Merge tag 'spi-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[platform/kernel/linux-starfive.git] / fs / ubifs / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25
26 static DEFINE_SPINLOCK(dbg_lock);
27
28 static const char *get_key_fmt(int fmt)
29 {
30         switch (fmt) {
31         case UBIFS_SIMPLE_KEY_FMT:
32                 return "simple";
33         default:
34                 return "unknown/invalid format";
35         }
36 }
37
38 static const char *get_key_hash(int hash)
39 {
40         switch (hash) {
41         case UBIFS_KEY_HASH_R5:
42                 return "R5";
43         case UBIFS_KEY_HASH_TEST:
44                 return "test";
45         default:
46                 return "unknown/invalid name hash";
47         }
48 }
49
50 static const char *get_key_type(int type)
51 {
52         switch (type) {
53         case UBIFS_INO_KEY:
54                 return "inode";
55         case UBIFS_DENT_KEY:
56                 return "direntry";
57         case UBIFS_XENT_KEY:
58                 return "xentry";
59         case UBIFS_DATA_KEY:
60                 return "data";
61         case UBIFS_TRUN_KEY:
62                 return "truncate";
63         default:
64                 return "unknown/invalid key";
65         }
66 }
67
68 static const char *get_dent_type(int type)
69 {
70         switch (type) {
71         case UBIFS_ITYPE_REG:
72                 return "file";
73         case UBIFS_ITYPE_DIR:
74                 return "dir";
75         case UBIFS_ITYPE_LNK:
76                 return "symlink";
77         case UBIFS_ITYPE_BLK:
78                 return "blkdev";
79         case UBIFS_ITYPE_CHR:
80                 return "char dev";
81         case UBIFS_ITYPE_FIFO:
82                 return "fifo";
83         case UBIFS_ITYPE_SOCK:
84                 return "socket";
85         default:
86                 return "unknown/invalid type";
87         }
88 }
89
90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91                              const union ubifs_key *key, char *buffer, int len)
92 {
93         char *p = buffer;
94         int type = key_type(c, key);
95
96         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97                 switch (type) {
98                 case UBIFS_INO_KEY:
99                         len -= snprintf(p, len, "(%lu, %s)",
100                                         (unsigned long)key_inum(c, key),
101                                         get_key_type(type));
102                         break;
103                 case UBIFS_DENT_KEY:
104                 case UBIFS_XENT_KEY:
105                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
106                                         (unsigned long)key_inum(c, key),
107                                         get_key_type(type), key_hash(c, key));
108                         break;
109                 case UBIFS_DATA_KEY:
110                         len -= snprintf(p, len, "(%lu, %s, %u)",
111                                         (unsigned long)key_inum(c, key),
112                                         get_key_type(type), key_block(c, key));
113                         break;
114                 case UBIFS_TRUN_KEY:
115                         len -= snprintf(p, len, "(%lu, %s)",
116                                         (unsigned long)key_inum(c, key),
117                                         get_key_type(type));
118                         break;
119                 default:
120                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121                                         key->u32[0], key->u32[1]);
122                 }
123         } else
124                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125         ubifs_assert(c, len > 0);
126         return p;
127 }
128
129 const char *dbg_ntype(int type)
130 {
131         switch (type) {
132         case UBIFS_PAD_NODE:
133                 return "padding node";
134         case UBIFS_SB_NODE:
135                 return "superblock node";
136         case UBIFS_MST_NODE:
137                 return "master node";
138         case UBIFS_REF_NODE:
139                 return "reference node";
140         case UBIFS_INO_NODE:
141                 return "inode node";
142         case UBIFS_DENT_NODE:
143                 return "direntry node";
144         case UBIFS_XENT_NODE:
145                 return "xentry node";
146         case UBIFS_DATA_NODE:
147                 return "data node";
148         case UBIFS_TRUN_NODE:
149                 return "truncate node";
150         case UBIFS_IDX_NODE:
151                 return "indexing node";
152         case UBIFS_CS_NODE:
153                 return "commit start node";
154         case UBIFS_ORPH_NODE:
155                 return "orphan node";
156         case UBIFS_AUTH_NODE:
157                 return "auth node";
158         default:
159                 return "unknown node";
160         }
161 }
162
163 static const char *dbg_gtype(int type)
164 {
165         switch (type) {
166         case UBIFS_NO_NODE_GROUP:
167                 return "no node group";
168         case UBIFS_IN_NODE_GROUP:
169                 return "in node group";
170         case UBIFS_LAST_OF_NODE_GROUP:
171                 return "last of node group";
172         default:
173                 return "unknown";
174         }
175 }
176
177 const char *dbg_cstate(int cmt_state)
178 {
179         switch (cmt_state) {
180         case COMMIT_RESTING:
181                 return "commit resting";
182         case COMMIT_BACKGROUND:
183                 return "background commit requested";
184         case COMMIT_REQUIRED:
185                 return "commit required";
186         case COMMIT_RUNNING_BACKGROUND:
187                 return "BACKGROUND commit running";
188         case COMMIT_RUNNING_REQUIRED:
189                 return "commit running and required";
190         case COMMIT_BROKEN:
191                 return "broken commit";
192         default:
193                 return "unknown commit state";
194         }
195 }
196
197 const char *dbg_jhead(int jhead)
198 {
199         switch (jhead) {
200         case GCHD:
201                 return "0 (GC)";
202         case BASEHD:
203                 return "1 (base)";
204         case DATAHD:
205                 return "2 (data)";
206         default:
207                 return "unknown journal head";
208         }
209 }
210
211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
214         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
215         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
216                dbg_ntype(ch->node_type));
217         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
218                dbg_gtype(ch->group_type));
219         pr_err("\tsqnum          %llu\n",
220                (unsigned long long)le64_to_cpu(ch->sqnum));
221         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223
224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226         const struct ubifs_inode *ui = ubifs_inode(inode);
227         struct fscrypt_name nm = {0};
228         union ubifs_key key;
229         struct ubifs_dent_node *dent, *pdent = NULL;
230         int count = 2;
231
232         pr_err("Dump in-memory inode:");
233         pr_err("\tinode          %lu\n", inode->i_ino);
234         pr_err("\tsize           %llu\n",
235                (unsigned long long)i_size_read(inode));
236         pr_err("\tnlink          %u\n", inode->i_nlink);
237         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
238         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
239         pr_err("\tatime          %u.%u\n",
240                (unsigned int)inode->i_atime.tv_sec,
241                (unsigned int)inode->i_atime.tv_nsec);
242         pr_err("\tmtime          %u.%u\n",
243                (unsigned int)inode->i_mtime.tv_sec,
244                (unsigned int)inode->i_mtime.tv_nsec);
245         pr_err("\tctime          %u.%u\n",
246                (unsigned int) inode_get_ctime(inode).tv_sec,
247                (unsigned int) inode_get_ctime(inode).tv_nsec);
248         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
249         pr_err("\txattr_size     %u\n", ui->xattr_size);
250         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
251         pr_err("\txattr_names    %u\n", ui->xattr_names);
252         pr_err("\tdirty          %u\n", ui->dirty);
253         pr_err("\txattr          %u\n", ui->xattr);
254         pr_err("\tbulk_read      %u\n", ui->bulk_read);
255         pr_err("\tsynced_i_size  %llu\n",
256                (unsigned long long)ui->synced_i_size);
257         pr_err("\tui_size        %llu\n",
258                (unsigned long long)ui->ui_size);
259         pr_err("\tflags          %d\n", ui->flags);
260         pr_err("\tcompr_type     %d\n", ui->compr_type);
261         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
263         pr_err("\tdata_len       %d\n", ui->data_len);
264
265         if (!S_ISDIR(inode->i_mode))
266                 return;
267
268         pr_err("List of directory entries:\n");
269         ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271         lowest_dent_key(c, &key, inode->i_ino);
272         while (1) {
273                 dent = ubifs_tnc_next_ent(c, &key, &nm);
274                 if (IS_ERR(dent)) {
275                         if (PTR_ERR(dent) != -ENOENT)
276                                 pr_err("error %ld\n", PTR_ERR(dent));
277                         break;
278                 }
279
280                 pr_err("\t%d: inode %llu, type %s, len %d\n",
281                        count++, (unsigned long long) le64_to_cpu(dent->inum),
282                        get_dent_type(dent->type),
283                        le16_to_cpu(dent->nlen));
284
285                 fname_name(&nm) = dent->name;
286                 fname_len(&nm) = le16_to_cpu(dent->nlen);
287                 kfree(pdent);
288                 pdent = dent;
289                 key_read(c, &dent->key, &key);
290         }
291         kfree(pdent);
292 }
293
294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295 {
296         int i, n, type, safe_len, max_node_len, min_node_len;
297         union ubifs_key key;
298         const struct ubifs_ch *ch = node;
299         char key_buf[DBG_KEY_BUF_LEN];
300
301         /* If the magic is incorrect, just hexdump the first bytes */
302         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305                                (void *)node, UBIFS_CH_SZ, 1);
306                 return;
307         }
308
309         /* Skip dumping unknown type node */
310         type = ch->node_type;
311         if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312                 pr_err("node type %d was not recognized\n", type);
313                 return;
314         }
315
316         spin_lock(&dbg_lock);
317         dump_ch(node);
318
319         if (c->ranges[type].max_len == 0) {
320                 max_node_len = min_node_len = c->ranges[type].len;
321         } else {
322                 max_node_len = c->ranges[type].max_len;
323                 min_node_len = c->ranges[type].min_len;
324         }
325         safe_len = le32_to_cpu(ch->len);
326         safe_len = safe_len > 0 ? safe_len : 0;
327         safe_len = min3(safe_len, max_node_len, node_len);
328         if (safe_len < min_node_len) {
329                 pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330                        safe_len, dbg_ntype(type),
331                        safe_len > UBIFS_CH_SZ ?
