Merge tag 'u-boot-atmel-fixes-2020.07-a' of https://gitlab.denx.de/u-boot/custodians...
[platform/kernel/u-boot.git] / fs / ubifs / debug.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17
18 #include <hexdump.h>
19 #include <log.h>
20 #include <dm/devres.h>
21
22 #ifndef __UBOOT__
23 #include <linux/module.h>
24 #include <linux/debugfs.h>
25 #include <linux/math64.h>
26 #include <linux/uaccess.h>
27 #include <linux/random.h>
28 #else
29 #include <linux/compat.h>
30 #include <linux/err.h>
31 #endif
32 #include "ubifs.h"
33
34 #ifndef __UBOOT__
35 static DEFINE_SPINLOCK(dbg_lock);
36 #endif
37
38 static const char *get_key_fmt(int fmt)
39 {
40         switch (fmt) {
41         case UBIFS_SIMPLE_KEY_FMT:
42                 return "simple";
43         default:
44                 return "unknown/invalid format";
45         }
46 }
47
48 static const char *get_key_hash(int hash)
49 {
50         switch (hash) {
51         case UBIFS_KEY_HASH_R5:
52                 return "R5";
53         case UBIFS_KEY_HASH_TEST:
54                 return "test";
55         default:
56                 return "unknown/invalid name hash";
57         }
58 }
59
60 static const char *get_key_type(int type)
61 {
62         switch (type) {
63         case UBIFS_INO_KEY:
64                 return "inode";
65         case UBIFS_DENT_KEY:
66                 return "direntry";
67         case UBIFS_XENT_KEY:
68                 return "xentry";
69         case UBIFS_DATA_KEY:
70                 return "data";
71         case UBIFS_TRUN_KEY:
72                 return "truncate";
73         default:
74                 return "unknown/invalid key";
75         }
76 }
77
78 #ifndef __UBOOT__
79 static const char *get_dent_type(int type)
80 {
81         switch (type) {
82         case UBIFS_ITYPE_REG:
83                 return "file";
84         case UBIFS_ITYPE_DIR:
85                 return "dir";
86         case UBIFS_ITYPE_LNK:
87                 return "symlink";
88         case UBIFS_ITYPE_BLK:
89                 return "blkdev";
90         case UBIFS_ITYPE_CHR:
91                 return "char dev";
92         case UBIFS_ITYPE_FIFO:
93                 return "fifo";
94         case UBIFS_ITYPE_SOCK:
95                 return "socket";
96         default:
97                 return "unknown/invalid type";
98         }
99 }
100 #endif
101
102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103                              const union ubifs_key *key, char *buffer, int len)
104 {
105         char *p = buffer;
106         int type = key_type(c, key);
107
108         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109                 switch (type) {
110                 case UBIFS_INO_KEY:
111                         len -= snprintf(p, len, "(%lu, %s)",
112                                         (unsigned long)key_inum(c, key),
113                                         get_key_type(type));
114                         break;
115                 case UBIFS_DENT_KEY:
116                 case UBIFS_XENT_KEY:
117                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
118                                         (unsigned long)key_inum(c, key),
119                                         get_key_type(type), key_hash(c, key));
120                         break;
121                 case UBIFS_DATA_KEY:
122                         len -= snprintf(p, len, "(%lu, %s, %u)",
123                                         (unsigned long)key_inum(c, key),
124                                         get_key_type(type), key_block(c, key));
125                         break;
126                 case UBIFS_TRUN_KEY:
127                         len -= snprintf(p, len, "(%lu, %s)",
128                                         (unsigned long)key_inum(c, key),
129                                         get_key_type(type));
130                         break;
131                 default:
132                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133                                         key->u32[0], key->u32[1]);
134                 }
135         } else
136                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137         ubifs_assert(len > 0);
138         return p;
139 }
140
141 const char *dbg_ntype(int type)
142 {
143         switch (type) {
144         case UBIFS_PAD_NODE:
145                 return "padding node";
146         case UBIFS_SB_NODE:
147                 return "superblock node";
148         case UBIFS_MST_NODE:
149                 return "master node";
150         case UBIFS_REF_NODE:
151                 return "reference node";
152         case UBIFS_INO_NODE:
153                 return "inode node";
154         case UBIFS_DENT_NODE:
155                 return "direntry node";
156         case UBIFS_XENT_NODE:
157                 return "xentry node";
158         case UBIFS_DATA_NODE:
159                 return "data node";
160         case UBIFS_TRUN_NODE:
161                 return "truncate node";
162         case UBIFS_IDX_NODE:
163                 return "indexing node";
164         case UBIFS_CS_NODE:
165                 return "commit start node";
166         case UBIFS_ORPH_NODE:
167                 return "orphan node";
168         default:
169                 return "unknown node";
170         }
171 }
172
173 static const char *dbg_gtype(int type)
174 {
175         switch (type) {
176         case UBIFS_NO_NODE_GROUP:
177                 return "no node group";
178         case UBIFS_IN_NODE_GROUP:
179                 return "in node group";
180         case UBIFS_LAST_OF_NODE_GROUP:
181                 return "last of node group";
182         default:
183                 return "unknown";
184         }
185 }
186
187 const char *dbg_cstate(int cmt_state)
188 {
189         switch (cmt_state) {
190         case COMMIT_RESTING:
191                 return "commit resting";
192         case COMMIT_BACKGROUND:
193                 return "background commit requested";
194         case COMMIT_REQUIRED:
195                 return "commit required";
196         case COMMIT_RUNNING_BACKGROUND:
197                 return "BACKGROUND commit running";
198         case COMMIT_RUNNING_REQUIRED:
199                 return "commit running and required";
200         case COMMIT_BROKEN:
201                 return "broken commit";
202         default:
203                 return "unknown commit state";
204         }
205 }
206
207 const char *dbg_jhead(int jhead)
208 {
209         switch (jhead) {
210         case GCHD:
211                 return "0 (GC)";
212         case BASEHD:
213                 return "1 (base)";
214         case DATAHD:
215                 return "2 (data)";
216         default:
217                 return "unknown journal head";
218         }
219 }
220
221 static void dump_ch(const struct ubifs_ch *ch)
222 {
223         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
224         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
225         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
226                dbg_ntype(ch->node_type));
227         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
228                dbg_gtype(ch->group_type));
229         pr_err("\tsqnum          %llu\n",
230                (unsigned long long)le64_to_cpu(ch->sqnum));
231         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
232 }
233
234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 {
236 #ifndef __UBOOT__
237         const struct ubifs_inode *ui = ubifs_inode(inode);
238         struct qstr nm = { .name = NULL };
239         union ubifs_key key;
240         struct ubifs_dent_node *dent, *pdent = NULL;
241         int count = 2;
242
243         pr_err("Dump in-memory inode:");
244         pr_err("\tinode          %lu\n", inode->i_ino);
245         pr_err("\tsize           %llu\n",
246                (unsigned long long)i_size_read(inode));
247         pr_err("\tnlink          %u\n", inode->i_nlink);
248         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
249         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
250         pr_err("\tatime          %u.%u\n",
251                (unsigned int)inode->i_atime.tv_sec,
252                (unsigned int)inode->i_atime.tv_nsec);
253         pr_err("\tmtime          %u.%u\n",
254                (unsigned int)inode->i_mtime.tv_sec,
255                (unsigned int)inode->i_mtime.tv_nsec);
256         pr_err("\tctime          %u.%u\n",
257                (unsigned int)inode->i_ctime.tv_sec,
258                (unsigned int)inode->i_ctime.tv_nsec);
259         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
260         pr_err("\txattr_size     %u\n", ui->xattr_size);
261         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
262         pr_err("\txattr_names    %u\n", ui->xattr_names);
263         pr_err("\tdirty          %u\n", ui->dirty);
264         pr_err("\txattr          %u\n", ui->xattr);
265         pr_err("\tbulk_read      %u\n", ui->xattr);
266         pr_err("\tsynced_i_size  %llu\n",
267                (unsigned long long)ui->synced_i_size);
268         pr_err("\tui_size        %llu\n",
269                (unsigned long long)ui->ui_size);
270         pr_err("\tflags          %d\n", ui->flags);
271         pr_err("\tcompr_type     %d\n", ui->compr_type);
272         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
273         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
274         pr_err("\tdata_len       %d\n", ui->data_len);
275
276         if (!S_ISDIR(inode->i_mode))
277                 return;
278
279         pr_err("List of directory entries:\n");
280         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
281
282         lowest_dent_key(c, &key, inode->i_ino);
283         while (1) {
284                 dent = ubifs_tnc_next_ent(c, &key, &nm);
285                 if (IS_ERR(dent)) {
286                         if (PTR_ERR(dent) != -ENOENT)
287                                 pr_err("error %ld\n", PTR_ERR(dent));
288                         break;
289                 }
290
291                 pr_err("\t%d: %s (%s)\n",
292                        count++, dent->name, get_dent_type(dent->type));
293
294                 nm.name = dent->name;
295                 nm.len = le16_to_cpu(dent->nlen);
296                 kfree(pdent);
297                 pdent = dent;
298                 key_read(c, &dent->key, &key);
299         }
300         kfree(pdent);
301 #endif
302 }
303
304 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
305 {
306         int i, n;
307         union ubifs_key key;
308         const struct ubifs_ch *ch = node;
309         char key_buf[DBG_KEY_BUF_LEN];
310
311         /* If the magic is incorrect, just hexdump the first bytes */
312         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
314                 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
315                                (void *)node, UBIFS_CH_SZ, 1);
316                 return;
317         }
318
319         spin_lock(&dbg_lock);
320         dump_ch(node);
321
322         switch (ch->node_type) {
323         case UBIFS_PAD_NODE:
324         {
325                 const struct ubifs_pad_node *pad = node;
326
327                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
328                 break;
329         }
330         case UBIFS_SB_NODE:
331         {
332                 const struct ubifs_sb_node *sup = node;
333                 unsigned int sup_flags = le32_to_cpu(sup->flags);
334
335                 pr_err("\tkey_hash       %d (%s)\n",
336                        (int)sup->key_hash, get_key_hash(sup->key_hash));
337                 pr_err("\tkey_fmt        %d (%s)\n",
338                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
339                 pr_err("\tflags          %#x\n", sup_flags);
340                 pr_err("\tbig_lpt        %u\n",
341                        !!(sup_flags & UBIFS_FLG_BIGLPT));
342                 pr_err("\tspace_fixup    %u\n",
343                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
344                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
345                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
346                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
347                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
348                 pr_err("\tmax_bud_bytes  %llu\n",
349                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
350                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
351                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
352                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
353                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
354                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
355                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
356                 pr_err("\tdefault_compr  %u\n",
357                        (int)le16_to_cpu(sup->default_compr));
358                 pr_err("\trp_size        %llu\n",
359                        (unsigned long long)le64_to_cpu(sup->rp_size));
360                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
361                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
362                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
363                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
364                 pr_err("\tUUID           %pUB\n", sup->uuid);
365                 break;
366         }
367         case UBIFS_MST_NODE:
368         {
369                 const struct ubifs_mst_node *mst = node;
370
371                 pr_err("\thighest_inum   %llu\n",
372                        (unsigned long long)le64_to_cpu(mst->highest_inum));
373                 pr_err("\tcommit number  %llu\n",
374                        (unsigned long long)le64_to_cpu(mst->cmt_no));
375                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
376                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
377                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
378                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
379                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
380                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
381                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
382                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
383                 pr_err("\tindex_size     %llu\n",
384                        (unsigned long long)le64_to_cpu(mst->index_size));
385                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
386                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
387                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
388                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
389                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
390                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
391                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
392                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
393                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
394                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
395                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
