1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
14 * This file implements UBIFS I/O subsystem which provides various I/O-related
15 * helper functions (reading/writing/checking/validating nodes) and implements
16 * write-buffering support. Write buffers help to save space which otherwise
17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
18 * Instead, data first goes to the write-buffer and is flushed when the
19 * buffer is full or when it is not used for some time (by timer). This is
20 * similar to the mechanism is used by JFFS2.
22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
24 * the underlying flash is able to program at a time, and writing in
25 * @c->max_write_size units should presumably be faster. Obviously,
26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27 * @c->max_write_size bytes in size for maximum performance. However, when a
28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29 * boundary) which contains data is written, not the whole write-buffer,
30 * because this is more space-efficient.
32 * This optimization adds few complications to the code. Indeed, on the one
33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
35 * other hand, we do not want to waste space when synchronizing the write
36 * buffer, so during synchronization we writes in smaller chunks. And this makes
37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
40 * write-buffer size (@wbuf->size).
42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43 * mutexes defined inside these objects. Since sometimes upper-level code
44 * has to lock the write-buffer (e.g. journal space reservation code), many
45 * functions related to write-buffers have "nolock" suffix which means that the
46 * caller has to lock the write-buffer before calling this function.
48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49 * aligned, UBIFS starts the next node from the aligned address, and the padded
50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
51 * bytes in those small gaps. Common headers of nodes store real node lengths,
52 * not aligned lengths. Indexing nodes also store real lengths in branches.
54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55 * uses padding nodes or padding bytes, if the padding node does not fit.
57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58 * they are read from the flash media.
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
67 * @c: UBIFS file-system description object
68 * @err: error code which is the reason of switching to R/O mode
70 void ubifs_ro_mode(struct ubifs_info *c, int err)
74 c->no_chk_data_crc = 0;
75 c->vfs_sb->s_flags |= SB_RDONLY;
76 ubifs_warn(c, "switched to read-only mode, error %d", err);
82 * Below are simple wrappers over UBI I/O functions which include some
83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
84 * for more information.
87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88 int len, int even_ebadmsg)
92 err = ubi_read(c->ubi, lnum, buf, offs, len);
94 * In case of %-EBADMSG print the error message only if the
95 * @even_ebadmsg is true.
97 if (err && (err != -EBADMSG || even_ebadmsg)) {
98 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99 len, lnum, offs, err);
105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
110 ubifs_assert(c, !c->ro_media && !c->ro_mount);
113 if (!dbg_is_tst_rcvry(c))
114 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
116 err = dbg_leb_write(c, lnum, buf, offs, len);
118 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119 len, lnum, offs, err);
120 ubifs_ro_mode(c, err);
126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
130 ubifs_assert(c, !c->ro_media && !c->ro_mount);
133 if (!dbg_is_tst_rcvry(c))
134 err = ubi_leb_change(c->ubi, lnum, buf, len);
136 err = dbg_leb_change(c, lnum, buf, len);
138 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
140 ubifs_ro_mode(c, err);
146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
150 ubifs_assert(c, !c->ro_media && !c->ro_mount);
153 if (!dbg_is_tst_rcvry(c))
154 err = ubi_leb_unmap(c->ubi, lnum);
156 err = dbg_leb_unmap(c, lnum);
158 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159 ubifs_ro_mode(c, err);
165 int ubifs_leb_map(struct ubifs_info *c, int lnum)
169 ubifs_assert(c, !c->ro_media && !c->ro_mount);
172 if (!dbg_is_tst_rcvry(c))
173 err = ubi_leb_map(c->ubi, lnum);
175 err = dbg_leb_map(c, lnum);
177 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178 ubifs_ro_mode(c, err);
184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
188 err = ubi_is_mapped(c->ubi, lnum);
190 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
198 * ubifs_check_node - check node.
