2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Author: Adrian Hunter
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
40 * The number of orphans that can fit in a LEB is:
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
55 static int dbg_check_orphans(struct ubifs_info *c);
58 * ubifs_add_orphan - add an orphan.
59 * @c: UBIFS file-system description object
60 * @inum: orphan inode number
62 * Add an orphan. This function is called when an inodes link count drops to
65 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
67 struct ubifs_orphan *orphan, *o;
68 struct rb_node **p, *parent = NULL;
70 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
76 spin_lock(&c->orphan_lock);
77 if (c->tot_orphans >= c->max_orphans) {
78 spin_unlock(&c->orphan_lock);
82 p = &c->orph_tree.rb_node;
85 o = rb_entry(parent, struct ubifs_orphan, rb);
88 else if (inum > o->inum)
91 ubifs_err("orphaned twice");
92 spin_unlock(&c->orphan_lock);
99 rb_link_node(&orphan->rb, parent, p);
100 rb_insert_color(&orphan->rb, &c->orph_tree);
101 list_add_tail(&orphan->list, &c->orph_list);
102 list_add_tail(&orphan->new_list, &c->orph_new);
103 spin_unlock(&c->orphan_lock);
104 dbg_gen("ino %lu", (unsigned long)inum);
109 * ubifs_delete_orphan - delete an orphan.
110 * @c: UBIFS file-system description object
111 * @inum: orphan inode number
113 * Delete an orphan. This function is called when an inode is deleted.
115 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
117 struct ubifs_orphan *o;
120 spin_lock(&c->orphan_lock);
121 p = c->orph_tree.rb_node;
123 o = rb_entry(p, struct ubifs_orphan, rb);
126 else if (inum > o->inum)
130 spin_unlock(&c->orphan_lock);
131 dbg_gen("deleted twice ino %lu",
132 (unsigned long)inum);
136 o->dnext = c->orph_dnext;
138 spin_unlock(&c->orphan_lock);
139 dbg_gen("delete later ino %lu",
140 (unsigned long)inum);
143 rb_erase(p, &c->orph_tree);
147 list_del(&o->new_list);
150 spin_unlock(&c->orphan_lock);
152 dbg_gen("inum %lu", (unsigned long)inum);
156 spin_unlock(&c->orphan_lock);
157 ubifs_err("missing orphan ino %lu", (unsigned long)inum);
162 * ubifs_orphan_start_commit - start commit of orphans.
163 * @c: UBIFS file-system description object
165 * Start commit of orphans.
167 int ubifs_orphan_start_commit(struct ubifs_info *c)
169 struct ubifs_orphan *orphan, **last;
171 spin_lock(&c->orphan_lock);
172 last = &c->orph_cnext;
173 list_for_each_entry(orphan, &c->orph_new, new_list) {
174 ubifs_assert(orphan->new);
177 last = &orphan->cnext;
180 c->cmt_orphans = c->new_orphans;
182 dbg_cmt("%d orphans to commit", c->cmt_orphans);
183 INIT_LIST_HEAD(&c->orph_new);
184 if (c->tot_orphans == 0)
188 spin_unlock(&c->orphan_lock);
193 * avail_orphs - calculate available space.
194 * @c: UBIFS file-system description object
196 * This function returns the number of orphans that can be written in the
199 static int avail_orphs(struct ubifs_info *c)
201 int avail_lebs, avail, gap;
203 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
205 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
206 gap = c->leb_size - c->ohead_offs;
207 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
208 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
213 * tot_avail_orphs - calculate total space.
214 * @c: UBIFS file-system description object
216 * This function returns the number of orphans that can be written in half
217 * the total space. That leaves half the space for adding new orphans.
219 static int tot_avail_orphs(struct ubifs_info *c)
221 int avail_lebs, avail;
223 avail_lebs = c->orph_lebs;
225 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
230 * do_write_orph_node - write a node to the orphan head.
