slab: Only define slab_error for DEBUG
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36
37 static DEFINE_SPINLOCK(dbg_lock);
38
39 static const char *get_key_fmt(int fmt)
40 {
41         switch (fmt) {
42         case UBIFS_SIMPLE_KEY_FMT:
43                 return "simple";
44         default:
45                 return "unknown/invalid format";
46         }
47 }
48
49 static const char *get_key_hash(int hash)
50 {
51         switch (hash) {
52         case UBIFS_KEY_HASH_R5:
53                 return "R5";
54         case UBIFS_KEY_HASH_TEST:
55                 return "test";
56         default:
57                 return "unknown/invalid name hash";
58         }
59 }
60
61 static const char *get_key_type(int type)
62 {
63         switch (type) {
64         case UBIFS_INO_KEY:
65                 return "inode";
66         case UBIFS_DENT_KEY:
67                 return "direntry";
68         case UBIFS_XENT_KEY:
69                 return "xentry";
70         case UBIFS_DATA_KEY:
71                 return "data";
72         case UBIFS_TRUN_KEY:
73                 return "truncate";
74         default:
75                 return "unknown/invalid key";
76         }
77 }
78
79 static const char *get_dent_type(int type)
80 {
81         switch (type) {
82         case UBIFS_ITYPE_REG:
83                 return "file";
84         case UBIFS_ITYPE_DIR:
85                 return "dir";
86         case UBIFS_ITYPE_LNK:
87                 return "symlink";
88         case UBIFS_ITYPE_BLK:
89                 return "blkdev";
90         case UBIFS_ITYPE_CHR:
91                 return "char dev";
92         case UBIFS_ITYPE_FIFO:
93                 return "fifo";
94         case UBIFS_ITYPE_SOCK:
95                 return "socket";
96         default:
97                 return "unknown/invalid type";
98         }
99 }
100
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102                              const union ubifs_key *key, char *buffer, int len)
103 {
104         char *p = buffer;
105         int type = key_type(c, key);
106
107         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108                 switch (type) {
109                 case UBIFS_INO_KEY:
110                         len -= snprintf(p, len, "(%lu, %s)",
111                                         (unsigned long)key_inum(c, key),
112                                         get_key_type(type));
113                         break;
114                 case UBIFS_DENT_KEY:
115                 case UBIFS_XENT_KEY:
116                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
117                                         (unsigned long)key_inum(c, key),
118                                         get_key_type(type), key_hash(c, key));
119                         break;
120                 case UBIFS_DATA_KEY:
121                         len -= snprintf(p, len, "(%lu, %s, %u)",
122                                         (unsigned long)key_inum(c, key),
123                                         get_key_type(type), key_block(c, key));
124                         break;
125                 case UBIFS_TRUN_KEY:
126                         len -= snprintf(p, len, "(%lu, %s)",
127                                         (unsigned long)key_inum(c, key),
128                                         get_key_type(type));
129                         break;
130                 default:
131                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132                                         key->u32[0], key->u32[1]);
133                 }
134         } else
135                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136         ubifs_assert(len > 0);
137         return p;
138 }
139
140 const char *dbg_ntype(int type)
141 {
142         switch (type) {
143         case UBIFS_PAD_NODE:
144                 return "padding node";
145         case UBIFS_SB_NODE:
146                 return "superblock node";
147         case UBIFS_MST_NODE:
148                 return "master node";
149         case UBIFS_REF_NODE:
150                 return "reference node";
151         case UBIFS_INO_NODE:
152                 return "inode node";
153         case UBIFS_DENT_NODE:
154                 return "direntry node";
155         case UBIFS_XENT_NODE:
156                 return "xentry node";
157         case UBIFS_DATA_NODE:
158                 return "data node";
159         case UBIFS_TRUN_NODE:
160                 return "truncate node";
161         case UBIFS_IDX_NODE:
162                 return "indexing node";
163         case UBIFS_CS_NODE:
164                 return "commit start node";
165         case UBIFS_ORPH_NODE:
166                 return "orphan node";
167         default:
168                 return "unknown node";
169         }
170 }
171
172 static const char *dbg_gtype(int type)
173 {
174         switch (type) {
175         case UBIFS_NO_NODE_GROUP:
176                 return "no node group";
177         case UBIFS_IN_NODE_GROUP:
178                 return "in node group";
179         case UBIFS_LAST_OF_NODE_GROUP:
180                 return "last of node group";
181         default:
182                 return "unknown";
183         }
184 }
185
186 const char *dbg_cstate(int cmt_state)
187 {
188         switch (cmt_state) {
189         case COMMIT_RESTING:
190                 return "commit resting";
191         case COMMIT_BACKGROUND:
192                 return "background commit requested";
193         case COMMIT_REQUIRED:
194                 return "commit required";
195         case COMMIT_RUNNING_BACKGROUND:
196                 return "BACKGROUND commit running";
197         case COMMIT_RUNNING_REQUIRED:
198                 return "commit running and required";
199         case COMMIT_BROKEN:
200                 return "broken commit";
201         default:
202                 return "unknown commit state";
203         }
204 }
205
206 const char *dbg_jhead(int jhead)
207 {
208         switch (jhead) {
209         case GCHD:
210                 return "0 (GC)";
211         case BASEHD:
212                 return "1 (base)";
213         case DATAHD:
214                 return "2 (data)";
215         default:
216                 return "unknown journal head";
217         }
218 }
219
220 static void dump_ch(const struct ubifs_ch *ch)
221 {
222         printk(KERN_ERR "\tmagic          %#x\n", le32_to_cpu(ch->magic));
223         printk(KERN_ERR "\tcrc            %#x\n", le32_to_cpu(ch->crc));
224         printk(KERN_ERR "\tnode_type      %d (%s)\n", ch->node_type,
225                dbg_ntype(ch->node_type));
226         printk(KERN_ERR "\tgroup_type     %d (%s)\n", ch->group_type,
227                dbg_gtype(ch->group_type));
228         printk(KERN_ERR "\tsqnum          %llu\n",
229                (unsigned long long)le64_to_cpu(ch->sqnum));
230         printk(KERN_ERR "\tlen            %u\n", le32_to_cpu(ch->len));
231 }
232
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234 {
235         const struct ubifs_inode *ui = ubifs_inode(inode);
236         struct qstr nm = { .name = NULL };
237         union ubifs_key key;
238         struct ubifs_dent_node *dent, *pdent = NULL;
239         int count = 2;
240
241         printk(KERN_ERR "Dump in-memory inode:");
242         printk(KERN_ERR "\tinode          %lu\n", inode->i_ino);
243         printk(KERN_ERR "\tsize           %llu\n",
244                (unsigned long long)i_size_read(inode));
245         printk(KERN_ERR "\tnlink          %u\n", inode->i_nlink);
246         printk(KERN_ERR "\tuid            %u\n", (unsigned int)inode->i_uid);
247         printk(KERN_ERR "\tgid            %u\n", (unsigned int)inode->i_gid);
248         printk(KERN_ERR "\tatime          %u.%u\n",
249                (unsigned int)inode->i_atime.tv_sec,
250                (unsigned int)inode->i_atime.tv_nsec);
251         printk(KERN_ERR "\tmtime          %u.%u\n",
252                (unsigned int)inode->i_mtime.tv_sec,
253                (unsigned int)inode->i_mtime.tv_nsec);
254         printk(KERN_ERR "\tctime          %u.%u\n",
255                (unsigned int)inode->i_ctime.tv_sec,
256                (unsigned int)inode->i_ctime.tv_nsec);
257         printk(KERN_ERR "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258         printk(KERN_ERR "\txattr_size     %u\n", ui->xattr_size);
259         printk(KERN_ERR "\txattr_cnt      %u\n", ui->xattr_cnt);
260         printk(KERN_ERR "\txattr_names    %u\n", ui->xattr_names);
261         printk(KERN_ERR "\tdirty          %u\n", ui->dirty);