199 * @c: UBIFS file-system description object
200 * @buf: node to check
202 * @lnum: logical eraseblock number
203 * @offs: offset within the logical eraseblock
204 * @quiet: print no messages
205 * @must_chk_crc: indicates whether to always check the CRC
207 * This function checks node magic number and CRC checksum. This function also
208 * validates node length to prevent UBIFS from becoming crazy when an attacker
209 * feeds it a file-system image with incorrect nodes. For example, too large
210 * node length in the common header could cause UBIFS to read memory outside of
211 * allocated buffer when checking the CRC checksum.
213 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
214 * true, which is controlled by corresponding UBIFS mount option. However, if
215 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
216 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
217 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
218 * is checked. This is because during mounting or re-mounting from R/O mode to
219 * R/W mode we may read journal nodes (when replying the journal or doing the
220 * recovery) and the journal nodes may potentially be corrupted, so checking is
223 * This function returns zero in case of success and %-EUCLEAN in case of bad
226 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
227 int lnum, int offs, int quiet, int must_chk_crc)
229 int err = -EINVAL, type, node_len;
230 uint32_t crc, node_crc, magic;
231 const struct ubifs_ch *ch = buf;
233 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
234 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
236 magic = le32_to_cpu(ch->magic);
237 if (magic != UBIFS_NODE_MAGIC) {
239 ubifs_err(c, "bad magic %#08x, expected %#08x",
240 magic, UBIFS_NODE_MAGIC);
245 type = ch->node_type;
246 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
248 ubifs_err(c, "bad node type %d", type);
252 node_len = le32_to_cpu(ch->len);
253 if (node_len + offs > c->leb_size)
256 if (c->ranges[type].max_len == 0) {
257 if (node_len != c->ranges[type].len)
259 } else if (node_len < c->ranges[type].min_len ||
260 node_len > c->ranges[type].max_len)
263 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
264 !c->remounting_rw && c->no_chk_data_crc)
267 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
268 node_crc = le32_to_cpu(ch->crc);
269 if (crc != node_crc) {
271 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
281 ubifs_err(c, "bad node length %d", node_len);
284 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
285 ubifs_dump_node(c, buf, len);
292 * ubifs_pad - pad flash space.
293 * @c: UBIFS file-system description object
294 * @buf: buffer to put padding to
295 * @pad: how many bytes to pad
297 * The flash media obliges us to write only in chunks of %c->min_io_size and
298 * when we have to write less data we add padding node to the write-buffer and
299 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
300 * media is being scanned. If the amount of wasted space is not enough to fit a
301 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
302 * pattern (%UBIFS_PADDING_BYTE).
304 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
307 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
311 ubifs_assert(c, pad >= 0);
313 if (pad >= UBIFS_PAD_NODE_SZ) {
314 struct ubifs_ch *ch = buf;
315 struct ubifs_pad_node *pad_node = buf;
317 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
318 ch->node_type = UBIFS_PAD_NODE;
319 ch->group_type = UBIFS_NO_NODE_GROUP;
320 ch->padding[0] = ch->padding[1] = 0;
322 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
323 pad -= UBIFS_PAD_NODE_SZ;
324 pad_node->pad_len = cpu_to_le32(pad);
325 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
326 ch->crc = cpu_to_le32(crc);
327 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
329 /* Too little space, padding node won't fit */
330 memset(buf, UBIFS_PADDING_BYTE, pad);
334 * next_sqnum - get next sequence number.
