1 // SPDX-License-Identifier: GPL-2.0
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file implements garbage collection. The procedure for garbage collection
13 * is different depending on whether a LEB as an index LEB (contains index
14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
16 * nodes to the journal, at which point the garbage-collected LEB is free to be
17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
19 * to be reused. Garbage collection will cause the number of dirty index nodes
20 * to grow, however sufficient space is reserved for the index to ensure the
21 * commit will never run out of space.
23 * Notes about dead watermark. At current UBIFS implementation we assume that
24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
27 * Garbage Collector has to synchronize the GC head's write buffer before
28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
29 * actually reclaim even very small pieces of dirty space by garbage collecting
30 * enough dirty LEBs, but we do not bother doing this at this implementation.
32 * Notes about dark watermark. The results of GC work depends on how big are
33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
35 * have to waste large pieces of free space at the end of LEB B, because nodes
36 * from LEB A would not fit. And the worst situation is when all nodes are of
37 * maximum size. So dark watermark is the amount of free + dirty space in LEB
38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
40 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
41 * good, and GC takes extra care when moving them.
45 #include <dm/devres.h>
46 #include <linux/slab.h>
47 #include <linux/pagemap.h>
48 #include <linux/list_sort.h>
54 * GC may need to move more than one LEB to make progress. The below constants
55 * define "soft" and "hard" limits on the number of LEBs the garbage collector
58 #define SOFT_LEBS_LIMIT 4
59 #define HARD_LEBS_LIMIT 32
62 * switch_gc_head - switch the garbage collection journal head.
63 * @c: UBIFS file-system description object
64 * @buf: buffer to write
65 * @len: length of the buffer to write
66 * @lnum: LEB number written is returned here
67 * @offs: offset written is returned here
69 * This function switch the GC head to the next LEB which is reserved in
70 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
71 * and other negative error code in case of failures.
73 static int switch_gc_head(struct ubifs_info *c)
75 int err, gc_lnum = c->gc_lnum;
76 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
78 ubifs_assert(gc_lnum != -1);
79 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
80 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
81 c->leb_size - wbuf->offs - wbuf->used);
83 err = ubifs_wbuf_sync_nolock(wbuf);
88 * The GC write-buffer was synchronized, we may safely unmap
91 err = ubifs_leb_unmap(c, gc_lnum);
95 err = ubifs_wbuf_sync_nolock(wbuf);
99 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
104 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
109 * data_nodes_cmp - compare 2 data nodes.
110 * @priv: UBIFS file-system description object
111 * @a: first data node
112 * @a: second data node
114 * This function compares data nodes @a and @b. Returns %1 if @a has greater
115 * inode or block number, and %-1 otherwise.
117 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
120 struct ubifs_info *c = priv;
121 struct ubifs_scan_node *sa, *sb;
127 sa = list_entry(a, struct ubifs_scan_node, list);
128 sb = list_entry(b, struct ubifs_scan_node, list);
130 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
131 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
132 ubifs_assert(sa->type == UBIFS_DATA_NODE);
133 ubifs_assert(sb->type == UBIFS_DATA_NODE);
135 inuma = key_inum(c, &sa->key);
136 inumb = key_inum(c, &sb->key);
138 if (inuma == inumb) {
139 unsigned int blka = key_block(c, &sa->key);
140 unsigned int blkb = key_block(c, &sb->key);
144 } else if (inuma <= inumb)
151 * nondata_nodes_cmp - compare 2 non-data nodes.
152 * @priv: UBIFS file-system description object
156 * This function compares nodes @a and @b. It makes sure that inode nodes go
157 * first and sorted by length in descending order. Directory entry nodes go
158 * after inode nodes and are sorted in ascending hash valuer order.