262         printk(KERN_ERR "\txattr          %u\n", ui->xattr);
263         printk(KERN_ERR "\tbulk_read      %u\n", ui->xattr);
264         printk(KERN_ERR "\tsynced_i_size  %llu\n",
265                (unsigned long long)ui->synced_i_size);
266         printk(KERN_ERR "\tui_size        %llu\n",
267                (unsigned long long)ui->ui_size);
268         printk(KERN_ERR "\tflags          %d\n", ui->flags);
269         printk(KERN_ERR "\tcompr_type     %d\n", ui->compr_type);
270         printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
271         printk(KERN_ERR "\tread_in_a_row  %lu\n", ui->read_in_a_row);
272         printk(KERN_ERR "\tdata_len       %d\n", ui->data_len);
273
274         if (!S_ISDIR(inode->i_mode))
275                 return;
276
277         printk(KERN_ERR "List of directory entries:\n");
278         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280         lowest_dent_key(c, &key, inode->i_ino);
281         while (1) {
282                 dent = ubifs_tnc_next_ent(c, &key, &nm);
283                 if (IS_ERR(dent)) {
284                         if (PTR_ERR(dent) != -ENOENT)
285                                 printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
286                         break;
287                 }
288
289                 printk(KERN_ERR "\t%d: %s (%s)\n",
290                        count++, dent->name, get_dent_type(dent->type));
291
292                 nm.name = dent->name;
293                 nm.len = le16_to_cpu(dent->nlen);
294                 kfree(pdent);
295                 pdent = dent;
296                 key_read(c, &dent->key, &key);
297         }
298         kfree(pdent);
299 }
300
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 {
303         int i, n;
304         union ubifs_key key;
305         const struct ubifs_ch *ch = node;
306         char key_buf[DBG_KEY_BUF_LEN];
307
308         if (dbg_is_tst_rcvry(c))
309                 return;
310
311         /* If the magic is incorrect, just hexdump the first bytes */
312         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313                 printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
314                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315                                (void *)node, UBIFS_CH_SZ, 1);
316                 return;
317         }
318
319         spin_lock(&dbg_lock);
320         dump_ch(node);
321
322         switch (ch->node_type) {
323         case UBIFS_PAD_NODE:
324         {
325                 const struct ubifs_pad_node *pad = node;
326
327                 printk(KERN_ERR "\tpad_len        %u\n",
328                        le32_to_cpu(pad->pad_len));
329                 break;
330         }
331         case UBIFS_SB_NODE:
332         {
333                 const struct ubifs_sb_node *sup = node;
334                 unsigned int sup_flags = le32_to_cpu(sup->flags);
335
336                 printk(KERN_ERR "\tkey_hash       %d (%s)\n",
337                        (int)sup->key_hash, get_key_hash(sup->key_hash));
338                 printk(KERN_ERR "\tkey_fmt        %d (%s)\n",
339                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
340                 printk(KERN_ERR "\tflags          %#x\n", sup_flags);
341                 printk(KERN_ERR "\t  big_lpt      %u\n",
342                        !!(sup_flags & UBIFS_FLG_BIGLPT));
343                 printk(KERN_ERR "\t  space_fixup  %u\n",
344                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
345                 printk(KERN_ERR "\tmin_io_size    %u\n",
346                        le32_to_cpu(sup->min_io_size));
347                 printk(KERN_ERR "\tleb_size       %u\n",
348                        le32_to_cpu(sup->leb_size));
349                 printk(KERN_ERR "\tleb_cnt        %u\n",
350                        le32_to_cpu(sup->leb_cnt));
351                 printk(KERN_ERR "\tmax_leb_cnt    %u\n",
352                        le32_to_cpu(sup->max_leb_cnt));
353                 printk(KERN_ERR "\tmax_bud_bytes  %llu\n",
354                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
355                 printk(KERN_ERR "\tlog_lebs       %u\n",
356                        le32_to_cpu(sup->log_lebs));
357                 printk(KERN_ERR "\tlpt_lebs       %u\n",
358                        le32_to_cpu(sup->lpt_lebs));
359                 printk(KERN_ERR "\torph_lebs      %u\n",
360                        le32_to_cpu(sup->orph_lebs));
361                 printk(KERN_ERR "\tjhead_cnt      %u\n",
362                        le32_to_cpu(sup->jhead_cnt));
363                 printk(KERN_ERR "\tfanout         %u\n",
364                        le32_to_cpu(sup->fanout));
365                 printk(KERN_ERR "\tlsave_cnt      %u\n",
366                        le32_to_cpu(sup->lsave_cnt));
367                 printk(KERN_ERR "\tdefault_compr  %u\n",
368                        (int)le16_to_cpu(sup->default_compr));
369                 printk(KERN_ERR "\trp_size        %llu\n",
370                        (unsigned long long)le64_to_cpu(sup->rp_size));
371                 printk(KERN_ERR "\trp_uid         %u\n",
372                        le32_to_cpu(sup->rp_uid));
373                 printk(KERN_ERR "\trp_gid         %u\n",
374                        le32_to_cpu(sup->rp_gid));
375                 printk(KERN_ERR "\tfmt_version    %u\n",
376                        le32_to_cpu(sup->fmt_version));
377                 printk(KERN_ERR "\ttime_gran      %u\n",
378                        le32_to_cpu(sup->time_gran));
379                 printk(KERN_ERR "\tUUID           %pUB\n",
380                        sup->uuid);
381                 break;
382         }
383         case UBIFS_MST_NODE:
384         {
385                 const struct ubifs_mst_node *mst = node;
386
387                 printk(KERN_ERR "\thighest_inum   %llu\n",
388                        (unsigned long long)le64_to_cpu(mst->highest_inum));
389                 printk(KERN_ERR "\tcommit number  %llu\n",
390                        (unsigned long long)le64_to_cpu(mst->cmt_no));
391                 printk(KERN_ERR "\tflags          %#x\n",
392                        le32_to_cpu(mst->flags));
393                 printk(KERN_ERR "\tlog_lnum       %u\n",
394                        le32_to_cpu(mst->log_lnum));
395                 printk(KERN_ERR "\troot_lnum      %u\n",
396                        le32_to_cpu(mst->root_lnum));
397                 printk(KERN_ERR "\troot_offs      %u\n",
398                        le32_to_cpu(mst->root_offs));
399                 printk(KERN_ERR "\troot_len       %u\n",
400                        le32_to_cpu(mst->root_len));
401                 printk(KERN_ERR "\tgc_lnum        %u\n",
402                        le32_to_cpu(mst->gc_lnum));
403                 printk(KERN_ERR "\tihead_lnum     %u\n",
404                        le32_to_cpu(mst->ihead_lnum));
405                 printk(KERN_ERR "\tihead_offs     %u\n",
406                        le32_to_cpu(mst->ihead_offs));
407                 printk(KERN_ERR "\tindex_size     %llu\n",
408                        (unsigned long long)le64_to_cpu(mst->index_size));
409                 printk(KERN_ERR "\tlpt_lnum       %u\n",
410                        le32_to_cpu(mst->lpt_lnum));
411                 printk(KERN_ERR "\tlpt_offs       %u\n",
412                        le32_to_cpu(mst->lpt_offs));
413                 printk(KERN_ERR "\tnhead_lnum     %u\n",
414                        le32_to_cpu(mst->nhead_lnum));
415                 printk(KERN_ERR "\tnhead_offs     %u\n",
416                        le32_to_cpu(mst->nhead_offs));
417                 printk(KERN_ERR "\tltab_lnum      %u\n",
418                        le32_to_cpu(mst->ltab_lnum));
419                 printk(KERN_ERR "\tltab_offs      %u\n",
420                        le32_to_cpu(mst->ltab_offs));
421                 printk(KERN_ERR "\tlsave_lnum     %u\n",
422                        le32_to_cpu(mst->lsave_lnum));
423                 printk(KERN_ERR "\tlsave_offs     %u\n",
424                        le32_to_cpu(mst->lsave_offs));
425                 printk(KERN_ERR "\tlscan_lnum     %u\n",
426                        le32_to_cpu(mst->lscan_lnum));
427                 printk(KERN_ERR "\tleb_cnt        %u\n",
428                        le32_to_cpu(mst->leb_cnt));
429                 printk(KERN_ERR "\tempty_lebs     %u\n",
430                        le32_to_cpu(mst->empty_lebs));
431                 printk(KERN_ERR "\tidx_lebs       %u\n",