332                        safe_len - (int)UBIFS_CH_SZ : 0);
333                 if (safe_len > UBIFS_CH_SZ)
334                         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335                                        (void *)node + UBIFS_CH_SZ,
336                                        safe_len - UBIFS_CH_SZ, 0);
337                 goto out_unlock;
338         }
339         if (safe_len != le32_to_cpu(ch->len))
340                 pr_err("\ttruncated node length      %d\n", safe_len);
341
342         switch (type) {
343         case UBIFS_PAD_NODE:
344         {
345                 const struct ubifs_pad_node *pad = node;
346
347                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
348                 break;
349         }
350         case UBIFS_SB_NODE:
351         {
352                 const struct ubifs_sb_node *sup = node;
353                 unsigned int sup_flags = le32_to_cpu(sup->flags);
354
355                 pr_err("\tkey_hash       %d (%s)\n",
356                        (int)sup->key_hash, get_key_hash(sup->key_hash));
357                 pr_err("\tkey_fmt        %d (%s)\n",
358                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359                 pr_err("\tflags          %#x\n", sup_flags);
360                 pr_err("\tbig_lpt        %u\n",
361                        !!(sup_flags & UBIFS_FLG_BIGLPT));
362                 pr_err("\tspace_fixup    %u\n",
363                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
365                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
366                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
367                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
368                 pr_err("\tmax_bud_bytes  %llu\n",
369                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
371                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
372                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
373                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
374                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
375                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
376                 pr_err("\tdefault_compr  %u\n",
377                        (int)le16_to_cpu(sup->default_compr));
378                 pr_err("\trp_size        %llu\n",
379                        (unsigned long long)le64_to_cpu(sup->rp_size));
380                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
381                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
382                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
383                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
384                 pr_err("\tUUID           %pUB\n", sup->uuid);
385                 break;
386         }
387         case UBIFS_MST_NODE:
388         {
389                 const struct ubifs_mst_node *mst = node;
390
391                 pr_err("\thighest_inum   %llu\n",
392                        (unsigned long long)le64_to_cpu(mst->highest_inum));
393                 pr_err("\tcommit number  %llu\n",
394                        (unsigned long long)le64_to_cpu(mst->cmt_no));
395                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
396                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
397                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
398                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
399                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
400                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
401                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
402                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
403                 pr_err("\tindex_size     %llu\n",
404                        (unsigned long long)le64_to_cpu(mst->index_size));
405                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
406                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
407                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
408                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
409                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
410                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
411                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
412                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
413                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
414                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
415                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
416                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
417                 pr_err("\ttotal_free     %llu\n",
418                        (unsigned long long)le64_to_cpu(mst->total_free));
419                 pr_err("\ttotal_dirty    %llu\n",
420                        (unsigned long long)le64_to_cpu(mst->total_dirty));
421                 pr_err("\ttotal_used     %llu\n",
422                        (unsigned long long)le64_to_cpu(mst->total_used));
423                 pr_err("\ttotal_dead     %llu\n",
424                        (unsigned long long)le64_to_cpu(mst->total_dead));
425                 pr_err("\ttotal_dark     %llu\n",
426                        (unsigned long long)le64_to_cpu(mst->total_dark));
427                 break;
428         }
429         case UBIFS_REF_NODE:
430         {
431                 const struct ubifs_ref_node *ref = node;
432
433                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
434                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
435                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
436                 break;
437         }
438         case UBIFS_INO_NODE:
439         {
440                 const struct ubifs_ino_node *ino = node;
441
442                 key_read(c, &ino->key, &key);
443                 pr_err("\tkey            %s\n",
444                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445                 pr_err("\tcreat_sqnum    %llu\n",
446                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447                 pr_err("\tsize           %llu\n",
448                        (unsigned long long)le64_to_cpu(ino->size));
449                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
450                 pr_err("\tatime          %lld.%u\n",
451                        (long long)le64_to_cpu(ino->atime_sec),
452                        le32_to_cpu(ino->atime_nsec));
453                 pr_err("\tmtime          %lld.%u\n",
454                        (long long)le64_to_cpu(ino->mtime_sec),
455                        le32_to_cpu(ino->mtime_nsec));
456                 pr_err("\tctime          %lld.%u\n",
457                        (long long)le64_to_cpu(ino->ctime_sec),
458                        le32_to_cpu(ino->ctime_nsec));
459                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
460                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
461                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
462                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
463                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
464                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
465                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
466                 pr_err("\tcompr_type     %#x\n",
467                        (int)le16_to_cpu(ino->compr_type));
468                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
469                 break;
470         }
471         case UBIFS_DENT_NODE:
472         case UBIFS_XENT_NODE:
473         {
474                 const struct ubifs_dent_node *dent = node;
475                 int nlen = le16_to_cpu(dent->nlen);
476
477                 key_read(c, &dent->key, &key);
478                 pr_err("\tkey            %s\n",
479                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480                 pr_err("\tinum           %llu\n",
481                        (unsigned long long)le64_to_cpu(dent->inum));
482                 pr_err("\ttype           %d\n", (int)dent->type);
483                 pr_err("\tnlen           %d\n", nlen);
484                 pr_err("\tname           ");
485
486                 if (nlen > UBIFS_MAX_NLEN ||
487                     nlen > safe_len - UBIFS_DENT_NODE_SZ)
488                         pr_err("(bad name length, not printing, bad or corrupted node)");
489                 else {
490                         for (i = 0; i < nlen && dent->name[i]; i++)
491                                 pr_cont("%c", isprint(dent->name[i]) ?
492                                         dent->name[i] : '?');
493                 }
494                 pr_cont("\n");
495
496                 break;
497         }
498         case UBIFS_DATA_NODE:
499         {
500                 const struct ubifs_data_node *dn = node;
501
502                 key_read(c, &dn->key, &key);
503                 pr_err("\tkey            %s\n",
504                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
506                 pr_err("\tcompr_typ      %d\n",
507                        (int)le16_to_cpu(dn->compr_type));
508                 pr_err("\tdata size      %u\n",
509                        le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510                 pr_err("\tdata (length = %d):\n",
511                        safe_len - (int)UBIFS_DATA_NODE_SZ);
512                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513                                (void *)&dn->data,
514                                safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515                 break;
516         }
517         case UBIFS_TRUN_NODE:
518         {
519                 const struct ubifs_trun_node *trun = node;
520
521                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
522                 pr_err("\told_size       %llu\n",
523                        (unsigned long long)le64_to_cpu(trun->old_size));
524                 pr_err("\tnew_size       %llu\n",
525                        (unsigned long long)le64_to_cpu(trun->new_size));
526                 break;
527         }
528         case UBIFS_IDX_NODE:
529         {
530                 const struct ubifs_idx_node *idx = node;
531                 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532                                     (ubifs_idx_node_sz(c, 1) -
533                                     UBIFS_IDX_NODE_SZ);
534
535                 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536                 pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
537                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
538                 pr_err("\tBranches:\n");
539
540                 for (i = 0; i < n && i < c->fanout; i++) {
541                         const struct ubifs_branch *br;
542
543                         br = ubifs_idx_branch(c, idx, i);
544                         key_read(c, &br->key, &key);
545                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
546                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547                                le32_to_cpu(br->len),
548                                dbg_snprintf_key(c, &key, key_buf,
549                                                 DBG_KEY_BUF_LEN));
550                 }
551                 break;
552         }
553         case UBIFS_CS_NODE:
554                 break;
555         case UBIFS_ORPH_NODE:
556         {
557                 const struct ubifs_orph_node *orph = node;
558
559                 pr_err("\tcommit number  %llu\n",
560                        (unsigned long long)
561                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562                 pr_err("\tlast node flag %llu\n",
563                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564                 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565                 pr_err("\t%d orphan inode numbers:\n", n);
566                 for (i = 0; i < n; i++)
567                         pr_err("\t  ino %llu\n",
568                                (unsigned long long)le64_to_cpu(orph->inos[i]));
569                 break;
570         }
571         case UBIFS_AUTH_NODE:
572         {
573                 break;
574         }
575         default:
576                 pr_err("node type %d was not recognized\n", type);
577         }
578
579 out_unlock:
580         spin_unlock(&dbg_lock);
581 }
582
583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584 {
585         spin_lock(&dbg_lock);
586         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587                req->new_ino, req->dirtied_ino);
588         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
589                req->new_ino_d, req->dirtied_ino_d);
590         pr_err("\tnew_page    %d, dirtied_page %d\n",
591                req->new_page, req->dirtied_page);
592         pr_err("\tnew_dent    %d, mod_dent     %d\n",
593                req->new_dent, req->mod_dent);
594         pr_err("\tidx_growth  %d\n", req->idx_growth);
595         pr_err("\tdata_growth %d dd_growth     %d\n",
596                req->data_growth, req->dd_growth);
597         spin_unlock(&dbg_lock);
598 }
599
600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601 {
602         spin_lock(&dbg_lock);
603         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
604                current->pid, lst->empty_lebs, lst->idx_lebs);
605         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608                lst->total_used, lst->total_dark, lst->total_dead);
609         spin_unlock(&dbg_lock);
610 }
611
612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613 {
614         int i;
615         struct rb_node *rb;
616         struct ubifs_bud *bud;
617         struct ubifs_gced_idx_leb *idx_gc;
618         long long available, outstanding, free;
619
620         spin_lock(&c->space_lock);
621         spin_lock(&dbg_lock);
622         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623                current->pid, bi->data_growth + bi->dd_growth,
624                bi->data_growth + bi->dd_growth + bi->idx_growth);
625         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626                bi->data_growth, bi->dd_growth, bi->idx_growth);
627         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630                bi->page_budget, bi->inode_budget, bi->dent_budget);
631         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634
635         if (bi != &c->bi)
636                 /*
637                  * If we are dumping saved budgeting data, do not print
638                  * additional information which is about the current state, not
639                  * the old one which corresponded to the saved budgeting data.
640                  */
641                 goto out_unlock;
642
643         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646                atomic_long_read(&c->dirty_pg_cnt),
647                atomic_long_read(&c->dirty_zn_cnt),
648                atomic_long_read(&c->clean_zn_cnt));
649         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650
651         /* If we are in R/O mode, journal heads do not exist */
652         if (c->jheads)
653                 for (i = 0; i < c->jhead_cnt; i++)
654                         pr_err("\tjhead %s\t LEB %d\n",
655                                dbg_jhead(c->jheads[i].wbuf.jhead),
656                                c->jheads[i].wbuf.lnum);
657         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658                 bud = rb_entry(rb, struct ubifs_bud, rb);
659                 pr_err("\tbud LEB %d\n", bud->lnum);
660         }
661         list_for_each_entry(bud, &c->old_buds, list)
662                 pr_err("\told bud LEB %d\n", bud->lnum);
663         list_for_each_entry(idx_gc, &c->idx_gc, list)
664                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
665                        idx_gc->lnum, idx_gc->unmap);
666         pr_err("\tcommit state %d\n", c->cmt_state);
667
668         /* Print budgeting predictions */
669         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670         outstanding = c->bi.data_growth + c->bi.dd_growth;
671         free = ubifs_get_free_space_nolock(c);
672         pr_err("Budgeting predictions:\n");
673         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674                available, outstanding, free);
675 out_unlock:
676         spin_unlock(&dbg_lock);
677         spin_unlock(&c->space_lock);
678 }
679
680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681 {
682         int i, spc, dark = 0, dead = 0;
683         struct rb_node *rb;
684         struct ubifs_bud *bud;
685
686         spc = lp->free + lp->dirty;
687         if (spc < c->dead_wm)
688                 dead = spc;
689         else
690                 dark = ubifs_calc_dark(c, spc);
691
692         if (lp->flags & LPROPS_INDEX)
693                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695                        lp->flags);
696         else
697                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700
701         if (lp->flags & LPROPS_TAKEN) {
702                 if (lp->flags & LPROPS_INDEX)
703                         pr_cont("index, taken");
704                 else
705                         pr_cont("taken");
706         } else {
707                 const char *s;
708
709                 if (lp->flags & LPROPS_INDEX) {
710                         switch (lp->flags & LPROPS_CAT_MASK) {
711                         case LPROPS_DIRTY_IDX:
712                                 s = "dirty index";
713                                 break;
714                         case LPROPS_FRDI_IDX:
715                                 s = "freeable index";
716                                 break;
717                         default:
718                                 s = "index";
719                         }
720                 } else {
721                         switch (lp->flags & LPROPS_CAT_MASK) {
722                         case LPROPS_UNCAT:
723                                 s = "not categorized";
724                                 break;
725                         case LPROPS_DIRTY:
726                                 s = "dirty";
727                                 break;
728                         case LPROPS_FREE:
729                                 s = "free";
730                                 break;
731                         case LPROPS_EMPTY:
732                                 s = "empty";
733                                 break;
734                         case LPROPS_FREEABLE:
735                                 s = "freeable";
736                                 break;
737                         default:
738                                 s = NULL;
739                                 break;
740                         }
741                 }
742                 pr_cont("%s", s);
743         }
744
745         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746                 bud = rb_entry(rb, struct ubifs_bud, rb);
747                 if (bud->lnum == lp->lnum) {
748                         int head = 0;
749                         for (i = 0; i < c->jhead_cnt; i++) {
750                                 /*
751                                  * Note, if we are in R/O mode or in the middle
752                                  * of mounting/re-mounting, the write-buffers do
753                                  * not exist.