396                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
397                 pr_err("\ttotal_free     %llu\n",
398                        (unsigned long long)le64_to_cpu(mst->total_free));
399                 pr_err("\ttotal_dirty    %llu\n",
400                        (unsigned long long)le64_to_cpu(mst->total_dirty));
401                 pr_err("\ttotal_used     %llu\n",
402                        (unsigned long long)le64_to_cpu(mst->total_used));
403                 pr_err("\ttotal_dead     %llu\n",
404                        (unsigned long long)le64_to_cpu(mst->total_dead));
405                 pr_err("\ttotal_dark     %llu\n",
406                        (unsigned long long)le64_to_cpu(mst->total_dark));
407                 break;
408         }
409         case UBIFS_REF_NODE:
410         {
411                 const struct ubifs_ref_node *ref = node;
412
413                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
414                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
415                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
416                 break;
417         }
418         case UBIFS_INO_NODE:
419         {
420                 const struct ubifs_ino_node *ino = node;
421
422                 key_read(c, &ino->key, &key);
423                 pr_err("\tkey            %s\n",
424                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
425                 pr_err("\tcreat_sqnum    %llu\n",
426                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
427                 pr_err("\tsize           %llu\n",
428                        (unsigned long long)le64_to_cpu(ino->size));
429                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
430                 pr_err("\tatime          %lld.%u\n",
431                        (long long)le64_to_cpu(ino->atime_sec),
432                        le32_to_cpu(ino->atime_nsec));
433                 pr_err("\tmtime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->mtime_sec),
435                        le32_to_cpu(ino->mtime_nsec));
436                 pr_err("\tctime          %lld.%u\n",
437                        (long long)le64_to_cpu(ino->ctime_sec),
438                        le32_to_cpu(ino->ctime_nsec));
439                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
440                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
441                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
442                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
443                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
444                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
445                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
446                 pr_err("\tcompr_type     %#x\n",
447                        (int)le16_to_cpu(ino->compr_type));
448                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
449                 break;
450         }
451         case UBIFS_DENT_NODE:
452         case UBIFS_XENT_NODE:
453         {
454                 const struct ubifs_dent_node *dent = node;
455                 int nlen = le16_to_cpu(dent->nlen);
456
457                 key_read(c, &dent->key, &key);
458                 pr_err("\tkey            %s\n",
459                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
460                 pr_err("\tinum           %llu\n",
461                        (unsigned long long)le64_to_cpu(dent->inum));
462                 pr_err("\ttype           %d\n", (int)dent->type);
463                 pr_err("\tnlen           %d\n", nlen);
464                 pr_err("\tname           ");
465
466                 if (nlen > UBIFS_MAX_NLEN)
467                         pr_err("(bad name length, not printing, bad or corrupted node)");
468                 else {
469                         for (i = 0; i < nlen && dent->name[i]; i++)
470                                 pr_cont("%c", dent->name[i]);
471                 }
472                 pr_cont("\n");
473
474                 break;
475         }
476         case UBIFS_DATA_NODE:
477         {
478                 const struct ubifs_data_node *dn = node;
479                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
480
481                 key_read(c, &dn->key, &key);
482                 pr_err("\tkey            %s\n",
483                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
484                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
485                 pr_err("\tcompr_typ      %d\n",
486                        (int)le16_to_cpu(dn->compr_type));
487                 pr_err("\tdata size      %d\n", dlen);
488                 pr_err("\tdata:\n");
489                 print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1,
490                                (void *)&dn->data, dlen, 0);
491                 break;
492         }
493         case UBIFS_TRUN_NODE:
494         {
495                 const struct ubifs_trun_node *trun = node;
496
497                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
498                 pr_err("\told_size       %llu\n",
499                        (unsigned long long)le64_to_cpu(trun->old_size));
500                 pr_err("\tnew_size       %llu\n",
501                        (unsigned long long)le64_to_cpu(trun->new_size));
502                 break;
503         }
504         case UBIFS_IDX_NODE:
505         {
506                 const struct ubifs_idx_node *idx = node;
507
508                 n = le16_to_cpu(idx->child_cnt);
509                 pr_err("\tchild_cnt      %d\n", n);
510                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
511                 pr_err("\tBranches:\n");
512
513                 for (i = 0; i < n && i < c->fanout - 1; i++) {
514                         const struct ubifs_branch *br;
515
516                         br = ubifs_idx_branch(c, idx, i);
517                         key_read(c, &br->key, &key);
518                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
519                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
520                                le32_to_cpu(br->len),
521                                dbg_snprintf_key(c, &key, key_buf,
522                                                 DBG_KEY_BUF_LEN));
523                 }
524                 break;
525         }
526         case UBIFS_CS_NODE:
527                 break;
528         case UBIFS_ORPH_NODE:
529         {
530                 const struct ubifs_orph_node *orph = node;
531
532                 pr_err("\tcommit number  %llu\n",
533                        (unsigned long long)
534                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
535                 pr_err("\tlast node flag %llu\n",
536                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
537                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
538                 pr_err("\t%d orphan inode numbers:\n", n);
539                 for (i = 0; i < n; i++)
540                         pr_err("\t  ino %llu\n",
541                                (unsigned long long)le64_to_cpu(orph->inos[i]));
542                 break;
543         }
544         default:
545                 pr_err("node type %d was not recognized\n",
546                        (int)ch->node_type);
547         }
548         spin_unlock(&dbg_lock);
549 }
550
551 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
552 {
553         spin_lock(&dbg_lock);
554         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
555                req->new_ino, req->dirtied_ino);
556         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
557                req->new_ino_d, req->dirtied_ino_d);
558         pr_err("\tnew_page    %d, dirtied_page %d\n",
559                req->new_page, req->dirtied_page);
560         pr_err("\tnew_dent    %d, mod_dent     %d\n",
561                req->new_dent, req->mod_dent);
562         pr_err("\tidx_growth  %d\n", req->idx_growth);
563         pr_err("\tdata_growth %d dd_growth     %d\n",
564                req->data_growth, req->dd_growth);
565         spin_unlock(&dbg_lock);
566 }
567
568 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
569 {
570         spin_lock(&dbg_lock);
571         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
572                current->pid, lst->empty_lebs, lst->idx_lebs);
573         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
574                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
575         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
576                lst->total_used, lst->total_dark, lst->total_dead);
577         spin_unlock(&dbg_lock);
578 }
579
580 #ifndef __UBOOT__
581 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
582 {
583         int i;
584         struct rb_node *rb;
585         struct ubifs_bud *bud;
586         struct ubifs_gced_idx_leb *idx_gc;
587         long long available, outstanding, free;
588
589         spin_lock(&c->space_lock);
590         spin_lock(&dbg_lock);
591         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
592                current->pid, bi->data_growth + bi->dd_growth,
593                bi->data_growth + bi->dd_growth + bi->idx_growth);
594         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
595                bi->data_growth, bi->dd_growth, bi->idx_growth);
596         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
597                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
598         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
599                bi->page_budget, bi->inode_budget, bi->dent_budget);
600         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
601         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
602                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
603
604         if (bi != &c->bi)
605                 /*
606                  * If we are dumping saved budgeting data, do not print
607                  * additional information which is about the current state, not
608                  * the old one which corresponded to the saved budgeting data.
609                  */
610                 goto out_unlock;
611
612         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
613                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
614         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
615                atomic_long_read(&c->dirty_pg_cnt),
616                atomic_long_read(&c->dirty_zn_cnt),
617                atomic_long_read(&c->clean_zn_cnt));
618         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
619
620         /* If we are in R/O mode, journal heads do not exist */
621         if (c->jheads)
622                 for (i = 0; i < c->jhead_cnt; i++)
623                         pr_err("\tjhead %s\t LEB %d\n",
624                                dbg_jhead(c->jheads[i].wbuf.jhead),
625                                c->jheads[i].wbuf.lnum);
626         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627                 bud = rb_entry(rb, struct ubifs_bud, rb);
628                 pr_err("\tbud LEB %d\n", bud->lnum);
629         }
630         list_for_each_entry(bud, &c->old_buds, list)
631                 pr_err("\told bud LEB %d\n", bud->lnum);
632         list_for_each_entry(idx_gc, &c->idx_gc, list)
633                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
634                        idx_gc->lnum, idx_gc->unmap);
635         pr_err("\tcommit state %d\n", c->cmt_state);
636
637         /* Print budgeting predictions */
638         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
639         outstanding = c->bi.data_growth + c->bi.dd_growth;
640         free = ubifs_get_free_space_nolock(c);
641         pr_err("Budgeting predictions:\n");
642         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
643                available, outstanding, free);
644 out_unlock:
645         spin_unlock(&dbg_lock);
646         spin_unlock(&c->space_lock);
647 }
648 #else
649 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
650 {
651 }
652 #endif
653
654 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
655 {
656         int i, spc, dark = 0, dead = 0;
657         struct rb_node *rb;
658         struct ubifs_bud *bud;
659
660         spc = lp->free + lp->dirty;
661         if (spc < c->dead_wm)
662                 dead = spc;
663         else
664                 dark = ubifs_calc_dark(c, spc);
665
666         if (lp->flags & LPROPS_INDEX)
667                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
668                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
669                        lp->flags);
670         else
671                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
672                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
673                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
674
675         if (lp->flags & LPROPS_TAKEN) {
676                 if (lp->flags & LPROPS_INDEX)
677                         pr_cont("index, taken");
678                 else
679                         pr_cont("taken");
680         } else {
681                 const char *s;
682
683                 if (lp->flags & LPROPS_INDEX) {
684                         switch (lp->flags & LPROPS_CAT_MASK) {
685                         case LPROPS_DIRTY_IDX:
686                                 s = "dirty index";
687                                 break;
688                         case LPROPS_FRDI_IDX:
689                                 s = "freeable index";
690                                 break;
691                         default:
692                                 s = "index";
693                         }
694                 } else {
695                         switch (lp->flags & LPROPS_CAT_MASK) {
696                         case LPROPS_UNCAT:
697                                 s = "not categorized";
698                                 break;
699                         case LPROPS_DIRTY:
700                                 s = "dirty";
701                                 break;
702                         case LPROPS_FREE:
703                                 s = "free";
704                                 break;
705                         case LPROPS_EMPTY:
706                                 s = "empty";
707                                 break;
708                         case LPROPS_FREEABLE:
709                                 s = "freeable";
710                                 break;
711                         default:
712                                 s = NULL;
713                                 break;
714                         }
715                 }
716                 pr_cont("%s", s);
717         }
718
719         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
720                 bud = rb_entry(rb, struct ubifs_bud, rb);
721                 if (bud->lnum == lp->lnum) {
722                         int head = 0;
723                         for (i = 0; i < c->jhead_cnt; i++) {
724                                 /*
725                                  * Note, if we are in R/O mode or in the middle
726                                  * of mounting/re-mounting, the write-buffers do
727                                  * not exist.