432                        le32_to_cpu(mst->idx_lebs));
433                 printk(KERN_ERR "\ttotal_free     %llu\n",
434                        (unsigned long long)le64_to_cpu(mst->total_free));
435                 printk(KERN_ERR "\ttotal_dirty    %llu\n",
436                        (unsigned long long)le64_to_cpu(mst->total_dirty));
437                 printk(KERN_ERR "\ttotal_used     %llu\n",
438                        (unsigned long long)le64_to_cpu(mst->total_used));
439                 printk(KERN_ERR "\ttotal_dead     %llu\n",
440                        (unsigned long long)le64_to_cpu(mst->total_dead));
441                 printk(KERN_ERR "\ttotal_dark     %llu\n",
442                        (unsigned long long)le64_to_cpu(mst->total_dark));
443                 break;
444         }
445         case UBIFS_REF_NODE:
446         {
447                 const struct ubifs_ref_node *ref = node;
448
449                 printk(KERN_ERR "\tlnum           %u\n",
450                        le32_to_cpu(ref->lnum));
451                 printk(KERN_ERR "\toffs           %u\n",
452                        le32_to_cpu(ref->offs));
453                 printk(KERN_ERR "\tjhead          %u\n",
454                        le32_to_cpu(ref->jhead));
455                 break;
456         }
457         case UBIFS_INO_NODE:
458         {
459                 const struct ubifs_ino_node *ino = node;
460
461                 key_read(c, &ino->key, &key);
462                 printk(KERN_ERR "\tkey            %s\n",
463                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
464                 printk(KERN_ERR "\tcreat_sqnum    %llu\n",
465                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
466                 printk(KERN_ERR "\tsize           %llu\n",
467                        (unsigned long long)le64_to_cpu(ino->size));
468                 printk(KERN_ERR "\tnlink          %u\n",
469                        le32_to_cpu(ino->nlink));
470                 printk(KERN_ERR "\tatime          %lld.%u\n",
471                        (long long)le64_to_cpu(ino->atime_sec),
472                        le32_to_cpu(ino->atime_nsec));
473                 printk(KERN_ERR "\tmtime          %lld.%u\n",
474                        (long long)le64_to_cpu(ino->mtime_sec),
475                        le32_to_cpu(ino->mtime_nsec));
476                 printk(KERN_ERR "\tctime          %lld.%u\n",
477                        (long long)le64_to_cpu(ino->ctime_sec),
478                        le32_to_cpu(ino->ctime_nsec));
479                 printk(KERN_ERR "\tuid            %u\n",
480                        le32_to_cpu(ino->uid));
481                 printk(KERN_ERR "\tgid            %u\n",
482                        le32_to_cpu(ino->gid));
483                 printk(KERN_ERR "\tmode           %u\n",
484                        le32_to_cpu(ino->mode));
485                 printk(KERN_ERR "\tflags          %#x\n",
486                        le32_to_cpu(ino->flags));
487                 printk(KERN_ERR "\txattr_cnt      %u\n",
488                        le32_to_cpu(ino->xattr_cnt));
489                 printk(KERN_ERR "\txattr_size     %u\n",
490                        le32_to_cpu(ino->xattr_size));
491                 printk(KERN_ERR "\txattr_names    %u\n",
492                        le32_to_cpu(ino->xattr_names));
493                 printk(KERN_ERR "\tcompr_type     %#x\n",
494                        (int)le16_to_cpu(ino->compr_type));
495                 printk(KERN_ERR "\tdata len       %u\n",
496                        le32_to_cpu(ino->data_len));
497                 break;
498         }
499         case UBIFS_DENT_NODE:
500         case UBIFS_XENT_NODE:
501         {
502                 const struct ubifs_dent_node *dent = node;
503                 int nlen = le16_to_cpu(dent->nlen);
504
505                 key_read(c, &dent->key, &key);
506                 printk(KERN_ERR "\tkey            %s\n",
507                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
508                 printk(KERN_ERR "\tinum           %llu\n",
509                        (unsigned long long)le64_to_cpu(dent->inum));
510                 printk(KERN_ERR "\ttype           %d\n", (int)dent->type);
511                 printk(KERN_ERR "\tnlen           %d\n", nlen);
512                 printk(KERN_ERR "\tname           ");
513
514                 if (nlen > UBIFS_MAX_NLEN)
515                         printk(KERN_ERR "(bad name length, not printing, "
516                                           "bad or corrupted node)");
517                 else {
518                         for (i = 0; i < nlen && dent->name[i]; i++)
519                                 printk(KERN_CONT "%c", dent->name[i]);
520                 }
521                 printk(KERN_CONT "\n");
522
523                 break;
524         }
525         case UBIFS_DATA_NODE:
526         {
527                 const struct ubifs_data_node *dn = node;
528                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
529
530                 key_read(c, &dn->key, &key);
531                 printk(KERN_ERR "\tkey            %s\n",
532                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
533                 printk(KERN_ERR "\tsize           %u\n",
534                        le32_to_cpu(dn->size));
535                 printk(KERN_ERR "\tcompr_typ      %d\n",
536                        (int)le16_to_cpu(dn->compr_type));
537                 printk(KERN_ERR "\tdata size      %d\n",
538                        dlen);
539                 printk(KERN_ERR "\tdata:\n");
540                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
541                                (void *)&dn->data, dlen, 0);
542                 break;
543         }
544         case UBIFS_TRUN_NODE:
545         {
546                 const struct ubifs_trun_node *trun = node;
547
548                 printk(KERN_ERR "\tinum           %u\n",
549                        le32_to_cpu(trun->inum));
550                 printk(KERN_ERR "\told_size       %llu\n",
551                        (unsigned long long)le64_to_cpu(trun->old_size));
552                 printk(KERN_ERR "\tnew_size       %llu\n",
553                        (unsigned long long)le64_to_cpu(trun->new_size));
554                 break;
555         }
556         case UBIFS_IDX_NODE:
557         {
558                 const struct ubifs_idx_node *idx = node;
559
560                 n = le16_to_cpu(idx->child_cnt);
561                 printk(KERN_ERR "\tchild_cnt      %d\n", n);
562                 printk(KERN_ERR "\tlevel          %d\n",
563                        (int)le16_to_cpu(idx->level));
564                 printk(KERN_ERR "\tBranches:\n");
565
566                 for (i = 0; i < n && i < c->fanout - 1; i++) {
567                         const struct ubifs_branch *br;
568
569                         br = ubifs_idx_branch(c, idx, i);
570                         key_read(c, &br->key, &key);
571                         printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
572                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
573                                le32_to_cpu(br->len),
574                                dbg_snprintf_key(c, &key, key_buf,
575                                                 DBG_KEY_BUF_LEN));
576                 }
577                 break;
578         }
579         case UBIFS_CS_NODE:
580                 break;
581         case UBIFS_ORPH_NODE:
582         {
583                 const struct ubifs_orph_node *orph = node;
584
585                 printk(KERN_ERR "\tcommit number  %llu\n",
586                        (unsigned long long)
587                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
588                 printk(KERN_ERR "\tlast node flag %llu\n",
589                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
590                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
591                 printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
592                 for (i = 0; i < n; i++)
593                         printk(KERN_ERR "\t  ino %llu\n",
594                                (unsigned long long)le64_to_cpu(orph->inos[i]));
595                 break;
596         }
597         default:
598                 printk(KERN_ERR "node type %d was not recognized\n",
599                        (int)ch->node_type);
600         }
601         spin_unlock(&dbg_lock);
602 }
603
604 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