335 * @c: UBIFS file-system description object
337 static unsigned long long next_sqnum(struct ubifs_info *c)
339 unsigned long long sqnum;
341 spin_lock(&c->cnt_lock);
342 sqnum = ++c->max_sqnum;
343 spin_unlock(&c->cnt_lock);
345 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
346 if (sqnum >= SQNUM_WATERMARK) {
347 ubifs_err(c, "sequence number overflow %llu, end of life",
349 ubifs_ro_mode(c, -EINVAL);
351 ubifs_warn(c, "running out of sequence numbers, end of life soon");
357 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
359 struct ubifs_ch *ch = node;
360 unsigned long long sqnum = next_sqnum(c);
362 ubifs_assert(c, len >= UBIFS_CH_SZ);
364 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
365 ch->len = cpu_to_le32(len);
366 ch->group_type = UBIFS_NO_NODE_GROUP;
367 ch->sqnum = cpu_to_le64(sqnum);
368 ch->padding[0] = ch->padding[1] = 0;
372 pad = ALIGN(len, c->min_io_size) - len;
373 ubifs_pad(c, node + len, pad);
377 void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
379 struct ubifs_ch *ch = node;
382 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
383 ch->crc = cpu_to_le32(crc);
387 * ubifs_prepare_node_hmac - prepare node to be written to flash.
388 * @c: UBIFS file-system description object
389 * @node: the node to pad
391 * @hmac_offs: offset of the HMAC in the node
392 * @pad: if the buffer has to be padded
394 * This function prepares node at @node to be written to the media - it
395 * calculates node CRC, fills the common header, and adds proper padding up to
396 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
397 * a HMAC is inserted into the node at the given offset.
399 * This function returns 0 for success or a negative error code otherwise.
401 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
402 int hmac_offs, int pad)
406 ubifs_init_node(c, node, len, pad);
409 err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
414 ubifs_crc_node(c, node, len);
420 * ubifs_prepare_node - prepare node to be written to flash.
421 * @c: UBIFS file-system description object
422 * @node: the node to pad
424 * @pad: if the buffer has to be padded
426 * This function prepares node at @node to be written to the media - it
427 * calculates node CRC, fills the common header, and adds proper padding up to
428 * the next minimum I/O unit if @pad is not zero.
430 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
433 * Deliberately ignore return value since this function can only fail
434 * when a hmac offset is given.
436 ubifs_prepare_node_hmac(c, node, len, 0, pad);
440 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
441 * @c: UBIFS file-system description object
442 * @node: the node to pad
444 * @last: indicates the last node of the group
446 * This function prepares node at @node to be written to the media - it
447 * calculates node CRC and fills the common header.
449 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
452 struct ubifs_ch *ch = node;
453 unsigned long long sqnum = next_sqnum(c);
455 ubifs_assert(c, len >= UBIFS_CH_SZ);
457 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
458 ch->len = cpu_to_le32(len);
460 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
462 ch->group_type = UBIFS_IN_NODE_GROUP;
463 ch->sqnum = cpu_to_le64(sqnum);
464 ch->padding[0] = ch->padding[1] = 0;
465 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
466 ch->crc = cpu_to_le32(crc);
470 * wbuf_timer_callback - write-buffer timer callback function.
471 * @timer: timer data (write-buffer descriptor)
473 * This function is called when the write-buffer timer expires.
475 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
477 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
479 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
481 wbuf->c->need_wbuf_sync = 1;
482 ubifs_wake_up_bgt(wbuf->c);
483 return HRTIMER_NORESTART;
487 * new_wbuf_timer - start new write-buffer timer.
488 * @c: UBIFS file-system description object
489 * @wbuf: write-buffer descriptor
491 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
493 ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
494 unsigned long long delta = dirty_writeback_interval;
496 /* centi to milli, milli to nano, then 10% */
497 delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
499 ubifs_assert(c, !hrtimer_active(&wbuf->timer));
500 ubifs_assert(c, delta <= ULONG_MAX);
504 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
505 dbg_jhead(wbuf->jhead),
506 div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
507 div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
508 hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
513 * cancel_wbuf_timer - cancel write-buffer timer.
514 * @wbuf: write-buffer descriptor
516 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
521 hrtimer_cancel(&wbuf->timer);
525 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
526 * @wbuf: write-buffer to synchronize
528 * This function synchronizes write-buffer @buf and returns zero in case of
529 * success or a negative error code in case of failure.