728                                  */
729                                 if (c->jheads &&
730                                     lp->lnum == c->jheads[i].wbuf.lnum) {
731                                         pr_cont(", jhead %s", dbg_jhead(i));
732                                         head = 1;
733                                 }
734                         }
735                         if (!head)
736                                 pr_cont(", bud of jhead %s",
737                                        dbg_jhead(bud->jhead));
738                 }
739         }
740         if (lp->lnum == c->gc_lnum)
741                 pr_cont(", GC LEB");
742         pr_cont(")\n");
743 }
744
745 void ubifs_dump_lprops(struct ubifs_info *c)
746 {
747         int lnum, err;
748         struct ubifs_lprops lp;
749         struct ubifs_lp_stats lst;
750
751         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
752         ubifs_get_lp_stats(c, &lst);
753         ubifs_dump_lstats(&lst);
754
755         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
756                 err = ubifs_read_one_lp(c, lnum, &lp);
757                 if (err) {
758                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
759                         continue;
760                 }
761
762                 ubifs_dump_lprop(c, &lp);
763         }
764         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
765 }
766
767 void ubifs_dump_lpt_info(struct ubifs_info *c)
768 {
769         int i;
770
771         spin_lock(&dbg_lock);
772         pr_err("(pid %d) dumping LPT information\n", current->pid);
773         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
774         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
775         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
776         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
777         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
778         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
779         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
780         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
781         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
782         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
783         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
784         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
785         pr_err("\tspace_bits:    %d\n", c->space_bits);
786         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
787         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
788         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
789         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
790         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
791         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
792         pr_err("\tLPT head is at %d:%d\n",
793                c->nhead_lnum, c->nhead_offs);
794         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
795         if (c->big_lpt)
796                 pr_err("\tLPT lsave is at %d:%d\n",
797                        c->lsave_lnum, c->lsave_offs);
798         for (i = 0; i < c->lpt_lebs; i++)
799                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
800                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
801                        c->ltab[i].tgc, c->ltab[i].cmt);
802         spin_unlock(&dbg_lock);
803 }
804
805 void ubifs_dump_sleb(const struct ubifs_info *c,
806                      const struct ubifs_scan_leb *sleb, int offs)
807 {
808         struct ubifs_scan_node *snod;
809
810         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
811                current->pid, sleb->lnum, offs);
812
813         list_for_each_entry(snod, &sleb->nodes, list) {
814                 cond_resched();
815                 pr_err("Dumping node at LEB %d:%d len %d\n",
816                        sleb->lnum, snod->offs, snod->len);
817                 ubifs_dump_node(c, snod->node);
818         }
819 }
820
821 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
822 {
823         struct ubifs_scan_leb *sleb;
824         struct ubifs_scan_node *snod;
825         void *buf;
826
827         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
828
829         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
830         if (!buf) {
831                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
832                 return;
833         }
834
835         sleb = ubifs_scan(c, lnum, 0, buf, 0);
836         if (IS_ERR(sleb)) {
837                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
838                 goto out;
839         }
840
841         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
842                sleb->nodes_cnt, sleb->endpt);
843
844         list_for_each_entry(snod, &sleb->nodes, list) {
845                 cond_resched();
846                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
847                        snod->offs, snod->len);
848                 ubifs_dump_node(c, snod->node);
849         }
850
851         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
852         ubifs_scan_destroy(sleb);
853
854 out:
855         vfree(buf);
856         return;
857 }
858
859 void ubifs_dump_znode(const struct ubifs_info *c,
860                       const struct ubifs_znode *znode)
861 {
862         int n;
863         const struct ubifs_zbranch *zbr;
864         char key_buf[DBG_KEY_BUF_LEN];
865
866         spin_lock(&dbg_lock);
867         if (znode->parent)
868                 zbr = &znode->parent->zbranch[znode->iip];
869         else
870                 zbr = &c->zroot;
871
872         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
873                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
874                znode->level, znode->child_cnt, znode->flags);
875
876         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
877                 spin_unlock(&dbg_lock);
878                 return;
879         }
880
881         pr_err("zbranches:\n");
882         for (n = 0; n < znode->child_cnt; n++) {
883                 zbr = &znode->zbranch[n];
884                 if (znode->level > 0)
885                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
886                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887                                dbg_snprintf_key(c, &zbr->key, key_buf,
888                                                 DBG_KEY_BUF_LEN));
889                 else
890                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
891                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
892                                dbg_snprintf_key(c, &zbr->key, key_buf,
893                                                 DBG_KEY_BUF_LEN));
894         }
895         spin_unlock(&dbg_lock);
896 }
897
898 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
899 {
900         int i;
901
902         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
903                current->pid, cat, heap->cnt);
904         for (i = 0; i < heap->cnt; i++) {
905                 struct ubifs_lprops *lprops = heap->arr[i];
906
907                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
908                        i, lprops->lnum, lprops->hpos, lprops->free,
909                        lprops->dirty, lprops->flags);
910         }
911         pr_err("(pid %d) finish dumping heap\n", current->pid);
912 }
913
914 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
915                       struct ubifs_nnode *parent, int iip)
916 {
917         int i;
918
919         pr_err("(pid %d) dumping pnode:\n", current->pid);
920         pr_err("\taddress %zx parent %zx cnext %zx\n",
921                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
922         pr_err("\tflags %lu iip %d level %d num %d\n",
923                pnode->flags, iip, pnode->level, pnode->num);
924         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
925                 struct ubifs_lprops *lp = &pnode->lprops[i];
926
927                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
928                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
929         }
930 }
931
932 void ubifs_dump_tnc(struct ubifs_info *c)
933 {
934         struct ubifs_znode *znode;
935         int level;
936
937         pr_err("\n");
938         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
939         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
940         level = znode->level;
941         pr_err("== Level %d ==\n", level);
942         while (znode) {
943                 if (level != znode->level) {
944                         level = znode->level;
945                         pr_err("== Level %d ==\n", level);
946                 }
947                 ubifs_dump_znode(c, znode);
948                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
949         }
950         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
951 }
952
953 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
954                       void *priv)
955 {
956         ubifs_dump_znode(c, znode);
957         return 0;
958 }
959
960 /**
961  * ubifs_dump_index - dump the on-flash index.
962  * @c: UBIFS file-system description object
963  *
964  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
965  * which dumps only in-memory znodes and does not read znodes which from flash.
966  */
967 void ubifs_dump_index(struct ubifs_info *c)
968 {
969         dbg_walk_index(c, NULL, dump_znode, NULL);
970 }
971
972 #ifndef __UBOOT__
973 /**
974  * dbg_save_space_info - save information about flash space.
975  * @c: UBIFS file-system description object
976  *
977  * This function saves information about UBIFS free space, dirty space, etc, in
978  * order to check it later.
979  */
980 void dbg_save_space_info(struct ubifs_info *c)
981 {
982         struct ubifs_debug_info *d = c->dbg;
983         int freeable_cnt;
984
985         spin_lock(&c->space_lock);
986         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
987         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
988         d->saved_idx_gc_cnt = c->idx_gc_cnt;
989
990         /*
991          * We use a dirty hack here and zero out @c->freeable_cnt, because it
992          * affects the free space calculations, and UBIFS might not know about
993          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
994          * only when we read their lprops, and we do this only lazily, upon the
995          * need. So at any given point of time @c->freeable_cnt might be not
996          * exactly accurate.
997          *
998          * Just one example about the issue we hit when we did not zero
999          * @c->freeable_cnt.
1000          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1001          *    amount of free space in @d->saved_free
1002          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1003          *    information from flash, where we cache LEBs from various
1004          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1005          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1006          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1007          *    -> 'ubifs_add_to_cat()').
1008          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1009          *    becomes %1.
1010          * 4. We calculate the amount of free space when the re-mount is
1011          *    finished in 'dbg_check_space_info()' and it does not match
1012          *    @d->saved_free.
1013          */
1014         freeable_cnt = c->freeable_cnt;
1015         c->freeable_cnt = 0;
1016         d->saved_free = ubifs_get_free_space_nolock(c);
1017         c->freeable_cnt = freeable_cnt;
1018         spin_unlock(&c->space_lock);
1019 }
1020
1021 /**
1022  * dbg_check_space_info - check flash space information.
1023  * @c: UBIFS file-system description object
1024  *
1025  * This function compares current flash space information with the information
1026  * which was saved when the 'dbg_save_space_info()' function was called.
1027  * Returns zero if the information has not changed, and %-EINVAL it it has
1028  * changed.
1029  */
1030 int dbg_check_space_info(struct ubifs_info *c)
1031 {
1032         struct ubifs_debug_info *d = c->dbg;
1033         struct ubifs_lp_stats lst;
1034         long long free;
1035         int freeable_cnt;
1036
1037         spin_lock(&c->space_lock);
1038         freeable_cnt = c->freeable_cnt;
1039         c->freeable_cnt = 0;
1040         free = ubifs_get_free_space_nolock(c);
1041         c->freeable_cnt = freeable_cnt;
1042         spin_unlock(&c->space_lock);
1043
1044         if (free != d->saved_free) {
1045                 ubifs_err(c, "free space changed from %lld to %lld",
1046                           d->saved_free, free);
1047                 goto out;
1048         }
1049
1050         return 0;
1051
1052 out:
1053         ubifs_msg(c, "saved lprops statistics dump");
1054         ubifs_dump_lstats(&d->saved_lst);
1055         ubifs_msg(c, "saved budgeting info dump");
1056         ubifs_dump_budg(c, &d->saved_bi);
1057         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1058         ubifs_msg(c, "current lprops statistics dump");
1059         ubifs_get_lp_stats(c, &lst);
1060         ubifs_dump_lstats(&lst);
1061         ubifs_msg(c, "current budgeting info dump");
1062         ubifs_dump_budg(c, &c->bi);
1063         dump_stack();
1064         return -EINVAL;
1065 }
1066
1067 /**
1068  * dbg_check_synced_i_size - check synchronized inode size.
1069  * @c: UBIFS file-system description object
1070  * @inode: inode to check
1071  *
1072  * If inode is clean, synchronized inode size has to be equivalent to current
1073  * inode size. This function has to be called only for locked inodes (@i_mutex
1074  * has to be locked). Returns %0 if synchronized inode size if correct, and
1075  * %-EINVAL if not.
1076  */
1077 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1078 {
1079         int err = 0;
1080         struct ubifs_inode *ui = ubifs_inode(inode);
1081
1082         if (!dbg_is_chk_gen(c))
1083                 return 0;
1084         if (!S_ISREG(inode->i_mode))
1085                 return 0;
1086
1087         mutex_lock(&ui->ui_mutex);
1088         spin_lock(&ui->ui_lock);
1089         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1090                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1091                           ui->ui_size, ui->synced_i_size);
1092                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1093                           inode->i_mode, i_size_read(inode));
1094                 dump_stack();
1095                 err = -EINVAL;
1096         }
1097         spin_unlock(&ui->ui_lock);
1098         mutex_unlock(&ui->ui_mutex);
1099         return err;
1100 }
1101
1102 /*
1103  * dbg_check_dir - check directory inode size and link count.
1104  * @c: UBIFS file-system description object
1105  * @dir: the directory to calculate size for
1106  * @size: the result is returned here
1107  *
1108  * This function makes sure that directory size and link count are correct.
1109  * Returns zero in case of success and a negative error code in case of
1110  * failure.
1111  *
1112  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1113  * calling this function.
1114  */
1115 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1116 {
1117         unsigned int nlink = 2;
1118         union ubifs_key key;
1119         struct ubifs_dent_node *dent, *pdent = NULL;
1120         struct qstr nm = { .name = NULL };
1121         loff_t size = UBIFS_INO_NODE_SZ;
1122
1123         if (!dbg_is_chk_gen(c))
1124                 return 0;
1125
1126         if (!S_ISDIR(dir->i_mode))
1127                 return 0;
1128
1129         lowest_dent_key(c, &key, dir->i_ino);
1130         while (1) {
1131                 int err;
1132
1133                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1134                 if (IS_ERR(dent)) {
1135                         err = PTR_ERR(dent);
1136                         if (err == -ENOENT)
1137                                 break;
1138                         return err;
1139                 }
1140
1141                 nm.name = dent->name;
1142                 nm.len = le16_to_cpu(dent->nlen);
1143                 size += CALC_DENT_SIZE(nm.len);
1144                 if (dent->type == UBIFS_ITYPE_DIR)
1145                         nlink += 1;
1146                 kfree(pdent);
1147                 pdent = dent;
1148                 key_read(c, &dent->key, &key);
1149         }
1150         kfree(pdent);
1151
1152         if (i_size_read(dir) != size) {
1153                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1154                           dir->i_ino, (unsigned long long)i_size_read(dir),
1155                           (unsigned long long)size);
1156                 ubifs_dump_inode(c, dir);
1157                 dump_stack();
1158                 return -EINVAL;
1159         }
1160         if (dir->i_nlink != nlink) {
1161                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1162                           dir->i_ino, dir->i_nlink, nlink);
1163                 ubifs_dump_inode(c, dir);
1164                 dump_stack();
1165                 return -EINVAL;
1166         }
1167
1168         return 0;
1169 }
1170
1171 /**
1172  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1173  * @c: UBIFS file-system description object
1174  * @zbr1: first zbranch
1175  * @zbr2: following zbranch
1176  *
1177  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1178  * names of the direntries/xentries which are referred by the keys. This
1179  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1180  * sure the name of direntry/xentry referred by @zbr1 is less than
1181  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1182  * and a negative error code in case of failure.