754                                  */
755                                 if (c->jheads &&
756                                     lp->lnum == c->jheads[i].wbuf.lnum) {
757                                         pr_cont(", jhead %s", dbg_jhead(i));
758                                         head = 1;
759                                 }
760                         }
761                         if (!head)
762                                 pr_cont(", bud of jhead %s",
763                                        dbg_jhead(bud->jhead));
764                 }
765         }
766         if (lp->lnum == c->gc_lnum)
767                 pr_cont(", GC LEB");
768         pr_cont(")\n");
769 }
770
771 void ubifs_dump_lprops(struct ubifs_info *c)
772 {
773         int lnum, err;
774         struct ubifs_lprops lp;
775         struct ubifs_lp_stats lst;
776
777         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778         ubifs_get_lp_stats(c, &lst);
779         ubifs_dump_lstats(&lst);
780
781         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782                 err = ubifs_read_one_lp(c, lnum, &lp);
783                 if (err) {
784                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785                         continue;
786                 }
787
788                 ubifs_dump_lprop(c, &lp);
789         }
790         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791 }
792
793 void ubifs_dump_lpt_info(struct ubifs_info *c)
794 {
795         int i;
796
797         spin_lock(&dbg_lock);
798         pr_err("(pid %d) dumping LPT information\n", current->pid);
799         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
800         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
801         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
802         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
803         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
804         pr_err("\tbig_lpt:       %u\n", c->big_lpt);
805         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
806         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
807         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
808         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
809         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
810         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
811         pr_err("\tspace_bits:    %d\n", c->space_bits);
812         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
815         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
816         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
817         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818         pr_err("\tLPT head is at %d:%d\n",
819                c->nhead_lnum, c->nhead_offs);
820         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821         if (c->big_lpt)
822                 pr_err("\tLPT lsave is at %d:%d\n",
823                        c->lsave_lnum, c->lsave_offs);
824         for (i = 0; i < c->lpt_lebs; i++)
825                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827                        c->ltab[i].tgc, c->ltab[i].cmt);
828         spin_unlock(&dbg_lock);
829 }
830
831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832 {
833         struct ubifs_scan_leb *sleb;
834         struct ubifs_scan_node *snod;
835         void *buf;
836
837         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838
839         buf = __vmalloc(c->leb_size, GFP_NOFS);
840         if (!buf) {
841                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842                 return;
843         }
844
845         sleb = ubifs_scan(c, lnum, 0, buf, 0);
846         if (IS_ERR(sleb)) {
847                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848                 goto out;
849         }
850
851         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852                sleb->nodes_cnt, sleb->endpt);
853
854         list_for_each_entry(snod, &sleb->nodes, list) {
855                 cond_resched();
856                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857                        snod->offs, snod->len);
858                 ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859         }
860
861         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862         ubifs_scan_destroy(sleb);
863
864 out:
865         vfree(buf);
866         return;
867 }
868
869 void ubifs_dump_znode(const struct ubifs_info *c,
870                       const struct ubifs_znode *znode)
871 {
872         int n;
873         const struct ubifs_zbranch *zbr;
874         char key_buf[DBG_KEY_BUF_LEN];
875
876         spin_lock(&dbg_lock);
877         if (znode->parent)
878                 zbr = &znode->parent->zbranch[znode->iip];
879         else
880                 zbr = &c->zroot;
881
882         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
883                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
884                znode->level, znode->child_cnt, znode->flags);
885
886         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
887                 spin_unlock(&dbg_lock);
888                 return;
889         }
890
891         pr_err("zbranches:\n");
892         for (n = 0; n < znode->child_cnt; n++) {
893                 zbr = &znode->zbranch[n];
894                 if (znode->level > 0)
895                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
896                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
897                                dbg_snprintf_key(c, &zbr->key, key_buf,
898                                                 DBG_KEY_BUF_LEN));
899                 else
900                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
901                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
902                                dbg_snprintf_key(c, &zbr->key, key_buf,
903                                                 DBG_KEY_BUF_LEN));
904         }
905         spin_unlock(&dbg_lock);
906 }
907
908 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
909 {
910         int i;
911
912         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
913                current->pid, cat, heap->cnt);
914         for (i = 0; i < heap->cnt; i++) {
915                 struct ubifs_lprops *lprops = heap->arr[i];
916
917                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
918                        i, lprops->lnum, lprops->hpos, lprops->free,
919                        lprops->dirty, lprops->flags);
920         }
921         pr_err("(pid %d) finish dumping heap\n", current->pid);
922 }
923
924 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
925                       struct ubifs_nnode *parent, int iip)
926 {
927         int i;
928
929         pr_err("(pid %d) dumping pnode:\n", current->pid);
930         pr_err("\taddress %zx parent %zx cnext %zx\n",
931                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
932         pr_err("\tflags %lu iip %d level %d num %d\n",
933                pnode->flags, iip, pnode->level, pnode->num);
934         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
935                 struct ubifs_lprops *lp = &pnode->lprops[i];
936
937                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
938                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
939         }
940 }
941
942 void ubifs_dump_tnc(struct ubifs_info *c)
943 {
944         struct ubifs_znode *znode;
945         int level;
946
947         pr_err("\n");
948         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
949         znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
950         level = znode->level;
951         pr_err("== Level %d ==\n", level);
952         while (znode) {
953                 if (level != znode->level) {
954                         level = znode->level;
955                         pr_err("== Level %d ==\n", level);
956                 }
957                 ubifs_dump_znode(c, znode);
958                 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
959         }
960         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
961 }
962
963 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
964                       void *priv)
965 {
966         ubifs_dump_znode(c, znode);
967         return 0;
968 }
969
970 /**
971  * ubifs_dump_index - dump the on-flash index.
972  * @c: UBIFS file-system description object
973  *
974  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
975  * which dumps only in-memory znodes and does not read znodes which from flash.
976  */
977 void ubifs_dump_index(struct ubifs_info *c)
978 {
979         dbg_walk_index(c, NULL, dump_znode, NULL);
980 }
981
982 /**
983  * dbg_save_space_info - save information about flash space.
984  * @c: UBIFS file-system description object
985  *
986  * This function saves information about UBIFS free space, dirty space, etc, in
987  * order to check it later.
988  */
989 void dbg_save_space_info(struct ubifs_info *c)
990 {
991         struct ubifs_debug_info *d = c->dbg;
992         int freeable_cnt;
993
994         spin_lock(&c->space_lock);
995         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
996         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
997         d->saved_idx_gc_cnt = c->idx_gc_cnt;
998
999         /*
1000          * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001          * affects the free space calculations, and UBIFS might not know about
1002          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003          * only when we read their lprops, and we do this only lazily, upon the
1004          * need. So at any given point of time @c->freeable_cnt might be not
1005          * exactly accurate.
1006          *
1007          * Just one example about the issue we hit when we did not zero
1008          * @c->freeable_cnt.
1009          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010          *    amount of free space in @d->saved_free
1011          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012          *    information from flash, where we cache LEBs from various
1013          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1016          *    -> 'ubifs_add_to_cat()').
1017          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018          *    becomes %1.
1019          * 4. We calculate the amount of free space when the re-mount is
1020          *    finished in 'dbg_check_space_info()' and it does not match
1021          *    @d->saved_free.
1022          */
1023         freeable_cnt = c->freeable_cnt;
1024         c->freeable_cnt = 0;
1025         d->saved_free = ubifs_get_free_space_nolock(c);
1026         c->freeable_cnt = freeable_cnt;
1027         spin_unlock(&c->space_lock);
1028 }
1029
1030 /**
1031  * dbg_check_space_info - check flash space information.
1032  * @c: UBIFS file-system description object
1033  *
1034  * This function compares current flash space information with the information
1035  * which was saved when the 'dbg_save_space_info()' function was called.
1036  * Returns zero if the information has not changed, and %-EINVAL if it has
1037  * changed.
1038  */
1039 int dbg_check_space_info(struct ubifs_info *c)
1040 {
1041         struct ubifs_debug_info *d = c->dbg;
1042         struct ubifs_lp_stats lst;
1043         long long free;
1044         int freeable_cnt;
1045
1046         spin_lock(&c->space_lock);
1047         freeable_cnt = c->freeable_cnt;
1048         c->freeable_cnt = 0;
1049         free = ubifs_get_free_space_nolock(c);
1050         c->freeable_cnt = freeable_cnt;
1051         spin_unlock(&c->space_lock);
1052
1053         if (free != d->saved_free) {
1054                 ubifs_err(c, "free space changed from %lld to %lld",
1055                           d->saved_free, free);
1056                 goto out;
1057         }
1058
1059         return 0;
1060
1061 out:
1062         ubifs_msg(c, "saved lprops statistics dump");
1063         ubifs_dump_lstats(&d->saved_lst);
1064         ubifs_msg(c, "saved budgeting info dump");
1065         ubifs_dump_budg(c, &d->saved_bi);
1066         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067         ubifs_msg(c, "current lprops statistics dump");
1068         ubifs_get_lp_stats(c, &lst);
1069         ubifs_dump_lstats(&lst);
1070         ubifs_msg(c, "current budgeting info dump");
1071         ubifs_dump_budg(c, &c->bi);
1072         dump_stack();
1073         return -EINVAL;
1074 }
1075
1076 /**
1077  * dbg_check_synced_i_size - check synchronized inode size.
1078  * @c: UBIFS file-system description object
1079  * @inode: inode to check
1080  *
1081  * If inode is clean, synchronized inode size has to be equivalent to current
1082  * inode size. This function has to be called only for locked inodes (@i_mutex
1083  * has to be locked). Returns %0 if synchronized inode size if correct, and
1084  * %-EINVAL if not.
1085  */
1086 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087 {
1088         int err = 0;
1089         struct ubifs_inode *ui = ubifs_inode(inode);
1090
1091         if (!dbg_is_chk_gen(c))
1092                 return 0;
1093         if (!S_ISREG(inode->i_mode))
1094                 return 0;
1095
1096         mutex_lock(&ui->ui_mutex);
1097         spin_lock(&ui->ui_lock);
1098         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100                           ui->ui_size, ui->synced_i_size);
1101                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102                           inode->i_mode, i_size_read(inode));
1103                 dump_stack();
1104                 err = -EINVAL;
1105         }
1106         spin_unlock(&ui->ui_lock);
1107         mutex_unlock(&ui->ui_mutex);
1108         return err;
1109 }
1110
1111 /*
1112  * dbg_check_dir - check directory inode size and link count.
1113  * @c: UBIFS file-system description object
1114  * @dir: the directory to calculate size for
1115  * @size: the result is returned here
1116  *
1117  * This function makes sure that directory size and link count are correct.
1118  * Returns zero in case of success and a negative error code in case of
1119  * failure.
1120  *
1121  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122  * calling this function.
1123  */
1124 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125 {
1126         unsigned int nlink = 2;
1127         union ubifs_key key;
1128         struct ubifs_dent_node *dent, *pdent = NULL;
1129         struct fscrypt_name nm = {0};
1130         loff_t size = UBIFS_INO_NODE_SZ;
1131
1132         if (!dbg_is_chk_gen(c))
1133                 return 0;
1134
1135         if (!S_ISDIR(dir->i_mode))
1136                 return 0;
1137
1138         lowest_dent_key(c, &key, dir->i_ino);
1139         while (1) {
1140                 int err;
1141
1142                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1143                 if (IS_ERR(dent)) {
1144                         err = PTR_ERR(dent);
1145                         if (err == -ENOENT)
1146                                 break;
1147                         kfree(pdent);
1148                         return err;
1149                 }
1150
1151                 fname_name(&nm) = dent->name;
1152                 fname_len(&nm) = le16_to_cpu(dent->nlen);
1153                 size += CALC_DENT_SIZE(fname_len(&nm));
1154                 if (dent->type == UBIFS_ITYPE_DIR)
1155                         nlink += 1;
1156                 kfree(pdent);
1157                 pdent = dent;
1158                 key_read(c, &dent->key, &key);
1159         }
1160         kfree(pdent);
1161
1162         if (i_size_read(dir) != size) {
1163                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164                           dir->i_ino, (unsigned long long)i_size_read(dir),
1165                           (unsigned long long)size);
1166                 ubifs_dump_inode(c, dir);
1167                 dump_stack();
1168                 return -EINVAL;
1169         }
1170         if (dir->i_nlink != nlink) {
1171                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172                           dir->i_ino, dir->i_nlink, nlink);
1173                 ubifs_dump_inode(c, dir);
1174                 dump_stack();
1175                 return -EINVAL;
1176         }
1177
1178         return 0;
1179 }
1180
1181 /**
1182  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183  * @c: UBIFS file-system description object
1184  * @zbr1: first zbranch
1185  * @zbr2: following zbranch
1186  *
1187  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188  * names of the direntries/xentries which are referred by the keys. This
1189  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190  * sure the name of direntry/xentry referred by @zbr1 is less than
1191  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192  * and a negative error code in case of failure.
