1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Author: Adrian Hunter
13 * An orphan is an inode number whose inode node has been committed to the index
14 * with a link count of zero. That happens when an open file is deleted
15 * (unlinked) and then a commit is run. In the normal course of events the inode
16 * would be deleted when the file is closed. However in the case of an unclean
17 * unmount, orphans need to be accounted for. After an unclean unmount, the
18 * orphans' inodes must be deleted which means either scanning the entire index
19 * looking for them, or keeping a list on flash somewhere. This unit implements
20 * the latter approach.
22 * The orphan area is a fixed number of LEBs situated between the LPT area and
23 * the main area. The number of orphan area LEBs is specified when the file
24 * system is created. The minimum number is 1. The size of the orphan area
25 * should be so that it can hold the maximum number of orphans that are expected
26 * to ever exist at one time.
28 * The number of orphans that can fit in a LEB is:
30 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
32 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
34 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
35 * zero, the inode number is added to the rb-tree. It is removed from the tree
36 * when the inode is deleted. Any new orphans that are in the orphan tree when
37 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
38 * If the orphan area is full, it is consolidated to make space. There is
39 * always enough space because validation prevents the user from creating more
40 * than the maximum number of orphans allowed.
43 static int dbg_check_orphans(struct ubifs_info *c);
45 static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum,
46 struct ubifs_orphan *parent_orphan)
48 struct ubifs_orphan *orphan, *o;
49 struct rb_node **p, *parent = NULL;
51 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
53 return ERR_PTR(-ENOMEM);
56 INIT_LIST_HEAD(&orphan->child_list);
58 spin_lock(&c->orphan_lock);
59 if (c->tot_orphans >= c->max_orphans) {
60 spin_unlock(&c->orphan_lock);
62 return ERR_PTR(-ENFILE);
64 p = &c->orph_tree.rb_node;
67 o = rb_entry(parent, struct ubifs_orphan, rb);
70 else if (inum > o->inum)
73 ubifs_err(c, "orphaned twice");
74 spin_unlock(&c->orphan_lock);
76 return ERR_PTR(-EINVAL);
81 rb_link_node(&orphan->rb, parent, p);
82 rb_insert_color(&orphan->rb, &c->orph_tree);
83 list_add_tail(&orphan->list, &c->orph_list);
84 list_add_tail(&orphan->new_list, &c->orph_new);
87 list_add_tail(&orphan->child_list,
88 &parent_orphan->child_list);
91 spin_unlock(&c->orphan_lock);
92 dbg_gen("ino %lu", (unsigned long)inum);
96 static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum)
98 struct ubifs_orphan *o;
101 p = c->orph_tree.rb_node;
103 o = rb_entry(p, struct ubifs_orphan, rb);
106 else if (inum > o->inum)
115 static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o)
117 rb_erase(&o->rb, &c->orph_tree);
122 list_del(&o->new_list);
129 static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph)
132 dbg_gen("deleted twice ino %lu", (unsigned long)orph->inum);
138 orph->dnext = c->orph_dnext;
139 c->orph_dnext = orph;
140 dbg_gen("delete later ino %lu", (unsigned long)orph->inum);
144 __orphan_drop(c, orph);
148 * ubifs_add_orphan - add an orphan.
149 * @c: UBIFS file-system description object
150 * @inum: orphan inode number
152 * Add an orphan. This function is called when an inodes link count drops to
155 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
160 struct ubifs_dent_node *xent, *pxent = NULL;
161 struct fscrypt_name nm = {0};
162 struct ubifs_orphan *xattr_orphan;
163 struct ubifs_orphan *orphan;
165 orphan = orphan_add(c, inum, NULL);
167 return PTR_ERR(orphan);
169 lowest_xent_key(c, &key, inum);
171 xent = ubifs_tnc_next_ent(c, &key, &nm);
180 fname_name(&nm) = xent->name;
181 fname_len(&nm) = le16_to_cpu(xent->nlen);
182 xattr_inum = le64_to_cpu(xent->inum);
184 xattr_orphan = orphan_add(c, xattr_inum, orphan);
185 if (IS_ERR(xattr_orphan)) {
188 return PTR_ERR(xattr_orphan);
193 key_read(c, &xent->key, &key);
201 * ubifs_delete_orphan - delete an orphan.
202 * @c: UBIFS file-system description object
203 * @inum: orphan inode number
205 * Delete an orphan. This function is called when an inode is deleted.
