2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements commit-related functionality of the LEB properties
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
33 static int dbg_populate_lsave(struct ubifs_info *c);
36 * first_dirty_cnode - find first dirty cnode.
37 * @c: UBIFS file-system description object
38 * @nnode: nnode at which to start
40 * This function returns the first dirty cnode or %NULL if there is not one.
42 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
48 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49 struct ubifs_cnode *cnode;
51 cnode = nnode->nbranch[i].cnode;
53 test_bit(DIRTY_CNODE, &cnode->flags)) {
54 if (cnode->level == 0)
56 nnode = (struct ubifs_nnode *)cnode;
62 return (struct ubifs_cnode *)nnode;
67 * next_dirty_cnode - find next dirty cnode.
68 * @cnode: cnode from which to begin searching
70 * This function returns the next dirty cnode or %NULL if there is not one.
72 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
74 struct ubifs_nnode *nnode;
78 nnode = cnode->parent;
81 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
82 cnode = nnode->nbranch[i].cnode;
83 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
84 if (cnode->level == 0)
85 return cnode; /* cnode is a pnode */
86 /* cnode is a nnode */
87 return first_dirty_cnode((struct ubifs_nnode *)cnode);
90 return (struct ubifs_cnode *)nnode;
94 * get_cnodes_to_commit - create list of dirty cnodes to commit.
95 * @c: UBIFS file-system description object
97 * This function returns the number of cnodes to commit.
99 static int get_cnodes_to_commit(struct ubifs_info *c)
101 struct ubifs_cnode *cnode, *cnext;
107 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
110 c->lpt_cnext = first_dirty_cnode(c->nroot);
111 cnode = c->lpt_cnext;
116 ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
117 __set_bit(COW_CNODE, &cnode->flags);
118 cnext = next_dirty_cnode(cnode);
120 cnode->cnext = c->lpt_cnext;
123 cnode->cnext = cnext;
127 dbg_cmt("committing %d cnodes", cnt);
128 dbg_lp("committing %d cnodes", cnt);
129 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
134 * upd_ltab - update LPT LEB properties.
135 * @c: UBIFS file-system description object
137 * @free: amount of free space
138 * @dirty: amount of dirty space to add
140 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
142 dbg_lp("LEB %d free %d dirty %d to %d +%d",
143 lnum, c->ltab[lnum - c->lpt_first].free,
144 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
145 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
146 c->ltab[lnum - c->lpt_first].free = free;
147 c->ltab[lnum - c->lpt_first].dirty += dirty;
151 * alloc_lpt_leb - allocate an LPT LEB that is empty.
152 * @c: UBIFS file-system description object
153 * @lnum: LEB number is passed and returned here
155 * This function finds the next empty LEB in the ltab starting from @lnum. If a
156 * an empty LEB is found it is returned in @lnum and the function returns %0.
157 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
158 * never to run out of space.
160 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
164 n = *lnum - c->lpt_first + 1;
165 for (i = n; i < c->lpt_lebs; i++) {
166 if (c->ltab[i].tgc || c->ltab[i].cmt)
168 if (c->ltab[i].free == c->leb_size) {
170 *lnum = i + c->lpt_first;
175 for (i = 0; i < n; i++) {
176 if (c->ltab[i].tgc || c->ltab[i].cmt)
178 if (c->ltab[i].free == c->leb_size) {
180 *lnum = i + c->lpt_first;
188 * layout_cnodes - layout cnodes for commit.
189 * @c: UBIFS file-system description object
191 * This function returns %0 on success and a negative error code on failure.
193 static int layout_cnodes(struct ubifs_info *c)
195 int lnum, offs, len, alen, done_lsave, done_ltab, err;
196 struct ubifs_cnode *cnode;
198 err = dbg_chk_lpt_sz(c, 0, 0);
201 cnode = c->lpt_cnext;
204 lnum = c->nhead_lnum;
205 offs = c->nhead_offs;
206 /* Try to place lsave and ltab nicely */
207 done_lsave = !c->big_lpt;
209 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
211 c->lsave_lnum = lnum;
212 c->lsave_offs = offs;
214 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
217 if (offs + c->ltab_sz <= c->leb_size) {
222 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
228 c->dirty_nn_cnt -= 1;
231 c->dirty_pn_cnt -= 1;
233 while (offs + len > c->leb_size) {
234 alen = ALIGN(offs, c->min_io_size);
235 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
236 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
237 err = alloc_lpt_leb(c, &lnum);
241 ubifs_assert(lnum >= c->lpt_first &&
242 lnum <= c->lpt_last);
243 /* Try to place lsave and ltab nicely */
246 c->lsave_lnum = lnum;
247 c->lsave_offs = offs;
249 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
257 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
263 cnode->parent->nbranch[cnode->iip].lnum = lnum;
264 cnode->parent->nbranch[cnode->iip].offs = offs;
270 dbg_chk_lpt_sz(c, 1, len);
271 cnode = cnode->cnext;
272 } while (cnode && cnode != c->lpt_cnext);
274 /* Make sure to place LPT's save table */
276 if (offs + c->lsave_sz > c->leb_size) {
277 alen = ALIGN(offs, c->min_io_size);
278 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
279 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
280 err = alloc_lpt_leb(c, &lnum);
284 ubifs_assert(lnum >= c->lpt_first &&
285 lnum <= c->lpt_last);
288 c->lsave_lnum = lnum;
289 c->lsave_offs = offs;
291 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
294 /* Make sure to place LPT's own lprops table */
296 if (offs + c->ltab_sz > c->leb_size) {
297 alen = ALIGN(offs, c->min_io_size);
298 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
299 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
300 err = alloc_lpt_leb(c, &lnum);
304 ubifs_assert(lnum >= c->lpt_first &&
305 lnum <= c->lpt_last);
311 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
314 alen = ALIGN(offs, c->min_io_size);
315 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
316 dbg_chk_lpt_sz(c, 4, alen - offs);
317 err = dbg_chk_lpt_sz(c, 3, alen);
323 ubifs_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
324 lnum, offs, len, done_ltab, done_lsave);
325 ubifs_dump_lpt_info(c);
326 ubifs_dump_lpt_lebs(c);
332 * realloc_lpt_leb - allocate an LPT LEB that is empty.