531 * Note, although write-buffers are of @c->max_write_size, this function does
532 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
533 * if the write-buffer is only partially filled with data, only the used part
534 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
535 * This way we waste less space.
537 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
539 struct ubifs_info *c = wbuf->c;
540 int err, dirt, sync_len;
542 cancel_wbuf_timer_nolock(wbuf);
543 if (!wbuf->used || wbuf->lnum == -1)
544 /* Write-buffer is empty or not seeked */
547 dbg_io("LEB %d:%d, %d bytes, jhead %s",
548 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
549 ubifs_assert(c, !(wbuf->avail & 7));
550 ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
551 ubifs_assert(c, wbuf->size >= c->min_io_size);
552 ubifs_assert(c, wbuf->size <= c->max_write_size);
553 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
554 ubifs_assert(c, !c->ro_media && !c->ro_mount);
555 if (c->leb_size - wbuf->offs >= c->max_write_size)
556 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
562 * Do not write whole write buffer but write only the minimum necessary
563 * amount of min. I/O units.
565 sync_len = ALIGN(wbuf->used, c->min_io_size);
566 dirt = sync_len - wbuf->used;
568 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
569 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
573 spin_lock(&wbuf->lock);
574 wbuf->offs += sync_len;
576 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
577 * But our goal is to optimize writes and make sure we write in
578 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
579 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
580 * sure that @wbuf->offs + @wbuf->size is aligned to
581 * @c->max_write_size. This way we make sure that after next
582 * write-buffer flush we are again at the optimal offset (aligned to
583 * @c->max_write_size).
585 if (c->leb_size - wbuf->offs < c->max_write_size)
586 wbuf->size = c->leb_size - wbuf->offs;
587 else if (wbuf->offs & (c->max_write_size - 1))
588 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
590 wbuf->size = c->max_write_size;
591 wbuf->avail = wbuf->size;
594 spin_unlock(&wbuf->lock);
596 if (wbuf->sync_callback)
597 err = wbuf->sync_callback(c, wbuf->lnum,
598 c->leb_size - wbuf->offs, dirt);
603 * ubifs_wbuf_seek_nolock - seek write-buffer.
604 * @wbuf: write-buffer
605 * @lnum: logical eraseblock number to seek to
606 * @offs: logical eraseblock offset to seek to
608 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
609 * The write-buffer has to be empty. Returns zero in case of success and a
610 * negative error code in case of failure.
612 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
614 const struct ubifs_info *c = wbuf->c;
616 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
617 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
618 ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
619 ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
620 ubifs_assert(c, lnum != wbuf->lnum);
621 ubifs_assert(c, wbuf->used == 0);
623 spin_lock(&wbuf->lock);
626 if (c->leb_size - wbuf->offs < c->max_write_size)
627 wbuf->size = c->leb_size - wbuf->offs;
628 else if (wbuf->offs & (c->max_write_size - 1))
629 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
631 wbuf->size = c->max_write_size;
632 wbuf->avail = wbuf->size;
634 spin_unlock(&wbuf->lock);
640 * ubifs_bg_wbufs_sync - synchronize write-buffers.
641 * @c: UBIFS file-system description object
643 * This function is called by background thread to synchronize write-buffers.
644 * Returns zero in case of success and a negative error code in case of
647 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
651 ubifs_assert(c, !c->ro_media && !c->ro_mount);
652 if (!c->need_wbuf_sync)
654 c->need_wbuf_sync = 0;
661 dbg_io("synchronize");
662 for (i = 0; i < c->jhead_cnt; i++) {
663 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
668 * If the mutex is locked then wbuf is being changed, so
669 * synchronization is not necessary.