207 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
209 struct ubifs_orphan *orph, *child_orph, *tmp_o;
211 spin_lock(&c->orphan_lock);
213 orph = lookup_orphan(c, inum);
215 spin_unlock(&c->orphan_lock);
216 ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
222 list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) {
223 list_del(&child_orph->child_list);
224 orphan_delete(c, child_orph);
227 orphan_delete(c, orph);
229 spin_unlock(&c->orphan_lock);
233 * ubifs_orphan_start_commit - start commit of orphans.
234 * @c: UBIFS file-system description object
236 * Start commit of orphans.
238 int ubifs_orphan_start_commit(struct ubifs_info *c)
240 struct ubifs_orphan *orphan, **last;
242 spin_lock(&c->orphan_lock);
243 last = &c->orph_cnext;
244 list_for_each_entry(orphan, &c->orph_new, new_list) {
245 ubifs_assert(c, orphan->new);
246 ubifs_assert(c, !orphan->cmt);
250 last = &orphan->cnext;
253 c->cmt_orphans = c->new_orphans;
255 dbg_cmt("%d orphans to commit", c->cmt_orphans);
256 INIT_LIST_HEAD(&c->orph_new);
257 if (c->tot_orphans == 0)
261 spin_unlock(&c->orphan_lock);
266 * avail_orphs - calculate available space.
267 * @c: UBIFS file-system description object
269 * This function returns the number of orphans that can be written in the
272 static int avail_orphs(struct ubifs_info *c)
274 int avail_lebs, avail, gap;
276 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
278 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
279 gap = c->leb_size - c->ohead_offs;
280 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
281 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
286 * tot_avail_orphs - calculate total space.
287 * @c: UBIFS file-system description object
289 * This function returns the number of orphans that can be written in half
290 * the total space. That leaves half the space for adding new orphans.
292 static int tot_avail_orphs(struct ubifs_info *c)
294 int avail_lebs, avail;
296 avail_lebs = c->orph_lebs;
298 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
303 * do_write_orph_node - write a node to the orphan head.
304 * @c: UBIFS file-system description object
305 * @len: length of node
306 * @atomic: write atomically
308 * This function writes a node to the orphan head from the orphan buffer. If
309 * %atomic is not zero, then the write is done atomically. On success, %0 is
310 * returned, otherwise a negative error code is returned.
312 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
317 ubifs_assert(c, c->ohead_offs == 0);
318 ubifs_prepare_node(c, c->orph_buf, len, 1);
319 len = ALIGN(len, c->min_io_size);
320 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
322 if (c->ohead_offs == 0) {
323 /* Ensure LEB has been unmapped */
324 err = ubifs_leb_unmap(c, c->ohead_lnum);
328 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
335 * write_orph_node - write an orphan node.
336 * @c: UBIFS file-system description object
337 * @atomic: write atomically
339 * This function builds an orphan node from the cnext list and writes it to the
340 * orphan head. On success, %0 is returned, otherwise a negative error code
343 static int write_orph_node(struct ubifs_info *c, int atomic)
345 struct ubifs_orphan *orphan, *cnext;
346 struct ubifs_orph_node *orph;
347 int gap, err, len, cnt, i;
349 ubifs_assert(c, c->cmt_orphans > 0);
350 gap = c->leb_size - c->ohead_offs;
351 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
355 if (c->ohead_lnum > c->orph_last) {
357 * We limit the number of orphans so that this should
360 ubifs_err(c, "out of space in orphan area");
364 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
365 if (cnt > c->cmt_orphans)
366 cnt = c->cmt_orphans;
367 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
368 ubifs_assert(c, c->orph_buf);
370 orph->ch.node_type = UBIFS_ORPH_NODE;
371 spin_lock(&c->orphan_lock);
372 cnext = c->orph_cnext;
373 for (i = 0; i < cnt; i++) {
375 ubifs_assert(c, orphan->cmt);
376 orph->inos[i] = cpu_to_le64(orphan->inum);
378 cnext = orphan->cnext;
379 orphan->cnext = NULL;
381 c->orph_cnext = cnext;
382 c->cmt_orphans -= cnt;
383 spin_unlock(&c->orphan_lock);
385 orph->cmt_no = cpu_to_le64(c->cmt_no);
387 /* Mark the last node of the commit */
388 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
389 ubifs_assert(c, c->ohead_offs + len <= c->leb_size);
390 ubifs_assert(c, c->ohead_lnum >= c->orph_first);
391 ubifs_assert(c, c->ohead_lnum <= c->orph_last);
392 err = do_write_orph_node(c, len, atomic);
393 c->ohead_offs += ALIGN(len, c->min_io_size);
394 c->ohead_offs = ALIGN(c->ohead_offs, 8);
399 * write_orph_nodes - write orphan nodes until there are no more to commit.