333 * @c: UBIFS file-system description object
334 * @lnum: LEB number is passed and returned here
336 * This function duplicates exactly the results of the function alloc_lpt_leb.
337 * It is used during end commit to reallocate the same LEB numbers that were
338 * allocated by alloc_lpt_leb during start commit.
340 * This function finds the next LEB that was allocated by the alloc_lpt_leb
341 * function starting from @lnum. If a LEB is found it is returned in @lnum and
342 * the function returns %0. Otherwise the function returns -ENOSPC.
343 * Note however, that LPT is designed never to run out of space.
345 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
349 n = *lnum - c->lpt_first + 1;
350 for (i = n; i < c->lpt_lebs; i++)
351 if (c->ltab[i].cmt) {
353 *lnum = i + c->lpt_first;
357 for (i = 0; i < n; i++)
358 if (c->ltab[i].cmt) {
360 *lnum = i + c->lpt_first;
367 * write_cnodes - write cnodes for commit.
368 * @c: UBIFS file-system description object
370 * This function returns %0 on success and a negative error code on failure.
372 static int write_cnodes(struct ubifs_info *c)
374 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
375 struct ubifs_cnode *cnode;
376 void *buf = c->lpt_buf;
378 cnode = c->lpt_cnext;
381 lnum = c->nhead_lnum;
382 offs = c->nhead_offs;
384 /* Ensure empty LEB is unmapped */
386 err = ubifs_leb_unmap(c, lnum);
390 /* Try to place lsave and ltab nicely */
391 done_lsave = !c->big_lpt;
393 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
395 ubifs_pack_lsave(c, buf + offs, c->lsave);
397 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
400 if (offs + c->ltab_sz <= c->leb_size) {
402 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
404 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
407 /* Loop for each cnode */
413 while (offs + len > c->leb_size) {
416 alen = ALIGN(wlen, c->min_io_size);
417 memset(buf + offs, 0xff, alen - wlen);
418 err = ubifs_leb_write(c, lnum, buf + from, from,
423 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
424 err = realloc_lpt_leb(c, &lnum);
428 ubifs_assert(lnum >= c->lpt_first &&
429 lnum <= c->lpt_last);
430 err = ubifs_leb_unmap(c, lnum);
433 /* Try to place lsave and ltab nicely */
436 ubifs_pack_lsave(c, buf + offs, c->lsave);
438 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
443 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
445 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
451 ubifs_pack_nnode(c, buf + offs,
452 (struct ubifs_nnode *)cnode);
454 ubifs_pack_pnode(c, buf + offs,
455 (struct ubifs_pnode *)cnode);
457 * The reason for the barriers is the same as in case of TNC.
458 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
459 * 'dirty_cow_pnode()' are the functions for which this is
462 clear_bit(DIRTY_CNODE, &cnode->flags);
463 smp_mb__before_clear_bit();
464 clear_bit(COW_CNODE, &cnode->flags);
465 smp_mb__after_clear_bit();
467 dbg_chk_lpt_sz(c, 1, len);
468 cnode = cnode->cnext;
469 } while (cnode && cnode != c->lpt_cnext);
471 /* Make sure to place LPT's save table */
473 if (offs + c->lsave_sz > c->leb_size) {
475 alen = ALIGN(wlen, c->min_io_size);
476 memset(buf + offs, 0xff, alen - wlen);
477 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
480 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
481 err = realloc_lpt_leb(c, &lnum);
485 ubifs_assert(lnum >= c->lpt_first &&
486 lnum <= c->lpt_last);
487 err = ubifs_leb_unmap(c, lnum);
492 ubifs_pack_lsave(c, buf + offs, c->lsave);
494 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
497 /* Make sure to place LPT's own lprops table */
499 if (offs + c->ltab_sz > c->leb_size) {
501 alen = ALIGN(wlen, c->min_io_size);
502 memset(buf + offs, 0xff, alen - wlen);
503 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
506 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507 err = realloc_lpt_leb(c, &lnum);
511 ubifs_assert(lnum >= c->lpt_first &&
512 lnum <= c->lpt_last);
513 err = ubifs_leb_unmap(c, lnum);
518 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
520 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
523 /* Write remaining data in buffer */
525 alen = ALIGN(wlen, c->min_io_size);
526 memset(buf + offs, 0xff, alen - wlen);
527 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
531 dbg_chk_lpt_sz(c, 4, alen - wlen);
532 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
536 c->nhead_lnum = lnum;
537 c->nhead_offs = ALIGN(offs, c->min_io_size);
539 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
540 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
541 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
543 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
548 ubifs_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
549 lnum, offs, len, done_ltab, done_lsave);
550 ubifs_dump_lpt_info(c);
551 ubifs_dump_lpt_lebs(c);
557 * next_pnode_to_dirty - find next pnode to dirty.