160 static int nondata_nodes_cmp(void *priv, struct list_head *a,
164 struct ubifs_info *c = priv;
165 struct ubifs_scan_node *sa, *sb;
171 sa = list_entry(a, struct ubifs_scan_node, list);
172 sb = list_entry(b, struct ubifs_scan_node, list);
174 ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
175 key_type(c, &sb->key) != UBIFS_DATA_KEY);
176 ubifs_assert(sa->type != UBIFS_DATA_NODE &&
177 sb->type != UBIFS_DATA_NODE);
179 /* Inodes go before directory entries */
180 if (sa->type == UBIFS_INO_NODE) {
181 if (sb->type == UBIFS_INO_NODE)
182 return sb->len - sa->len;
185 if (sb->type == UBIFS_INO_NODE)
188 ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
189 key_type(c, &sa->key) == UBIFS_XENT_KEY);
190 ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
191 key_type(c, &sb->key) == UBIFS_XENT_KEY);
192 ubifs_assert(sa->type == UBIFS_DENT_NODE ||
193 sa->type == UBIFS_XENT_NODE);
194 ubifs_assert(sb->type == UBIFS_DENT_NODE ||
195 sb->type == UBIFS_XENT_NODE);
197 inuma = key_inum(c, &sa->key);
198 inumb = key_inum(c, &sb->key);
200 if (inuma == inumb) {
201 uint32_t hasha = key_hash(c, &sa->key);
202 uint32_t hashb = key_hash(c, &sb->key);
206 } else if (inuma <= inumb)
213 * sort_nodes - sort nodes for GC.
214 * @c: UBIFS file-system description object
215 * @sleb: describes nodes to sort and contains the result on exit
216 * @nondata: contains non-data nodes on exit
217 * @min: minimum node size is returned here
219 * This function sorts the list of inodes to garbage collect. First of all, it
220 * kills obsolete nodes and separates data and non-data nodes to the
221 * @sleb->nodes and @nondata lists correspondingly.
223 * Data nodes are then sorted in block number order - this is important for
224 * bulk-read; data nodes with lower inode number go before data nodes with
225 * higher inode number, and data nodes with lower block number go before data
226 * nodes with higher block number;
228 * Non-data nodes are sorted as follows.
229 * o First go inode nodes - they are sorted in descending length order.
230 * o Then go directory entry nodes - they are sorted in hash order, which
231 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
232 * inode number go before direntry nodes with higher parent inode number,
233 * and direntry nodes with lower name hash values go before direntry nodes
234 * with higher name hash values.
236 * This function returns zero in case of success and a negative error code in
239 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
240 struct list_head *nondata, int *min)
243 struct ubifs_scan_node *snod, *tmp;
247 /* Separate data nodes and non-data nodes */
248 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
249 ubifs_assert(snod->type == UBIFS_INO_NODE ||
250 snod->type == UBIFS_DATA_NODE ||
251 snod->type == UBIFS_DENT_NODE ||
252 snod->type == UBIFS_XENT_NODE ||
253 snod->type == UBIFS_TRUN_NODE);
255 if (snod->type != UBIFS_INO_NODE &&
256 snod->type != UBIFS_DATA_NODE &&
257 snod->type != UBIFS_DENT_NODE &&
258 snod->type != UBIFS_XENT_NODE) {
259 /* Probably truncation node, zap it */
260 list_del(&snod->list);
265 ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
266 key_type(c, &snod->key) == UBIFS_INO_KEY ||
267 key_type(c, &snod->key) == UBIFS_DENT_KEY ||
268 key_type(c, &snod->key) == UBIFS_XENT_KEY);
270 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
276 /* The node is obsolete, remove it from the list */
277 list_del(&snod->list);
282 if (snod->len < *min)
285 if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
286 list_move_tail(&snod->list, nondata);
289 /* Sort data and non-data nodes */
290 list_sort(c, &sleb->nodes, &data_nodes_cmp);
291 list_sort(c, nondata, &nondata_nodes_cmp);
293 err = dbg_check_data_nodes_order(c, &sleb->nodes);
296 err = dbg_check_nondata_nodes_order(c, nondata);
303 * move_node - move a node.
304 * @c: UBIFS file-system description object
305 * @sleb: describes the LEB to move nodes from
306 * @snod: the mode to move
307 * @wbuf: write-buffer to move node to
309 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
310 * destroys @snod. Returns zero in case of success and a negative error code in
313 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
314 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
316 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
319 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
323 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
324 snod->offs, new_lnum, new_offs,
326 list_del(&snod->list);
332 * move_nodes - move nodes.
333 * @c: UBIFS file-system description object
334 * @sleb: describes the LEB to move nodes from
336 * This function moves valid nodes from data LEB described by @sleb to the GC
337 * journal head. This function returns zero in case of success, %-EAGAIN if
338 * commit is required, and other negative error codes in case of other
341 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
345 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
347 if (wbuf->lnum == -1) {
349 * The GC journal head is not set, because it is the first GC
350 * invocation since mount.
