud_bytes, max_bytes);
426 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
427 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
432 if (c->fanout < UBIFS_MIN_FANOUT ||
433 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
438 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
439 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
440 c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
445 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
446 c->orph_lebs + c->main_lebs != c->leb_cnt) {
451 if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
456 if (c->rp_size < 0 || max_bytes < c->rp_size) {
461 if (le32_to_cpu(sup->time_gran) > 1000000000 ||
462 le32_to_cpu(sup->time_gran) < 1) {
470 ubifs_err(c, "bad superblock, error %d", err);
471 ubifs_dump_node(c, sup);
476 * ubifs_read_sb_node - read superblock node.
477 * @c: UBIFS file-system description object
479 * This function returns a pointer to the superblock node or a negative error
480 * code. Note, the user of this function is responsible of kfree()'ing the
481 * returned superblock buffer.
483 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
485 struct ubifs_sb_node *sup;
488 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
490 return ERR_PTR(-ENOMEM);
492 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
503 * ubifs_write_sb_node - write superblock node.
504 * @c: UBIFS file-system description object
505 * @sup: superblock node read with 'ubifs_read_sb_node()'
507 * This function returns %0 on success and a negative error code on failure.
509 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
511 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
513 ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
514 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
518 * ubifs_read_superblock - read superblock.
519 * @c: UBIFS file-system description object
521 * This function finds, reads and checks the superblock. If an empty UBI volume
522 * is being mounted, this function creates default superblock. Returns zero in
523 * case of success, and a negative error code in case of failure.
525 int ubifs_read_superblock(struct ubifs_info *c)
528 struct ubifs_sb_node *sup;
532 err = create_default_filesystem(c);
536 printf("No UBIFS filesystem found!\n");
541 sup = ubifs_read_sb_node(c);
545 c->fmt_version = le32_to_cpu(sup->fmt_version);
546 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
549 * The software supports all previous versions but not future versions,
550 * due to the unavailability of time-travelling equipment.
552 if (c->fmt_version > UBIFS_FORMAT_VERSION) {
553 ubifs_assert(!c->ro_media || c->ro_mount);
555 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
556 ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
557 c->fmt_version, c->ro_compat_version,
558 UBIFS_FORMAT_VERSION,
559 UBIFS_RO_COMPAT_VERSION);
560 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
561 ubifs_msg(c, "only R/O mounting is possible");
569 * The FS is mounted R/O, and the media format is
570 * R/O-compatible with the UBIFS implementation, so we can
576 if (c->fmt_version < 3) {
577 ubifs_err(c, "on-flash format version %d is not supported",
583 switch (sup->key_hash) {
584 case UBIFS_KEY_HASH_R5:
585 c->key_hash = key_r5_hash;
586 c->key_hash_type = UBIFS_KEY_HASH_R5;
589 case UBIFS_KEY_HASH_TEST:
590 c->key_hash = key_test_hash;
591 c->key_hash_type = UBIFS_KEY_HASH_TEST;
595 c->key_fmt = sup->key_fmt;
597 switch (c->key_fmt) {
598 case UBIFS_SIMPLE_KEY_FMT:
599 c->key_len = UBIFS_SK_LEN;
602 ubifs_err(c, "unsupported key format");
607 c->leb_cnt = le32_to_cpu(sup->leb_cnt);
608 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt);
609 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
610 c->log_lebs = le32_to_cpu(sup->log_lebs);
611 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs);
612 c->orph_lebs = le32_to_cpu(sup->orph_lebs);
613 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
614 c->fanout = le32_to_cpu(sup->fanout);
615 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
616 c->rp_size = le64_to_cpu(sup->rp_size);
618 c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
619 c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
621 c->rp_uid.val = le32_to_cpu(sup->rp_uid);
622 c->rp_gid.val = le32_to_cpu(sup->rp_gid);
624 sup_flags = le32_to_cpu(sup->flags);
625 if (!c->mount_opts.override_compr)
626 c->default_compr = le16_to_cpu(sup->default_compr);
628 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
629 memcpy(&c->uuid, &sup->uuid, 16);
630 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
631 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
633 /* Automatically increase file system size to the maximum size */
634 c->old_leb_cnt = c->leb_cnt;
635 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
636 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
638 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
639 c->old_leb_cnt, c->leb_cnt);
642 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
643 c->old_leb_cnt, c->leb_cnt);
644 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
645 err = ubifs_write_sb_node(c, sup);
648 c->old_leb_cnt = c->leb_cnt;
653 c->log_bytes = (long long)c->log_lebs * c->leb_size;
654 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
655 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
656 c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
657 c->orph_first = c->lpt_last + 1;
658 c->orph_last = c->orph_first + c->orph_lebs - 1;
659 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
660 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
661 c->main_first = c->leb_cnt - c->main_lebs;
663 err = validate_sb(c, sup);
670 * fixup_leb - fixup/unmap an LEB containing free space.