558 * @c: UBIFS file-system description object
561 * This function returns the next pnode to dirty or %NULL if there are no more
562 * pnodes. Note that pnodes that have never been written (lnum == 0) are
565 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
566 struct ubifs_pnode *pnode)
568 struct ubifs_nnode *nnode;
571 /* Try to go right */
572 nnode = pnode->parent;
573 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
574 if (nnode->nbranch[iip].lnum)
575 return ubifs_get_pnode(c, nnode, iip);
578 /* Go up while can't go right */
580 iip = nnode->iip + 1;
581 nnode = nnode->parent;
584 for (; iip < UBIFS_LPT_FANOUT; iip++) {
585 if (nnode->nbranch[iip].lnum)
588 } while (iip >= UBIFS_LPT_FANOUT);
591 nnode = ubifs_get_nnode(c, nnode, iip);
593 return (void *)nnode;
595 /* Go down to level 1 */
596 while (nnode->level > 1) {
597 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
598 if (nnode->nbranch[iip].lnum)
601 if (iip >= UBIFS_LPT_FANOUT) {
603 * Should not happen, but we need to keep going
608 nnode = ubifs_get_nnode(c, nnode, iip);
610 return (void *)nnode;
613 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
614 if (nnode->nbranch[iip].lnum)
616 if (iip >= UBIFS_LPT_FANOUT)
617 /* Should not happen, but we need to keep going if it does */
619 return ubifs_get_pnode(c, nnode, iip);
623 * pnode_lookup - lookup a pnode in the LPT.
624 * @c: UBIFS file-system description object
625 * @i: pnode number (0 to main_lebs - 1)
627 * This function returns a pointer to the pnode on success or a negative
628 * error code on failure.
630 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
632 int err, h, iip, shft;
633 struct ubifs_nnode *nnode;
636 err = ubifs_read_nnode(c, NULL, 0);
640 i <<= UBIFS_LPT_FANOUT_SHIFT;
642 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
643 for (h = 1; h < c->lpt_hght; h++) {
644 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
645 shft -= UBIFS_LPT_FANOUT_SHIFT;
646 nnode = ubifs_get_nnode(c, nnode, iip);
648 return ERR_CAST(nnode);
650 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
651 return ubifs_get_pnode(c, nnode, iip);
655 * add_pnode_dirt - add dirty space to LPT LEB properties.
656 * @c: UBIFS file-system description object
657 * @pnode: pnode for which to add dirt
659 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
661 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
666 * do_make_pnode_dirty - mark a pnode dirty.
667 * @c: UBIFS file-system description object
668 * @pnode: pnode to mark dirty
670 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
672 /* Assumes cnext list is empty i.e. not called during commit */
673 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
674 struct ubifs_nnode *nnode;
676 c->dirty_pn_cnt += 1;
677 add_pnode_dirt(c, pnode);
678 /* Mark parent and ancestors dirty too */
679 nnode = pnode->parent;
681 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
682 c->dirty_nn_cnt += 1;
683 ubifs_add_nnode_dirt(c, nnode);
684 nnode = nnode->parent;
692 * make_tree_dirty - mark the entire LEB properties tree dirty.
693 * @c: UBIFS file-system description object
695 * This function is used by the "small" LPT model to cause the entire LEB
696 * properties tree to be written. The "small" LPT model does not use LPT
697 * garbage collection because it is more efficient to write the entire tree
698 * (because it is small).
700 * This function returns %0 on success and a negative error code on failure.
702 static int make_tree_dirty(struct ubifs_info *c)
704 struct ubifs_pnode *pnode;
706 pnode = pnode_lookup(c, 0);
708 return PTR_ERR(pnode);
711 do_make_pnode_dirty(c, pnode);
712 pnode = next_pnode_to_dirty(c, pnode);
714 return PTR_ERR(pnode);
720 * need_write_all - determine if the LPT area is running out of free space.
721 * @c: UBIFS file-system description object
723 * This function returns %1 if the LPT area is running out of free space and %0
726 static int need_write_all(struct ubifs_info *c)
731 for (i = 0; i < c->lpt_lebs; i++) {
732 if (i + c->lpt_first == c->nhead_lnum)
733 free += c->leb_size - c->nhead_offs;
734 else if (c->ltab[i].free == c->leb_size)
736 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
739 /* Less than twice the size left */
740 if (free <= c->lpt_sz * 2)
746 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
747 * @c: UBIFS file-system description object
749 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
750 * free space and so may be reused as soon as the next commit is completed.
751 * This function is called during start commit to mark LPT LEBs for trivial GC.
753 static void lpt_tgc_start(struct ubifs_info *c)
757 for (i = 0; i < c->lpt_lebs; i++) {
758 if (i + c->lpt_first == c->nhead_lnum)
760 if (c->ltab[i].dirty > 0 &&
761 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
763 c->ltab[i].free = c->leb_size;
764 c->ltab[i].dirty = 0;
765 dbg_lp("LEB %d", i + c->lpt_first);
771 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
772 * @c: UBIFS file-system description object
774 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
775 * free space and so may be reused as soon as the next commit is completed.
776 * This function is called after the commit is completed (master node has been
777 * written) and un-maps LPT LEBs that were marked for trivial GC.
779 static int lpt_tgc_end(struct ubifs_info *c)
783 for (i = 0; i < c->lpt_lebs; i++)
784 if (c->ltab[i].tgc) {
785 err = ubifs_leb_unmap(c, i + c->lpt_first);
789 dbg_lp("LEB %d", i + c->lpt_first);
795 * populate_lsave - fill the lsave array with important LEB numbers.