671 if (mutex_is_locked(&wbuf->io_mutex))
674 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
675 if (!wbuf->need_sync) {
676 mutex_unlock(&wbuf->io_mutex);
680 err = ubifs_wbuf_sync_nolock(wbuf);
681 mutex_unlock(&wbuf->io_mutex);
683 ubifs_err(c, "cannot sync write-buffer, error %d", err);
684 ubifs_ro_mode(c, err);
692 /* Cancel all timers to prevent repeated errors */
693 for (i = 0; i < c->jhead_cnt; i++) {
694 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
696 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
697 cancel_wbuf_timer_nolock(wbuf);
698 mutex_unlock(&wbuf->io_mutex);
704 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
705 * @wbuf: write-buffer
706 * @buf: node to write
709 * This function writes data to flash via write-buffer @wbuf. This means that
710 * the last piece of the node won't reach the flash media immediately if it
711 * does not take whole max. write unit (@c->max_write_size). Instead, the node
712 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
713 * because more data are appended to the write-buffer).
715 * This function returns zero in case of success and a negative error code in
716 * case of failure. If the node cannot be written because there is no more
717 * space in this logical eraseblock, %-ENOSPC is returned.
719 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
721 struct ubifs_info *c = wbuf->c;
722 int err, n, written = 0, aligned_len = ALIGN(len, 8);
724 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
725 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
726 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
727 ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
728 ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
729 ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
730 ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
731 ubifs_assert(c, wbuf->size >= c->min_io_size);
732 ubifs_assert(c, wbuf->size <= c->max_write_size);
733 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
734 ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
735 ubifs_assert(c, !c->ro_media && !c->ro_mount);
736 ubifs_assert(c, !c->space_fixup);
737 if (c->leb_size - wbuf->offs >= c->max_write_size)
738 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
740 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
745 cancel_wbuf_timer_nolock(wbuf);
750 if (aligned_len <= wbuf->avail) {
752 * The node is not very large and fits entirely within
755 memcpy(wbuf->buf + wbuf->used, buf, len);
756 if (aligned_len > len) {
757 ubifs_assert(c, aligned_len - len < 8);
758 ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
761 if (aligned_len == wbuf->avail) {
762 dbg_io("flush jhead %s wbuf to LEB %d:%d",
763 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
764 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
765 wbuf->offs, wbuf->size);
769 spin_lock(&wbuf->lock);
770 wbuf->offs += wbuf->size;
771 if (c->leb_size - wbuf->offs >= c->max_write_size)
772 wbuf->size = c->max_write_size;
774 wbuf->size = c->leb_size - wbuf->offs;
775 wbuf->avail = wbuf->size;
778 spin_unlock(&wbuf->lock);
780 spin_lock(&wbuf->lock);
781 wbuf->avail -= aligned_len;
782 wbuf->used += aligned_len;
783 spin_unlock(&wbuf->lock);
791 * The node is large enough and does not fit entirely within
792 * current available space. We have to fill and flush
793 * write-buffer and switch to the next max. write unit.
795 dbg_io("flush jhead %s wbuf to LEB %d:%d",
796 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
797 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
798 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
803 wbuf->offs += wbuf->size;
805 aligned_len -= wbuf->avail;
806 written += wbuf->avail;
807 } else if (wbuf->offs & (c->max_write_size - 1)) {
809 * The write-buffer offset is not aligned to
810 * @c->max_write_size and @wbuf->size is less than
811 * @c->max_write_size. Write @wbuf->size bytes to make sure the
812 * following writes are done in optimal @c->max_write_size
815 dbg_io("write %d bytes to LEB %d:%d",
816 wbuf->size, wbuf->lnum, wbuf->offs);
817 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
822 wbuf->offs += wbuf->size;
824 aligned_len -= wbuf->size;
825 written += wbuf->size;
829 * The remaining data may take more whole max. write units, so write the
830 * remains multiple to max. write unit size directly to the flash media.
831 * We align node length to 8-byte boundary because we anyway flash wbuf
832 * if the remaining space is less than 8 bytes.