231 * @c: UBIFS file-system description object
232 * @len: length of node
233 * @atomic: write atomically
235 * This function writes a node to the orphan head from the orphan buffer. If
236 * %atomic is not zero, then the write is done atomically. On success, %0 is
237 * returned, otherwise a negative error code is returned.
239 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
244 ubifs_assert(c->ohead_offs == 0);
245 ubifs_prepare_node(c, c->orph_buf, len, 1);
246 len = ALIGN(len, c->min_io_size);
247 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
249 if (c->ohead_offs == 0) {
250 /* Ensure LEB has been unmapped */
251 err = ubifs_leb_unmap(c, c->ohead_lnum);
255 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
262 * write_orph_node - write an orphan node.
263 * @c: UBIFS file-system description object
264 * @atomic: write atomically
266 * This function builds an orphan node from the cnext list and writes it to the
267 * orphan head. On success, %0 is returned, otherwise a negative error code
270 static int write_orph_node(struct ubifs_info *c, int atomic)
272 struct ubifs_orphan *orphan, *cnext;
273 struct ubifs_orph_node *orph;
274 int gap, err, len, cnt, i;
276 ubifs_assert(c->cmt_orphans > 0);
277 gap = c->leb_size - c->ohead_offs;
278 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
282 if (c->ohead_lnum > c->orph_last) {
284 * We limit the number of orphans so that this should
287 ubifs_err("out of space in orphan area");
291 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
292 if (cnt > c->cmt_orphans)
293 cnt = c->cmt_orphans;
294 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
295 ubifs_assert(c->orph_buf);
297 orph->ch.node_type = UBIFS_ORPH_NODE;
298 spin_lock(&c->orphan_lock);
299 cnext = c->orph_cnext;
300 for (i = 0; i < cnt; i++) {
302 orph->inos[i] = cpu_to_le64(orphan->inum);
303 cnext = orphan->cnext;
304 orphan->cnext = NULL;
306 c->orph_cnext = cnext;
307 c->cmt_orphans -= cnt;
308 spin_unlock(&c->orphan_lock);
310 orph->cmt_no = cpu_to_le64(c->cmt_no);
312 /* Mark the last node of the commit */
313 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
314 ubifs_assert(c->ohead_offs + len <= c->leb_size);
315 ubifs_assert(c->ohead_lnum >= c->orph_first);
316 ubifs_assert(c->ohead_lnum <= c->orph_last);
317 err = do_write_orph_node(c, len, atomic);
318 c->ohead_offs += ALIGN(len, c->min_io_size);
319 c->ohead_offs = ALIGN(c->ohead_offs, 8);
324 * write_orph_nodes - write orphan nodes until there are no more to commit.
325 * @c: UBIFS file-system description object
326 * @atomic: write atomically
328 * This function writes orphan nodes for all the orphans to commit. On success,
329 * %0 is returned, otherwise a negative error code is returned.
331 static int write_orph_nodes(struct ubifs_info *c, int atomic)
335 while (c->cmt_orphans > 0) {
336 err = write_orph_node(c, atomic);
343 /* Unmap any unused LEBs after consolidation */
344 lnum = c->ohead_lnum + 1;
345 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
346 err = ubifs_leb_unmap(c, lnum);
355 * consolidate - consolidate the orphan area.
356 * @c: UBIFS file-system description object
358 * This function enables consolidation by putting all the orphans into the list
359 * to commit. The list is in the order that the orphans were added, and the
360 * LEBs are written atomically in order, so at no time can orphans be lost by
361 * an unclean unmount.
363 * This function returns %0 on success and a negative error code on failure.