796 * @c: the UBIFS file-system description object
798 * This function is only called for the "big" model. It records a small number
799 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
800 * most important to least important): empty, freeable, freeable index, dirty
801 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
802 * their pnodes into memory. That will stop us from having to scan the LPT
803 * straight away. For the "small" model we assume that scanning the LPT is no
806 static void populate_lsave(struct ubifs_info *c)
808 struct ubifs_lprops *lprops;
809 struct ubifs_lpt_heap *heap;
812 ubifs_assert(c->big_lpt);
813 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
814 c->lpt_drty_flgs |= LSAVE_DIRTY;
815 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
818 if (dbg_populate_lsave(c))
821 list_for_each_entry(lprops, &c->empty_list, list) {
822 c->lsave[cnt++] = lprops->lnum;
823 if (cnt >= c->lsave_cnt)
826 list_for_each_entry(lprops, &c->freeable_list, list) {
827 c->lsave[cnt++] = lprops->lnum;
828 if (cnt >= c->lsave_cnt)
831 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
832 c->lsave[cnt++] = lprops->lnum;
833 if (cnt >= c->lsave_cnt)
836 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
837 for (i = 0; i < heap->cnt; i++) {
838 c->lsave[cnt++] = heap->arr[i]->lnum;
839 if (cnt >= c->lsave_cnt)
842 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
843 for (i = 0; i < heap->cnt; i++) {
844 c->lsave[cnt++] = heap->arr[i]->lnum;
845 if (cnt >= c->lsave_cnt)
848 heap = &c->lpt_heap[LPROPS_FREE - 1];
849 for (i = 0; i < heap->cnt; i++) {
850 c->lsave[cnt++] = heap->arr[i]->lnum;
851 if (cnt >= c->lsave_cnt)
854 /* Fill it up completely */
855 while (cnt < c->lsave_cnt)
856 c->lsave[cnt++] = c->main_first;
860 * nnode_lookup - lookup a nnode in the LPT.
861 * @c: UBIFS file-system description object
864 * This function returns a pointer to the nnode on success or a negative
865 * error code on failure.
867 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
870 struct ubifs_nnode *nnode;
873 err = ubifs_read_nnode(c, NULL, 0);
879 iip = i & (UBIFS_LPT_FANOUT - 1);
880 i >>= UBIFS_LPT_FANOUT_SHIFT;
883 nnode = ubifs_get_nnode(c, nnode, iip);
891 * make_nnode_dirty - find a nnode and, if found, make it dirty.
892 * @c: UBIFS file-system description object
893 * @node_num: nnode number of nnode to make dirty
894 * @lnum: LEB number where nnode was written
895 * @offs: offset where nnode was written
897 * This function is used by LPT garbage collection. LPT garbage collection is
898 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
899 * simply involves marking all the nodes in the LEB being garbage-collected as
900 * dirty. The dirty nodes are written next commit, after which the LEB is free
903 * This function returns %0 on success and a negative error code on failure.
905 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
908 struct ubifs_nnode *nnode;
910 nnode = nnode_lookup(c, node_num);
912 return PTR_ERR(nnode);
914 struct ubifs_nbranch *branch;
916 branch = &nnode->parent->nbranch[nnode->iip];
917 if (branch->lnum != lnum || branch->offs != offs)
918 return 0; /* nnode is obsolete */
919 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
920 return 0; /* nnode is obsolete */
921 /* Assumes cnext list is empty i.e. not called during commit */
922 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
923 c->dirty_nn_cnt += 1;
924 ubifs_add_nnode_dirt(c, nnode);
925 /* Mark parent and ancestors dirty too */
926 nnode = nnode->parent;
928 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
929 c->dirty_nn_cnt += 1;
930 ubifs_add_nnode_dirt(c, nnode);
931 nnode = nnode->parent;
940 * make_pnode_dirty - find a pnode and, if found, make it dirty.
941 * @c: UBIFS file-system description object
942 * @node_num: pnode number of pnode to make dirty
943 * @lnum: LEB number where pnode was written
944 * @offs: offset where pnode was written
946 * This function is used by LPT garbage collection. LPT garbage collection is
947 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
948 * simply involves marking all the nodes in the LEB being garbage-collected as
949 * dirty. The dirty nodes are written next commit, after which the LEB is free
952 * This function returns %0 on success and a negative error code on failure.
954 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
957 struct ubifs_pnode *pnode;
958 struct ubifs_nbranch *branch;
960 pnode = pnode_lookup(c, node_num);
962 return PTR_ERR(pnode);
963 branch = &pnode->parent->nbranch[pnode->iip];
964 if (branch->lnum != lnum || branch->offs != offs)
966 do_make_pnode_dirty(c, pnode);
971 * make_ltab_dirty - make ltab node dirty.
972 * @c: UBIFS file-system description object
973 * @lnum: LEB number where ltab was written
974 * @offs: offset where ltab was written
976 * This function is used by LPT garbage collection. LPT garbage collection is
977 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
978 * simply involves marking all the nodes in the LEB being garbage-collected as
979 * dirty. The dirty nodes are written next commit, after which the LEB is free
982 * This function returns %0 on success and a negative error code on failure.
984 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
986 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
987 return 0; /* This ltab node is obsolete */
988 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
989 c->lpt_drty_flgs |= LTAB_DIRTY;
990 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
996 * make_lsave_dirty - make lsave node dirty.