400 * @c: UBIFS file-system description object
401 * @atomic: write atomically
403 * This function writes orphan nodes for all the orphans to commit. On success,
404 * %0 is returned, otherwise a negative error code is returned.
406 static int write_orph_nodes(struct ubifs_info *c, int atomic)
410 while (c->cmt_orphans > 0) {
411 err = write_orph_node(c, atomic);
418 /* Unmap any unused LEBs after consolidation */
419 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
420 err = ubifs_leb_unmap(c, lnum);
429 * consolidate - consolidate the orphan area.
430 * @c: UBIFS file-system description object
432 * This function enables consolidation by putting all the orphans into the list
433 * to commit. The list is in the order that the orphans were added, and the
434 * LEBs are written atomically in order, so at no time can orphans be lost by
435 * an unclean unmount.
437 * This function returns %0 on success and a negative error code on failure.
439 static int consolidate(struct ubifs_info *c)
441 int tot_avail = tot_avail_orphs(c), err = 0;
443 spin_lock(&c->orphan_lock);
444 dbg_cmt("there is space for %d orphans and there are %d",
445 tot_avail, c->tot_orphans);
446 if (c->tot_orphans - c->new_orphans <= tot_avail) {
447 struct ubifs_orphan *orphan, **last;
450 /* Change the cnext list to include all non-new orphans */
451 last = &c->orph_cnext;
452 list_for_each_entry(orphan, &c->orph_list, list) {
457 last = &orphan->cnext;
461 ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans);
462 c->cmt_orphans = cnt;
463 c->ohead_lnum = c->orph_first;
467 * We limit the number of orphans so that this should
470 ubifs_err(c, "out of space in orphan area");
473 spin_unlock(&c->orphan_lock);
478 * commit_orphans - commit orphans.
479 * @c: UBIFS file-system description object
481 * This function commits orphans to flash. On success, %0 is returned,
482 * otherwise a negative error code is returned.
484 static int commit_orphans(struct ubifs_info *c)
486 int avail, atomic = 0, err;
488 ubifs_assert(c, c->cmt_orphans > 0);
489 avail = avail_orphs(c);
490 if (avail < c->cmt_orphans) {
491 /* Not enough space to write new orphans, so consolidate */
492 err = consolidate(c);
497 err = write_orph_nodes(c, atomic);
502 * erase_deleted - erase the orphans marked for deletion.
503 * @c: UBIFS file-system description object
505 * During commit, the orphans being committed cannot be deleted, so they are
506 * marked for deletion and deleted by this function. Also, the recovery
507 * adds killed orphans to the deletion list, and therefore they are deleted
510 static void erase_deleted(struct ubifs_info *c)
512 struct ubifs_orphan *orphan, *dnext;
514 spin_lock(&c->orphan_lock);
515 dnext = c->orph_dnext;
518 dnext = orphan->dnext;
519 ubifs_assert(c, !orphan->new);
520 ubifs_assert(c, orphan->del);
521 rb_erase(&orphan->rb, &c->orph_tree);
522 list_del(&orphan->list);
524 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
527 c->orph_dnext = NULL;
528 spin_unlock(&c->orphan_lock);
532 * ubifs_orphan_end_commit - end commit of orphans.
533 * @c: UBIFS file-system description object
535 * End commit of orphans.
537 int ubifs_orphan_end_commit(struct ubifs_info *c)
541 if (c->cmt_orphans != 0) {
542 err = commit_orphans(c);
547 err = dbg_check_orphans(c);
552 * ubifs_clear_orphans - erase all LEBs used for orphans.
553 * @c: UBIFS file-system description object
555 * If recovery is not required, then the orphans from the previous session
556 * are not needed. This function locates the LEBs used to record
557 * orphans, and un-maps them.
559 int ubifs_clear_orphans(struct ubifs_info *c)
563 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
564 err = ubifs_leb_unmap(c, lnum);
568 c->ohead_lnum = c->orph_first;
574 * insert_dead_orphan - insert an orphan.