605 {
606         spin_lock(&dbg_lock);
607         printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
608                req->new_ino, req->dirtied_ino);
609         printk(KERN_ERR "\tnew_ino_d   %d, dirtied_ino_d %d\n",
610                req->new_ino_d, req->dirtied_ino_d);
611         printk(KERN_ERR "\tnew_page    %d, dirtied_page %d\n",
612                req->new_page, req->dirtied_page);
613         printk(KERN_ERR "\tnew_dent    %d, mod_dent     %d\n",
614                req->new_dent, req->mod_dent);
615         printk(KERN_ERR "\tidx_growth  %d\n", req->idx_growth);
616         printk(KERN_ERR "\tdata_growth %d dd_growth     %d\n",
617                req->data_growth, req->dd_growth);
618         spin_unlock(&dbg_lock);
619 }
620
621 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
622 {
623         spin_lock(&dbg_lock);
624         printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
625                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
626         printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
627                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
628                lst->total_dirty);
629         printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
630                "total_dead %lld\n", lst->total_used, lst->total_dark,
631                lst->total_dead);
632         spin_unlock(&dbg_lock);
633 }
634
635 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
636 {
637         int i;
638         struct rb_node *rb;
639         struct ubifs_bud *bud;
640         struct ubifs_gced_idx_leb *idx_gc;
641         long long available, outstanding, free;
642
643         spin_lock(&c->space_lock);
644         spin_lock(&dbg_lock);
645         printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
646                "total budget sum %lld\n", current->pid,
647                bi->data_growth + bi->dd_growth,
648                bi->data_growth + bi->dd_growth + bi->idx_growth);
649         printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
650                "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
651                bi->idx_growth);
652         printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
653                "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
654                bi->uncommitted_idx);
655         printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
656                bi->page_budget, bi->inode_budget, bi->dent_budget);
657         printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
658                bi->nospace, bi->nospace_rp);
659         printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
660                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
661
662         if (bi != &c->bi)
663                 /*
664                  * If we are dumping saved budgeting data, do not print
665                  * additional information which is about the current state, not
666                  * the old one which corresponded to the saved budgeting data.
667                  */
668                 goto out_unlock;
669
670         printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
671                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
672         printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
673                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
674                atomic_long_read(&c->dirty_zn_cnt),
675                atomic_long_read(&c->clean_zn_cnt));
676         printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
677                c->gc_lnum, c->ihead_lnum);
678
679         /* If we are in R/O mode, journal heads do not exist */
680         if (c->jheads)
681                 for (i = 0; i < c->jhead_cnt; i++)
682                         printk(KERN_ERR "\tjhead %s\t LEB %d\n",
683                                dbg_jhead(c->jheads[i].wbuf.jhead),
684                                c->jheads[i].wbuf.lnum);
685         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
686                 bud = rb_entry(rb, struct ubifs_bud, rb);
687                 printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
688         }
689         list_for_each_entry(bud, &c->old_buds, list)
690                 printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
691         list_for_each_entry(idx_gc, &c->idx_gc, list)
692                 printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
693                        idx_gc->lnum, idx_gc->unmap);
694         printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
695
696         /* Print budgeting predictions */
697         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
698         outstanding = c->bi.data_growth + c->bi.dd_growth;
699         free = ubifs_get_free_space_nolock(c);
700         printk(KERN_ERR "Budgeting predictions:\n");
701         printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
702                available, outstanding, free);
703 out_unlock:
704         spin_unlock(&dbg_lock);
705         spin_unlock(&c->space_lock);
706 }
707
708 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
709 {
710         int i, spc, dark = 0, dead = 0;
711         struct rb_node *rb;
712         struct ubifs_bud *bud;
713
714         spc = lp->free + lp->dirty;
715         if (spc < c->dead_wm)
716                 dead = spc;
717         else
718                 dark = ubifs_calc_dark(c, spc);
719
720         if (lp->flags & LPROPS_INDEX)
721                 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
722                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
723                        lp->dirty, c->leb_size - spc, spc, lp->flags);
724         else
725                 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
726                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
727                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
728                        c->leb_size - spc, spc, dark, dead,
729                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
730
731         if (lp->flags & LPROPS_TAKEN) {
732                 if (lp->flags & LPROPS_INDEX)
733                         printk(KERN_CONT "index, taken");
734                 else
735                         printk(KERN_CONT "taken");
736         } else {
737                 const char *s;
738
739                 if (lp->flags & LPROPS_INDEX) {
740                         switch (lp->flags & LPROPS_CAT_MASK) {
741                         case LPROPS_DIRTY_IDX:
742                                 s = "dirty index";
743                                 break;
744                         case LPROPS_FRDI_IDX:
745                                 s = "freeable index";
746                                 break;
747                         default:
748                                 s = "index";
749                         }
750                 } else {
751                         switch (lp->flags & LPROPS_CAT_MASK) {
752                         case LPROPS_UNCAT:
753                                 s = "not categorized";
754                                 break;
755                         case LPROPS_DIRTY:
756                                 s = "dirty";
757                                 break;
758                         case LPROPS_FREE:
759                                 s = "free";
760                                 break;
761                         case LPROPS_EMPTY:
762                                 s = "empty";
763                                 break;
764                         case LPROPS_FREEABLE:
765                                 s = "freeable";
766                                 break;
767                         default:
768                                 s = NULL;
769                                 break;
770                         }
771                 }
772                 printk(KERN_CONT "%s", s);
773         }
774
775         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
776                 bud = rb_entry(rb, struct ubifs_bud, rb);
777                 if (bud->lnum == lp->lnum) {
778                         int head = 0;
779                         for (i = 0; i < c->jhead_cnt; i++) {
780                                 /*
781                                  * Note, if we are in R/O mode or in the middle
782                                  * of mounting/re-mounting, the write-buffers do
783                                  * not exist.