997 * @c: UBIFS file-system description object
998 * @lnum: LEB number where lsave was written
999 * @offs: offset where lsave was written
1001 * This function is used by LPT garbage collection. LPT garbage collection is
1002 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1003 * simply involves marking all the nodes in the LEB being garbage-collected as
1004 * dirty. The dirty nodes are written next commit, after which the LEB is free
1007 * This function returns %0 on success and a negative error code on failure.
1009 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1011 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1012 return 0; /* This lsave node is obsolete */
1013 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1014 c->lpt_drty_flgs |= LSAVE_DIRTY;
1015 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1021 * make_node_dirty - make node dirty.
1022 * @c: UBIFS file-system description object
1023 * @node_type: LPT node type
1024 * @node_num: node number
1025 * @lnum: LEB number where node was written
1026 * @offs: offset where node was written
1028 * This function is used by LPT garbage collection. LPT garbage collection is
1029 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1030 * simply involves marking all the nodes in the LEB being garbage-collected as
1031 * dirty. The dirty nodes are written next commit, after which the LEB is free
1034 * This function returns %0 on success and a negative error code on failure.
1036 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1039 switch (node_type) {
1040 case UBIFS_LPT_NNODE:
1041 return make_nnode_dirty(c, node_num, lnum, offs);
1042 case UBIFS_LPT_PNODE:
1043 return make_pnode_dirty(c, node_num, lnum, offs);
1044 case UBIFS_LPT_LTAB:
1045 return make_ltab_dirty(c, lnum, offs);
1046 case UBIFS_LPT_LSAVE:
1047 return make_lsave_dirty(c, lnum, offs);
1053 * get_lpt_node_len - return the length of a node based on its type.
1054 * @c: UBIFS file-system description object
1055 * @node_type: LPT node type
1057 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1059 switch (node_type) {
1060 case UBIFS_LPT_NNODE:
1062 case UBIFS_LPT_PNODE:
1064 case UBIFS_LPT_LTAB:
1066 case UBIFS_LPT_LSAVE:
1073 * get_pad_len - return the length of padding in a buffer.
1074 * @c: UBIFS file-system description object
1076 * @len: length of buffer
1078 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1082 if (c->min_io_size == 1)
1084 offs = c->leb_size - len;
1085 pad_len = ALIGN(offs, c->min_io_size) - offs;
1090 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1091 * @c: UBIFS file-system description object
1093 * @node_num: node number is returned here
1095 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1098 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1099 int pos = 0, node_type;
1101 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1102 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1107 * is_a_node - determine if a buffer contains a node.
1108 * @c: UBIFS file-system description object
1110 * @len: length of buffer
1112 * This function returns %1 if the buffer contains a node or %0 if it does not.
1114 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1116 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1117 int pos = 0, node_type, node_len;
1118 uint16_t crc, calc_crc;
1120 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1122 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1123 if (node_type == UBIFS_LPT_NOT_A_NODE)
1125 node_len = get_lpt_node_len(c, node_type);
1126 if (!node_len || node_len > len)
1130 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1131 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1132 node_len - UBIFS_LPT_CRC_BYTES);
1133 if (crc != calc_crc)
1139 * lpt_gc_lnum - garbage collect a LPT LEB.
1140 * @c: UBIFS file-system description object
1141 * @lnum: LEB number to garbage collect
1143 * LPT garbage collection is used only for the "big" LPT model
1144 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1145 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1146 * next commit, after which the LEB is free to be reused.
1148 * This function returns %0 on success and a negative error code on failure.
1150 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1152 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1153 void *buf = c->lpt_buf;
1155 dbg_lp("LEB %d", lnum);
1157 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1162 if (!is_a_node(c, buf, len)) {
1165 pad_len = get_pad_len(c, buf, len);
1173 node_type = get_lpt_node_type(c, buf, &node_num);
1174 node_len = get_lpt_node_len(c, node_type);
1175 offs = c->leb_size - len;
1176 ubifs_assert(node_len != 0);
1177 mutex_lock(&c->lp_mutex);
1178 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1179 mutex_unlock(&c->lp_mutex);
1189 * lpt_gc - LPT garbage collection.
1190 * @c: UBIFS file-system description object
1192 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1193 * Returns %0 on success and a negative error code on failure.
1195 static int lpt_gc(struct ubifs_info *c)
1197 int i, lnum = -1, dirty = 0;
1199 mutex_lock(&c->lp_mutex);
1200 for (i = 0; i < c->lpt_lebs; i++) {
1201 ubifs_assert(!c->ltab[i].tgc);
1202 if (i + c->lpt_first == c->nhead_lnum ||
1203 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1205 if (c->ltab[i].dirty > dirty) {
1206 dirty = c->ltab[i].dirty;
1207 lnum = i + c->lpt_first;
1210 mutex_unlock(&c->lp_mutex);
1213 return lpt_gc_lnum(c, lnum);
1217 * ubifs_lpt_start_commit - UBIFS commit starts.
1218 * @c: the UBIFS file-system description object
1220 * This function has to be called when UBIFS starts the commit operation.
1221 * This function "freezes" all currently dirty LEB properties and does not
1222 * change them anymore. Further changes are saved and tracked separately
1223 * because they are not part of this commit. This function returns zero in case
1224 * of success and a negative error code in case of failure.