365 static int consolidate(struct ubifs_info *c)
367 int tot_avail = tot_avail_orphs(c), err = 0;
369 spin_lock(&c->orphan_lock);
370 dbg_cmt("there is space for %d orphans and there are %d",
371 tot_avail, c->tot_orphans);
372 if (c->tot_orphans - c->new_orphans <= tot_avail) {
373 struct ubifs_orphan *orphan, **last;
376 /* Change the cnext list to include all non-new orphans */
377 last = &c->orph_cnext;
378 list_for_each_entry(orphan, &c->orph_list, list) {
382 last = &orphan->cnext;
386 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
387 c->cmt_orphans = cnt;
388 c->ohead_lnum = c->orph_first;
392 * We limit the number of orphans so that this should
395 ubifs_err("out of space in orphan area");
398 spin_unlock(&c->orphan_lock);
403 * commit_orphans - commit orphans.
404 * @c: UBIFS file-system description object
406 * This function commits orphans to flash. On success, %0 is returned,
407 * otherwise a negative error code is returned.
409 static int commit_orphans(struct ubifs_info *c)
411 int avail, atomic = 0, err;
413 ubifs_assert(c->cmt_orphans > 0);
414 avail = avail_orphs(c);
415 if (avail < c->cmt_orphans) {
416 /* Not enough space to write new orphans, so consolidate */
417 err = consolidate(c);
422 err = write_orph_nodes(c, atomic);
427 * erase_deleted - erase the orphans marked for deletion.
428 * @c: UBIFS file-system description object
430 * During commit, the orphans being committed cannot be deleted, so they are
431 * marked for deletion and deleted by this function. Also, the recovery
432 * adds killed orphans to the deletion list, and therefore they are deleted
435 static void erase_deleted(struct ubifs_info *c)
437 struct ubifs_orphan *orphan, *dnext;
439 spin_lock(&c->orphan_lock);
440 dnext = c->orph_dnext;
443 dnext = orphan->dnext;
444 ubifs_assert(!orphan->new);
445 rb_erase(&orphan->rb, &c->orph_tree);
446 list_del(&orphan->list);
448 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
451 c->orph_dnext = NULL;
452 spin_unlock(&c->orphan_lock);
456 * ubifs_orphan_end_commit - end commit of orphans.
457 * @c: UBIFS file-system description object
459 * End commit of orphans.
461 int ubifs_orphan_end_commit(struct ubifs_info *c)
465 if (c->cmt_orphans != 0) {
466 err = commit_orphans(c);
471 err = dbg_check_orphans(c);
476 * ubifs_clear_orphans - erase all LEBs used for orphans.
477 * @c: UBIFS file-system description object
479 * If recovery is not required, then the orphans from the previous session
480 * are not needed. This function locates the LEBs used to record
481 * orphans, and un-maps them.
483 int ubifs_clear_orphans(struct ubifs_info *c)
487 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
488 err = ubifs_leb_unmap(c, lnum);
492 c->ohead_lnum = c->orph_first;
498 * insert_dead_orphan - insert an orphan.
499 * @c: UBIFS file-system description object
500 * @inum: orphan inode number
502 * This function is a helper to the 'do_kill_orphans()' function. The orphan
503 * must be kept until the next commit, so it is added to the rb-tree and the
506 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
508 struct ubifs_orphan *orphan, *o;
509 struct rb_node **p, *parent = NULL;
511 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
516 p = &c->orph_tree.rb_node;
519 o = rb_entry(parent, struct ubifs_orphan, rb);
522 else if (inum > o->inum)
525 /* Already added - no problem */
531 rb_link_node(&orphan->rb, parent, p);
532 rb_insert_color(&orphan->rb, &c->orph_tree);
533 list_add_tail(&orphan->list, &c->orph_list);
534 orphan->dnext = c->orph_dnext;
535 c->orph_dnext = orphan;
536 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
537 c->new_orphans, c->tot_orphans);
542 * do_kill_orphans - remove orphan inodes from the index.
543 * @c: UBIFS file-system description object
545 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
546 * @outofdate: whether the LEB is out of date is returned here
547 * @last_flagged: whether the end orphan node is encountered
549 * This function is a helper to the 'kill_orphans()' function. It goes through
550 * every orphan node in a LEB and for every inode number recorded, removes
551 * all keys for that inode from the TNC.