834 n = aligned_len >> c->max_write_shift;
836 n <<= c->max_write_shift;
837 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
839 err = ubifs_leb_write(c, wbuf->lnum, buf + written,
849 spin_lock(&wbuf->lock);
852 * And now we have what's left and what does not take whole
853 * max. write unit, so write it to the write-buffer and we are
856 memcpy(wbuf->buf, buf + written, len);
857 if (aligned_len > len) {
858 ubifs_assert(c, aligned_len - len < 8);
859 ubifs_pad(c, wbuf->buf + len, aligned_len - len);
863 if (c->leb_size - wbuf->offs >= c->max_write_size)
864 wbuf->size = c->max_write_size;
866 wbuf->size = c->leb_size - wbuf->offs;
867 wbuf->avail = wbuf->size - aligned_len;
868 wbuf->used = aligned_len;
870 spin_unlock(&wbuf->lock);
873 if (wbuf->sync_callback) {
874 int free = c->leb_size - wbuf->offs - wbuf->used;
876 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
882 new_wbuf_timer_nolock(c, wbuf);
887 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
888 len, wbuf->lnum, wbuf->offs, err);
889 ubifs_dump_node(c, buf, written + len);
891 ubifs_dump_leb(c, wbuf->lnum);
896 * ubifs_write_node_hmac - write node to the media.
897 * @c: UBIFS file-system description object
898 * @buf: the node to write
900 * @lnum: logical eraseblock number
901 * @offs: offset within the logical eraseblock
902 * @hmac_offs: offset of the HMAC within the node
904 * This function automatically fills node magic number, assigns sequence
905 * number, and calculates node CRC checksum. The length of the @buf buffer has
906 * to be aligned to the minimal I/O unit size. This function automatically
907 * appends padding node and padding bytes if needed. Returns zero in case of
908 * success and a negative error code in case of failure.
910 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
911 int offs, int hmac_offs)
913 int err, buf_len = ALIGN(len, c->min_io_size);
915 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
916 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
918 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
919 ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
920 ubifs_assert(c, !c->ro_media && !c->ro_mount);
921 ubifs_assert(c, !c->space_fixup);
926 err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
930 err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
932 ubifs_dump_node(c, buf, len);
938 * ubifs_write_node - write node to the media.
939 * @c: UBIFS file-system description object
940 * @buf: the node to write
942 * @lnum: logical eraseblock number
943 * @offs: offset within the logical eraseblock
945 * This function automatically fills node magic number, assigns sequence
946 * number, and calculates node CRC checksum. The length of the @buf buffer has
947 * to be aligned to the minimal I/O unit size. This function automatically
948 * appends padding node and padding bytes if needed. Returns zero in case of
949 * success and a negative error code in case of failure.
951 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
954 return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
958 * ubifs_read_node_wbuf - read node from the media or write-buffer.
959 * @wbuf: wbuf to check for un-written data
960 * @buf: buffer to read to
963 * @lnum: logical eraseblock number
964 * @offs: offset within the logical eraseblock
966 * This function reads a node of known type and length, checks it and stores
967 * in @buf. If the node partially or fully sits in the write-buffer, this
968 * function takes data from the buffer, otherwise it reads the flash media.
969 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
970 * error code in case of failure.
972 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
975 const struct ubifs_info *c = wbuf->c;
976 int err, rlen, overlap;
977 struct ubifs_ch *ch = buf;
979 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
980 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
981 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
982 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
983 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
985 spin_lock(&wbuf->lock);
986 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
988 /* We may safely unlock the write-buffer and read the data */
989 spin_unlock(&wbuf->lock);
990 return ubifs_read_node(c, buf, type, len, lnum, offs);
993 /* Don't read under wbuf */
994 rlen = wbuf->offs - offs;
998 /* Copy the rest from the write-buffer */
999 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1000 spin_unlock(&wbuf->lock);
1003 /* Read everything that goes before write-buffer */
1004 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1005 if (err && err != -EBADMSG)
1009 if (type != ch->node_type) {
1010 ubifs_err(c, "bad node type (%d but expected %d)",
1011 ch->node_type, type);
1015 err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1017 ubifs_err(c, "expected node type %d", type);
1021 rlen = le32_to_cpu(ch->len);
1023 ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1030 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1031 ubifs_dump_node(c, buf, len);
1037 * ubifs_read_node - read node.