1226 int ubifs_lpt_start_commit(struct ubifs_info *c)
1232 mutex_lock(&c->lp_mutex);
1233 err = dbg_chk_lpt_free_spc(c);
1236 err = dbg_check_ltab(c);
1240 if (c->check_lpt_free) {
1242 * We ensure there is enough free space in
1243 * ubifs_lpt_post_commit() by marking nodes dirty. That
1244 * information is lost when we unmount, so we also need
1245 * to check free space once after mounting also.
1247 c->check_lpt_free = 0;
1248 while (need_write_all(c)) {
1249 mutex_unlock(&c->lp_mutex);
1253 mutex_lock(&c->lp_mutex);
1259 if (!c->dirty_pn_cnt) {
1260 dbg_cmt("no cnodes to commit");
1265 if (!c->big_lpt && need_write_all(c)) {
1266 /* If needed, write everything */
1267 err = make_tree_dirty(c);
1276 cnt = get_cnodes_to_commit(c);
1277 ubifs_assert(cnt != 0);
1279 err = layout_cnodes(c);
1283 /* Copy the LPT's own lprops for end commit to write */
1284 memcpy(c->ltab_cmt, c->ltab,
1285 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1286 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1289 mutex_unlock(&c->lp_mutex);
1294 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1295 * @c: UBIFS file-system description object
1297 static void free_obsolete_cnodes(struct ubifs_info *c)
1299 struct ubifs_cnode *cnode, *cnext;
1301 cnext = c->lpt_cnext;
1306 cnext = cnode->cnext;
1307 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1310 cnode->cnext = NULL;
1311 } while (cnext != c->lpt_cnext);
1312 c->lpt_cnext = NULL;
1316 * ubifs_lpt_end_commit - finish the commit operation.
1317 * @c: the UBIFS file-system description object
1319 * This function has to be called when the commit operation finishes. It
1320 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1321 * the media. Returns zero in case of success and a negative error code in case
1324 int ubifs_lpt_end_commit(struct ubifs_info *c)
1333 err = write_cnodes(c);
1337 mutex_lock(&c->lp_mutex);
1338 free_obsolete_cnodes(c);
1339 mutex_unlock(&c->lp_mutex);
1345 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1346 * @c: UBIFS file-system description object
1348 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1349 * commit for the "big" LPT model.
1351 int ubifs_lpt_post_commit(struct ubifs_info *c)
1355 mutex_lock(&c->lp_mutex);
1356 err = lpt_tgc_end(c);
1360 while (need_write_all(c)) {
1361 mutex_unlock(&c->lp_mutex);
1365 mutex_lock(&c->lp_mutex);
1368 mutex_unlock(&c->lp_mutex);
1373 * first_nnode - find the first nnode in memory.
1374 * @c: UBIFS file-system description object
1375 * @hght: height of tree where nnode found is returned here
1377 * This function returns a pointer to the nnode found or %NULL if no nnode is
1378 * found. This function is a helper to 'ubifs_lpt_free()'.
1380 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1382 struct ubifs_nnode *nnode;
1389 for (h = 1; h < c->lpt_hght; h++) {
1391 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1392 if (nnode->nbranch[i].nnode) {
1394 nnode = nnode->nbranch[i].nnode;
1406 * next_nnode - find the next nnode in memory.
1407 * @c: UBIFS file-system description object
1408 * @nnode: nnode from which to start.
1409 * @hght: height of tree where nnode is, is passed and returned here
1411 * This function returns a pointer to the nnode found or %NULL if no nnode is
1412 * found. This function is a helper to 'ubifs_lpt_free()'.
1414 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1415 struct ubifs_nnode *nnode, int *hght)
1417 struct ubifs_nnode *parent;
1418 int iip, h, i, found;
1420 parent = nnode->parent;
1423 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1427 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1428 nnode = parent->nbranch[iip].nnode;
1436 for (h = *hght + 1; h < c->lpt_hght; h++) {
1438 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1439 if (nnode->nbranch[i].nnode) {
1441 nnode = nnode->nbranch[i].nnode;
1453 * ubifs_lpt_free - free resources owned by the LPT.
1454 * @c: UBIFS file-system description object
1455 * @wr_only: free only resources used for writing
1457 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1459 struct ubifs_nnode *nnode;
1462 /* Free write-only things first */
1464 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1476 /* Now free the rest */
1478 nnode = first_nnode(c, &hght);
1480 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1481 kfree(nnode->nbranch[i].nnode);
1482 nnode = next_nnode(c, nnode, &hght);
1484 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1485 kfree(c->lpt_heap[i].arr);
1486 kfree(c->dirty_idx.arr);
1489 kfree(c->lpt_nod_buf);
1493 * Everything below is related to debugging.