1193  */
1194 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195                                struct ubifs_zbranch *zbr2)
1196 {
1197         int err, nlen1, nlen2, cmp;
1198         struct ubifs_dent_node *dent1, *dent2;
1199         union ubifs_key key;
1200         char key_buf[DBG_KEY_BUF_LEN];
1201
1202         ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204         if (!dent1)
1205                 return -ENOMEM;
1206         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207         if (!dent2) {
1208                 err = -ENOMEM;
1209                 goto out_free;
1210         }
1211
1212         err = ubifs_tnc_read_node(c, zbr1, dent1);
1213         if (err)
1214                 goto out_free;
1215         err = ubifs_validate_entry(c, dent1);
1216         if (err)
1217                 goto out_free;
1218
1219         err = ubifs_tnc_read_node(c, zbr2, dent2);
1220         if (err)
1221                 goto out_free;
1222         err = ubifs_validate_entry(c, dent2);
1223         if (err)
1224                 goto out_free;
1225
1226         /* Make sure node keys are the same as in zbranch */
1227         err = 1;
1228         key_read(c, &dent1->key, &key);
1229         if (keys_cmp(c, &zbr1->key, &key)) {
1230                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232                                                        DBG_KEY_BUF_LEN));
1233                 ubifs_err(c, "but it should have key %s according to tnc",
1234                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1235                                            DBG_KEY_BUF_LEN));
1236                 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237                 goto out_free;
1238         }
1239
1240         key_read(c, &dent2->key, &key);
1241         if (keys_cmp(c, &zbr2->key, &key)) {
1242                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244                                                        DBG_KEY_BUF_LEN));
1245                 ubifs_err(c, "but it should have key %s according to tnc",
1246                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1247                                            DBG_KEY_BUF_LEN));
1248                 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249                 goto out_free;
1250         }
1251
1252         nlen1 = le16_to_cpu(dent1->nlen);
1253         nlen2 = le16_to_cpu(dent2->nlen);
1254
1255         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257                 err = 0;
1258                 goto out_free;
1259         }
1260         if (cmp == 0 && nlen1 == nlen2)
1261                 ubifs_err(c, "2 xent/dent nodes with the same name");
1262         else
1263                 ubifs_err(c, "bad order of colliding key %s",
1264                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265
1266         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267         ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269         ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270
1271 out_free:
1272         kfree(dent2);
1273         kfree(dent1);
1274         return err;
1275 }
1276
1277 /**
1278  * dbg_check_znode - check if znode is all right.
1279  * @c: UBIFS file-system description object
1280  * @zbr: zbranch which points to this znode
1281  *
1282  * This function makes sure that znode referred to by @zbr is all right.
1283  * Returns zero if it is, and %-EINVAL if it is not.
1284  */
1285 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286 {
1287         struct ubifs_znode *znode = zbr->znode;
1288         struct ubifs_znode *zp = znode->parent;
1289         int n, err, cmp;
1290
1291         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292                 err = 1;
1293                 goto out;
1294         }
1295         if (znode->level < 0) {
1296                 err = 2;
1297                 goto out;
1298         }
1299         if (znode->iip < 0 || znode->iip >= c->fanout) {
1300                 err = 3;
1301                 goto out;
1302         }
1303
1304         if (zbr->len == 0)
1305                 /* Only dirty zbranch may have no on-flash nodes */
1306                 if (!ubifs_zn_dirty(znode)) {
1307                         err = 4;
1308                         goto out;
1309                 }
1310
1311         if (ubifs_zn_dirty(znode)) {
1312                 /*
1313                  * If znode is dirty, its parent has to be dirty as well. The
1314                  * order of the operation is important, so we have to have
1315                  * memory barriers.
1316                  */
1317                 smp_mb();
1318                 if (zp && !ubifs_zn_dirty(zp)) {
1319                         /*
1320                          * The dirty flag is atomic and is cleared outside the
1321                          * TNC mutex, so znode's dirty flag may now have
1322                          * been cleared. The child is always cleared before the
1323                          * parent, so we just need to check again.
1324                          */
1325                         smp_mb();
1326                         if (ubifs_zn_dirty(znode)) {
1327                                 err = 5;
1328                                 goto out;
1329                         }
1330                 }
1331         }
1332
1333         if (zp) {
1334                 const union ubifs_key *min, *max;
1335
1336                 if (znode->level != zp->level - 1) {
1337                         err = 6;
1338                         goto out;
1339                 }
1340
1341                 /* Make sure the 'parent' pointer in our znode is correct */
1342                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343                 if (!err) {
1344                         /* This zbranch does not exist in the parent */
1345                         err = 7;
1346                         goto out;
1347                 }
1348
1349                 if (znode->iip >= zp->child_cnt) {
1350                         err = 8;
1351                         goto out;
1352                 }
1353
1354                 if (znode->iip != n) {
1355                         /* This may happen only in case of collisions */
1356                         if (keys_cmp(c, &zp->zbranch[n].key,
1357                                      &zp->zbranch[znode->iip].key)) {
1358                                 err = 9;
1359                                 goto out;
1360                         }
1361                         n = znode->iip;
1362                 }
1363
1364                 /*
1365                  * Make sure that the first key in our znode is greater than or
1366                  * equal to the key in the pointing zbranch.
1367                  */
1368                 min = &zbr->key;
1369                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370                 if (cmp == 1) {
1371                         err = 10;
1372                         goto out;
1373                 }
1374
1375                 if (n + 1 < zp->child_cnt) {
1376                         max = &zp->zbranch[n + 1].key;
1377
1378                         /*
1379                          * Make sure the last key in our znode is less or
1380                          * equivalent than the key in the zbranch which goes
1381                          * after our pointing zbranch.
1382                          */
1383                         cmp = keys_cmp(c, max,
1384                                 &znode->zbranch[znode->child_cnt - 1].key);
1385                         if (cmp == -1) {
1386                                 err = 11;
1387                                 goto out;
1388                         }
1389                 }
1390         } else {
1391                 /* This may only be root znode */
1392                 if (zbr != &c->zroot) {
1393                         err = 12;
1394                         goto out;
1395                 }
1396         }
1397
1398         /*
1399          * Make sure that next key is greater or equivalent then the previous
1400          * one.
1401          */
1402         for (n = 1; n < znode->child_cnt; n++) {
1403                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404                                &znode->zbranch[n].key);
1405                 if (cmp > 0) {
1406                         err = 13;
1407                         goto out;
1408                 }
1409                 if (cmp == 0) {
1410                         /* This can only be keys with colliding hash */
1411                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412                                 err = 14;
1413                                 goto out;
1414                         }
1415
1416                         if (znode->level != 0 || c->replaying)
1417                                 continue;
1418
1419                         /*
1420                          * Colliding keys should follow binary order of
1421                          * corresponding xentry/dentry names.
1422                          */
1423                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424                                                   &znode->zbranch[n]);
1425                         if (err < 0)
1426                                 return err;
1427                         if (err) {
1428                                 err = 15;
1429                                 goto out;
1430                         }
1431                 }
1432         }
1433
1434         for (n = 0; n < znode->child_cnt; n++) {
1435                 if (!znode->zbranch[n].znode &&
1436                     (znode->zbranch[n].lnum == 0 ||
1437                      znode->zbranch[n].len == 0)) {
1438                         err = 16;
1439                         goto out;
1440                 }
1441
1442                 if (znode->zbranch[n].lnum != 0 &&
1443                     znode->zbranch[n].len == 0) {
1444                         err = 17;
1445                         goto out;
1446                 }
1447
1448                 if (znode->zbranch[n].lnum == 0 &&
1449                     znode->zbranch[n].len != 0) {
1450                         err = 18;
1451                         goto out;
1452                 }
1453
1454                 if (znode->zbranch[n].lnum == 0 &&
1455                     znode->zbranch[n].offs != 0) {
1456                         err = 19;
1457                         goto out;
1458                 }
1459
1460                 if (znode->level != 0 && znode->zbranch[n].znode)
1461                         if (znode->zbranch[n].znode->parent != znode) {
1462                                 err = 20;
1463                                 goto out;
1464                         }
1465         }
1466
1467         return 0;
1468
1469 out:
1470         ubifs_err(c, "failed, error %d", err);
1471         ubifs_msg(c, "dump of the znode");
1472         ubifs_dump_znode(c, znode);
1473         if (zp) {
1474                 ubifs_msg(c, "dump of the parent znode");
1475                 ubifs_dump_znode(c, zp);
1476         }
1477         dump_stack();
1478         return -EINVAL;
1479 }
1480
1481 /**
1482  * dbg_check_tnc - check TNC tree.
1483  * @c: UBIFS file-system description object
1484  * @extra: do extra checks that are possible at start commit
1485  *
1486  * This function traverses whole TNC tree and checks every znode. Returns zero
1487  * if everything is all right and %-EINVAL if something is wrong with TNC.
1488  */
1489 int dbg_check_tnc(struct ubifs_info *c, int extra)
1490 {
1491         struct ubifs_znode *znode;
1492         long clean_cnt = 0, dirty_cnt = 0;
1493         int err, last;
1494
1495         if (!dbg_is_chk_index(c))
1496                 return 0;
1497
1498         ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499         if (!c->zroot.znode)
1500                 return 0;
1501
1502         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503         while (1) {
1504                 struct ubifs_znode *prev;
1505                 struct ubifs_zbranch *zbr;
1506
1507                 if (!znode->parent)
1508                         zbr = &c->zroot;
1509                 else
1510                         zbr = &znode->parent->zbranch[znode->iip];
1511
1512                 err = dbg_check_znode(c, zbr);
1513                 if (err)
1514                         return err;
1515
1516                 if (extra) {
1517                         if (ubifs_zn_dirty(znode))
1518                                 dirty_cnt += 1;
1519                         else
1520                                 clean_cnt += 1;
1521                 }
1522
1523                 prev = znode;
1524                 znode = ubifs_tnc_postorder_next(c, znode);
1525                 if (!znode)
1526                         break;
1527
1528                 /*
1529                  * If the last key of this znode is equivalent to the first key
1530                  * of the next znode (collision), then check order of the keys.