352 err = switch_gc_head(c);
357 err = sort_nodes(c, sleb, &nondata, &min);
361 /* Write nodes to their new location. Use the first-fit strategy */
364 struct ubifs_scan_node *snod, *tmp;
366 /* Move data nodes */
367 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
368 avail = c->leb_size - wbuf->offs - wbuf->used;
369 if (snod->len > avail)
371 * Do not skip data nodes in order to optimize
376 err = move_node(c, sleb, snod, wbuf);
381 /* Move non-data nodes */
382 list_for_each_entry_safe(snod, tmp, &nondata, list) {
383 avail = c->leb_size - wbuf->offs - wbuf->used;
387 if (snod->len > avail) {
389 * Keep going only if this is an inode with
390 * some data. Otherwise stop and switch the GC
391 * head. IOW, we assume that data-less inode
392 * nodes and direntry nodes are roughly of the
395 if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
396 snod->len == UBIFS_INO_NODE_SZ)
401 err = move_node(c, sleb, snod, wbuf);
406 if (list_empty(&sleb->nodes) && list_empty(&nondata))
410 * Waste the rest of the space in the LEB and switch to the
413 err = switch_gc_head(c);
421 list_splice_tail(&nondata, &sleb->nodes);
426 * gc_sync_wbufs - sync write-buffers for GC.
427 * @c: UBIFS file-system description object
429 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
430 * be in a write-buffer instead. That is, a node could be written to a
431 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
432 * erased before the write-buffer is sync'd and then there is an unclean
433 * unmount, then an existing node is lost. To avoid this, we sync all
436 * This function returns %0 on success or a negative error code on failure.
438 static int gc_sync_wbufs(struct ubifs_info *c)
442 for (i = 0; i < c->jhead_cnt; i++) {
445 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
453 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
454 * @c: UBIFS file-system description object
455 * @lp: describes the LEB to garbage collect
457 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
458 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
459 * required, and other negative error codes in case of failures.
461 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
463 struct ubifs_scan_leb *sleb;
464 struct ubifs_scan_node *snod;
465 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
466 int err = 0, lnum = lp->lnum;
468 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
470 ubifs_assert(c->gc_lnum != lnum);
471 ubifs_assert(wbuf->lnum != lnum);
473 if (lp->free + lp->dirty == c->leb_size) {
474 /* Special case - a free LEB */
475 dbg_gc("LEB %d is free, return it", lp->lnum);
476 ubifs_assert(!(lp->flags & LPROPS_INDEX));
478 if (lp->free != c->leb_size) {
480 * Write buffers must be sync'd before unmapping
481 * freeable LEBs, because one of them may contain data
482 * which obsoletes something in 'lp->pnum'.
484 err = gc_sync_wbufs(c);
487 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
492 err = ubifs_leb_unmap(c, lp->lnum);
496 if (c->gc_lnum == -1) {
505 * We scan the entire LEB even though we only really need to scan up to
506 * (c->leb_size - lp->free).
508 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
510 return PTR_ERR(sleb);
512 ubifs_assert(!list_empty(&sleb->nodes));
513 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
515 if (snod->type == UBIFS_IDX_NODE) {
516 struct ubifs_gced_idx_leb *idx_gc;
518 dbg_gc("indexing LEB %d (free %d, dirty %d)",
519 lnum, lp->free, lp->dirty);
520 list_for_each_entry(snod, &sleb->nodes, list) {
521 struct ubifs_idx_node *idx = snod->node;
522 int level = le16_to_cpu(idx->level);
524 ubifs_assert(snod->type == UBIFS_IDX_NODE);
525 key_read(c, ubifs_idx_key(c, idx), &snod->key);
526 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
532 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
540 list_add(&idx_gc->list, &c->idx_gc);
543 * Don't release the LEB until after the next commit, because
544 * it may contain data which is needed for recovery. So
545 * although we freed this LEB, it will become usable only after
548 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
554 dbg_gc("data LEB %d (free %d, dirty %d)",
555 lnum, lp->free, lp->dirty);
557 err = move_nodes(c, sleb);
561 err = gc_sync_wbufs(c);
565 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
569 /* Allow for races with TNC */
575 if (c->gc_lnum == -1) {
579 err = ubifs_wbuf_sync_nolock(wbuf);
583 err = ubifs_leb_unmap(c, lnum);
592 ubifs_scan_destroy(sleb);
596 /* We may have moved at least some nodes so allow for races with TNC */
605 * ubifs_garbage_collect - UBIFS garbage collector.