784                                  */
785                                 if (c->jheads &&
786                                     lp->lnum == c->jheads[i].wbuf.lnum) {
787                                         printk(KERN_CONT ", jhead %s",
788                                                dbg_jhead(i));
789                                         head = 1;
790                                 }
791                         }
792                         if (!head)
793                                 printk(KERN_CONT ", bud of jhead %s",
794                                        dbg_jhead(bud->jhead));
795                 }
796         }
797         if (lp->lnum == c->gc_lnum)
798                 printk(KERN_CONT ", GC LEB");
799         printk(KERN_CONT ")\n");
800 }
801
802 void ubifs_dump_lprops(struct ubifs_info *c)
803 {
804         int lnum, err;
805         struct ubifs_lprops lp;
806         struct ubifs_lp_stats lst;
807
808         printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
809                current->pid);
810         ubifs_get_lp_stats(c, &lst);
811         ubifs_dump_lstats(&lst);
812
813         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
814                 err = ubifs_read_one_lp(c, lnum, &lp);
815                 if (err)
816                         ubifs_err("cannot read lprops for LEB %d", lnum);
817
818                 ubifs_dump_lprop(c, &lp);
819         }
820         printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
821                current->pid);
822 }
823
824 void ubifs_dump_lpt_info(struct ubifs_info *c)
825 {
826         int i;
827
828         spin_lock(&dbg_lock);
829         printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
830         printk(KERN_ERR "\tlpt_sz:        %lld\n", c->lpt_sz);
831         printk(KERN_ERR "\tpnode_sz:      %d\n", c->pnode_sz);
832         printk(KERN_ERR "\tnnode_sz:      %d\n", c->nnode_sz);
833         printk(KERN_ERR "\tltab_sz:       %d\n", c->ltab_sz);
834         printk(KERN_ERR "\tlsave_sz:      %d\n", c->lsave_sz);
835         printk(KERN_ERR "\tbig_lpt:       %d\n", c->big_lpt);
836         printk(KERN_ERR "\tlpt_hght:      %d\n", c->lpt_hght);
837         printk(KERN_ERR "\tpnode_cnt:     %d\n", c->pnode_cnt);
838         printk(KERN_ERR "\tnnode_cnt:     %d\n", c->nnode_cnt);
839         printk(KERN_ERR "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
840         printk(KERN_ERR "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
841         printk(KERN_ERR "\tlsave_cnt:     %d\n", c->lsave_cnt);
842         printk(KERN_ERR "\tspace_bits:    %d\n", c->space_bits);
843         printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
844         printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
845         printk(KERN_ERR "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
846         printk(KERN_ERR "\tpcnt_bits:     %d\n", c->pcnt_bits);
847         printk(KERN_ERR "\tlnum_bits:     %d\n", c->lnum_bits);
848         printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
849         printk(KERN_ERR "\tLPT head is at %d:%d\n",
850                c->nhead_lnum, c->nhead_offs);
851         printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
852                c->ltab_lnum, c->ltab_offs);
853         if (c->big_lpt)
854                 printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
855                        c->lsave_lnum, c->lsave_offs);
856         for (i = 0; i < c->lpt_lebs; i++)
857                 printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
858                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
859                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
860         spin_unlock(&dbg_lock);
861 }
862
863 void ubifs_dump_sleb(const struct ubifs_info *c,
864                      const struct ubifs_scan_leb *sleb, int offs)
865 {
866         struct ubifs_scan_node *snod;
867
868         printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
869                current->pid, sleb->lnum, offs);
870
871         list_for_each_entry(snod, &sleb->nodes, list) {
872                 cond_resched();
873                 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
874                        snod->offs, snod->len);
875                 ubifs_dump_node(c, snod->node);
876         }
877 }
878
879 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
880 {
881         struct ubifs_scan_leb *sleb;
882         struct ubifs_scan_node *snod;
883         void *buf;
884
885         if (dbg_is_tst_rcvry(c))
886                 return;
887
888         printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
889                current->pid, lnum);
890
891         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
892         if (!buf) {
893                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
894                 return;
895         }
896
897         sleb = ubifs_scan(c, lnum, 0, buf, 0);
898         if (IS_ERR(sleb)) {
899                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
900                 goto out;
901         }
902
903         printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
904                sleb->nodes_cnt, sleb->endpt);
905
906         list_for_each_entry(snod, &sleb->nodes, list) {
907                 cond_resched();
908                 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
909                        snod->offs, snod->len);
910                 ubifs_dump_node(c, snod->node);
911         }
912
913         printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
914                current->pid, lnum);
915         ubifs_scan_destroy(sleb);
916
917 out:
918         vfree(buf);
919         return;
920 }
921
922 void ubifs_dump_znode(const struct ubifs_info *c,
923                       const struct ubifs_znode *znode)
924 {
925         int n;
926         const struct ubifs_zbranch *zbr;
927         char key_buf[DBG_KEY_BUF_LEN];
928
929         spin_lock(&dbg_lock);
930         if (znode->parent)
931                 zbr = &znode->parent->zbranch[znode->iip];
932         else
933                 zbr = &c->zroot;
934
935         printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
936                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
937                zbr->len, znode->parent, znode->iip, znode->level,
938                znode->child_cnt, znode->flags);
939
940         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
941                 spin_unlock(&dbg_lock);
942                 return;
943         }
944
945         printk(KERN_ERR "zbranches:\n");
946         for (n = 0; n < znode->child_cnt; n++) {
947                 zbr = &znode->zbranch[n];
948                 if (znode->level > 0)
949                         printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
950                                           "%s\n", n, zbr->znode, zbr->lnum,
951                                           zbr->offs, zbr->len,
952                                           dbg_snprintf_key(c, &zbr->key,
953                                                            key_buf,
954                                                            DBG_KEY_BUF_LEN));
955                 else
956                         printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
957                                           "%s\n", n, zbr->znode, zbr->lnum,
958                                           zbr->offs, zbr->len,
959                                           dbg_snprintf_key(c, &zbr->key,
960                                                            key_buf,
961                                                            DBG_KEY_BUF_LEN));
962         }
963         spin_unlock(&dbg_lock);
964 }
965
966 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
967 {
968         int i;
969
970         printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
971                current->pid, cat, heap->cnt);
972         for (i = 0; i < heap->cnt; i++) {
973                 struct ubifs_lprops *lprops = heap->arr[i];
974
975                 printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
976                        "flags %d\n", i, lprops->lnum, lprops->hpos,
977                        lprops->free, lprops->dirty, lprops->flags);
978         }
979         printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
980 }
981
982 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
983                       struct ubifs_nnode *parent, int iip)
984 {
985         int i;
986
987         printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
988         printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
989                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
990         printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
991                pnode->flags, iip, pnode->level, pnode->num);
992         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
993                 struct ubifs_lprops *lp = &pnode->lprops[i];
994
995                 printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
996                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
997         }
998 }
999
1000 void ubifs_dump_tnc(struct ubifs_info *c)
1001 {
1002         struct ubifs_znode *znode;
1003         int level;
1004
1005         printk(KERN_ERR "\n");
1006         printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008         level = znode->level;
1009         printk(KERN_ERR "== Level %d ==\n", level);
1010         while (znode) {
1011                 if (level != znode->level) {
1012                         level = znode->level;
1013                         printk(KERN_ERR "== Level %d ==\n", level);
1014                 }
1015                 ubifs_dump_znode(c, znode);
1016                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1017         }
1018         printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1019 }
1020
1021 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022                       void *priv)
1023 {
1024         ubifs_dump_znode(c, znode);
1025         return 0;
1026 }
1027
1028 /**
1029  * ubifs_dump_index - dump the on-flash index.
1030  * @c: UBIFS file-system description object
1031  *
1032  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033  * which dumps only in-memory znodes and does not read znodes which from flash.
1034  */
1035 void ubifs_dump_index(struct ubifs_info *c)
1036 {
1037         dbg_walk_index(c, NULL, dump_znode, NULL);
1038 }
1039
1040 /**
1041  * dbg_save_space_info - save information about flash space.
1042  * @c: UBIFS file-system description object
1043  *
1044  * This function saves information about UBIFS free space, dirty space, etc, in
1045  * order to check it later.