1183  */
1184 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1185                                struct ubifs_zbranch *zbr2)
1186 {
1187         int err, nlen1, nlen2, cmp;
1188         struct ubifs_dent_node *dent1, *dent2;
1189         union ubifs_key key;
1190         char key_buf[DBG_KEY_BUF_LEN];
1191
1192         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1193         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1194         if (!dent1)
1195                 return -ENOMEM;
1196         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1197         if (!dent2) {
1198                 err = -ENOMEM;
1199                 goto out_free;
1200         }
1201
1202         err = ubifs_tnc_read_node(c, zbr1, dent1);
1203         if (err)
1204                 goto out_free;
1205         err = ubifs_validate_entry(c, dent1);
1206         if (err)
1207                 goto out_free;
1208
1209         err = ubifs_tnc_read_node(c, zbr2, dent2);
1210         if (err)
1211                 goto out_free;
1212         err = ubifs_validate_entry(c, dent2);
1213         if (err)
1214                 goto out_free;
1215
1216         /* Make sure node keys are the same as in zbranch */
1217         err = 1;
1218         key_read(c, &dent1->key, &key);
1219         if (keys_cmp(c, &zbr1->key, &key)) {
1220                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1221                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222                                                        DBG_KEY_BUF_LEN));
1223                 ubifs_err(c, "but it should have key %s according to tnc",
1224                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1225                                            DBG_KEY_BUF_LEN));
1226                 ubifs_dump_node(c, dent1);
1227                 goto out_free;
1228         }
1229
1230         key_read(c, &dent2->key, &key);
1231         if (keys_cmp(c, &zbr2->key, &key)) {
1232                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1233                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1234                                                        DBG_KEY_BUF_LEN));
1235                 ubifs_err(c, "but it should have key %s according to tnc",
1236                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1237                                            DBG_KEY_BUF_LEN));
1238                 ubifs_dump_node(c, dent2);
1239                 goto out_free;
1240         }
1241
1242         nlen1 = le16_to_cpu(dent1->nlen);
1243         nlen2 = le16_to_cpu(dent2->nlen);
1244
1245         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1246         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1247                 err = 0;
1248                 goto out_free;
1249         }
1250         if (cmp == 0 && nlen1 == nlen2)
1251                 ubifs_err(c, "2 xent/dent nodes with the same name");
1252         else
1253                 ubifs_err(c, "bad order of colliding key %s",
1254                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1255
1256         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1257         ubifs_dump_node(c, dent1);
1258         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1259         ubifs_dump_node(c, dent2);
1260
1261 out_free:
1262         kfree(dent2);
1263         kfree(dent1);
1264         return err;
1265 }
1266
1267 /**
1268  * dbg_check_znode - check if znode is all right.
1269  * @c: UBIFS file-system description object
1270  * @zbr: zbranch which points to this znode
1271  *
1272  * This function makes sure that znode referred to by @zbr is all right.
1273  * Returns zero if it is, and %-EINVAL if it is not.
1274  */
1275 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1276 {
1277         struct ubifs_znode *znode = zbr->znode;
1278         struct ubifs_znode *zp = znode->parent;
1279         int n, err, cmp;
1280
1281         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1282                 err = 1;
1283                 goto out;
1284         }
1285         if (znode->level < 0) {
1286                 err = 2;
1287                 goto out;
1288         }
1289         if (znode->iip < 0 || znode->iip >= c->fanout) {
1290                 err = 3;
1291                 goto out;
1292         }
1293
1294         if (zbr->len == 0)
1295                 /* Only dirty zbranch may have no on-flash nodes */
1296                 if (!ubifs_zn_dirty(znode)) {
1297                         err = 4;
1298                         goto out;
1299                 }
1300
1301         if (ubifs_zn_dirty(znode)) {
1302                 /*
1303                  * If znode is dirty, its parent has to be dirty as well. The
1304                  * order of the operation is important, so we have to have
1305                  * memory barriers.
1306                  */
1307                 smp_mb();
1308                 if (zp && !ubifs_zn_dirty(zp)) {
1309                         /*
1310                          * The dirty flag is atomic and is cleared outside the
1311                          * TNC mutex, so znode's dirty flag may now have
1312                          * been cleared. The child is always cleared before the
1313                          * parent, so we just need to check again.
1314                          */
1315                         smp_mb();
1316                         if (ubifs_zn_dirty(znode)) {
1317                                 err = 5;
1318                                 goto out;
1319                         }
1320                 }
1321         }
1322
1323         if (zp) {
1324                 const union ubifs_key *min, *max;
1325
1326                 if (znode->level != zp->level - 1) {
1327                         err = 6;
1328                         goto out;
1329                 }
1330
1331                 /* Make sure the 'parent' pointer in our znode is correct */
1332                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1333                 if (!err) {
1334                         /* This zbranch does not exist in the parent */
1335                         err = 7;
1336                         goto out;
1337                 }
1338
1339                 if (znode->iip >= zp->child_cnt) {
1340                         err = 8;
1341                         goto out;
1342                 }
1343
1344                 if (znode->iip != n) {
1345                         /* This may happen only in case of collisions */
1346                         if (keys_cmp(c, &zp->zbranch[n].key,
1347                                      &zp->zbranch[znode->iip].key)) {
1348                                 err = 9;
1349                                 goto out;
1350                         }
1351                         n = znode->iip;
1352                 }
1353
1354                 /*
1355                  * Make sure that the first key in our znode is greater than or
1356                  * equal to the key in the pointing zbranch.
1357                  */
1358                 min = &zbr->key;
1359                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1360                 if (cmp == 1) {
1361                         err = 10;
1362                         goto out;
1363                 }
1364
1365                 if (n + 1 < zp->child_cnt) {
1366                         max = &zp->zbranch[n + 1].key;
1367
1368                         /*
1369                          * Make sure the last key in our znode is less or
1370                          * equivalent than the key in the zbranch which goes
1371                          * after our pointing zbranch.
1372                          */
1373                         cmp = keys_cmp(c, max,
1374                                 &znode->zbranch[znode->child_cnt - 1].key);
1375                         if (cmp == -1) {
1376                                 err = 11;
1377                                 goto out;
1378                         }
1379                 }
1380         } else {
1381                 /* This may only be root znode */
1382                 if (zbr != &c->zroot) {
1383                         err = 12;
1384                         goto out;
1385                 }
1386         }
1387
1388         /*
1389          * Make sure that next key is greater or equivalent then the previous
1390          * one.
1391          */
1392         for (n = 1; n < znode->child_cnt; n++) {
1393                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1394                                &znode->zbranch[n].key);
1395                 if (cmp > 0) {
1396                         err = 13;
1397                         goto out;
1398                 }
1399                 if (cmp == 0) {
1400                         /* This can only be keys with colliding hash */
1401                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1402                                 err = 14;
1403                                 goto out;
1404                         }
1405
1406                         if (znode->level != 0 || c->replaying)
1407                                 continue;
1408
1409                         /*
1410                          * Colliding keys should follow binary order of
1411                          * corresponding xentry/dentry names.
1412                          */
1413                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1414                                                   &znode->zbranch[n]);
1415                         if (err < 0)
1416                                 return err;
1417                         if (err) {
1418                                 err = 15;
1419                                 goto out;
1420                         }
1421                 }
1422         }
1423
1424         for (n = 0; n < znode->child_cnt; n++) {
1425                 if (!znode->zbranch[n].znode &&
1426                     (znode->zbranch[n].lnum == 0 ||
1427                      znode->zbranch[n].len == 0)) {
1428                         err = 16;
1429                         goto out;
1430                 }
1431
1432                 if (znode->zbranch[n].lnum != 0 &&
1433                     znode->zbranch[n].len == 0) {
1434                         err = 17;
1435                         goto out;
1436                 }
1437
1438                 if (znode->zbranch[n].lnum == 0 &&
1439                     znode->zbranch[n].len != 0) {
1440                         err = 18;
1441                         goto out;
1442                 }
1443
1444                 if (znode->zbranch[n].lnum == 0 &&
1445                     znode->zbranch[n].offs != 0) {
1446                         err = 19;
1447                         goto out;
1448                 }
1449
1450                 if (znode->level != 0 && znode->zbranch[n].znode)
1451                         if (znode->zbranch[n].znode->parent != znode) {
1452                                 err = 20;
1453                                 goto out;
1454                         }
1455         }
1456
1457         return 0;
1458
1459 out:
1460         ubifs_err(c, "failed, error %d", err);
1461         ubifs_msg(c, "dump of the znode");
1462         ubifs_dump_znode(c, znode);
1463         if (zp) {
1464                 ubifs_msg(c, "dump of the parent znode");
1465                 ubifs_dump_znode(c, zp);
1466         }
1467         dump_stack();
1468         return -EINVAL;
1469 }
1470 #else
1471
1472 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1473 {
1474         return 0;
1475 }
1476
1477 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1478 {
1479         return;
1480 }
1481
1482 int ubifs_debugging_init(struct ubifs_info *c)
1483 {
1484         return 0;
1485 }
1486 void ubifs_debugging_exit(struct ubifs_info *c)
1487 {
1488 }
1489 int dbg_check_filesystem(struct ubifs_info *c)
1490 {
1491         return 0;
1492 }
1493 int dbg_debugfs_init_fs(struct ubifs_info *c)
1494 {
1495         return 0;
1496 }
1497 #endif
1498
1499 #ifndef __UBOOT__
1500 /**
1501  * dbg_check_tnc - check TNC tree.
1502  * @c: UBIFS file-system description object
1503  * @extra: do extra checks that are possible at start commit
1504  *
1505  * This function traverses whole TNC tree and checks every znode. Returns zero
1506  * if everything is all right and %-EINVAL if something is wrong with TNC.
1507  */
1508 int dbg_check_tnc(struct ubifs_info *c, int extra)
1509 {
1510         struct ubifs_znode *znode;
1511         long clean_cnt = 0, dirty_cnt = 0;
1512         int err, last;
1513
1514         if (!dbg_is_chk_index(c))
1515                 return 0;
1516
1517         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1518         if (!c->zroot.znode)
1519                 return 0;
1520
1521         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1522         while (1) {
1523                 struct ubifs_znode *prev;
1524                 struct ubifs_zbranch *zbr;
1525
1526                 if (!znode->parent)
1527                         zbr = &c->zroot;
1528                 else
1529                         zbr = &znode->parent->zbranch[znode->iip];
1530
1531                 err = dbg_check_znode(c, zbr);
1532                 if (err)
1533                         return err;
1534
1535                 if (extra) {
1536                         if (ubifs_zn_dirty(znode))
1537                                 dirty_cnt += 1;
1538                         else
1539                                 clean_cnt += 1;
1540                 }
1541
1542                 prev = znode;
1543                 znode = ubifs_tnc_postorder_next(znode);
1544                 if (!znode)
1545                         break;
1546
1547                 /*
1548                  * If the last key of this znode is equivalent to the first key
1549                  * of the next znode (collision), then check order of the keys.
1550                  */
1551                 last = prev->child_cnt - 1;
1552                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1553                     !keys_cmp(c, &prev->zbranch[last].key,
1554                               &znode->zbranch[0].key)) {
1555                         err = dbg_check_key_order(c, &prev->zbranch[last],
1556                                                   &znode->zbranch[0]);
1557                         if (err < 0)
1558                                 return err;
1559                         if (err) {
1560                                 ubifs_msg(c, "first znode");
1561                                 ubifs_dump_znode(c, prev);
1562                                 ubifs_msg(c, "second znode");
1563                                 ubifs_dump_znode(c, znode);
1564                                 return -EINVAL;
1565                         }
1566                 }
1567         }
1568
1569         if (extra) {
1570                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1571                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1572                                   atomic_long_read(&c->clean_zn_cnt),
1573                                   clean_cnt);
1574                         return -EINVAL;
1575                 }
1576                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1577                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1578                                   atomic_long_read(&c->dirty_zn_cnt),
1579                                   dirty_cnt);
1580                         return -EINVAL;
1581                 }
1582         }
1583
1584         return 0;
1585 }
1586 #else
1587 int dbg_check_tnc(struct ubifs_info *c, int extra)
1588 {
1589         return 0;
1590 }
1591 #endif
1592
1593 /**
1594  * dbg_walk_index - walk the on-flash index.
1595  * @c: UBIFS file-system description object
1596  * @leaf_cb: called for each leaf node
1597  * @znode_cb: called for each indexing node
1598  * @priv: private data which is passed to callbacks
1599  *
1600  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1601  * node and @znode_cb for each indexing node. Returns zero in case of success
1602  * and a negative error code in case of failure.
1603  *
1604  * It would be better if this function removed every znode it pulled to into
1605  * the TNC, so that the behavior more closely matched the non-debugging
1606  * behavior.