671 * @c: UBIFS file-system description object
672 * @lnum: the LEB number to fix up
673 * @len: number of used bytes in LEB (starting at offset 0)
675 * This function reads the contents of the given LEB number @lnum, then fixes
676 * it up, so that empty min. I/O units in the end of LEB are actually erased on
677 * flash (rather than being just all-0xff real data). If the LEB is completely
678 * empty, it is simply unmapped.
680 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
684 ubifs_assert(len >= 0);
685 ubifs_assert(len % c->min_io_size == 0);
686 ubifs_assert(len < c->leb_size);
689 dbg_mnt("unmap empty LEB %d", lnum);
690 return ubifs_leb_unmap(c, lnum);
693 dbg_mnt("fixup LEB %d, data len %d", lnum, len);
694 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
698 return ubifs_leb_change(c, lnum, c->sbuf, len);
702 * fixup_free_space - find & remap all LEBs containing free space.
703 * @c: UBIFS file-system description object
705 * This function walks through all LEBs in the filesystem and fiexes up those
706 * containing free/empty space.
708 static int fixup_free_space(struct ubifs_info *c)
711 struct ubifs_lprops *lprops;
715 /* Fixup LEBs in the master area */
716 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
717 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
722 /* Unmap unused log LEBs */
723 lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
724 while (lnum != c->ltail_lnum) {
725 err = fixup_leb(c, lnum, 0);
728 lnum = ubifs_next_log_lnum(c, lnum);
732 * Fixup the log head which contains the only a CS node at the
735 err = fixup_leb(c, c->lhead_lnum,
736 ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
740 /* Fixup LEBs in the LPT area */
741 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
742 int free = c->ltab[lnum - c->lpt_first].free;
745 err = fixup_leb(c, lnum, c->leb_size - free);
751 /* Unmap LEBs in the orphans area */
752 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
753 err = fixup_leb(c, lnum, 0);
758 /* Fixup LEBs in the main area */
759 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
760 lprops = ubifs_lpt_lookup(c, lnum);
761 if (IS_ERR(lprops)) {
762 err = PTR_ERR(lprops);
766 if (lprops->free > 0) {
767 err = fixup_leb(c, lnum, c->leb_size - lprops->free);
774 ubifs_release_lprops(c);
779 * ubifs_fixup_free_space - find & fix all LEBs with free space.
780 * @c: UBIFS file-system description object
782 * This function fixes up LEBs containing free space on first mount, if the
783 * appropriate flag was set when the FS was created. Each LEB with one or more
784 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
785 * the free space is actually erased. E.g., this is necessary for some NAND
786 * chips, since the free space may have been programmed like real "0xff" data
787 * (generating a non-0xff ECC), causing future writes to the not-really-erased
788 * NAND pages to behave badly. After the space is fixed up, the superblock flag
789 * is cleared, so that this is skipped for all future mounts.
791 int ubifs_fixup_free_space(struct ubifs_info *c)
794 struct ubifs_sb_node *sup;
796 ubifs_assert(c->space_fixup);
797 ubifs_assert(!c->ro_mount);
799 ubifs_msg(c, "start fixing up free space");
801 err = fixup_free_space(c);
805 sup = ubifs_read_sb_node(c);
809 /* Free-space fixup is no longer required */
811 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
813 err = ubifs_write_sb_node(c, sup);
818 ubifs_msg(c, "free space fixup complete");