1046  */
1047 void dbg_save_space_info(struct ubifs_info *c)
1048 {
1049         struct ubifs_debug_info *d = c->dbg;
1050         int freeable_cnt;
1051
1052         spin_lock(&c->space_lock);
1053         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055         d->saved_idx_gc_cnt = c->idx_gc_cnt;
1056
1057         /*
1058          * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059          * affects the free space calculations, and UBIFS might not know about
1060          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061          * only when we read their lprops, and we do this only lazily, upon the
1062          * need. So at any given point of time @c->freeable_cnt might be not
1063          * exactly accurate.
1064          *
1065          * Just one example about the issue we hit when we did not zero
1066          * @c->freeable_cnt.
1067          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068          *    amount of free space in @d->saved_free
1069          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070          *    information from flash, where we cache LEBs from various
1071          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1074          *    -> 'ubifs_add_to_cat()').
1075          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076          *    becomes %1.
1077          * 4. We calculate the amount of free space when the re-mount is
1078          *    finished in 'dbg_check_space_info()' and it does not match
1079          *    @d->saved_free.
1080          */
1081         freeable_cnt = c->freeable_cnt;
1082         c->freeable_cnt = 0;
1083         d->saved_free = ubifs_get_free_space_nolock(c);
1084         c->freeable_cnt = freeable_cnt;
1085         spin_unlock(&c->space_lock);
1086 }
1087
1088 /**
1089  * dbg_check_space_info - check flash space information.
1090  * @c: UBIFS file-system description object
1091  *
1092  * This function compares current flash space information with the information
1093  * which was saved when the 'dbg_save_space_info()' function was called.
1094  * Returns zero if the information has not changed, and %-EINVAL it it has
1095  * changed.
1096  */
1097 int dbg_check_space_info(struct ubifs_info *c)
1098 {
1099         struct ubifs_debug_info *d = c->dbg;
1100         struct ubifs_lp_stats lst;
1101         long long free;
1102         int freeable_cnt;
1103
1104         spin_lock(&c->space_lock);
1105         freeable_cnt = c->freeable_cnt;
1106         c->freeable_cnt = 0;
1107         free = ubifs_get_free_space_nolock(c);
1108         c->freeable_cnt = freeable_cnt;
1109         spin_unlock(&c->space_lock);
1110
1111         if (free != d->saved_free) {
1112                 ubifs_err("free space changed from %lld to %lld",
1113                           d->saved_free, free);
1114                 goto out;
1115         }
1116
1117         return 0;
1118
1119 out:
1120         ubifs_msg("saved lprops statistics dump");
1121         ubifs_dump_lstats(&d->saved_lst);
1122         ubifs_msg("saved budgeting info dump");
1123         ubifs_dump_budg(c, &d->saved_bi);
1124         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125         ubifs_msg("current lprops statistics dump");
1126         ubifs_get_lp_stats(c, &lst);
1127         ubifs_dump_lstats(&lst);
1128         ubifs_msg("current budgeting info dump");
1129         ubifs_dump_budg(c, &c->bi);
1130         dump_stack();
1131         return -EINVAL;
1132 }
1133
1134 /**
1135  * dbg_check_synced_i_size - check synchronized inode size.
1136  * @c: UBIFS file-system description object
1137  * @inode: inode to check
1138  *
1139  * If inode is clean, synchronized inode size has to be equivalent to current
1140  * inode size. This function has to be called only for locked inodes (@i_mutex
1141  * has to be locked). Returns %0 if synchronized inode size if correct, and
1142  * %-EINVAL if not.
1143  */
1144 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1145 {
1146         int err = 0;
1147         struct ubifs_inode *ui = ubifs_inode(inode);
1148
1149         if (!dbg_is_chk_gen(c))
1150                 return 0;
1151         if (!S_ISREG(inode->i_mode))
1152                 return 0;
1153
1154         mutex_lock(&ui->ui_mutex);
1155         spin_lock(&ui->ui_lock);
1156         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158                           "is clean", ui->ui_size, ui->synced_i_size);
1159                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160                           inode->i_mode, i_size_read(inode));
1161                 dump_stack();
1162                 err = -EINVAL;
1163         }
1164         spin_unlock(&ui->ui_lock);
1165         mutex_unlock(&ui->ui_mutex);
1166         return err;
1167 }
1168
1169 /*
1170  * dbg_check_dir - check directory inode size and link count.
1171  * @c: UBIFS file-system description object
1172  * @dir: the directory to calculate size for
1173  * @size: the result is returned here
1174  *
1175  * This function makes sure that directory size and link count are correct.
1176  * Returns zero in case of success and a negative error code in case of
1177  * failure.
1178  *
1179  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180  * calling this function.
1181  */
1182 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1183 {
1184         unsigned int nlink = 2;
1185         union ubifs_key key;
1186         struct ubifs_dent_node *dent, *pdent = NULL;
1187         struct qstr nm = { .name = NULL };
1188         loff_t size = UBIFS_INO_NODE_SZ;
1189
1190         if (!dbg_is_chk_gen(c))
1191                 return 0;
1192
1193         if (!S_ISDIR(dir->i_mode))
1194                 return 0;
1195
1196         lowest_dent_key(c, &key, dir->i_ino);
1197         while (1) {
1198                 int err;
1199
1200                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1201                 if (IS_ERR(dent)) {
1202                         err = PTR_ERR(dent);
1203                         if (err == -ENOENT)
1204                                 break;
1205                         return err;
1206                 }
1207
1208                 nm.name = dent->name;
1209                 nm.len = le16_to_cpu(dent->nlen);
1210                 size += CALC_DENT_SIZE(nm.len);
1211                 if (dent->type == UBIFS_ITYPE_DIR)
1212                         nlink += 1;
1213                 kfree(pdent);
1214                 pdent = dent;
1215                 key_read(c, &dent->key, &key);
1216         }
1217         kfree(pdent);
1218
1219         if (i_size_read(dir) != size) {
1220                 ubifs_err("directory inode %lu has size %llu, "
1221                           "but calculated size is %llu", dir->i_ino,
1222                           (unsigned long long)i_size_read(dir),
1223                           (unsigned long long)size);
1224                 ubifs_dump_inode(c, dir);
1225                 dump_stack();
1226                 return -EINVAL;
1227         }
1228         if (dir->i_nlink != nlink) {
1229                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1230                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231                 ubifs_dump_inode(c, dir);
1232                 dump_stack();
1233                 return -EINVAL;
1234         }
1235
1236         return 0;
1237 }
1238
1239 /**
1240  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241  * @c: UBIFS file-system description object
1242  * @zbr1: first zbranch
1243  * @zbr2: following zbranch
1244  *
1245  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246  * names of the direntries/xentries which are referred by the keys. This
1247  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248  * sure the name of direntry/xentry referred by @zbr1 is less than
1249  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250  * and a negative error code in case of failure.