1531                  */
1532                 last = prev->child_cnt - 1;
1533                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534                     !keys_cmp(c, &prev->zbranch[last].key,
1535                               &znode->zbranch[0].key)) {
1536                         err = dbg_check_key_order(c, &prev->zbranch[last],
1537                                                   &znode->zbranch[0]);
1538                         if (err < 0)
1539                                 return err;
1540                         if (err) {
1541                                 ubifs_msg(c, "first znode");
1542                                 ubifs_dump_znode(c, prev);
1543                                 ubifs_msg(c, "second znode");
1544                                 ubifs_dump_znode(c, znode);
1545                                 return -EINVAL;
1546                         }
1547                 }
1548         }
1549
1550         if (extra) {
1551                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553                                   atomic_long_read(&c->clean_zn_cnt),
1554                                   clean_cnt);
1555                         return -EINVAL;
1556                 }
1557                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559                                   atomic_long_read(&c->dirty_zn_cnt),
1560                                   dirty_cnt);
1561                         return -EINVAL;
1562                 }
1563         }
1564
1565         return 0;
1566 }
1567
1568 /**
1569  * dbg_walk_index - walk the on-flash index.
1570  * @c: UBIFS file-system description object
1571  * @leaf_cb: called for each leaf node
1572  * @znode_cb: called for each indexing node
1573  * @priv: private data which is passed to callbacks
1574  *
1575  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576  * node and @znode_cb for each indexing node. Returns zero in case of success
1577  * and a negative error code in case of failure.
1578  *
1579  * It would be better if this function removed every znode it pulled to into
1580  * the TNC, so that the behavior more closely matched the non-debugging
1581  * behavior.
1582  */
1583 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584                    dbg_znode_callback znode_cb, void *priv)
1585 {
1586         int err;
1587         struct ubifs_zbranch *zbr;
1588         struct ubifs_znode *znode, *child;
1589
1590         mutex_lock(&c->tnc_mutex);
1591         /* If the root indexing node is not in TNC - pull it */
1592         if (!c->zroot.znode) {
1593                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594                 if (IS_ERR(c->zroot.znode)) {
1595                         err = PTR_ERR(c->zroot.znode);
1596                         c->zroot.znode = NULL;
1597                         goto out_unlock;
1598                 }
1599         }
1600
1601         /*
1602          * We are going to traverse the indexing tree in the postorder manner.
1603          * Go down and find the leftmost indexing node where we are going to
1604          * start from.
1605          */
1606         znode = c->zroot.znode;
1607         while (znode->level > 0) {
1608                 zbr = &znode->zbranch[0];
1609                 child = zbr->znode;
1610                 if (!child) {
1611                         child = ubifs_load_znode(c, zbr, znode, 0);
1612                         if (IS_ERR(child)) {
1613                                 err = PTR_ERR(child);
1614                                 goto out_unlock;
1615                         }
1616                 }
1617
1618                 znode = child;
1619         }
1620
1621         /* Iterate over all indexing nodes */
1622         while (1) {
1623                 int idx;
1624
1625                 cond_resched();
1626
1627                 if (znode_cb) {
1628                         err = znode_cb(c, znode, priv);
1629                         if (err) {
1630                                 ubifs_err(c, "znode checking function returned error %d",
1631                                           err);
1632                                 ubifs_dump_znode(c, znode);
1633                                 goto out_dump;
1634                         }
1635                 }
1636                 if (leaf_cb && znode->level == 0) {
1637                         for (idx = 0; idx < znode->child_cnt; idx++) {
1638                                 zbr = &znode->zbranch[idx];
1639                                 err = leaf_cb(c, zbr, priv);
1640                                 if (err) {
1641                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642                                                   err, zbr->lnum, zbr->offs);
1643                                         goto out_dump;
1644                                 }
1645                         }
1646                 }
1647
1648                 if (!znode->parent)
1649                         break;
1650
1651                 idx = znode->iip + 1;
1652                 znode = znode->parent;
1653                 if (idx < znode->child_cnt) {
1654                         /* Switch to the next index in the parent */
1655                         zbr = &znode->zbranch[idx];
1656                         child = zbr->znode;
1657                         if (!child) {
1658                                 child = ubifs_load_znode(c, zbr, znode, idx);
1659                                 if (IS_ERR(child)) {
1660                                         err = PTR_ERR(child);
1661                                         goto out_unlock;
1662                                 }
1663                                 zbr->znode = child;
1664                         }
1665                         znode = child;
1666                 } else
1667                         /*
1668                          * This is the last child, switch to the parent and
1669                          * continue.
1670                          */
1671                         continue;
1672
1673                 /* Go to the lowest leftmost znode in the new sub-tree */
1674                 while (znode->level > 0) {
1675                         zbr = &znode->zbranch[0];
1676                         child = zbr->znode;
1677                         if (!child) {
1678                                 child = ubifs_load_znode(c, zbr, znode, 0);
1679                                 if (IS_ERR(child)) {
1680                                         err = PTR_ERR(child);
1681                                         goto out_unlock;
1682                                 }
1683                                 zbr->znode = child;
1684                         }
1685                         znode = child;
1686                 }
1687         }
1688
1689         mutex_unlock(&c->tnc_mutex);
1690         return 0;
1691
1692 out_dump:
1693         if (znode->parent)
1694                 zbr = &znode->parent->zbranch[znode->iip];
1695         else
1696                 zbr = &c->zroot;
1697         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698         ubifs_dump_znode(c, znode);
1699 out_unlock:
1700         mutex_unlock(&c->tnc_mutex);
1701         return err;
1702 }
1703
1704 /**
1705  * add_size - add znode size to partially calculated index size.
1706  * @c: UBIFS file-system description object
1707  * @znode: znode to add size for
1708  * @priv: partially calculated index size
1709  *
1710  * This is a helper function for 'dbg_check_idx_size()' which is called for
1711  * every indexing node and adds its size to the 'long long' variable pointed to
1712  * by @priv.
1713  */
1714 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715 {
1716         long long *idx_size = priv;
1717         int add;
1718
1719         add = ubifs_idx_node_sz(c, znode->child_cnt);
1720         add = ALIGN(add, 8);
1721         *idx_size += add;
1722         return 0;
1723 }
1724
1725 /**
1726  * dbg_check_idx_size - check index size.
1727  * @c: UBIFS file-system description object
1728  * @idx_size: size to check
1729  *
1730  * This function walks the UBIFS index, calculates its size and checks that the
1731  * size is equivalent to @idx_size. Returns zero in case of success and a
1732  * negative error code in case of failure.
1733  */
1734 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735 {
1736         int err;
1737         long long calc = 0;
1738
1739         if (!dbg_is_chk_index(c))
1740                 return 0;
1741
1742         err = dbg_walk_index(c, NULL, add_size, &calc);
1743         if (err) {
1744                 ubifs_err(c, "error %d while walking the index", err);
1745                 return err;
1746         }
1747
1748         if (calc != idx_size) {
1749                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750                           calc, idx_size);
1751                 dump_stack();
1752                 return -EINVAL;
1753         }
1754
1755         return 0;
1756 }
1757
1758 /**
1759  * struct fsck_inode - information about an inode used when checking the file-system.
1760  * @rb: link in the RB-tree of inodes
1761  * @inum: inode number
1762  * @mode: inode type, permissions, etc
1763  * @nlink: inode link count
1764  * @xattr_cnt: count of extended attributes
1765  * @references: how many directory/xattr entries refer this inode (calculated
1766  *              while walking the index)
1767  * @calc_cnt: for directory inode count of child directories
1768  * @size: inode size (read from on-flash inode)
1769  * @xattr_sz: summary size of all extended attributes (read from on-flash
1770  *            inode)
1771  * @calc_sz: for directories calculated directory size
1772  * @calc_xcnt: count of extended attributes
1773  * @calc_xsz: calculated summary size of all extended attributes
1774  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1775  *             inode (read from on-flash inode)
1776  * @calc_xnms: calculated sum of lengths of all extended attribute names
1777  */
1778 struct fsck_inode {
1779         struct rb_node rb;
1780         ino_t inum;
1781         umode_t mode;
1782         unsigned int nlink;
1783         unsigned int xattr_cnt;
1784         int references;
1785         int calc_cnt;
1786         long long size;
1787         unsigned int xattr_sz;
1788         long long calc_sz;
1789         long long calc_xcnt;
1790         long long calc_xsz;
1791         unsigned int xattr_nms;
1792         long long calc_xnms;
1793 };
1794
1795 /**
1796  * struct fsck_data - private FS checking information.
1797  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1798  */
1799 struct fsck_data {
1800         struct rb_root inodes;
1801 };
1802
1803 /**
1804  * add_inode - add inode information to RB-tree of inodes.
1805  * @c: UBIFS file-system description object
1806  * @fsckd: FS checking information
1807  * @ino: raw UBIFS inode to add
1808  *
1809  * This is a helper function for 'check_leaf()' which adds information about
1810  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1811  * case of success and a negative error code in case of failure.
1812  */
1813 static struct fsck_inode *add_inode(struct ubifs_info *c,
1814                                     struct fsck_data *fsckd,
1815                                     struct ubifs_ino_node *ino)
1816 {
1817         struct rb_node **p, *parent = NULL;
1818         struct fsck_inode *fscki;
1819         ino_t inum = key_inum_flash(c, &ino->key);
1820         struct inode *inode;
1821         struct ubifs_inode *ui;
1822
1823         p = &fsckd->inodes.rb_node;
1824         while (*p) {
1825                 parent = *p;
1826                 fscki = rb_entry(parent, struct fsck_inode, rb);
1827                 if (inum < fscki->inum)
1828                         p = &(*p)->rb_left;
1829                 else if (inum > fscki->inum)
1830                         p = &(*p)->rb_right;
1831                 else
1832                         return fscki;
1833         }
1834
1835         if (inum > c->highest_inum) {
1836                 ubifs_err(c, "too high inode number, max. is %lu",
1837                           (unsigned long)c->highest_inum);
1838                 return ERR_PTR(-EINVAL);
1839         }
1840
1841         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1842         if (!fscki)
1843                 return ERR_PTR(-ENOMEM);
1844
1845         inode = ilookup(c->vfs_sb, inum);
1846
1847         fscki->inum = inum;
1848         /*
1849          * If the inode is present in the VFS inode cache, use it instead of
1850          * the on-flash inode which might be out-of-date. E.g., the size might
1851          * be out-of-date. If we do not do this, the following may happen, for
1852          * example:
1853          *   1. A power cut happens
1854          *   2. We mount the file-system R/O, the replay process fixes up the
1855          *      inode size in the VFS cache, but on on-flash.
1856          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1857          *      size.
1858          */
1859         if (!inode) {
1860                 fscki->nlink = le32_to_cpu(ino->nlink);
1861                 fscki->size = le64_to_cpu(ino->size);
1862                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1863                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1864                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1865                 fscki->mode = le32_to_cpu(ino->mode);
1866         } else {
1867                 ui = ubifs_inode(inode);
1868                 fscki->nlink = inode->i_nlink;
1869                 fscki->size = inode->i_size;
1870                 fscki->xattr_cnt = ui->xattr_cnt;
1871                 fscki->xattr_sz = ui->xattr_size;
1872                 fscki->xattr_nms = ui->xattr_names;
1873                 fscki->mode = inode->i_mode;
1874                 iput(inode);
1875         }
1876
1877         if (S_ISDIR(fscki->mode)) {
1878                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1879                 fscki->calc_cnt = 2;
1880         }
1881
1882         rb_link_node(&fscki->rb, parent, p);
1883         rb_insert_color(&fscki->rb, &fsckd->inodes);
1884
1885         return fscki;
1886 }
1887
1888 /**
1889  * search_inode - search inode in the RB-tree of inodes.
1890  * @fsckd: FS checking information
1891  * @inum: inode number to search
1892  *
1893  * This is a helper function for 'check_leaf()' which searches inode @inum in
1894  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1895  * the inode was not found.