553 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
554 unsigned long long *last_cmt_no, int *outofdate,
557 struct ubifs_scan_node *snod;
558 struct ubifs_orph_node *orph;
559 unsigned long long cmt_no;
561 int i, n, err, first = 1;
563 list_for_each_entry(snod, &sleb->nodes, list) {
564 if (snod->type != UBIFS_ORPH_NODE) {
565 ubifs_err("invalid node type %d in orphan area at %d:%d",
566 snod->type, sleb->lnum, snod->offs);
567 ubifs_dump_node(c, snod->node);
573 /* Check commit number */
574 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
576 * The commit number on the master node may be less, because
577 * of a failed commit. If there are several failed commits in a
578 * row, the commit number written on orphan nodes will continue
579 * to increase (because the commit number is adjusted here) even
580 * though the commit number on the master node stays the same
581 * because the master node has not been re-written.
583 if (cmt_no > c->cmt_no)
585 if (cmt_no < *last_cmt_no && *last_flagged) {
587 * The last orphan node had a higher commit number and
588 * was flagged as the last written for that commit
589 * number. That makes this orphan node, out of date.
592 ubifs_err("out of order commit number %llu in orphan node at %d:%d",
593 cmt_no, sleb->lnum, snod->offs);
594 ubifs_dump_node(c, snod->node);
597 dbg_rcvry("out of date LEB %d", sleb->lnum);
605 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
606 for (i = 0; i < n; i++) {
607 inum = le64_to_cpu(orph->inos[i]);
608 dbg_rcvry("deleting orphaned inode %lu",
609 (unsigned long)inum);
610 err = ubifs_tnc_remove_ino(c, inum);
613 err = insert_dead_orphan(c, inum);
618 *last_cmt_no = cmt_no;
619 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
620 dbg_rcvry("last orph node for commit %llu at %d:%d",
621 cmt_no, sleb->lnum, snod->offs);
631 * kill_orphans - remove all orphan inodes from the index.
632 * @c: UBIFS file-system description object
634 * If recovery is required, then orphan inodes recorded during the previous
635 * session (which ended with an unclean unmount) must be deleted from the index.
636 * This is done by updating the TNC, but since the index is not updated until
637 * the next commit, the LEBs where the orphan information is recorded are not
638 * erased until the next commit.
640 static int kill_orphans(struct ubifs_info *c)
642 unsigned long long last_cmt_no = 0;
643 int lnum, err = 0, outofdate = 0, last_flagged = 0;
645 c->ohead_lnum = c->orph_first;
647 /* Check no-orphans flag and skip this if no orphans */
649 dbg_rcvry("no orphans");
653 * Orph nodes always start at c->orph_first and are written to each
654 * successive LEB in turn. Generally unused LEBs will have been unmapped
655 * but may contain out of date orphan nodes if the unmap didn't go
656 * through. In addition, the last orphan node written for each commit is
657 * marked (top bit of orph->cmt_no is set to 1). It is possible that
658 * there are orphan nodes from the next commit (i.e. the commit did not
659 * complete successfully). In that case, no orphans will have been lost
660 * due to the way that orphans are written, and any orphans added will
661 * be valid orphans anyway and so can be deleted.
663 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
664 struct ubifs_scan_leb *sleb;
666 dbg_rcvry("LEB %d", lnum);
667 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
669 if (PTR_ERR(sleb) == -EUCLEAN)
670 sleb = ubifs_recover_leb(c, lnum, 0,
677 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
679 if (err || outofdate) {
680 ubifs_scan_destroy(sleb);
684 c->ohead_lnum = lnum;
685 c->ohead_offs = sleb->endpt;
687 ubifs_scan_destroy(sleb);
693 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
694 * @c: UBIFS file-system description object
695 * @unclean: indicates recovery from unclean unmount
696 * @read_only: indicates read only mount
698 * This function is called when mounting to erase orphans from the previous
699 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
700 * orphans are deleted.