1251  */
1252 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253                                struct ubifs_zbranch *zbr2)
1254 {
1255         int err, nlen1, nlen2, cmp;
1256         struct ubifs_dent_node *dent1, *dent2;
1257         union ubifs_key key;
1258         char key_buf[DBG_KEY_BUF_LEN];
1259
1260         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262         if (!dent1)
1263                 return -ENOMEM;
1264         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265         if (!dent2) {
1266                 err = -ENOMEM;
1267                 goto out_free;
1268         }
1269
1270         err = ubifs_tnc_read_node(c, zbr1, dent1);
1271         if (err)
1272                 goto out_free;
1273         err = ubifs_validate_entry(c, dent1);
1274         if (err)
1275                 goto out_free;
1276
1277         err = ubifs_tnc_read_node(c, zbr2, dent2);
1278         if (err)
1279                 goto out_free;
1280         err = ubifs_validate_entry(c, dent2);
1281         if (err)
1282                 goto out_free;
1283
1284         /* Make sure node keys are the same as in zbranch */
1285         err = 1;
1286         key_read(c, &dent1->key, &key);
1287         if (keys_cmp(c, &zbr1->key, &key)) {
1288                 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290                                                        DBG_KEY_BUF_LEN));
1291                 ubifs_err("but it should have key %s according to tnc",
1292                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1293                                            DBG_KEY_BUF_LEN));
1294                 ubifs_dump_node(c, dent1);
1295                 goto out_free;
1296         }
1297
1298         key_read(c, &dent2->key, &key);
1299         if (keys_cmp(c, &zbr2->key, &key)) {
1300                 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302                                                        DBG_KEY_BUF_LEN));
1303                 ubifs_err("but it should have key %s according to tnc",
1304                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1305                                            DBG_KEY_BUF_LEN));
1306                 ubifs_dump_node(c, dent2);
1307                 goto out_free;
1308         }
1309
1310         nlen1 = le16_to_cpu(dent1->nlen);
1311         nlen2 = le16_to_cpu(dent2->nlen);
1312
1313         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315                 err = 0;
1316                 goto out_free;
1317         }
1318         if (cmp == 0 && nlen1 == nlen2)
1319                 ubifs_err("2 xent/dent nodes with the same name");
1320         else
1321                 ubifs_err("bad order of colliding key %s",
1322                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1323
1324         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325         ubifs_dump_node(c, dent1);
1326         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327         ubifs_dump_node(c, dent2);
1328
1329 out_free:
1330         kfree(dent2);
1331         kfree(dent1);
1332         return err;
1333 }
1334
1335 /**
1336  * dbg_check_znode - check if znode is all right.
1337  * @c: UBIFS file-system description object
1338  * @zbr: zbranch which points to this znode
1339  *
1340  * This function makes sure that znode referred to by @zbr is all right.
1341  * Returns zero if it is, and %-EINVAL if it is not.
1342  */
1343 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344 {
1345         struct ubifs_znode *znode = zbr->znode;
1346         struct ubifs_znode *zp = znode->parent;
1347         int n, err, cmp;
1348
1349         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350                 err = 1;
1351                 goto out;
1352         }
1353         if (znode->level < 0) {
1354                 err = 2;
1355                 goto out;
1356         }
1357         if (znode->iip < 0 || znode->iip >= c->fanout) {
1358                 err = 3;
1359                 goto out;
1360         }
1361
1362         if (zbr->len == 0)
1363                 /* Only dirty zbranch may have no on-flash nodes */
1364                 if (!ubifs_zn_dirty(znode)) {
1365                         err = 4;
1366                         goto out;
1367                 }
1368
1369         if (ubifs_zn_dirty(znode)) {
1370                 /*
1371                  * If znode is dirty, its parent has to be dirty as well. The
1372                  * order of the operation is important, so we have to have
1373                  * memory barriers.
1374                  */
1375                 smp_mb();
1376                 if (zp && !ubifs_zn_dirty(zp)) {
1377                         /*
1378                          * The dirty flag is atomic and is cleared outside the
1379                          * TNC mutex, so znode's dirty flag may now have
1380                          * been cleared. The child is always cleared before the
1381                          * parent, so we just need to check again.
1382                          */
1383                         smp_mb();
1384                         if (ubifs_zn_dirty(znode)) {
1385                                 err = 5;
1386                                 goto out;
1387                         }
1388                 }
1389         }
1390
1391         if (zp) {
1392                 const union ubifs_key *min, *max;
1393
1394                 if (znode->level != zp->level - 1) {
1395                         err = 6;
1396                         goto out;
1397                 }
1398
1399                 /* Make sure the 'parent' pointer in our znode is correct */
1400                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401                 if (!err) {
1402                         /* This zbranch does not exist in the parent */
1403                         err = 7;
1404                         goto out;
1405                 }
1406
1407                 if (znode->iip >= zp->child_cnt) {
1408                         err = 8;
1409                         goto out;
1410                 }
1411
1412                 if (znode->iip != n) {
1413                         /* This may happen only in case of collisions */
1414                         if (keys_cmp(c, &zp->zbranch[n].key,
1415                                      &zp->zbranch[znode->iip].key)) {
1416                                 err = 9;
1417                                 goto out;
1418                         }
1419                         n = znode->iip;
1420                 }
1421
1422                 /*
1423                  * Make sure that the first key in our znode is greater than or
1424                  * equal to the key in the pointing zbranch.
1425                  */
1426                 min = &zbr->key;
1427                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428                 if (cmp == 1) {
1429                         err = 10;
1430                         goto out;
1431                 }
1432
1433                 if (n + 1 < zp->child_cnt) {
1434                         max = &zp->zbranch[n + 1].key;
1435
1436                         /*
1437                          * Make sure the last key in our znode is less or
1438                          * equivalent than the key in the zbranch which goes
1439                          * after our pointing zbranch.
1440                          */
1441                         cmp = keys_cmp(c, max,
1442                                 &znode->zbranch[znode->child_cnt - 1].key);
1443                         if (cmp == -1) {
1444                                 err = 11;
1445                                 goto out;
1446                         }
1447                 }
1448         } else {
1449                 /* This may only be root znode */
1450                 if (zbr != &c->zroot) {
1451                         err = 12;
1452                         goto out;
1453                 }
1454         }
1455
1456         /*
1457          * Make sure that next key is greater or equivalent then the previous
1458          * one.
1459          */
1460         for (n = 1; n < znode->child_cnt; n++) {
1461                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462                                &znode->zbranch[n].key);
1463                 if (cmp > 0) {
1464                         err = 13;
1465                         goto out;
1466                 }
1467                 if (cmp == 0) {
1468                         /* This can only be keys with colliding hash */
1469                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470                                 err = 14;
1471                                 goto out;
1472                         }
1473
1474                         if (znode->level != 0 || c->replaying)
1475                                 continue;
1476
1477                         /*
1478                          * Colliding keys should follow binary order of
1479                          * corresponding xentry/dentry names.
1480                          */
1481                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482                                                   &znode->zbranch[n]);
1483                         if (err < 0)
1484                                 return err;
1485                         if (err) {
1486                                 err = 15;
1487                                 goto out;
1488                         }
1489                 }
1490         }
1491
1492         for (n = 0; n < znode->child_cnt; n++) {
1493                 if (!znode->zbranch[n].znode &&
1494                     (znode->zbranch[n].lnum == 0 ||
1495                      znode->zbranch[n].len == 0)) {
1496                         err = 16;
1497                         goto out;
1498                 }
1499
1500                 if (znode->zbranch[n].lnum != 0 &&
1501                     znode->zbranch[n].len == 0) {
1502                         err = 17;
1503                         goto out;
1504                 }
1505
1506                 if (znode->zbranch[n].lnum == 0 &&
1507                     znode->zbranch[n].len != 0) {
1508                         err = 18;
1509                         goto out;
1510                 }
1511
1512                 if (znode->zbranch[n].lnum == 0 &&
1513                     znode->zbranch[n].offs != 0) {
1514                         err = 19;
1515                         goto out;
1516                 }
1517
1518                 if (znode->level != 0 && znode->zbranch[n].znode)
1519                         if (znode->zbranch[n].znode->parent != znode) {
1520                                 err = 20;
1521                                 goto out;
1522                         }
1523         }
1524
1525         return 0;
1526
1527 out:
1528         ubifs_err("failed, error %d", err);
1529         ubifs_msg("dump of the znode");
1530         ubifs_dump_znode(c, znode);
1531         if (zp) {
1532                 ubifs_msg("dump of the parent znode");
1533                 ubifs_dump_znode(c, zp);
1534         }
1535         dump_stack();
1536         return -EINVAL;
1537 }
1538
1539 /**
1540  * dbg_check_tnc - check TNC tree.