606 * @c: UBIFS file-system description object
607 * @anyway: do GC even if there are free LEBs
609 * This function does out-of-place garbage collection. The return codes are:
610 * o positive LEB number if the LEB has been freed and may be used;
611 * o %-EAGAIN if the caller has to run commit;
612 * o %-ENOSPC if GC failed to make any progress;
613 * o other negative error codes in case of other errors.
615 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
616 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
617 * commit may be required. But commit cannot be run from inside GC, because the
618 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
619 * And this error code means that the caller has to run commit, and re-run GC
620 * if there is still no free space.
622 * There are many reasons why this function may return %-EAGAIN:
623 * o the log is full and there is no space to write an LEB reference for
625 * o the journal is too large and exceeds size limitations;
626 * o GC moved indexing LEBs, but they can be used only after the commit;
627 * o the shrinker fails to find clean znodes to free and requests the commit;
630 * Note, if the file-system is close to be full, this function may return
631 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
632 * the function. E.g., this happens if the limits on the journal size are too
633 * tough and GC writes too much to the journal before an LEB is freed. This
634 * might also mean that the journal is too large, and the TNC becomes to big,
635 * so that the shrinker is constantly called, finds not clean znodes to free,
636 * and requests commit. Well, this may also happen if the journal is all right,
637 * but another kernel process consumes too much memory. Anyway, infinite
638 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
640 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
642 int i, err, ret, min_space = c->dead_wm;
643 struct ubifs_lprops lp;
644 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
646 ubifs_assert_cmt_locked(c);
647 ubifs_assert(!c->ro_media && !c->ro_mount);
649 if (ubifs_gc_should_commit(c))
652 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
659 /* We expect the write-buffer to be empty on entry */
660 ubifs_assert(!wbuf->used);
663 int space_before, space_after;
667 /* Give the commit an opportunity to run */
668 if (ubifs_gc_should_commit(c)) {
673 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
675 * We've done enough iterations. Indexing LEBs were
676 * moved and will be available after the commit.
678 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
679 ubifs_commit_required(c);
684 if (i > HARD_LEBS_LIMIT) {
686 * We've moved too many LEBs and have not made
689 dbg_gc("hard limit, -ENOSPC");
695 * Empty and freeable LEBs can turn up while we waited for
696 * the wbuf lock, or while we have been running GC. In that
697 * case, we should just return one of those instead of
698 * continuing to GC dirty LEBs. Hence we request
699 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
701 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
704 dbg_gc("no more dirty LEBs");
708 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
709 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
712 space_before = c->leb_size - wbuf->offs - wbuf->used;
713 if (wbuf->lnum == -1)
716 ret = ubifs_garbage_collect_leb(c, &lp);
718 if (ret == -EAGAIN) {
720 * This is not error, so we have to return the
721 * LEB to lprops. But if 'ubifs_return_leb()'
722 * fails, its failure code is propagated to the
723 * caller instead of the original '-EAGAIN'.
725 err = ubifs_return_leb(c, lp.lnum);
733 if (ret == LEB_FREED) {
734 /* An LEB has been freed and is ready for use */
735 dbg_gc("LEB %d freed, return", lp.lnum);
740 if (ret == LEB_FREED_IDX) {
742 * This was an indexing LEB and it cannot be
743 * immediately used. And instead of requesting the
744 * commit straight away, we try to garbage collect some
747 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
751 ubifs_assert(ret == LEB_RETAINED);
752 space_after = c->leb_size - wbuf->offs - wbuf->used;
753 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
754 space_after - space_before);
756 if (space_after > space_before) {
757 /* GC makes progress, keep working */
759 if (min_space < c->dead_wm)
760 min_space = c->dead_wm;
764 dbg_gc("did not make progress");
767 * GC moved an LEB bud have not done any progress. This means
768 * that the previous GC head LEB contained too few free space
769 * and the LEB which was GC'ed contained only large nodes which
770 * did not fit that space.