1896  */
1897 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1898 {
1899         struct rb_node *p;
1900         struct fsck_inode *fscki;
1901
1902         p = fsckd->inodes.rb_node;
1903         while (p) {
1904                 fscki = rb_entry(p, struct fsck_inode, rb);
1905                 if (inum < fscki->inum)
1906                         p = p->rb_left;
1907                 else if (inum > fscki->inum)
1908                         p = p->rb_right;
1909                 else
1910                         return fscki;
1911         }
1912         return NULL;
1913 }
1914
1915 /**
1916  * read_add_inode - read inode node and add it to RB-tree of inodes.
1917  * @c: UBIFS file-system description object
1918  * @fsckd: FS checking information
1919  * @inum: inode number to read
1920  *
1921  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1922  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1923  * information pointer in case of success and a negative error code in case of
1924  * failure.
1925  */
1926 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1927                                          struct fsck_data *fsckd, ino_t inum)
1928 {
1929         int n, err;
1930         union ubifs_key key;
1931         struct ubifs_znode *znode;
1932         struct ubifs_zbranch *zbr;
1933         struct ubifs_ino_node *ino;
1934         struct fsck_inode *fscki;
1935
1936         fscki = search_inode(fsckd, inum);
1937         if (fscki)
1938                 return fscki;
1939
1940         ino_key_init(c, &key, inum);
1941         err = ubifs_lookup_level0(c, &key, &znode, &n);
1942         if (!err) {
1943                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1944                 return ERR_PTR(-ENOENT);
1945         } else if (err < 0) {
1946                 ubifs_err(c, "error %d while looking up inode %lu",
1947                           err, (unsigned long)inum);
1948                 return ERR_PTR(err);
1949         }
1950
1951         zbr = &znode->zbranch[n];
1952         if (zbr->len < UBIFS_INO_NODE_SZ) {
1953                 ubifs_err(c, "bad node %lu node length %d",
1954                           (unsigned long)inum, zbr->len);
1955                 return ERR_PTR(-EINVAL);
1956         }
1957
1958         ino = kmalloc(zbr->len, GFP_NOFS);
1959         if (!ino)
1960                 return ERR_PTR(-ENOMEM);
1961
1962         err = ubifs_tnc_read_node(c, zbr, ino);
1963         if (err) {
1964                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1965                           zbr->lnum, zbr->offs, err);
1966                 kfree(ino);
1967                 return ERR_PTR(err);
1968         }
1969
1970         fscki = add_inode(c, fsckd, ino);
1971         kfree(ino);
1972         if (IS_ERR(fscki)) {
1973                 ubifs_err(c, "error %ld while adding inode %lu node",
1974                           PTR_ERR(fscki), (unsigned long)inum);
1975                 return fscki;
1976         }
1977
1978         return fscki;
1979 }
1980
1981 /**
1982  * check_leaf - check leaf node.
1983  * @c: UBIFS file-system description object
1984  * @zbr: zbranch of the leaf node to check
1985  * @priv: FS checking information
1986  *
1987  * This is a helper function for 'dbg_check_filesystem()' which is called for
1988  * every single leaf node while walking the indexing tree. It checks that the
1989  * leaf node referred from the indexing tree exists, has correct CRC, and does
1990  * some other basic validation. This function is also responsible for building
1991  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1992  * calculates reference count, size, etc for each inode in order to later
1993  * compare them to the information stored inside the inodes and detect possible
1994  * inconsistencies. Returns zero in case of success and a negative error code
1995  * in case of failure.
1996  */
1997 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1998                       void *priv)
1999 {
2000         ino_t inum;
2001         void *node;
2002         struct ubifs_ch *ch;
2003         int err, type = key_type(c, &zbr->key);
2004         struct fsck_inode *fscki;
2005
2006         if (zbr->len < UBIFS_CH_SZ) {
2007                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2008                           zbr->len, zbr->lnum, zbr->offs);
2009                 return -EINVAL;
2010         }
2011
2012         node = kmalloc(zbr->len, GFP_NOFS);
2013         if (!node)
2014                 return -ENOMEM;
2015
2016         err = ubifs_tnc_read_node(c, zbr, node);
2017         if (err) {
2018                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2019                           zbr->lnum, zbr->offs, err);
2020                 goto out_free;
2021         }
2022
2023         /* If this is an inode node, add it to RB-tree of inodes */
2024         if (type == UBIFS_INO_KEY) {
2025                 fscki = add_inode(c, priv, node);
2026                 if (IS_ERR(fscki)) {
2027                         err = PTR_ERR(fscki);
2028                         ubifs_err(c, "error %d while adding inode node", err);
2029                         goto out_dump;
2030                 }
2031                 goto out;
2032         }
2033
2034         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2035             type != UBIFS_DATA_KEY) {
2036                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2037                           type, zbr->lnum, zbr->offs);
2038                 err = -EINVAL;
2039                 goto out_free;
2040         }
2041
2042         ch = node;
2043         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2044                 ubifs_err(c, "too high sequence number, max. is %llu",
2045                           c->max_sqnum);
2046                 err = -EINVAL;
2047                 goto out_dump;
2048         }
2049
2050         if (type == UBIFS_DATA_KEY) {
2051                 long long blk_offs;
2052                 struct ubifs_data_node *dn = node;
2053
2054                 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2055
2056                 /*
2057                  * Search the inode node this data node belongs to and insert
2058                  * it to the RB-tree of inodes.
2059                  */
2060                 inum = key_inum_flash(c, &dn->key);
2061                 fscki = read_add_inode(c, priv, inum);
2062                 if (IS_ERR(fscki)) {
2063                         err = PTR_ERR(fscki);
2064                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2065                                   err, (unsigned long)inum);
2066                         goto out_dump;
2067                 }
2068
2069                 /* Make sure the data node is within inode size */
2070                 blk_offs = key_block_flash(c, &dn->key);
2071                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2072                 blk_offs += le32_to_cpu(dn->size);
2073                 if (blk_offs > fscki->size) {
2074                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2075                                   zbr->lnum, zbr->offs, fscki->size);
2076                         err = -EINVAL;
2077                         goto out_dump;
2078                 }
2079         } else {
2080                 int nlen;
2081                 struct ubifs_dent_node *dent = node;
2082                 struct fsck_inode *fscki1;
2083
2084                 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2085
2086                 err = ubifs_validate_entry(c, dent);
2087                 if (err)
2088                         goto out_dump;
2089
2090                 /*
2091                  * Search the inode node this entry refers to and the parent
2092                  * inode node and insert them to the RB-tree of inodes.
2093                  */
2094                 inum = le64_to_cpu(dent->inum);
2095                 fscki = read_add_inode(c, priv, inum);
2096                 if (IS_ERR(fscki)) {
2097                         err = PTR_ERR(fscki);
2098                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2099                                   err, (unsigned long)inum);
2100                         goto out_dump;
2101                 }
2102
2103                 /* Count how many direntries or xentries refers this inode */
2104                 fscki->references += 1;
2105
2106                 inum = key_inum_flash(c, &dent->key);
2107                 fscki1 = read_add_inode(c, priv, inum);
2108                 if (IS_ERR(fscki1)) {
2109                         err = PTR_ERR(fscki1);
2110                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2111                                   err, (unsigned long)inum);
2112                         goto out_dump;
2113                 }
2114
2115                 nlen = le16_to_cpu(dent->nlen);
2116                 if (type == UBIFS_XENT_KEY) {
2117                         fscki1->calc_xcnt += 1;
2118                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2119                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2120                         fscki1->calc_xnms += nlen;
2121                 } else {
2122                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2123                         if (dent->type == UBIFS_ITYPE_DIR)
2124                                 fscki1->calc_cnt += 1;
2125                 }
2126         }
2127
2128 out:
2129         kfree(node);
2130         return 0;
2131
2132 out_dump:
2133         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2134         ubifs_dump_node(c, node, zbr->len);
2135 out_free:
2136         kfree(node);
2137         return err;
2138 }
2139
2140 /**
2141  * free_inodes - free RB-tree of inodes.
2142  * @fsckd: FS checking information
2143  */
2144 static void free_inodes(struct fsck_data *fsckd)
2145 {
2146         struct fsck_inode *fscki, *n;
2147
2148         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2149                 kfree(fscki);
2150 }
2151
2152 /**
2153  * check_inodes - checks all inodes.
2154  * @c: UBIFS file-system description object
2155  * @fsckd: FS checking information
2156  *
2157  * This is a helper function for 'dbg_check_filesystem()' which walks the
2158  * RB-tree of inodes after the index scan has been finished, and checks that
2159  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2160  * %-EINVAL if not, and a negative error code in case of failure.
2161  */
2162 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2163 {
2164         int n, err;
2165         union ubifs_key key;
2166         struct ubifs_znode *znode;
2167         struct ubifs_zbranch *zbr;
2168         struct ubifs_ino_node *ino;
2169         struct fsck_inode *fscki;
2170         struct rb_node *this = rb_first(&fsckd->inodes);
2171
2172         while (this) {
2173                 fscki = rb_entry(this, struct fsck_inode, rb);
2174                 this = rb_next(this);
2175
2176                 if (S_ISDIR(fscki->mode)) {
2177                         /*
2178                          * Directories have to have exactly one reference (they
2179                          * cannot have hardlinks), although root inode is an
2180                          * exception.
2181                          */
2182                         if (fscki->inum != UBIFS_ROOT_INO &&
2183                             fscki->references != 1) {
2184                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2185                                           (unsigned long)fscki->inum,
2186                                           fscki->references);
2187                                 goto out_dump;
2188                         }
2189                         if (fscki->inum == UBIFS_ROOT_INO &&
2190                             fscki->references != 0) {
2191                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2192                                           (unsigned long)fscki->inum,
2193                                           fscki->references);
2194                                 goto out_dump;
2195                         }
2196                         if (fscki->calc_sz != fscki->size) {
2197                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2198                                           (unsigned long)fscki->inum,
2199                                           fscki->size, fscki->calc_sz);
2200                                 goto out_dump;
2201                         }
2202                         if (fscki->calc_cnt != fscki->nlink) {
2203                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2204                                           (unsigned long)fscki->inum,
2205                                           fscki->nlink, fscki->calc_cnt);
2206                                 goto out_dump;
2207                         }
2208                 } else {
2209                         if (fscki->references != fscki->nlink) {
2210                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2211                                           (unsigned long)fscki->inum,
2212                                           fscki->nlink, fscki->references);
2213                                 goto out_dump;
2214                         }
2215                 }
2216                 if (fscki->xattr_sz != fscki->calc_xsz) {
2217                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2218                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2219                                   fscki->calc_xsz);
2220                         goto out_dump;
2221                 }
2222                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2223                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2224                                   (unsigned long)fscki->inum,
2225                                   fscki->xattr_cnt, fscki->calc_xcnt);
2226                         goto out_dump;
2227                 }
2228                 if (fscki->xattr_nms != fscki->calc_xnms) {
2229                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2230                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2231                                   fscki->calc_xnms);
2232                         goto out_dump;
2233                 }
2234         }
2235
2236         return 0;
2237
2238 out_dump:
2239         /* Read the bad inode and dump it */
2240         ino_key_init(c, &key, fscki->inum);
2241         err = ubifs_lookup_level0(c, &key, &znode, &n);
2242         if (!err) {
2243                 ubifs_err(c, "inode %lu not found in index",
2244                           (unsigned long)fscki->inum);
2245                 return -ENOENT;
2246         } else if (err < 0) {
2247                 ubifs_err(c, "error %d while looking up inode %lu",
2248                           err, (unsigned long)fscki->inum);
2249                 return err;
2250         }
2251
2252         zbr = &znode->zbranch[n];
2253         ino = kmalloc(zbr->len, GFP_NOFS);
2254         if (!ino)
2255                 return -ENOMEM;
2256
2257         err = ubifs_tnc_read_node(c, zbr, ino);
2258         if (err) {
2259                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2260                           zbr->lnum, zbr->offs, err);
2261                 kfree(ino);
2262                 return err;
2263         }
2264
2265         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2266                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2267         ubifs_dump_node(c, ino, zbr->len);
2268         kfree(ino);
2269         return -EINVAL;
2270 }
2271
2272 /**
2273  * dbg_check_filesystem - check the file-system.