702 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
706 c->max_orphans = tot_avail_orphs(c);
709 c->orph_buf = vmalloc(c->leb_size);
715 err = kill_orphans(c);
717 err = ubifs_clear_orphans(c);
723 * Everything below is related to debugging.
726 struct check_orphan {
732 unsigned long last_ino;
733 unsigned long tot_inos;
734 unsigned long missing;
735 unsigned long long leaf_cnt;
736 struct ubifs_ino_node *node;
740 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
742 struct ubifs_orphan *o;
745 spin_lock(&c->orphan_lock);
746 p = c->orph_tree.rb_node;
748 o = rb_entry(p, struct ubifs_orphan, rb);
751 else if (inum > o->inum)
754 spin_unlock(&c->orphan_lock);
758 spin_unlock(&c->orphan_lock);
762 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
764 struct check_orphan *orphan, *o;
765 struct rb_node **p, *parent = NULL;
767 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
775 o = rb_entry(parent, struct check_orphan, rb);
778 else if (inum > o->inum)
785 rb_link_node(&orphan->rb, parent, p);
786 rb_insert_color(&orphan->rb, root);
790 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
792 struct check_orphan *o;
797 o = rb_entry(p, struct check_orphan, rb);
800 else if (inum > o->inum)
808 static void dbg_free_check_tree(struct rb_root *root)
810 struct rb_node *this = root->rb_node;
811 struct check_orphan *o;
815 this = this->rb_left;
817 } else if (this->rb_right) {
818 this = this->rb_right;
821 o = rb_entry(this, struct check_orphan, rb);
822 this = rb_parent(this);
824 if (this->rb_left == &o->rb)
825 this->rb_left = NULL;
827 this->rb_right = NULL;
833 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
836 struct check_info *ci = priv;
840 inum = key_inum(c, &zbr->key);
841 if (inum != ci->last_ino) {
842 /* Lowest node type is the inode node, so it comes first */
843 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
844 ubifs_err("found orphan node ino %lu, type %d",
845 (unsigned long)inum, key_type(c, &zbr->key));
848 err = ubifs_tnc_read_node(c, zbr, ci->node);
850 ubifs_err("node read failed, error %d", err);
853 if (ci->node->nlink == 0)
854 /* Must be recorded as an orphan */
855 if (!dbg_find_check_orphan(&ci->root, inum) &&
856 !dbg_find_orphan(c, inum)) {
857 ubifs_err("missing orphan, ino %lu",
858 (unsigned long)inum);
866 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
868 struct ubifs_scan_node *snod;
869 struct ubifs_orph_node *orph;
873 list_for_each_entry(snod, &sleb->nodes, list) {
875 if (snod->type != UBIFS_ORPH_NODE)
878 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
879 for (i = 0; i < n; i++) {
880 inum = le64_to_cpu(orph->inos[i]);
881 err = dbg_ins_check_orphan(&ci->root, inum);
889 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
894 /* Check no-orphans flag and skip this if no orphans */
898 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
900 ubifs_err("cannot allocate memory to check orphans");
904 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
905 struct ubifs_scan_leb *sleb;
907 sleb = ubifs_scan(c, lnum, 0, buf, 0);
913 err = dbg_read_orphans(ci, sleb);
914 ubifs_scan_destroy(sleb);
923 static int dbg_check_orphans(struct ubifs_info *c)
925 struct check_info ci;
928 if (!dbg_is_chk_orph(c))
936 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
938 ubifs_err("out of memory");
942 err = dbg_scan_orphans(c, &ci);
946 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
948 ubifs_err("cannot scan TNC, error %d", err);
953 ubifs_err("%lu missing orphan(s)", ci.missing);
958 dbg_cmt("last inode number is %lu", ci.last_ino);
959 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
960 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
963 dbg_free_check_tree(&ci.root);