772 * We can do 2 things:
773 * 1. pick another LEB in a hope it'll contain a small node
774 * which will fit the space we have at the end of current GC
775 * head LEB, but there is no guarantee, so we try this out
776 * unless we have already been working for too long;
777 * 2. request an LEB with more dirty space, which will force
778 * 'ubifs_find_dirty_leb()' to start scanning the lprops
779 * table, instead of just picking one from the heap
780 * (previously it already picked the dirtiest LEB).
782 if (i < SOFT_LEBS_LIMIT) {
788 if (min_space > c->dark_wm)
789 min_space = c->dark_wm;
790 dbg_gc("set min. space to %d", min_space);
793 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
794 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
795 ubifs_commit_required(c);
799 err = ubifs_wbuf_sync_nolock(wbuf);
801 err = ubifs_leb_unmap(c, c->gc_lnum);
807 mutex_unlock(&wbuf->io_mutex);
811 ubifs_assert(ret < 0);
812 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
813 ubifs_wbuf_sync_nolock(wbuf);
814 ubifs_ro_mode(c, ret);
815 mutex_unlock(&wbuf->io_mutex);
816 ubifs_return_leb(c, lp.lnum);
821 * ubifs_gc_start_commit - garbage collection at start of commit.
822 * @c: UBIFS file-system description object
824 * If a LEB has only dirty and free space, then we may safely unmap it and make
825 * it free. Note, we cannot do this with indexing LEBs because dirty space may
826 * correspond index nodes that are required for recovery. In that case, the
827 * LEB cannot be unmapped until after the next commit.
829 * This function returns %0 upon success and a negative error code upon failure.
831 int ubifs_gc_start_commit(struct ubifs_info *c)
833 struct ubifs_gced_idx_leb *idx_gc;
834 const struct ubifs_lprops *lp;
840 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
841 * wbufs are sync'd before this, which is done in 'do_commit()'.
844 lp = ubifs_fast_find_freeable(c);
851 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
852 ubifs_assert(!(lp->flags & LPROPS_INDEX));
853 err = ubifs_leb_unmap(c, lp->lnum);
856 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
861 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
862 ubifs_assert(!(lp->flags & LPROPS_INDEX));
865 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
866 list_for_each_entry(idx_gc, &c->idx_gc, list)
869 /* Record index freeable LEBs for unmapping after commit */
871 lp = ubifs_fast_find_frdi_idx(c);
878 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
883 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
884 ubifs_assert(lp->flags & LPROPS_INDEX);
885 /* Don't release the LEB until after the next commit */
886 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
887 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
893 ubifs_assert(lp->flags & LPROPS_TAKEN);
894 ubifs_assert(!(lp->flags & LPROPS_INDEX));
895 idx_gc->lnum = lp->lnum;
897 list_add(&idx_gc->list, &c->idx_gc);
900 ubifs_release_lprops(c);
905 * ubifs_gc_end_commit - garbage collection at end of commit.
906 * @c: UBIFS file-system description object
908 * This function completes out-of-place garbage collection of index LEBs.
910 int ubifs_gc_end_commit(struct ubifs_info *c)
912 struct ubifs_gced_idx_leb *idx_gc, *tmp;
913 struct ubifs_wbuf *wbuf;
916 wbuf = &c->jheads[GCHD].wbuf;
917 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
918 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
920 dbg_gc("LEB %d", idx_gc->lnum);
921 err = ubifs_leb_unmap(c, idx_gc->lnum);
924 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
925 LPROPS_NC, 0, LPROPS_TAKEN, -1);
928 list_del(&idx_gc->list);
932 mutex_unlock(&wbuf->io_mutex);
937 * ubifs_destroy_idx_gc - destroy idx_gc list.
938 * @c: UBIFS file-system description object
940 * This function destroys the @c->idx_gc list. It is called when unmounting
941 * so locks are not needed. Returns zero in case of success and a negative
942 * error code in case of failure.
944 void ubifs_destroy_idx_gc(struct ubifs_info *c)
946 while (!list_empty(&c->idx_gc)) {
947 struct ubifs_gced_idx_leb *idx_gc;
949 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
952 list_del(&idx_gc->list);
958 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
959 * @c: UBIFS file-system description object
961 * Called during start commit so locks are not needed.
963 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
965 struct ubifs_gced_idx_leb *idx_gc;
968 if (list_empty(&c->idx_gc))
970 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
972 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
973 list_del(&idx_gc->list);