2274  * @c: UBIFS file-system description object
2275  *
2276  * This function checks the file system, namely:
2277  * o makes sure that all leaf nodes exist and their CRCs are correct;
2278  * o makes sure inode nlink, size, xattr size/count are correct (for all
2279  *   inodes).
2280  *
2281  * The function reads whole indexing tree and all nodes, so it is pretty
2282  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2283  * not, and a negative error code in case of failure.
2284  */
2285 int dbg_check_filesystem(struct ubifs_info *c)
2286 {
2287         int err;
2288         struct fsck_data fsckd;
2289
2290         if (!dbg_is_chk_fs(c))
2291                 return 0;
2292
2293         fsckd.inodes = RB_ROOT;
2294         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2295         if (err)
2296                 goto out_free;
2297
2298         err = check_inodes(c, &fsckd);
2299         if (err)
2300                 goto out_free;
2301
2302         free_inodes(&fsckd);
2303         return 0;
2304
2305 out_free:
2306         ubifs_err(c, "file-system check failed with error %d", err);
2307         dump_stack();
2308         free_inodes(&fsckd);
2309         return err;
2310 }
2311
2312 /**
2313  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2314  * @c: UBIFS file-system description object
2315  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2316  *
2317  * This function returns zero if the list of data nodes is sorted correctly,
2318  * and %-EINVAL if not.
2319  */
2320 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2321 {
2322         struct list_head *cur;
2323         struct ubifs_scan_node *sa, *sb;
2324
2325         if (!dbg_is_chk_gen(c))
2326                 return 0;
2327
2328         for (cur = head->next; cur->next != head; cur = cur->next) {
2329                 ino_t inuma, inumb;
2330                 uint32_t blka, blkb;
2331
2332                 cond_resched();
2333                 sa = container_of(cur, struct ubifs_scan_node, list);
2334                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2335
2336                 if (sa->type != UBIFS_DATA_NODE) {
2337                         ubifs_err(c, "bad node type %d", sa->type);
2338                         ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2339                         return -EINVAL;
2340                 }
2341                 if (sb->type != UBIFS_DATA_NODE) {
2342                         ubifs_err(c, "bad node type %d", sb->type);
2343                         ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2344                         return -EINVAL;
2345                 }
2346
2347                 inuma = key_inum(c, &sa->key);
2348                 inumb = key_inum(c, &sb->key);
2349
2350                 if (inuma < inumb)
2351                         continue;
2352                 if (inuma > inumb) {
2353                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2354                                   (unsigned long)inuma, (unsigned long)inumb);
2355                         goto error_dump;
2356                 }
2357
2358                 blka = key_block(c, &sa->key);
2359                 blkb = key_block(c, &sb->key);
2360
2361                 if (blka > blkb) {
2362                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2363                         goto error_dump;
2364                 }
2365                 if (blka == blkb) {
2366                         ubifs_err(c, "two data nodes for the same block");
2367                         goto error_dump;
2368                 }
2369         }
2370
2371         return 0;
2372
2373 error_dump:
2374         ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2375         ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2376         return -EINVAL;
2377 }
2378
2379 /**
2380  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2381  * @c: UBIFS file-system description object
2382  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2383  *
2384  * This function returns zero if the list of non-data nodes is sorted correctly,
2385  * and %-EINVAL if not.
2386  */
2387 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2388 {
2389         struct list_head *cur;
2390         struct ubifs_scan_node *sa, *sb;
2391
2392         if (!dbg_is_chk_gen(c))
2393                 return 0;
2394
2395         for (cur = head->next; cur->next != head; cur = cur->next) {
2396                 ino_t inuma, inumb;
2397                 uint32_t hasha, hashb;
2398
2399                 cond_resched();
2400                 sa = container_of(cur, struct ubifs_scan_node, list);
2401                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2402
2403                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2404                     sa->type != UBIFS_XENT_NODE) {
2405                         ubifs_err(c, "bad node type %d", sa->type);
2406                         ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2407                         return -EINVAL;
2408                 }
2409                 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2410                     sb->type != UBIFS_XENT_NODE) {
2411                         ubifs_err(c, "bad node type %d", sb->type);
2412                         ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2413                         return -EINVAL;
2414                 }
2415
2416                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2417                         ubifs_err(c, "non-inode node goes before inode node");
2418                         goto error_dump;
2419                 }
2420
2421                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2422                         continue;
2423
2424                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2425                         /* Inode nodes are sorted in descending size order */
2426                         if (sa->len < sb->len) {
2427                                 ubifs_err(c, "smaller inode node goes first");
2428                                 goto error_dump;
2429                         }
2430                         continue;
2431                 }
2432
2433                 /*
2434                  * This is either a dentry or xentry, which should be sorted in
2435                  * ascending (parent ino, hash) order.
2436                  */
2437                 inuma = key_inum(c, &sa->key);
2438                 inumb = key_inum(c, &sb->key);
2439
2440                 if (inuma < inumb)
2441                         continue;
2442                 if (inuma > inumb) {
2443                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2444                                   (unsigned long)inuma, (unsigned long)inumb);
2445                         goto error_dump;
2446                 }
2447
2448                 hasha = key_block(c, &sa->key);
2449                 hashb = key_block(c, &sb->key);
2450
2451                 if (hasha > hashb) {
2452                         ubifs_err(c, "larger hash %u goes before %u",
2453                                   hasha, hashb);
2454                         goto error_dump;
2455                 }
2456         }
2457
2458         return 0;
2459
2460 error_dump:
2461         ubifs_msg(c, "dumping first node");
2462         ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2463         ubifs_msg(c, "dumping second node");
2464         ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2465         return -EINVAL;
2466 }
2467
2468 static inline int chance(unsigned int n, unsigned int out_of)
2469 {
2470         return !!(get_random_u32_below(out_of) + 1 <= n);
2471
2472 }
2473
2474 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2475 {
2476         struct ubifs_debug_info *d = c->dbg;
2477
2478         ubifs_assert(c, dbg_is_tst_rcvry(c));
2479
2480         if (!d->pc_cnt) {
2481                 /* First call - decide delay to the power cut */
2482                 if (chance(1, 2)) {
2483                         unsigned long delay;
2484
2485                         if (chance(1, 2)) {
2486                                 d->pc_delay = 1;
2487                                 /* Fail within 1 minute */
2488                                 delay = get_random_u32_below(60000);
2489                                 d->pc_timeout = jiffies;
2490                                 d->pc_timeout += msecs_to_jiffies(delay);
2491                                 ubifs_warn(c, "failing after %lums", delay);
2492                         } else {
2493                                 d->pc_delay = 2;
2494                                 delay = get_random_u32_below(10000);
2495                                 /* Fail within 10000 operations */
2496                                 d->pc_cnt_max = delay;
2497                                 ubifs_warn(c, "failing after %lu calls", delay);
2498                         }
2499                 }
2500
2501                 d->pc_cnt += 1;
2502         }
2503
2504         /* Determine if failure delay has expired */
2505         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2506                         return 0;
2507         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2508                         return 0;
2509
2510         if (lnum == UBIFS_SB_LNUM) {
2511                 if (write && chance(1, 2))
2512                         return 0;
2513                 if (chance(19, 20))
2514                         return 0;
2515                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2516         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2517                 if (chance(19, 20))
2518                         return 0;
2519                 ubifs_warn(c, "failing in master LEB %d", lnum);
2520         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2521                 if (write && chance(99, 100))
2522                         return 0;
2523                 if (chance(399, 400))
2524                         return 0;
2525                 ubifs_warn(c, "failing in log LEB %d", lnum);
2526         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2527                 if (write && chance(7, 8))
2528                         return 0;
2529                 if (chance(19, 20))
2530                         return 0;
2531                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2532         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2533                 if (write && chance(1, 2))
2534                         return 0;
2535                 if (chance(9, 10))
2536                         return 0;
2537                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2538         } else if (lnum == c->ihead_lnum) {
2539                 if (chance(99, 100))
2540                         return 0;
2541                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2542         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2543                 if (chance(9, 10))
2544                         return 0;
2545                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2546         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2547                    !ubifs_search_bud(c, lnum)) {
2548                 if (chance(19, 20))
2549                         return 0;
2550                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2551         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2552                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2553                 if (chance(999, 1000))
2554                         return 0;
2555                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2556         } else {
2557                 if (chance(9999, 10000))
2558                         return 0;
2559                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2560         }
2561
2562         d->pc_happened = 1;
2563         ubifs_warn(c, "========== Power cut emulated ==========");
2564         dump_stack();
2565         return 1;
2566 }
2567
2568 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2569                         unsigned int len)
2570 {
2571         unsigned int from, to, ffs = chance(1, 2);
2572         unsigned char *p = (void *)buf;
2573
2574         from = get_random_u32_below(len);
2575         /* Corruption span max to end of write unit */
2576         to = min(len, ALIGN(from + 1, c->max_write_size));
2577
2578         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2579                    ffs ? "0xFFs" : "random data");
2580
2581         if (ffs)
2582                 memset(p + from, 0xFF, to - from);
2583         else
2584                 get_random_bytes(p + from, to - from);
2585
2586         return to;
2587 }
2588
2589 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2590                   int offs, int len)
2591 {
2592         int err, failing;
2593
2594         if (dbg_is_power_cut(c))
2595                 return -EROFS;
2596
2597         failing = power_cut_emulated(c, lnum, 1);
2598         if (failing) {
2599                 len = corrupt_data(c, buf, len);
2600                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2601                            len, lnum, offs);
2602         }
2603         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2604         if (err)
2605                 return err;
2606         if (failing)
2607                 return -EROFS;
2608         return 0;
2609 }
2610
2611 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2612                    int len)
2613 {
2614         int err;
2615
2616         if (dbg_is_power_cut(c))
2617                 return -EROFS;
2618         if (power_cut_emulated(c, lnum, 1))
2619                 return -EROFS;
2620         err = ubi_leb_change(c->ubi, lnum, buf, len);
2621         if (err)
2622                 return err;
2623         if (power_cut_emulated(c, lnum, 1))
2624                 return -EROFS;
2625         return 0;
2626 }
2627
2628 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2629 {
2630         int err;
2631
2632         if (dbg_is_power_cut(c))
2633                 return -EROFS;
2634         if (power_cut_emulated(c, lnum, 0))
2635                 return -EROFS;
2636         err = ubi_leb_unmap(c->ubi, lnum);
2637         if (err)
2638                 return err;
2639         if (power_cut_emulated(c, lnum, 0))
2640                 return -EROFS;
2641         return 0;
2642 }
2643
2644 int dbg_leb_map(struct ubifs_info *c, int lnum)
2645 {
2646         int err;
2647
2648         if (dbg_is_power_cut(c))
2649                 return -EROFS;
2650         if (power_cut_emulated(c, lnum, 0))
2651                 return -EROFS;
2652         err = ubi_leb_map(c->ubi, lnum);
2653         if (err)
2654                 return err;
2655         if (power_cut_emulated(c, lnum, 0))
2656                 return -EROFS;
2657         return 0;
2658 }
2659
2660 /*
2661  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2662  * contain the stuff specific to particular file-system mounts.
2663  */
2664 static struct dentry *dfs_rootdir;
2665
2666 static int dfs_file_open(struct inode *inode, struct file *file)
2667 {
2668         file->private_data = inode->i_private;
2669         return nonseekable_open(inode, file);
2670 }
2671
2672 /**
2673  * provide_user_output - provide output to the user reading a debugfs file.