1497 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1499 * @len: buffer length
1501 static int dbg_is_all_ff(uint8_t *buf, int len)
1505 for (i = 0; i < len; i++)
1512 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1513 * @c: the UBIFS file-system description object
1514 * @lnum: LEB number where nnode was written
1515 * @offs: offset where nnode was written
1517 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1519 struct ubifs_nnode *nnode;
1522 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1523 nnode = first_nnode(c, &hght);
1524 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1525 struct ubifs_nbranch *branch;
1528 if (nnode->parent) {
1529 branch = &nnode->parent->nbranch[nnode->iip];
1530 if (branch->lnum != lnum || branch->offs != offs)
1532 if (test_bit(DIRTY_CNODE, &nnode->flags))
1536 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1538 if (test_bit(DIRTY_CNODE, &nnode->flags))
1547 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1548 * @c: the UBIFS file-system description object
1549 * @lnum: LEB number where pnode was written
1550 * @offs: offset where pnode was written
1552 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1556 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1557 for (i = 0; i < cnt; i++) {
1558 struct ubifs_pnode *pnode;
1559 struct ubifs_nbranch *branch;
1562 pnode = pnode_lookup(c, i);
1564 return PTR_ERR(pnode);
1565 branch = &pnode->parent->nbranch[pnode->iip];
1566 if (branch->lnum != lnum || branch->offs != offs)
1568 if (test_bit(DIRTY_CNODE, &pnode->flags))
1576 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1577 * @c: the UBIFS file-system description object
1578 * @lnum: LEB number where ltab node was written
1579 * @offs: offset where ltab node was written
1581 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1583 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1585 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1589 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1590 * @c: the UBIFS file-system description object
1591 * @lnum: LEB number where lsave node was written
1592 * @offs: offset where lsave node was written
1594 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1596 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1598 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1602 * dbg_is_node_dirty - determine if a node is dirty.
1603 * @c: the UBIFS file-system description object
1604 * @node_type: node type
1605 * @lnum: LEB number where node was written
1606 * @offs: offset where node was written
1608 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1611 switch (node_type) {
1612 case UBIFS_LPT_NNODE:
1613 return dbg_is_nnode_dirty(c, lnum, offs);
1614 case UBIFS_LPT_PNODE:
1615 return dbg_is_pnode_dirty(c, lnum, offs);
1616 case UBIFS_LPT_LTAB:
1617 return dbg_is_ltab_dirty(c, lnum, offs);
1618 case UBIFS_LPT_LSAVE:
1619 return dbg_is_lsave_dirty(c, lnum, offs);
1625 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1626 * @c: the UBIFS file-system description object
1627 * @lnum: LEB number where node was written
1628 * @offs: offset where node was written
1630 * This function returns %0 on success and a negative error code on failure.
1632 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1634 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1638 if (!dbg_is_chk_lprops(c))
1641 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1643 ubifs_err("cannot allocate memory for ltab checking");
1647 dbg_lp("LEB %d", lnum);
1649 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1654 if (!is_a_node(c, p, len)) {
1657 pad_len = get_pad_len(c, p, len);
1664 if (!dbg_is_all_ff(p, len)) {
1665 ubifs_err("invalid empty space in LEB %d at %d",
1666 lnum, c->leb_size - len);
1669 i = lnum - c->lpt_first;
1670 if (len != c->ltab[i].free) {
1671 ubifs_err("invalid free space in LEB %d (free %d, expected %d)",
1672 lnum, len, c->ltab[i].free);
1675 if (dirty != c->ltab[i].dirty) {
1676 ubifs_err("invalid dirty space in LEB %d (dirty %d, expected %d)",
1677 lnum, dirty, c->ltab[i].dirty);
1682 node_type = get_lpt_node_type(c, p, &node_num);
1683 node_len = get_lpt_node_len(c, node_type);
1684 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1698 * dbg_check_ltab - check the free and dirty space in the ltab.
1699 * @c: the UBIFS file-system description object
1701 * This function returns %0 on success and a negative error code on failure.
1703 int dbg_check_ltab(struct ubifs_info *c)
1705 int lnum, err, i, cnt;
1707 if (!dbg_is_chk_lprops(c))
1710 /* Bring the entire tree into memory */
1711 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1712 for (i = 0; i < cnt; i++) {
1713 struct ubifs_pnode *pnode;
1715 pnode = pnode_lookup(c, i);
1717 return PTR_ERR(pnode);
1722 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1726 /* Check each LEB */
1727 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1728 err = dbg_check_ltab_lnum(c, lnum);
1730 ubifs_err("failed at LEB %d", lnum);
1735 dbg_lp("succeeded");
1740 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1741 * @c: the UBIFS file-system description object
1743 * This function returns %0 on success and a negative error code on failure.
1745 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1750 if (!dbg_is_chk_lprops(c))
1753 for (i = 0; i < c->lpt_lebs; i++) {
1754 if (c->ltab[i].tgc || c->ltab[i].cmt)
1756 if (i + c->lpt_first == c->nhead_lnum)
1757 free += c->leb_size - c->nhead_offs;
1758 else if (c->ltab[i].free == c->leb_size)
1759 free += c->leb_size;
1761 if (free < c->lpt_sz) {
1762 ubifs_err("LPT space error: free %lld lpt_sz %lld",
1764 ubifs_dump_lpt_info(c);
1765 ubifs_dump_lpt_lebs(c);
1773 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1774 * @c: the UBIFS file-system description object
1775 * @action: what to do
1776 * @len: length written
1778 * This function returns %0 on success and a negative error code on failure.
1779 * The @action argument may be one of:
1780 * o %0 - LPT debugging checking starts, initialize debugging variables;
1781 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1782 * o %2 - switched to a different LEB and wasted @len bytes;
1783 * o %3 - check that we've written the right number of bytes.