575 * @c: UBIFS file-system description object
576 * @inum: orphan inode number
578 * This function is a helper to the 'do_kill_orphans()' function. The orphan
579 * must be kept until the next commit, so it is added to the rb-tree and the
582 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
584 struct ubifs_orphan *orphan, *o;
585 struct rb_node **p, *parent = NULL;
587 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
592 p = &c->orph_tree.rb_node;
595 o = rb_entry(parent, struct ubifs_orphan, rb);
598 else if (inum > o->inum)
601 /* Already added - no problem */
607 rb_link_node(&orphan->rb, parent, p);
608 rb_insert_color(&orphan->rb, &c->orph_tree);
609 list_add_tail(&orphan->list, &c->orph_list);
611 orphan->dnext = c->orph_dnext;
612 c->orph_dnext = orphan;
613 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
614 c->new_orphans, c->tot_orphans);
619 * do_kill_orphans - remove orphan inodes from the index.
620 * @c: UBIFS file-system description object
622 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
623 * @outofdate: whether the LEB is out of date is returned here
624 * @last_flagged: whether the end orphan node is encountered
626 * This function is a helper to the 'kill_orphans()' function. It goes through
627 * every orphan node in a LEB and for every inode number recorded, removes
628 * all keys for that inode from the TNC.
630 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
631 unsigned long long *last_cmt_no, int *outofdate,
634 struct ubifs_scan_node *snod;
635 struct ubifs_orph_node *orph;
636 struct ubifs_ino_node *ino = NULL;
637 unsigned long long cmt_no;
639 int i, n, err, first = 1;
641 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
645 list_for_each_entry(snod, &sleb->nodes, list) {
646 if (snod->type != UBIFS_ORPH_NODE) {
647 ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
648 snod->type, sleb->lnum, snod->offs);
649 ubifs_dump_node(c, snod->node,
650 c->leb_size - snod->offs);
657 /* Check commit number */
658 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
660 * The commit number on the master node may be less, because
661 * of a failed commit. If there are several failed commits in a
662 * row, the commit number written on orphan nodes will continue
663 * to increase (because the commit number is adjusted here) even
664 * though the commit number on the master node stays the same
665 * because the master node has not been re-written.
667 if (cmt_no > c->cmt_no)
669 if (cmt_no < *last_cmt_no && *last_flagged) {
671 * The last orphan node had a higher commit number and
672 * was flagged as the last written for that commit
673 * number. That makes this orphan node, out of date.
676 ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
677 cmt_no, sleb->lnum, snod->offs);
678 ubifs_dump_node(c, snod->node,
679 c->leb_size - snod->offs);
683 dbg_rcvry("out of date LEB %d", sleb->lnum);
692 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
693 for (i = 0; i < n; i++) {
694 union ubifs_key key1, key2;
696 inum = le64_to_cpu(orph->inos[i]);
698 ino_key_init(c, &key1, inum);
699 err = ubifs_tnc_lookup(c, &key1, ino);
700 if (err && err != -ENOENT)
704 * Check whether an inode can really get deleted.
705 * linkat() with O_TMPFILE allows rebirth of an inode.
707 if (err == 0 && ino->nlink == 0) {
708 dbg_rcvry("deleting orphaned inode %lu",
709 (unsigned long)inum);
711 lowest_ino_key(c, &key1, inum);
712 highest_ino_key(c, &key2, inum);
714 err = ubifs_tnc_remove_range(c, &key1, &key2);
719 err = insert_dead_orphan(c, inum);
724 *last_cmt_no = cmt_no;
725 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
726 dbg_rcvry("last orph node for commit %llu at %d:%d",
727 cmt_no, sleb->lnum, snod->offs);
739 ubifs_ro_mode(c, err);
745 * kill_orphans - remove all orphan inodes from the index.
746 * @c: UBIFS file-system description object
748 * If recovery is required, then orphan inodes recorded during the previous
749 * session (which ended with an unclean unmount) must be deleted from the index.
750 * This is done by updating the TNC, but since the index is not updated until
751 * the next commit, the LEBs where the orphan information is recorded are not
752 * erased until the next commit.
754 static int kill_orphans(struct ubifs_info *c)
756 unsigned long long last_cmt_no = 0;
757 int lnum, err = 0, outofdate = 0, last_flagged = 0;
759 c->ohead_lnum = c->orph_first;
761 /* Check no-orphans flag and skip this if no orphans */
763 dbg_rcvry("no orphans");
767 * Orph nodes always start at c->orph_first and are written to each
768 * successive LEB in turn. Generally unused LEBs will have been unmapped
769 * but may contain out of date orphan nodes if the unmap didn't go
770 * through. In addition, the last orphan node written for each commit is
771 * marked (top bit of orph->cmt_no is set to 1). It is possible that
772 * there are orphan nodes from the next commit (i.e. the commit did not
773 * complete successfully). In that case, no orphans will have been lost
774 * due to the way that orphans are written, and any orphans added will
775 * be valid orphans anyway and so can be deleted.