2674  * @val: boolean value for the answer
2675  * @u: the buffer to store the answer at
2676  * @count: size of the buffer
2677  * @ppos: position in the @u output buffer
2678  *
2679  * This is a simple helper function which stores @val boolean value in the user
2680  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2681  * bytes written to @u in case of success and a negative error code in case of
2682  * failure.
2683  */
2684 static int provide_user_output(int val, char __user *u, size_t count,
2685                                loff_t *ppos)
2686 {
2687         char buf[3];
2688
2689         if (val)
2690                 buf[0] = '1';
2691         else
2692                 buf[0] = '0';
2693         buf[1] = '\n';
2694         buf[2] = 0x00;
2695
2696         return simple_read_from_buffer(u, count, ppos, buf, 2);
2697 }
2698
2699 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2700                              loff_t *ppos)
2701 {
2702         struct dentry *dent = file->f_path.dentry;
2703         struct ubifs_info *c = file->private_data;
2704         struct ubifs_debug_info *d = c->dbg;
2705         int val;
2706
2707         if (dent == d->dfs_chk_gen)
2708                 val = d->chk_gen;
2709         else if (dent == d->dfs_chk_index)
2710                 val = d->chk_index;
2711         else if (dent == d->dfs_chk_orph)
2712                 val = d->chk_orph;
2713         else if (dent == d->dfs_chk_lprops)
2714                 val = d->chk_lprops;
2715         else if (dent == d->dfs_chk_fs)
2716                 val = d->chk_fs;
2717         else if (dent == d->dfs_tst_rcvry)
2718                 val = d->tst_rcvry;
2719         else if (dent == d->dfs_ro_error)
2720                 val = c->ro_error;
2721         else
2722                 return -EINVAL;
2723
2724         return provide_user_output(val, u, count, ppos);
2725 }
2726
2727 /**
2728  * interpret_user_input - interpret user debugfs file input.
2729  * @u: user-provided buffer with the input
2730  * @count: buffer size
2731  *
2732  * This is a helper function which interpret user input to a boolean UBIFS
2733  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2734  * in case of failure.
2735  */
2736 static int interpret_user_input(const char __user *u, size_t count)
2737 {
2738         size_t buf_size;
2739         char buf[8];
2740
2741         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2742         if (copy_from_user(buf, u, buf_size))
2743                 return -EFAULT;
2744
2745         if (buf[0] == '1')
2746                 return 1;
2747         else if (buf[0] == '0')
2748                 return 0;
2749
2750         return -EINVAL;
2751 }
2752
2753 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2754                               size_t count, loff_t *ppos)
2755 {
2756         struct ubifs_info *c = file->private_data;
2757         struct ubifs_debug_info *d = c->dbg;
2758         struct dentry *dent = file->f_path.dentry;
2759         int val;
2760
2761         if (file->f_path.dentry == d->dfs_dump_lprops) {
2762                 ubifs_dump_lprops(c);
2763                 return count;
2764         }
2765         if (file->f_path.dentry == d->dfs_dump_budg) {
2766                 ubifs_dump_budg(c, &c->bi);
2767                 return count;
2768         }
2769         if (file->f_path.dentry == d->dfs_dump_tnc) {
2770                 mutex_lock(&c->tnc_mutex);
2771                 ubifs_dump_tnc(c);
2772                 mutex_unlock(&c->tnc_mutex);
2773                 return count;
2774         }
2775
2776         val = interpret_user_input(u, count);
2777         if (val < 0)
2778                 return val;
2779
2780         if (dent == d->dfs_chk_gen)
2781                 d->chk_gen = val;
2782         else if (dent == d->dfs_chk_index)
2783                 d->chk_index = val;
2784         else if (dent == d->dfs_chk_orph)
2785                 d->chk_orph = val;
2786         else if (dent == d->dfs_chk_lprops)
2787                 d->chk_lprops = val;
2788         else if (dent == d->dfs_chk_fs)
2789                 d->chk_fs = val;
2790         else if (dent == d->dfs_tst_rcvry)
2791                 d->tst_rcvry = val;
2792         else if (dent == d->dfs_ro_error)
2793                 c->ro_error = !!val;
2794         else
2795                 return -EINVAL;
2796
2797         return count;
2798 }
2799
2800 static const struct file_operations dfs_fops = {
2801         .open = dfs_file_open,
2802         .read = dfs_file_read,
2803         .write = dfs_file_write,
2804         .owner = THIS_MODULE,
2805         .llseek = no_llseek,
2806 };
2807
2808 /**
2809  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2810  * @c: UBIFS file-system description object
2811  *
2812  * This function creates all debugfs files for this instance of UBIFS.
2813  *
2814  * Note, the only reason we have not merged this function with the
2815  * 'ubifs_debugging_init()' function is because it is better to initialize
2816  * debugfs interfaces at the very end of the mount process, and remove them at
2817  * the very beginning of the mount process.
2818  */
2819 void dbg_debugfs_init_fs(struct ubifs_info *c)
2820 {
2821         int n;
2822         const char *fname;
2823         struct ubifs_debug_info *d = c->dbg;
2824
2825         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2826                      c->vi.ubi_num, c->vi.vol_id);
2827         if (n > UBIFS_DFS_DIR_LEN) {
2828                 /* The array size is too small */
2829                 return;
2830         }
2831
2832         fname = d->dfs_dir_name;
2833         d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2834
2835         fname = "dump_lprops";
2836         d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2837                                                  &dfs_fops);
2838
2839         fname = "dump_budg";
2840         d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2841                                                &dfs_fops);
2842
2843         fname = "dump_tnc";
2844         d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845                                               &dfs_fops);
2846
2847         fname = "chk_general";
2848         d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849                                              d->dfs_dir, c, &dfs_fops);
2850
2851         fname = "chk_index";
2852         d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853                                                d->dfs_dir, c, &dfs_fops);
2854
2855         fname = "chk_orphans";
2856         d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857                                               d->dfs_dir, c, &dfs_fops);
2858
2859         fname = "chk_lprops";
2860         d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861                                                 d->dfs_dir, c, &dfs_fops);
2862
2863         fname = "chk_fs";
2864         d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865                                             d->dfs_dir, c, &dfs_fops);
2866
2867         fname = "tst_recovery";
2868         d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869                                                d->dfs_dir, c, &dfs_fops);
2870
2871         fname = "ro_error";
2872         d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873                                               d->dfs_dir, c, &dfs_fops);
2874 }
2875
2876 /**
2877  * dbg_debugfs_exit_fs - remove all debugfs files.
2878  * @c: UBIFS file-system description object
2879  */
2880 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2881 {
2882         debugfs_remove_recursive(c->dbg->dfs_dir);
2883 }
2884
2885 struct ubifs_global_debug_info ubifs_dbg;
2886
2887 static struct dentry *dfs_chk_gen;
2888 static struct dentry *dfs_chk_index;
2889 static struct dentry *dfs_chk_orph;
2890 static struct dentry *dfs_chk_lprops;
2891 static struct dentry *dfs_chk_fs;
2892 static struct dentry *dfs_tst_rcvry;
2893
2894 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2895                                     size_t count, loff_t *ppos)
2896 {
2897         struct dentry *dent = file->f_path.dentry;
2898         int val;
2899
2900         if (dent == dfs_chk_gen)
2901                 val = ubifs_dbg.chk_gen;
2902         else if (dent == dfs_chk_index)
2903                 val = ubifs_dbg.chk_index;
2904         else if (dent == dfs_chk_orph)
2905                 val = ubifs_dbg.chk_orph;
2906         else if (dent == dfs_chk_lprops)
2907                 val = ubifs_dbg.chk_lprops;
2908         else if (dent == dfs_chk_fs)
2909                 val = ubifs_dbg.chk_fs;
2910         else if (dent == dfs_tst_rcvry)
2911                 val = ubifs_dbg.tst_rcvry;
2912         else
2913                 return -EINVAL;
2914
2915         return provide_user_output(val, u, count, ppos);
2916 }
2917
2918 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2919                                      size_t count, loff_t *ppos)
2920 {
2921         struct dentry *dent = file->f_path.dentry;
2922         int val;
2923
2924         val = interpret_user_input(u, count);
2925         if (val < 0)
2926                 return val;
2927
2928         if (dent == dfs_chk_gen)
2929                 ubifs_dbg.chk_gen = val;
2930         else if (dent == dfs_chk_index)
2931                 ubifs_dbg.chk_index = val;
2932         else if (dent == dfs_chk_orph)
2933                 ubifs_dbg.chk_orph = val;
2934         else if (dent == dfs_chk_lprops)
2935                 ubifs_dbg.chk_lprops = val;
2936         else if (dent == dfs_chk_fs)
2937                 ubifs_dbg.chk_fs = val;
2938         else if (dent == dfs_tst_rcvry)
2939                 ubifs_dbg.tst_rcvry = val;
2940         else
2941                 return -EINVAL;
2942
2943         return count;
2944 }
2945
2946 static const struct file_operations dfs_global_fops = {
2947         .read = dfs_global_file_read,
2948         .write = dfs_global_file_write,
2949         .owner = THIS_MODULE,
2950         .llseek = no_llseek,
2951 };
2952
2953 /**
2954  * dbg_debugfs_init - initialize debugfs file-system.
2955  *
2956  * UBIFS uses debugfs file-system to expose various debugging knobs to
2957  * user-space. This function creates "ubifs" directory in the debugfs
2958  * file-system.
2959  */
2960 void dbg_debugfs_init(void)
2961 {
2962         const char *fname;
2963
2964         fname = "ubifs";
2965         dfs_rootdir = debugfs_create_dir(fname, NULL);
2966
2967         fname = "chk_general";
2968         dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2969                                           NULL, &dfs_global_fops);
2970
2971         fname = "chk_index";
2972         dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2973                                             dfs_rootdir, NULL, &dfs_global_fops);
2974
2975         fname = "chk_orphans";
2976         dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2977                                            dfs_rootdir, NULL, &dfs_global_fops);
2978
2979         fname = "chk_lprops";
2980         dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2981                                              dfs_rootdir, NULL, &dfs_global_fops);
2982
2983         fname = "chk_fs";
2984         dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2985                                          NULL, &dfs_global_fops);
2986
2987         fname = "tst_recovery";
2988         dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2989                                             dfs_rootdir, NULL, &dfs_global_fops);
2990 }
2991
2992 /**
2993  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2994  */
2995 void dbg_debugfs_exit(void)
2996 {
2997         debugfs_remove_recursive(dfs_rootdir);
2998 }
2999
3000 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3001                          const char *file, int line)
3002 {
3003         ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3004
3005         switch (c->assert_action) {
3006                 case ASSACT_PANIC:
3007                 BUG();
3008                 break;
3009
3010                 case ASSACT_RO:
3011                 ubifs_ro_mode(c, -EINVAL);
3012                 break;
3013
3014                 case ASSACT_REPORT:
3015                 default:
3016                 dump_stack();
3017                 break;
3018
3019         }
3020 }
3021
3022 /**
3023  * ubifs_debugging_init - initialize UBIFS debugging.
3024  * @c: UBIFS file-system description object
3025  *
3026  * This function initializes debugging-related data for the file system.
3027  * Returns zero in case of success and a negative error code in case of
3028  * failure.
3029  */
3030 int ubifs_debugging_init(struct ubifs_info *c)
3031 {
3032         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3033         if (!c->dbg)
3034                 return -ENOMEM;
3035
3036         return 0;
3037 }
3038
3039 /**
3040  * ubifs_debugging_exit - free debugging data.
3041  * @c: UBIFS file-system description object
3042  */
3043 void ubifs_debugging_exit(struct ubifs_info *c)
3044 {
3045         kfree(c->dbg);
3046 }