1607  */
1608 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1609                    dbg_znode_callback znode_cb, void *priv)
1610 {
1611         int err;
1612         struct ubifs_zbranch *zbr;
1613         struct ubifs_znode *znode, *child;
1614
1615         mutex_lock(&c->tnc_mutex);
1616         /* If the root indexing node is not in TNC - pull it */
1617         if (!c->zroot.znode) {
1618                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1619                 if (IS_ERR(c->zroot.znode)) {
1620                         err = PTR_ERR(c->zroot.znode);
1621                         c->zroot.znode = NULL;
1622                         goto out_unlock;
1623                 }
1624         }
1625
1626         /*
1627          * We are going to traverse the indexing tree in the postorder manner.
1628          * Go down and find the leftmost indexing node where we are going to
1629          * start from.
1630          */
1631         znode = c->zroot.znode;
1632         while (znode->level > 0) {
1633                 zbr = &znode->zbranch[0];
1634                 child = zbr->znode;
1635                 if (!child) {
1636                         child = ubifs_load_znode(c, zbr, znode, 0);
1637                         if (IS_ERR(child)) {
1638                                 err = PTR_ERR(child);
1639                                 goto out_unlock;
1640                         }
1641                         zbr->znode = child;
1642                 }
1643
1644                 znode = child;
1645         }
1646
1647         /* Iterate over all indexing nodes */
1648         while (1) {
1649                 int idx;
1650
1651                 cond_resched();
1652
1653                 if (znode_cb) {
1654                         err = znode_cb(c, znode, priv);
1655                         if (err) {
1656                                 ubifs_err(c, "znode checking function returned error %d",
1657                                           err);
1658                                 ubifs_dump_znode(c, znode);
1659                                 goto out_dump;
1660                         }
1661                 }
1662                 if (leaf_cb && znode->level == 0) {
1663                         for (idx = 0; idx < znode->child_cnt; idx++) {
1664                                 zbr = &znode->zbranch[idx];
1665                                 err = leaf_cb(c, zbr, priv);
1666                                 if (err) {
1667                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1668                                                   err, zbr->lnum, zbr->offs);
1669                                         goto out_dump;
1670                                 }
1671                         }
1672                 }
1673
1674                 if (!znode->parent)
1675                         break;
1676
1677                 idx = znode->iip + 1;
1678                 znode = znode->parent;
1679                 if (idx < znode->child_cnt) {
1680                         /* Switch to the next index in the parent */
1681                         zbr = &znode->zbranch[idx];
1682                         child = zbr->znode;
1683                         if (!child) {
1684                                 child = ubifs_load_znode(c, zbr, znode, idx);
1685                                 if (IS_ERR(child)) {
1686                                         err = PTR_ERR(child);
1687                                         goto out_unlock;
1688                                 }
1689                                 zbr->znode = child;
1690                         }
1691                         znode = child;
1692                 } else
1693                         /*
1694                          * This is the last child, switch to the parent and
1695                          * continue.
1696                          */
1697                         continue;
1698
1699                 /* Go to the lowest leftmost znode in the new sub-tree */
1700                 while (znode->level > 0) {
1701                         zbr = &znode->zbranch[0];
1702                         child = zbr->znode;
1703                         if (!child) {
1704                                 child = ubifs_load_znode(c, zbr, znode, 0);
1705                                 if (IS_ERR(child)) {
1706                                         err = PTR_ERR(child);
1707                                         goto out_unlock;
1708                                 }
1709                                 zbr->znode = child;
1710                         }
1711                         znode = child;
1712                 }
1713         }
1714
1715         mutex_unlock(&c->tnc_mutex);
1716         return 0;
1717
1718 out_dump:
1719         if (znode->parent)
1720                 zbr = &znode->parent->zbranch[znode->iip];
1721         else
1722                 zbr = &c->zroot;
1723         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1724         ubifs_dump_znode(c, znode);
1725 out_unlock:
1726         mutex_unlock(&c->tnc_mutex);
1727         return err;
1728 }
1729
1730 /**
1731  * add_size - add znode size to partially calculated index size.
1732  * @c: UBIFS file-system description object
1733  * @znode: znode to add size for
1734  * @priv: partially calculated index size
1735  *
1736  * This is a helper function for 'dbg_check_idx_size()' which is called for
1737  * every indexing node and adds its size to the 'long long' variable pointed to
1738  * by @priv.
1739  */
1740 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1741 {
1742         long long *idx_size = priv;
1743         int add;
1744
1745         add = ubifs_idx_node_sz(c, znode->child_cnt);
1746         add = ALIGN(add, 8);
1747         *idx_size += add;
1748         return 0;
1749 }
1750
1751 /**
1752  * dbg_check_idx_size - check index size.
1753  * @c: UBIFS file-system description object
1754  * @idx_size: size to check
1755  *
1756  * This function walks the UBIFS index, calculates its size and checks that the
1757  * size is equivalent to @idx_size. Returns zero in case of success and a
1758  * negative error code in case of failure.
1759  */
1760 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1761 {
1762         int err;
1763         long long calc = 0;
1764
1765         if (!dbg_is_chk_index(c))
1766                 return 0;
1767
1768         err = dbg_walk_index(c, NULL, add_size, &calc);
1769         if (err) {
1770                 ubifs_err(c, "error %d while walking the index", err);
1771                 return err;
1772         }
1773
1774         if (calc != idx_size) {
1775                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1776                           calc, idx_size);
1777                 dump_stack();
1778                 return -EINVAL;
1779         }
1780
1781         return 0;
1782 }
1783
1784 #ifndef __UBOOT__
1785 /**
1786  * struct fsck_inode - information about an inode used when checking the file-system.
1787  * @rb: link in the RB-tree of inodes
1788  * @inum: inode number
1789  * @mode: inode type, permissions, etc
1790  * @nlink: inode link count
1791  * @xattr_cnt: count of extended attributes
1792  * @references: how many directory/xattr entries refer this inode (calculated
1793  *              while walking the index)
1794  * @calc_cnt: for directory inode count of child directories
1795  * @size: inode size (read from on-flash inode)
1796  * @xattr_sz: summary size of all extended attributes (read from on-flash
1797  *            inode)
1798  * @calc_sz: for directories calculated directory size
1799  * @calc_xcnt: count of extended attributes
1800  * @calc_xsz: calculated summary size of all extended attributes
1801  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1802  *             inode (read from on-flash inode)
1803  * @calc_xnms: calculated sum of lengths of all extended attribute names
1804  */
1805 struct fsck_inode {
1806         struct rb_node rb;
1807         ino_t inum;
1808         umode_t mode;
1809         unsigned int nlink;
1810         unsigned int xattr_cnt;
1811         int references;
1812         int calc_cnt;
1813         long long size;
1814         unsigned int xattr_sz;
1815         long long calc_sz;
1816         long long calc_xcnt;
1817         long long calc_xsz;
1818         unsigned int xattr_nms;
1819         long long calc_xnms;
1820 };
1821
1822 /**
1823  * struct fsck_data - private FS checking information.
1824  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1825  */
1826 struct fsck_data {
1827         struct rb_root inodes;
1828 };
1829
1830 /**
1831  * add_inode - add inode information to RB-tree of inodes.
1832  * @c: UBIFS file-system description object
1833  * @fsckd: FS checking information
1834  * @ino: raw UBIFS inode to add
1835  *
1836  * This is a helper function for 'check_leaf()' which adds information about
1837  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1838  * case of success and a negative error code in case of failure.
1839  */
1840 static struct fsck_inode *add_inode(struct ubifs_info *c,
1841                                     struct fsck_data *fsckd,
1842                                     struct ubifs_ino_node *ino)
1843 {
1844         struct rb_node **p, *parent = NULL;
1845         struct fsck_inode *fscki;
1846         ino_t inum = key_inum_flash(c, &ino->key);
1847         struct inode *inode;
1848         struct ubifs_inode *ui;
1849
1850         p = &fsckd->inodes.rb_node;
1851         while (*p) {
1852                 parent = *p;
1853                 fscki = rb_entry(parent, struct fsck_inode, rb);
1854                 if (inum < fscki->inum)
1855                         p = &(*p)->rb_left;
1856                 else if (inum > fscki->inum)
1857                         p = &(*p)->rb_right;
1858                 else
1859                         return fscki;
1860         }
1861
1862         if (inum > c->highest_inum) {
1863                 ubifs_err(c, "too high inode number, max. is %lu",
1864                           (unsigned long)c->highest_inum);
1865                 return ERR_PTR(-EINVAL);
1866         }
1867
1868         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1869         if (!fscki)
1870                 return ERR_PTR(-ENOMEM);
1871
1872         inode = ilookup(c->vfs_sb, inum);
1873
1874         fscki->inum = inum;
1875         /*
1876          * If the inode is present in the VFS inode cache, use it instead of
1877          * the on-flash inode which might be out-of-date. E.g., the size might
1878          * be out-of-date. If we do not do this, the following may happen, for
1879          * example:
1880          *   1. A power cut happens
1881          *   2. We mount the file-system R/O, the replay process fixes up the
1882          *      inode size in the VFS cache, but on on-flash.
1883          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1884          *      size.
1885          */
1886         if (!inode) {
1887                 fscki->nlink = le32_to_cpu(ino->nlink);
1888                 fscki->size = le64_to_cpu(ino->size);
1889                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1890                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1891                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1892                 fscki->mode = le32_to_cpu(ino->mode);
1893         } else {
1894                 ui = ubifs_inode(inode);
1895                 fscki->nlink = inode->i_nlink;
1896                 fscki->size = inode->i_size;
1897                 fscki->xattr_cnt = ui->xattr_cnt;
1898                 fscki->xattr_sz = ui->xattr_size;
1899                 fscki->xattr_nms = ui->xattr_names;
1900                 fscki->mode = inode->i_mode;
1901                 iput(inode);
1902         }
1903
1904         if (S_ISDIR(fscki->mode)) {
1905                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1906                 fscki->calc_cnt = 2;
1907         }
1908
1909         rb_link_node(&fscki->rb, parent, p);
1910         rb_insert_color(&fscki->rb, &fsckd->inodes);
1911
1912         return fscki;
1913 }
1914
1915 /**
1916  * search_inode - search inode in the RB-tree of inodes.
1917  * @fsckd: FS checking information
1918  * @inum: inode number to search
1919  *
1920  * This is a helper function for 'check_leaf()' which searches inode @inum in
1921  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1922  * the inode was not found.
1923  */
1924 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1925 {
1926         struct rb_node *p;
1927         struct fsck_inode *fscki;
1928
1929         p = fsckd->inodes.rb_node;
1930         while (p) {
1931                 fscki = rb_entry(p, struct fsck_inode, rb);
1932                 if (inum < fscki->inum)
1933                         p = p->rb_left;
1934                 else if (inum > fscki->inum)
1935                         p = p->rb_right;
1936                 else
1937                         return fscki;
1938         }
1939         return NULL;
1940 }
1941
1942 /**
1943  * read_add_inode - read inode node and add it to RB-tree of inodes.
1944  * @c: UBIFS file-system description object
1945  * @fsckd: FS checking information
1946  * @inum: inode number to read
1947  *
1948  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1949  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1950  * information pointer in case of success and a negative error code in case of
1951  * failure.
1952  */
1953 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1954                                          struct fsck_data *fsckd, ino_t inum)
1955 {
1956         int n, err;
1957         union ubifs_key key;
1958         struct ubifs_znode *znode;
1959         struct ubifs_zbranch *zbr;
1960         struct ubifs_ino_node *ino;
1961         struct fsck_inode *fscki;
1962
1963         fscki = search_inode(fsckd, inum);
1964         if (fscki)
1965                 return fscki;
1966
1967         ino_key_init(c, &key, inum);
1968         err = ubifs_lookup_level0(c, &key, &znode, &n);
1969         if (!err) {
1970                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1971                 return ERR_PTR(-ENOENT);
1972         } else if (err < 0) {
1973                 ubifs_err(c, "error %d while looking up inode %lu",
1974                           err, (unsigned long)inum);
1975                 return ERR_PTR(err);
1976         }
1977
1978         zbr = &znode->zbranch[n];
1979         if (zbr->len < UBIFS_INO_NODE_SZ) {
1980                 ubifs_err(c, "bad node %lu node length %d",
1981                           (unsigned long)inum, zbr->len);
1982                 return ERR_PTR(-EINVAL);
1983         }
1984
1985         ino = kmalloc(zbr->len, GFP_NOFS);
1986         if (!ino)
1987                 return ERR_PTR(-ENOMEM);
1988
1989         err = ubifs_tnc_read_node(c, zbr, ino);
1990         if (err) {
1991                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1992                           zbr->lnum, zbr->offs, err);
1993                 kfree(ino);
1994                 return ERR_PTR(err);
1995         }
1996
1997         fscki = add_inode(c, fsckd, ino);
1998         kfree(ino);
1999         if (IS_ERR(fscki)) {
2000                 ubifs_err(c, "error %ld while adding inode %lu node",
2001                           PTR_ERR(fscki), (unsigned long)inum);
2002                 return fscki;
2003         }
2004
2005         return fscki;
2006 }
2007
2008 /**
2009  * check_leaf - check leaf node.