1038 * @c: UBIFS file-system description object
1039 * @buf: buffer to read to
1041 * @len: node length (not aligned)
1042 * @lnum: logical eraseblock number
1043 * @offs: offset within the logical eraseblock
1045 * This function reads a node of known type and length, checks it and
1046 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1047 * and a negative error code in case of failure.
1049 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1053 struct ubifs_ch *ch = buf;
1055 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1056 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1057 ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1058 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1059 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1061 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1062 if (err && err != -EBADMSG)
1065 if (type != ch->node_type) {
1066 ubifs_errc(c, "bad node type (%d but expected %d)",
1067 ch->node_type, type);
1071 err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1073 ubifs_errc(c, "expected node type %d", type);
1077 l = le32_to_cpu(ch->len);
1079 ubifs_errc(c, "bad node length %d, expected %d", l, len);
1086 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1087 offs, ubi_is_mapped(c->ubi, lnum));
1089 ubifs_dump_node(c, buf, len);
1096 * ubifs_wbuf_init - initialize write-buffer.
1097 * @c: UBIFS file-system description object
1098 * @wbuf: write-buffer to initialize
1100 * This function initializes write-buffer. Returns zero in case of success
1101 * %-ENOMEM in case of failure.
1103 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1107 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1111 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1112 wbuf->inodes = kmalloc(size, GFP_KERNEL);
1113 if (!wbuf->inodes) {
1120 wbuf->lnum = wbuf->offs = -1;
1122 * If the LEB starts at the max. write size aligned address, then
1123 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1124 * set it to something smaller so that it ends at the closest max.
1125 * write size boundary.
1127 size = c->max_write_size - (c->leb_start % c->max_write_size);
1128 wbuf->avail = wbuf->size = size;
1129 wbuf->sync_callback = NULL;
1130 mutex_init(&wbuf->io_mutex);
1131 spin_lock_init(&wbuf->lock);
1135 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1136 wbuf->timer.function = wbuf_timer_callback_nolock;
1141 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1142 * @wbuf: the write-buffer where to add
1143 * @inum: the inode number
1145 * This function adds an inode number to the inode array of the write-buffer.
1147 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1150 /* NOR flash or something similar */
1153 spin_lock(&wbuf->lock);
1155 wbuf->inodes[wbuf->next_ino++] = inum;
1156 spin_unlock(&wbuf->lock);
1160 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1161 * @wbuf: the write-buffer
1162 * @inum: the inode number
1164 * This function returns with %1 if the write-buffer contains some data from the
1165 * given inode otherwise it returns with %0.
1167 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1171 spin_lock(&wbuf->lock);
1172 for (i = 0; i < wbuf->next_ino; i++)
1173 if (inum == wbuf->inodes[i]) {
1177 spin_unlock(&wbuf->lock);
1183 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1184 * @c: UBIFS file-system description object
1185 * @inode: inode to synchronize
1187 * This function synchronizes write-buffers which contain nodes belonging to
1188 * @inode. Returns zero in case of success and a negative error code in case of
1191 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1195 for (i = 0; i < c->jhead_cnt; i++) {
1196 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1200 * GC head is special, do not look at it. Even if the
1201 * head contains something related to this inode, it is
1202 * a _copy_ of corresponding on-flash node which sits
1207 if (!wbuf_has_ino(wbuf, inode->i_ino))
1210 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1211 if (wbuf_has_ino(wbuf, inode->i_ino))
1212 err = ubifs_wbuf_sync_nolock(wbuf);
1213 mutex_unlock(&wbuf->io_mutex);
1216 ubifs_ro_mode(c, err);