777 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
778 struct ubifs_scan_leb *sleb;
780 dbg_rcvry("LEB %d", lnum);
781 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
783 if (PTR_ERR(sleb) == -EUCLEAN)
784 sleb = ubifs_recover_leb(c, lnum, 0,
791 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
793 if (err || outofdate) {
794 ubifs_scan_destroy(sleb);
798 c->ohead_lnum = lnum;
799 c->ohead_offs = sleb->endpt;
801 ubifs_scan_destroy(sleb);
807 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
808 * @c: UBIFS file-system description object
809 * @unclean: indicates recovery from unclean unmount
810 * @read_only: indicates read only mount
812 * This function is called when mounting to erase orphans from the previous
813 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
814 * orphans are deleted.
816 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
820 c->max_orphans = tot_avail_orphs(c);
823 c->orph_buf = vmalloc(c->leb_size);
829 err = kill_orphans(c);
831 err = ubifs_clear_orphans(c);
837 * Everything below is related to debugging.
840 struct check_orphan {
846 unsigned long last_ino;
847 unsigned long tot_inos;
848 unsigned long missing;
849 unsigned long long leaf_cnt;
850 struct ubifs_ino_node *node;
854 static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum)
858 spin_lock(&c->orphan_lock);
859 found = !!lookup_orphan(c, inum);
860 spin_unlock(&c->orphan_lock);
865 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
867 struct check_orphan *orphan, *o;
868 struct rb_node **p, *parent = NULL;
870 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
878 o = rb_entry(parent, struct check_orphan, rb);
881 else if (inum > o->inum)
888 rb_link_node(&orphan->rb, parent, p);
889 rb_insert_color(&orphan->rb, root);
893 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
895 struct check_orphan *o;
900 o = rb_entry(p, struct check_orphan, rb);
903 else if (inum > o->inum)
911 static void dbg_free_check_tree(struct rb_root *root)
913 struct check_orphan *o, *n;
915 rbtree_postorder_for_each_entry_safe(o, n, root, rb)
919 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
922 struct check_info *ci = priv;
926 inum = key_inum(c, &zbr->key);
927 if (inum != ci->last_ino) {
928 /* Lowest node type is the inode node, so it comes first */
929 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
930 ubifs_err(c, "found orphan node ino %lu, type %d",
931 (unsigned long)inum, key_type(c, &zbr->key));
934 err = ubifs_tnc_read_node(c, zbr, ci->node);
936 ubifs_err(c, "node read failed, error %d", err);
939 if (ci->node->nlink == 0)
940 /* Must be recorded as an orphan */
941 if (!dbg_find_check_orphan(&ci->root, inum) &&
942 !dbg_find_orphan(c, inum)) {
943 ubifs_err(c, "missing orphan, ino %lu",
944 (unsigned long)inum);
952 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
954 struct ubifs_scan_node *snod;
955 struct ubifs_orph_node *orph;
959 list_for_each_entry(snod, &sleb->nodes, list) {
961 if (snod->type != UBIFS_ORPH_NODE)
964 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
965 for (i = 0; i < n; i++) {
966 inum = le64_to_cpu(orph->inos[i]);
967 err = dbg_ins_check_orphan(&ci->root, inum);
975 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
980 /* Check no-orphans flag and skip this if no orphans */
984 buf = __vmalloc(c->leb_size, GFP_NOFS);
986 ubifs_err(c, "cannot allocate memory to check orphans");
990 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
991 struct ubifs_scan_leb *sleb;
993 sleb = ubifs_scan(c, lnum, 0, buf, 0);
999 err = dbg_read_orphans(ci, sleb);
1000 ubifs_scan_destroy(sleb);
1009 static int dbg_check_orphans(struct ubifs_info *c)
1011 struct check_info ci;
1014 if (!dbg_is_chk_orph(c))
1022 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
1024 ubifs_err(c, "out of memory");
1028 err = dbg_scan_orphans(c, &ci);
1032 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
1034 ubifs_err(c, "cannot scan TNC, error %d", err);
1039 ubifs_err(c, "%lu missing orphan(s)", ci.missing);
1044 dbg_cmt("last inode number is %lu", ci.last_ino);
1045 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
1046 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
1049 dbg_free_check_tree(&ci.root);