2010  * @c: UBIFS file-system description object
2011  * @zbr: zbranch of the leaf node to check
2012  * @priv: FS checking information
2013  *
2014  * This is a helper function for 'dbg_check_filesystem()' which is called for
2015  * every single leaf node while walking the indexing tree. It checks that the
2016  * leaf node referred from the indexing tree exists, has correct CRC, and does
2017  * some other basic validation. This function is also responsible for building
2018  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2019  * calculates reference count, size, etc for each inode in order to later
2020  * compare them to the information stored inside the inodes and detect possible
2021  * inconsistencies. Returns zero in case of success and a negative error code
2022  * in case of failure.
2023  */
2024 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2025                       void *priv)
2026 {
2027         ino_t inum;
2028         void *node;
2029         struct ubifs_ch *ch;
2030         int err, type = key_type(c, &zbr->key);
2031         struct fsck_inode *fscki;
2032
2033         if (zbr->len < UBIFS_CH_SZ) {
2034                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2035                           zbr->len, zbr->lnum, zbr->offs);
2036                 return -EINVAL;
2037         }
2038
2039         node = kmalloc(zbr->len, GFP_NOFS);
2040         if (!node)
2041                 return -ENOMEM;
2042
2043         err = ubifs_tnc_read_node(c, zbr, node);
2044         if (err) {
2045                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2046                           zbr->lnum, zbr->offs, err);
2047                 goto out_free;
2048         }
2049
2050         /* If this is an inode node, add it to RB-tree of inodes */
2051         if (type == UBIFS_INO_KEY) {
2052                 fscki = add_inode(c, priv, node);
2053                 if (IS_ERR(fscki)) {
2054                         err = PTR_ERR(fscki);
2055                         ubifs_err(c, "error %d while adding inode node", err);
2056                         goto out_dump;
2057                 }
2058                 goto out;
2059         }
2060
2061         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2062             type != UBIFS_DATA_KEY) {
2063                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2064                           type, zbr->lnum, zbr->offs);
2065                 err = -EINVAL;
2066                 goto out_free;
2067         }
2068
2069         ch = node;
2070         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2071                 ubifs_err(c, "too high sequence number, max. is %llu",
2072                           c->max_sqnum);
2073                 err = -EINVAL;
2074                 goto out_dump;
2075         }
2076
2077         if (type == UBIFS_DATA_KEY) {
2078                 long long blk_offs;
2079                 struct ubifs_data_node *dn = node;
2080
2081                 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2082
2083                 /*
2084                  * Search the inode node this data node belongs to and insert
2085                  * it to the RB-tree of inodes.
2086                  */
2087                 inum = key_inum_flash(c, &dn->key);
2088                 fscki = read_add_inode(c, priv, inum);
2089                 if (IS_ERR(fscki)) {
2090                         err = PTR_ERR(fscki);
2091                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2092                                   err, (unsigned long)inum);
2093                         goto out_dump;
2094                 }
2095
2096                 /* Make sure the data node is within inode size */
2097                 blk_offs = key_block_flash(c, &dn->key);
2098                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2099                 blk_offs += le32_to_cpu(dn->size);
2100                 if (blk_offs > fscki->size) {
2101                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2102                                   zbr->lnum, zbr->offs, fscki->size);
2103                         err = -EINVAL;
2104                         goto out_dump;
2105                 }
2106         } else {
2107                 int nlen;
2108                 struct ubifs_dent_node *dent = node;
2109                 struct fsck_inode *fscki1;
2110
2111                 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2112
2113                 err = ubifs_validate_entry(c, dent);
2114                 if (err)
2115                         goto out_dump;
2116
2117                 /*
2118                  * Search the inode node this entry refers to and the parent
2119                  * inode node and insert them to the RB-tree of inodes.
2120                  */
2121                 inum = le64_to_cpu(dent->inum);
2122                 fscki = read_add_inode(c, priv, inum);
2123                 if (IS_ERR(fscki)) {
2124                         err = PTR_ERR(fscki);
2125                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2126                                   err, (unsigned long)inum);
2127                         goto out_dump;
2128                 }
2129
2130                 /* Count how many direntries or xentries refers this inode */
2131                 fscki->references += 1;
2132
2133                 inum = key_inum_flash(c, &dent->key);
2134                 fscki1 = read_add_inode(c, priv, inum);
2135                 if (IS_ERR(fscki1)) {
2136                         err = PTR_ERR(fscki1);
2137                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2138                                   err, (unsigned long)inum);
2139                         goto out_dump;
2140                 }
2141
2142                 nlen = le16_to_cpu(dent->nlen);
2143                 if (type == UBIFS_XENT_KEY) {
2144                         fscki1->calc_xcnt += 1;
2145                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2146                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2147                         fscki1->calc_xnms += nlen;
2148                 } else {
2149                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2150                         if (dent->type == UBIFS_ITYPE_DIR)
2151                                 fscki1->calc_cnt += 1;
2152                 }
2153         }
2154
2155 out:
2156         kfree(node);
2157         return 0;
2158
2159 out_dump:
2160         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2161         ubifs_dump_node(c, node);
2162 out_free:
2163         kfree(node);
2164         return err;
2165 }
2166
2167 /**
2168  * free_inodes - free RB-tree of inodes.
2169  * @fsckd: FS checking information
2170  */
2171 static void free_inodes(struct fsck_data *fsckd)
2172 {
2173         struct fsck_inode *fscki, *n;
2174
2175         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2176                 kfree(fscki);
2177 }
2178
2179 /**
2180  * check_inodes - checks all inodes.
2181  * @c: UBIFS file-system description object
2182  * @fsckd: FS checking information
2183  *
2184  * This is a helper function for 'dbg_check_filesystem()' which walks the
2185  * RB-tree of inodes after the index scan has been finished, and checks that
2186  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2187  * %-EINVAL if not, and a negative error code in case of failure.
2188  */
2189 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2190 {
2191         int n, err;
2192         union ubifs_key key;
2193         struct ubifs_znode *znode;
2194         struct ubifs_zbranch *zbr;
2195         struct ubifs_ino_node *ino;
2196         struct fsck_inode *fscki;
2197         struct rb_node *this = rb_first(&fsckd->inodes);
2198
2199         while (this) {
2200                 fscki = rb_entry(this, struct fsck_inode, rb);
2201                 this = rb_next(this);
2202
2203                 if (S_ISDIR(fscki->mode)) {
2204                         /*
2205                          * Directories have to have exactly one reference (they
2206                          * cannot have hardlinks), although root inode is an
2207                          * exception.
2208                          */
2209                         if (fscki->inum != UBIFS_ROOT_INO &&
2210                             fscki->references != 1) {
2211                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2212                                           (unsigned long)fscki->inum,
2213                                           fscki->references);
2214                                 goto out_dump;
2215                         }
2216                         if (fscki->inum == UBIFS_ROOT_INO &&
2217                             fscki->references != 0) {
2218                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2219                                           (unsigned long)fscki->inum,
2220                                           fscki->references);
2221                                 goto out_dump;
2222                         }
2223                         if (fscki->calc_sz != fscki->size) {
2224                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2225                                           (unsigned long)fscki->inum,
2226                                           fscki->size, fscki->calc_sz);
2227                                 goto out_dump;
2228                         }
2229                         if (fscki->calc_cnt != fscki->nlink) {
2230                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2231                                           (unsigned long)fscki->inum,
2232                                           fscki->nlink, fscki->calc_cnt);
2233                                 goto out_dump;
2234                         }
2235                 } else {
2236                         if (fscki->references != fscki->nlink) {
2237                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2238                                           (unsigned long)fscki->inum,
2239                                           fscki->nlink, fscki->references);
2240                                 goto out_dump;
2241                         }
2242                 }
2243                 if (fscki->xattr_sz != fscki->calc_xsz) {
2244                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2245                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2246                                   fscki->calc_xsz);
2247                         goto out_dump;
2248                 }
2249                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2250                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2251                                   (unsigned long)fscki->inum,
2252                                   fscki->xattr_cnt, fscki->calc_xcnt);
2253                         goto out_dump;
2254                 }
2255                 if (fscki->xattr_nms != fscki->calc_xnms) {
2256                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2257                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2258                                   fscki->calc_xnms);
2259                         goto out_dump;
2260                 }
2261         }
2262
2263         return 0;
2264
2265 out_dump:
2266         /* Read the bad inode and dump it */
2267         ino_key_init(c, &key, fscki->inum);
2268         err = ubifs_lookup_level0(c, &key, &znode, &n);
2269         if (!err) {
2270                 ubifs_err(c, "inode %lu not found in index",
2271                           (unsigned long)fscki->inum);
2272                 return -ENOENT;
2273         } else if (err < 0) {
2274                 ubifs_err(c, "error %d while looking up inode %lu",
2275                           err, (unsigned long)fscki->inum);
2276                 return err;
2277         }
2278
2279         zbr = &znode->zbranch[n];
2280         ino = kmalloc(zbr->len, GFP_NOFS);
2281         if (!ino)
2282                 return -ENOMEM;
2283
2284         err = ubifs_tnc_read_node(c, zbr, ino);
2285         if (err) {
2286                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2287                           zbr->lnum, zbr->offs, err);
2288                 kfree(ino);
2289                 return err;
2290         }
2291
2292         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2293                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2294         ubifs_dump_node(c, ino);
2295         kfree(ino);
2296         return -EINVAL;
2297 }
2298
2299 /**
2300  * dbg_check_filesystem - check the file-system.
2301  * @c: UBIFS file-system description object
2302  *
2303  * This function checks the file system, namely:
2304  * o makes sure that all leaf nodes exist and their CRCs are correct;
2305  * o makes sure inode nlink, size, xattr size/count are correct (for all
2306  *   inodes).
2307  *
2308  * The function reads whole indexing tree and all nodes, so it is pretty
2309  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2310  * not, and a negative error code in case of failure.
2311  */
2312 int dbg_check_filesystem(struct ubifs_info *c)
2313 {
2314         int err;
2315         struct fsck_data fsckd;
2316
2317         if (!dbg_is_chk_fs(c))
2318                 return 0;
2319
2320         fsckd.inodes = RB_ROOT;
2321         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2322         if (err)
2323                 goto out_free;
2324
2325         err = check_inodes(c, &fsckd);
2326         if (err)
2327                 goto out_free;
2328
2329         free_inodes(&fsckd);
2330         return 0;
2331
2332 out_free:
2333         ubifs_err(c, "file-system check failed with error %d", err);
2334         dump_stack();
2335         free_inodes(&fsckd);
2336         return err;
2337 }
2338
2339 /**
2340  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2341  * @c: UBIFS file-system description object
2342  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2343  *
2344  * This function returns zero if the list of data nodes is sorted correctly,
2345  * and %-EINVAL if not.