1784 * o %4 - wasted @len bytes;
1786 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1788 struct ubifs_debug_info *d = c->dbg;
1789 long long chk_lpt_sz, lpt_sz;
1792 if (!dbg_is_chk_lprops(c))
1799 d->chk_lpt_lebs = 0;
1800 d->chk_lpt_wastage = 0;
1801 if (c->dirty_pn_cnt > c->pnode_cnt) {
1802 ubifs_err("dirty pnodes %d exceed max %d",
1803 c->dirty_pn_cnt, c->pnode_cnt);
1806 if (c->dirty_nn_cnt > c->nnode_cnt) {
1807 ubifs_err("dirty nnodes %d exceed max %d",
1808 c->dirty_nn_cnt, c->nnode_cnt);
1813 d->chk_lpt_sz += len;
1816 d->chk_lpt_sz += len;
1817 d->chk_lpt_wastage += len;
1818 d->chk_lpt_lebs += 1;
1821 chk_lpt_sz = c->leb_size;
1822 chk_lpt_sz *= d->chk_lpt_lebs;
1823 chk_lpt_sz += len - c->nhead_offs;
1824 if (d->chk_lpt_sz != chk_lpt_sz) {
1825 ubifs_err("LPT wrote %lld but space used was %lld",
1826 d->chk_lpt_sz, chk_lpt_sz);
1829 if (d->chk_lpt_sz > c->lpt_sz) {
1830 ubifs_err("LPT wrote %lld but lpt_sz is %lld",
1831 d->chk_lpt_sz, c->lpt_sz);
1834 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1835 ubifs_err("LPT layout size %lld but wrote %lld",
1836 d->chk_lpt_sz, d->chk_lpt_sz2);
1839 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1840 ubifs_err("LPT new nhead offs: expected %d was %d",
1841 d->new_nhead_offs, len);
1844 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1845 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1846 lpt_sz += c->ltab_sz;
1848 lpt_sz += c->lsave_sz;
1849 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1850 ubifs_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1851 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1855 ubifs_dump_lpt_info(c);
1856 ubifs_dump_lpt_lebs(c);
1859 d->chk_lpt_sz2 = d->chk_lpt_sz;
1861 d->chk_lpt_wastage = 0;
1862 d->chk_lpt_lebs = 0;
1863 d->new_nhead_offs = len;
1866 d->chk_lpt_sz += len;
1867 d->chk_lpt_wastage += len;
1875 * ubifs_dump_lpt_leb - dump an LPT LEB.
1876 * @c: UBIFS file-system description object
1877 * @lnum: LEB number to dump
1879 * This function dumps an LEB from LPT area. Nodes in this area are very
1880 * different to nodes in the main area (e.g., they do not have common headers,
1881 * they do not have 8-byte alignments, etc), so we have a separate function to
1882 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1884 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1886 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1889 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1890 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1892 ubifs_err("cannot allocate memory to dump LPT");
1896 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1901 offs = c->leb_size - len;
1902 if (!is_a_node(c, p, len)) {
1905 pad_len = get_pad_len(c, p, len);
1907 pr_err("LEB %d:%d, pad %d bytes\n",
1908 lnum, offs, pad_len);
1914 pr_err("LEB %d:%d, free %d bytes\n",
1919 node_type = get_lpt_node_type(c, p, &node_num);
1920 switch (node_type) {
1921 case UBIFS_LPT_PNODE:
1923 node_len = c->pnode_sz;
1925 pr_err("LEB %d:%d, pnode num %d\n",
1926 lnum, offs, node_num);
1928 pr_err("LEB %d:%d, pnode\n", lnum, offs);
1931 case UBIFS_LPT_NNODE:
1934 struct ubifs_nnode nnode;
1936 node_len = c->nnode_sz;
1938 pr_err("LEB %d:%d, nnode num %d, ",
1939 lnum, offs, node_num);
1941 pr_err("LEB %d:%d, nnode, ",
1943 err = ubifs_unpack_nnode(c, p, &nnode);
1944 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1945 pr_cont("%d:%d", nnode.nbranch[i].lnum,
1946 nnode.nbranch[i].offs);
1947 if (i != UBIFS_LPT_FANOUT - 1)
1953 case UBIFS_LPT_LTAB:
1954 node_len = c->ltab_sz;
1955 pr_err("LEB %d:%d, ltab\n", lnum, offs);
1957 case UBIFS_LPT_LSAVE:
1958 node_len = c->lsave_sz;
1959 pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1962 ubifs_err("LPT node type %d not recognized", node_type);
1970 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1977 * ubifs_dump_lpt_lebs - dump LPT lebs.
1978 * @c: UBIFS file-system description object
1980 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1983 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1987 pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1988 for (i = 0; i < c->lpt_lebs; i++)
1989 dump_lpt_leb(c, i + c->lpt_first);
1990 pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1994 * dbg_populate_lsave - debugging version of 'populate_lsave()'
1995 * @c: UBIFS file-system description object
1997 * This is a debugging version for 'populate_lsave()' which populates lsave
1998 * with random LEBs instead of useful LEBs, which is good for test coverage.
1999 * Returns zero if lsave has not been populated (this debugging feature is
2000 * disabled) an non-zero if lsave has been populated.
2002 static int dbg_populate_lsave(struct ubifs_info *c)
2004 struct ubifs_lprops *lprops;
2005 struct ubifs_lpt_heap *heap;
2008 if (!dbg_is_chk_gen(c))
2013 for (i = 0; i < c->lsave_cnt; i++)
2014 c->lsave[i] = c->main_first;
2016 list_for_each_entry(lprops, &c->empty_list, list)
2017 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2018 list_for_each_entry(lprops, &c->freeable_list, list)
2019 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2020 list_for_each_entry(lprops, &c->frdi_idx_list, list)
2021 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2023 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2024 for (i = 0; i < heap->cnt; i++)
2025 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2026 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2027 for (i = 0; i < heap->cnt; i++)
2028 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2029 heap = &c->lpt_heap[LPROPS_FREE - 1];
2030 for (i = 0; i < heap->cnt; i++)
2031 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;