2346  */
2347 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2348 {
2349         struct list_head *cur;
2350         struct ubifs_scan_node *sa, *sb;
2351
2352         if (!dbg_is_chk_gen(c))
2353                 return 0;
2354
2355         for (cur = head->next; cur->next != head; cur = cur->next) {
2356                 ino_t inuma, inumb;
2357                 uint32_t blka, blkb;
2358
2359                 cond_resched();
2360                 sa = container_of(cur, struct ubifs_scan_node, list);
2361                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2362
2363                 if (sa->type != UBIFS_DATA_NODE) {
2364                         ubifs_err(c, "bad node type %d", sa->type);
2365                         ubifs_dump_node(c, sa->node);
2366                         return -EINVAL;
2367                 }
2368                 if (sb->type != UBIFS_DATA_NODE) {
2369                         ubifs_err(c, "bad node type %d", sb->type);
2370                         ubifs_dump_node(c, sb->node);
2371                         return -EINVAL;
2372                 }
2373
2374                 inuma = key_inum(c, &sa->key);
2375                 inumb = key_inum(c, &sb->key);
2376
2377                 if (inuma < inumb)
2378                         continue;
2379                 if (inuma > inumb) {
2380                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2381                                   (unsigned long)inuma, (unsigned long)inumb);
2382                         goto error_dump;
2383                 }
2384
2385                 blka = key_block(c, &sa->key);
2386                 blkb = key_block(c, &sb->key);
2387
2388                 if (blka > blkb) {
2389                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2390                         goto error_dump;
2391                 }
2392                 if (blka == blkb) {
2393                         ubifs_err(c, "two data nodes for the same block");
2394                         goto error_dump;
2395                 }
2396         }
2397
2398         return 0;
2399
2400 error_dump:
2401         ubifs_dump_node(c, sa->node);
2402         ubifs_dump_node(c, sb->node);
2403         return -EINVAL;
2404 }
2405
2406 /**
2407  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2408  * @c: UBIFS file-system description object
2409  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2410  *
2411  * This function returns zero if the list of non-data nodes is sorted correctly,
2412  * and %-EINVAL if not.
2413  */
2414 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2415 {
2416         struct list_head *cur;
2417         struct ubifs_scan_node *sa, *sb;
2418
2419         if (!dbg_is_chk_gen(c))
2420                 return 0;
2421
2422         for (cur = head->next; cur->next != head; cur = cur->next) {
2423                 ino_t inuma, inumb;
2424                 uint32_t hasha, hashb;
2425
2426                 cond_resched();
2427                 sa = container_of(cur, struct ubifs_scan_node, list);
2428                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2429
2430                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2431                     sa->type != UBIFS_XENT_NODE) {
2432                         ubifs_err(c, "bad node type %d", sa->type);
2433                         ubifs_dump_node(c, sa->node);
2434                         return -EINVAL;
2435                 }
2436                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2437                     sa->type != UBIFS_XENT_NODE) {
2438                         ubifs_err(c, "bad node type %d", sb->type);
2439                         ubifs_dump_node(c, sb->node);
2440                         return -EINVAL;
2441                 }
2442
2443                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2444                         ubifs_err(c, "non-inode node goes before inode node");
2445                         goto error_dump;
2446                 }
2447
2448                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2449                         continue;
2450
2451                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2452                         /* Inode nodes are sorted in descending size order */
2453                         if (sa->len < sb->len) {
2454                                 ubifs_err(c, "smaller inode node goes first");
2455                                 goto error_dump;
2456                         }
2457                         continue;
2458                 }
2459
2460                 /*
2461                  * This is either a dentry or xentry, which should be sorted in
2462                  * ascending (parent ino, hash) order.
2463                  */
2464                 inuma = key_inum(c, &sa->key);
2465                 inumb = key_inum(c, &sb->key);
2466
2467                 if (inuma < inumb)
2468                         continue;
2469                 if (inuma > inumb) {
2470                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2471                                   (unsigned long)inuma, (unsigned long)inumb);
2472                         goto error_dump;
2473                 }
2474
2475                 hasha = key_block(c, &sa->key);
2476                 hashb = key_block(c, &sb->key);
2477
2478                 if (hasha > hashb) {
2479                         ubifs_err(c, "larger hash %u goes before %u",
2480                                   hasha, hashb);
2481                         goto error_dump;
2482                 }
2483         }
2484
2485         return 0;
2486
2487 error_dump:
2488         ubifs_msg(c, "dumping first node");
2489         ubifs_dump_node(c, sa->node);
2490         ubifs_msg(c, "dumping second node");
2491         ubifs_dump_node(c, sb->node);
2492         return -EINVAL;
2493         return 0;
2494 }
2495
2496 static inline int chance(unsigned int n, unsigned int out_of)
2497 {
2498         return !!((prandom_u32() % out_of) + 1 <= n);
2499
2500 }
2501
2502 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2503 {
2504         struct ubifs_debug_info *d = c->dbg;
2505
2506         ubifs_assert(dbg_is_tst_rcvry(c));
2507
2508         if (!d->pc_cnt) {
2509                 /* First call - decide delay to the power cut */
2510                 if (chance(1, 2)) {
2511                         unsigned long delay;
2512
2513                         if (chance(1, 2)) {
2514                                 d->pc_delay = 1;
2515                                 /* Fail within 1 minute */
2516                                 delay = prandom_u32() % 60000;
2517                                 d->pc_timeout = jiffies;
2518                                 d->pc_timeout += msecs_to_jiffies(delay);
2519                                 ubifs_warn(c, "failing after %lums", delay);
2520                         } else {
2521                                 d->pc_delay = 2;
2522                                 delay = prandom_u32() % 10000;
2523                                 /* Fail within 10000 operations */
2524                                 d->pc_cnt_max = delay;
2525                                 ubifs_warn(c, "failing after %lu calls", delay);
2526                         }
2527                 }
2528
2529                 d->pc_cnt += 1;
2530         }
2531
2532         /* Determine if failure delay has expired */
2533         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2534                         return 0;
2535         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2536                         return 0;
2537
2538         if (lnum == UBIFS_SB_LNUM) {
2539                 if (write && chance(1, 2))
2540                         return 0;
2541                 if (chance(19, 20))
2542                         return 0;
2543                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2544         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2545                 if (chance(19, 20))
2546                         return 0;
2547                 ubifs_warn(c, "failing in master LEB %d", lnum);
2548         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2549                 if (write && chance(99, 100))
2550                         return 0;
2551                 if (chance(399, 400))
2552                         return 0;
2553                 ubifs_warn(c, "failing in log LEB %d", lnum);
2554         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2555                 if (write && chance(7, 8))
2556                         return 0;
2557                 if (chance(19, 20))
2558                         return 0;
2559                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2560         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2561                 if (write && chance(1, 2))
2562                         return 0;
2563                 if (chance(9, 10))
2564                         return 0;
2565                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2566         } else if (lnum == c->ihead_lnum) {
2567                 if (chance(99, 100))
2568                         return 0;
2569                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2570         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2571                 if (chance(9, 10))
2572                         return 0;
2573                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2574         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2575                    !ubifs_search_bud(c, lnum)) {
2576                 if (chance(19, 20))
2577                         return 0;
2578                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2579         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2580                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2581                 if (chance(999, 1000))
2582                         return 0;
2583                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2584         } else {
2585                 if (chance(9999, 10000))
2586                         return 0;
2587                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2588         }
2589
2590         d->pc_happened = 1;
2591         ubifs_warn(c, "========== Power cut emulated ==========");
2592         dump_stack();
2593         return 1;
2594 }
2595
2596 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2597                         unsigned int len)
2598 {
2599         unsigned int from, to, ffs = chance(1, 2);
2600         unsigned char *p = (void *)buf;
2601
2602         from = prandom_u32() % len;
2603         /* Corruption span max to end of write unit */
2604         to = min(len, ALIGN(from + 1, c->max_write_size));
2605
2606         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2607                    ffs ? "0xFFs" : "random data");
2608
2609         if (ffs)
2610                 memset(p + from, 0xFF, to - from);
2611         else
2612                 prandom_bytes(p + from, to - from);
2613
2614         return to;
2615 }
2616
2617 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2618                   int offs, int len)
2619 {
2620         int err, failing;
2621
2622         if (c->dbg->pc_happened)
2623                 return -EROFS;
2624
2625         failing = power_cut_emulated(c, lnum, 1);
2626         if (failing) {
2627                 len = corrupt_data(c, buf, len);
2628                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2629                            len, lnum, offs);
2630         }
2631         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2632         if (err)
2633                 return err;
2634         if (failing)
2635                 return -EROFS;
2636         return 0;
2637 }
2638
2639 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2640                    int len)
2641 {
2642         int err;
2643
2644         if (c->dbg->pc_happened)
2645                 return -EROFS;
2646         if (power_cut_emulated(c, lnum, 1))
2647                 return -EROFS;
2648         err = ubi_leb_change(c->ubi, lnum, buf, len);
2649         if (err)
2650                 return err;
2651         if (power_cut_emulated(c, lnum, 1))
2652                 return -EROFS;
2653         return 0;
2654 }
2655
2656 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2657 {
2658         int err;
2659
2660         if (c->dbg->pc_happened)
2661                 return -EROFS;
2662         if (power_cut_emulated(c, lnum, 0))
2663                 return -EROFS;
2664         err = ubi_leb_unmap(c->ubi, lnum);
2665         if (err)
2666                 return err;
2667         if (power_cut_emulated(c, lnum, 0))
2668                 return -EROFS;
2669         return 0;
2670 }
2671
2672 int dbg_leb_map(struct ubifs_info *c, int lnum)
2673 {
2674         int err;
2675
2676         if (c->dbg->pc_happened)
2677                 return -EROFS;
2678         if (power_cut_emulated(c, lnum, 0))
2679                 return -EROFS;
2680         err = ubi_leb_map(c->ubi, lnum);
2681         if (err)
2682                 return err;
2683         if (power_cut_emulated(c, lnum, 0))
2684                 return -EROFS;
2685         return 0;
2686 }
2687
2688 /*
2689  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2690  * contain the stuff specific to particular file-system mounts.
2691  */
2692 static struct dentry *dfs_rootdir;
2693
2694 static int dfs_file_open(struct inode *inode, struct file *file)
2695 {
2696         file->private_data = inode->i_private;
2697         return nonseekable_open(inode, file);
2698 }
2699
2700 /**
2701  * provide_user_output - provide output to the user reading a debugfs file.
2702  * @val: boolean value for the answer
2703  * @u: the buffer to store the answer at
2704  * @count: size of the buffer
2705  * @ppos: position in the @u output buffer
2706  *
2707  * This is a simple helper function which stores @val boolean value in the user
2708  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2709  * bytes written to @u in case of success and a negative error code in case of
2710  * failure.
2711  */
2712 static int provide_user_output(int val, char __user *u, size_t count,
2713                                loff_t *ppos)
2714 {
2715         char buf[3];
2716
2717         if (val)
2718                 buf[0] = '1';
2719         else
2720                 buf[0] = '0';
2721         buf[1] = '\n';
2722         buf[2] = 0x00;
2723
2724         return simple_read_from_buffer(u, count, ppos, buf, 2);
2725 }
2726
2727 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2728                              loff_t *ppos)
2729 {
2730         struct dentry *dent = file->f_path.dentry;
2731         struct ubifs_info *c = file->private_data;
2732         struct ubifs_debug_info *d = c->dbg;
2733         int val;
2734
2735         if (dent == d->dfs_chk_gen)
2736                 val = d->chk_gen;
2737         else if (dent == d->dfs_chk_index)
2738                 val = d->chk_index;
2739         else if (dent == d->dfs_chk_orph)
2740                 val = d->chk_orph;
2741         else if (dent == d->dfs_chk_lprops)
2742                 val = d->chk_lprops;
2743         else if (dent == d->dfs_chk_fs)
2744                 val = d->chk_fs;
2745         else if (dent == d->dfs_tst_rcvry)
2746                 val = d->tst_rcvry;
2747         else if (dent == d->dfs_ro_error)
2748                 val = c->ro_error;
2749         else
2750                 return -EINVAL;
2751
2752         return provide_user_output(val, u, count, ppos);
2753 }
2754
2755 /**
2756  * interpret_user_input - interpret user debugfs file input.
2757  * @u: user-provided buffer with the input
2758  * @count: buffer size
2759  *
2760  * This is a helper function which interpret user input to a boolean UBIFS
2761  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2762  * in case of failure.
2763  */
2764 static int interpret_user_input(const char __user *u, size_t count)
2765 {
2766         size_t buf_size;
2767         char buf[8];
2768
2769         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2770         if (copy_from_user(buf, u, buf_size))
2771                 return -EFAULT;
2772
2773         if (buf[0] == '1')
2774                 return 1;
2775         else if (buf[0] == '0')
2776                 return 0;
2777
2778         return -EINVAL;
2779 }
2780
2781 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2782                               size_t count, loff_t *ppos)
2783 {
2784         struct ubifs_info *c = file->private_data;
2785         struct ubifs_debug_info *d = c->dbg;
2786         struct dentry *dent = file->f_path.dentry;
2787         int val;
2788
2789         /*
2790          * TODO: this is racy - the file-system might have already been
2791          * unmounted and we'd oops in this case. The plan is to fix it with
2792          * help of 'iterate_supers_type()' which we should have in v3.0: when
2793          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2794          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2795          * superblocks and fine the one with the same UUID, and take the
2796          * locking right.
2797          *
2798          * The other way to go suggested by Al Viro is to create a separate
2799          * 'ubifs-debug' file-system instead.
2800          */
2801         if (file->f_path.dentry == d->dfs_dump_lprops) {
2802                 ubifs_dump_lprops(c);
2803                 return count;
2804         }
2805         if (file->f_path.dentry == d->dfs_dump_budg) {
2806                 ubifs_dump_budg(c, &c->bi);
2807                 return count;
2808         }
2809         if (file->f_path.dentry == d->dfs_dump_tnc) {
2810                 mutex_lock(&c->tnc_mutex);
2811                 ubifs_dump_tnc(c);
2812                 mutex_unlock(&c->tnc_mutex);
2813                 return count;
2814         }
2815
2816         val = interpret_user_input(u, count);
2817         if (val < 0)
2818                 return val;
2819
2820         if (dent == d->dfs_chk_gen)
2821                 d->chk_gen = val;
2822         else if (dent == d->dfs_chk_index)
2823                 d->chk_index = val;
2824         else if (dent == d->dfs_chk_orph)
2825                 d->chk_orph = val;
2826         else if (dent == d->dfs_chk_lprops)
2827                 d->chk_lprops = val;
2828         else if (dent == d->dfs_chk_fs)
2829                 d->chk_fs = val;
2830         else if (dent == d->dfs_tst_rcvry)
2831                 d->tst_rcvry = val;
2832         else if (dent == d->dfs_ro_error)
2833                 c->ro_error = !!val;
2834         else
2835                 return -EINVAL;
2836
2837         return count;
2838 }
2839
2840 static const struct file_operations dfs_fops = {
2841         .open = dfs_file_open,
2842         .read = dfs_file_read,
2843         .write = dfs_file_write,
2844         .owner = THIS_MODULE,
2845         .llseek = no_llseek,
2846 };
2847
2848 /**
2849  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2850  * @c: UBIFS file-system description object
2851  *
2852  * This function creates all debugfs files for this instance of UBIFS. Returns
2853  * zero in case of success and a negative error code in case of failure.
2854  *
2855  * Note, the only reason we have not merged this function with the
2856  * 'ubifs_debugging_init()' function is because it is better to initialize
2857  * debugfs interfaces at the very end of the mount process, and remove them at
2858  * the very beginning of the mount process.
2859  */
2860 int dbg_debugfs_init_fs(struct ubifs_info *c)
2861 {
2862         int err, n;
2863         const char *fname;
2864         struct dentry *dent;
2865         struct ubifs_debug_info *d = c->dbg;
2866
2867         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2868                 return 0;
2869
2870         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2871                      c->vi.ubi_num, c->vi.vol_id);
2872         if (n == UBIFS_DFS_DIR_LEN) {
2873                 /* The array size is too small */
2874                 fname = UBIFS_DFS_DIR_NAME;
2875                 dent = ERR_PTR(-EINVAL);
2876                 goto out;
2877         }
2878
2879         fname = d->dfs_dir_name;
2880         dent = debugfs_create_dir(fname, dfs_rootdir);
2881         if (IS_ERR_OR_NULL(dent))
2882                 goto out;
2883         d->dfs_dir = dent;
2884
2885         fname = "dump_lprops";
2886         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2887         if (IS_ERR_OR_NULL(dent))
2888                 goto out_remove;
2889         d->dfs_dump_lprops = dent;
2890
2891         fname = "dump_budg";
2892         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2893         if (IS_ERR_OR_NULL(dent))
2894                 goto out_remove;
2895         d->dfs_dump_budg = dent;
2896
2897         fname = "dump_tnc";
2898         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2899         if (IS_ERR_OR_NULL(dent))
2900                 goto out_remove;
2901         d->dfs_dump_tnc = dent;
2902
2903         fname = "chk_general";
2904         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2905                                    &dfs_fops);
2906         if (IS_ERR_OR_NULL(dent))
2907                 goto out_remove;
2908         d->dfs_chk_gen = dent;
2909
2910         fname = "chk_index";
2911         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2912                                    &dfs_fops);
2913         if (IS_ERR_OR_NULL(dent))
2914                 goto out_remove;
2915         d->dfs_chk_index = dent;
2916
2917         fname = "chk_orphans";
2918         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2919                                    &dfs_fops);
2920         if (IS_ERR_OR_NULL(dent))
2921                 goto out_remove;
2922         d->dfs_chk_orph = dent;
2923
2924         fname = "chk_lprops";
2925         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2926                                    &dfs_fops);
2927         if (IS_ERR_OR_NULL(dent))
2928                 goto out_remove;
2929         d->dfs_chk_lprops = dent;
2930
2931         fname = "chk_fs";
2932         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2933                                    &dfs_fops);
2934         if (IS_ERR_OR_NULL(dent))
2935                 goto out_remove;
2936         d->dfs_chk_fs = dent;
2937
2938         fname = "tst_recovery";
2939         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940                                    &dfs_fops);
2941         if (IS_ERR_OR_NULL(dent))
2942                 goto out_remove;
2943         d->dfs_tst_rcvry = dent;
2944
2945         fname = "ro_error";
2946         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947                                    &dfs_fops);
2948         if (IS_ERR_OR_NULL(dent))
2949                 goto out_remove;
2950         d->dfs_ro_error = dent;
2951
2952         return 0;
2953
2954 out_remove:
2955         debugfs_remove_recursive(d->dfs_dir);
2956 out:
2957         err = dent ? PTR_ERR(dent) : -ENODEV;
2958         ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2959                   fname, err);
2960         return err;
2961 }
2962
2963 /**
2964  * dbg_debugfs_exit_fs - remove all debugfs files.
2965  * @c: UBIFS file-system description object
2966  */
2967 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2968 {
2969         if (IS_ENABLED(CONFIG_DEBUG_FS))
2970                 debugfs_remove_recursive(c->dbg->dfs_dir);
2971 }
2972
2973 struct ubifs_global_debug_info ubifs_dbg;
2974
2975 static struct dentry *dfs_chk_gen;
2976 static struct dentry *dfs_chk_index;
2977 static struct dentry *dfs_chk_orph;
2978 static struct dentry *dfs_chk_lprops;
2979 static struct dentry *dfs_chk_fs;
2980 static struct dentry *dfs_tst_rcvry;
2981
2982 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2983                                     size_t count, loff_t *ppos)
2984 {
2985         struct dentry *dent = file->f_path.dentry;
2986         int val;
2987
2988         if (dent == dfs_chk_gen)
2989                 val = ubifs_dbg.chk_gen;
2990         else if (dent == dfs_chk_index)
2991                 val = ubifs_dbg.chk_index;
2992         else if (dent == dfs_chk_orph)
2993                 val = ubifs_dbg.chk_orph;
2994         else if (dent == dfs_chk_lprops)
2995                 val = ubifs_dbg.chk_lprops;
2996         else if (dent == dfs_chk_fs)
2997                 val = ubifs_dbg.chk_fs;
2998         else if (dent == dfs_tst_rcvry)
2999                 val = ubifs_dbg.tst_rcvry;
3000         else
3001                 return -EINVAL;
3002
3003         return provide_user_output(val, u, count, ppos);
3004 }
3005
3006 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3007                                      size_t count, loff_t *ppos)
3008 {
3009         struct dentry *dent = file->f_path.dentry;
3010         int val;
3011
3012         val = interpret_user_input(u, count);
3013         if (val < 0)
3014                 return val;
3015
3016         if (dent == dfs_chk_gen)
3017                 ubifs_dbg.chk_gen = val;
3018         else if (dent == dfs_chk_index)
3019                 ubifs_dbg.chk_index = val;
3020         else if (dent == dfs_chk_orph)
3021                 ubifs_dbg.chk_orph = val;
3022         else if (dent == dfs_chk_lprops)
3023                 ubifs_dbg.chk_lprops = val;
3024         else if (dent == dfs_chk_fs)
3025                 ubifs_dbg.chk_fs = val;
3026         else if (dent == dfs_tst_rcvry)
3027                 ubifs_dbg.tst_rcvry = val;
3028         else
3029                 return -EINVAL;
3030
3031         return count;
3032 }
3033
3034 static const struct file_operations dfs_global_fops = {
3035         .read = dfs_global_file_read,
3036         .write = dfs_global_file_write,
3037         .owner = THIS_MODULE,
3038         .llseek = no_llseek,
3039 };
3040
3041 /**
3042  * dbg_debugfs_init - initialize debugfs file-system.
3043  *
3044  * UBIFS uses debugfs file-system to expose various debugging knobs to
3045  * user-space. This function creates "ubifs" directory in the debugfs
3046  * file-system. Returns zero in case of success and a negative error code in
3047  * case of failure.
3048  */
3049 int dbg_debugfs_init(void)
3050 {
3051         int err;
3052         const char *fname;
3053         struct dentry *dent;
3054
3055         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3056                 return 0;
3057
3058         fname = "ubifs";
3059         dent = debugfs_create_dir(fname, NULL);
3060         if (IS_ERR_OR_NULL(dent))
3061                 goto out;
3062         dfs_rootdir = dent;
3063
3064         fname = "chk_general";
3065         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3066                                    &dfs_global_fops);
3067         if (IS_ERR_OR_NULL(dent))
3068                 goto out_remove;
3069         dfs_chk_gen = dent;
3070
3071         fname = "chk_index";
3072         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3073                                    &dfs_global_fops);
3074         if (IS_ERR_OR_NULL(dent))
3075                 goto out_remove;
3076         dfs_chk_index = dent;
3077
3078         fname = "chk_orphans";
3079         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3080                                    &dfs_global_fops);
3081         if (IS_ERR_OR_NULL(dent))
3082                 goto out_remove;
3083         dfs_chk_orph = dent;
3084
3085         fname = "chk_lprops";
3086         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3087                                    &dfs_global_fops);
3088         if (IS_ERR_OR_NULL(dent))
3089                 goto out_remove;
3090         dfs_chk_lprops = dent;
3091
3092         fname = "chk_fs";
3093         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3094                                    &dfs_global_fops);
3095         if (IS_ERR_OR_NULL(dent))
3096                 goto out_remove;
3097         dfs_chk_fs = dent;
3098
3099         fname = "tst_recovery";
3100         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3101                                    &dfs_global_fops);
3102         if (IS_ERR_OR_NULL(dent))
3103                 goto out_remove;
3104         dfs_tst_rcvry = dent;
3105
3106         return 0;
3107
3108 out_remove:
3109         debugfs_remove_recursive(dfs_rootdir);
3110 out:
3111         err = dent ? PTR_ERR(dent) : -ENODEV;
3112         pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3113                current->pid, fname, err);
3114         return err;
3115 }
3116
3117 /**
3118  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3119  */
3120 void dbg_debugfs_exit(void)
3121 {
3122         if (IS_ENABLED(CONFIG_DEBUG_FS))
3123                 debugfs_remove_recursive(dfs_rootdir);
3124 }
3125
3126 /**
3127  * ubifs_debugging_init - initialize UBIFS debugging.
3128  * @c: UBIFS file-system description object
3129  *
3130  * This function initializes debugging-related data for the file system.
3131  * Returns zero in case of success and a negative error code in case of
3132  * failure.
3133  */
3134 int ubifs_debugging_init(struct ubifs_info *c)
3135 {
3136         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3137         if (!c->dbg)
3138                 return -ENOMEM;
3139
3140         return 0;
3141 }
3142
3143 /**
3144  * ubifs_debugging_exit - free debugging data.
3145  * @c: UBIFS file-system description object
3146  */
3147 void ubifs_debugging_exit(struct ubifs_info *c)
3148 {
3149         kfree(c->dbg);
3150 }
3151 #endif