1541  * @c: UBIFS file-system description object
1542  * @extra: do extra checks that are possible at start commit
1543  *
1544  * This function traverses whole TNC tree and checks every znode. Returns zero
1545  * if everything is all right and %-EINVAL if something is wrong with TNC.
1546  */
1547 int dbg_check_tnc(struct ubifs_info *c, int extra)
1548 {
1549         struct ubifs_znode *znode;
1550         long clean_cnt = 0, dirty_cnt = 0;
1551         int err, last;
1552
1553         if (!dbg_is_chk_index(c))
1554                 return 0;
1555
1556         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557         if (!c->zroot.znode)
1558                 return 0;
1559
1560         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561         while (1) {
1562                 struct ubifs_znode *prev;
1563                 struct ubifs_zbranch *zbr;
1564
1565                 if (!znode->parent)
1566                         zbr = &c->zroot;
1567                 else
1568                         zbr = &znode->parent->zbranch[znode->iip];
1569
1570                 err = dbg_check_znode(c, zbr);
1571                 if (err)
1572                         return err;
1573
1574                 if (extra) {
1575                         if (ubifs_zn_dirty(znode))
1576                                 dirty_cnt += 1;
1577                         else
1578                                 clean_cnt += 1;
1579                 }
1580
1581                 prev = znode;
1582                 znode = ubifs_tnc_postorder_next(znode);
1583                 if (!znode)
1584                         break;
1585
1586                 /*
1587                  * If the last key of this znode is equivalent to the first key
1588                  * of the next znode (collision), then check order of the keys.
1589                  */
1590                 last = prev->child_cnt - 1;
1591                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592                     !keys_cmp(c, &prev->zbranch[last].key,
1593                               &znode->zbranch[0].key)) {
1594                         err = dbg_check_key_order(c, &prev->zbranch[last],
1595                                                   &znode->zbranch[0]);
1596                         if (err < 0)
1597                                 return err;
1598                         if (err) {
1599                                 ubifs_msg("first znode");
1600                                 ubifs_dump_znode(c, prev);
1601                                 ubifs_msg("second znode");
1602                                 ubifs_dump_znode(c, znode);
1603                                 return -EINVAL;
1604                         }
1605                 }
1606         }
1607
1608         if (extra) {
1609                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611                                   atomic_long_read(&c->clean_zn_cnt),
1612                                   clean_cnt);
1613                         return -EINVAL;
1614                 }
1615                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617                                   atomic_long_read(&c->dirty_zn_cnt),
1618                                   dirty_cnt);
1619                         return -EINVAL;
1620                 }
1621         }
1622
1623         return 0;
1624 }
1625
1626 /**
1627  * dbg_walk_index - walk the on-flash index.
1628  * @c: UBIFS file-system description object
1629  * @leaf_cb: called for each leaf node
1630  * @znode_cb: called for each indexing node
1631  * @priv: private data which is passed to callbacks
1632  *
1633  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634  * node and @znode_cb for each indexing node. Returns zero in case of success
1635  * and a negative error code in case of failure.
1636  *
1637  * It would be better if this function removed every znode it pulled to into
1638  * the TNC, so that the behavior more closely matched the non-debugging
1639  * behavior.
1640  */
1641 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642                    dbg_znode_callback znode_cb, void *priv)
1643 {
1644         int err;
1645         struct ubifs_zbranch *zbr;
1646         struct ubifs_znode *znode, *child;
1647
1648         mutex_lock(&c->tnc_mutex);
1649         /* If the root indexing node is not in TNC - pull it */
1650         if (!c->zroot.znode) {
1651                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652                 if (IS_ERR(c->zroot.znode)) {
1653                         err = PTR_ERR(c->zroot.znode);
1654                         c->zroot.znode = NULL;
1655                         goto out_unlock;
1656                 }
1657         }
1658
1659         /*
1660          * We are going to traverse the indexing tree in the postorder manner.
1661          * Go down and find the leftmost indexing node where we are going to
1662          * start from.
1663          */
1664         znode = c->zroot.znode;
1665         while (znode->level > 0) {
1666                 zbr = &znode->zbranch[0];
1667                 child = zbr->znode;
1668                 if (!child) {
1669                         child = ubifs_load_znode(c, zbr, znode, 0);
1670                         if (IS_ERR(child)) {
1671                                 err = PTR_ERR(child);
1672                                 goto out_unlock;
1673                         }
1674                         zbr->znode = child;
1675                 }
1676
1677                 znode = child;
1678         }
1679
1680         /* Iterate over all indexing nodes */
1681         while (1) {
1682                 int idx;
1683
1684                 cond_resched();
1685
1686                 if (znode_cb) {
1687                         err = znode_cb(c, znode, priv);
1688                         if (err) {
1689                                 ubifs_err("znode checking function returned "
1690                                           "error %d", err);
1691                                 ubifs_dump_znode(c, znode);
1692                                 goto out_dump;
1693                         }
1694                 }
1695                 if (leaf_cb && znode->level == 0) {
1696                         for (idx = 0; idx < znode->child_cnt; idx++) {
1697                                 zbr = &znode->zbranch[idx];
1698                                 err = leaf_cb(c, zbr, priv);
1699                                 if (err) {
1700                                         ubifs_err("leaf checking function "
1701                                                   "returned error %d, for leaf "
1702                                                   "at LEB %d:%d",
1703                                                   err, zbr->lnum, zbr->offs);
1704                                         goto out_dump;
1705                                 }
1706                         }
1707                 }
1708
1709                 if (!znode->parent)
1710                         break;
1711
1712                 idx = znode->iip + 1;
1713                 znode = znode->parent;
1714                 if (idx < znode->child_cnt) {
1715                         /* Switch to the next index in the parent */
1716                         zbr = &znode->zbranch[idx];
1717                         child = zbr->znode;
1718                         if (!child) {
1719                                 child = ubifs_load_znode(c, zbr, znode, idx);
1720                                 if (IS_ERR(child)) {
1721                                         err = PTR_ERR(child);
1722                                         goto out_unlock;
1723                                 }
1724                                 zbr->znode = child;
1725                         }
1726                         znode = child;
1727                 } else
1728                         /*
1729                          * This is the last child, switch to the parent and
1730                          * continue.
1731                          */
1732                         continue;
1733
1734                 /* Go to the lowest leftmost znode in the new sub-tree */
1735                 while (znode->level > 0) {
1736                         zbr = &znode->zbranch[0];
1737                         child = zbr->znode;
1738                         if (!child) {
1739                                 child = ubifs_load_znode(c, zbr, znode, 0);
1740                                 if (IS_ERR(child)) {
1741                                         err = PTR_ERR(child);
1742                                         goto out_unlock;
1743                                 }
1744                                 zbr->znode = child;
1745                         }
1746                         znode = child;
1747                 }
1748         }
1749
1750         mutex_unlock(&c->tnc_mutex);
1751         return 0;
1752
1753 out_dump:
1754         if (znode->parent)
1755                 zbr = &znode->parent->zbranch[znode->iip];
1756         else
1757                 zbr = &c->zroot;
1758         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759         ubifs_dump_znode(c, znode);
1760 out_unlock:
1761         mutex_unlock(&c->tnc_mutex);
1762         return err;
1763 }
1764
1765 /**
1766  * add_size - add znode size to partially calculated index size.
1767  * @c: UBIFS file-system description object
1768  * @znode: znode to add size for
1769  * @priv: partially calculated index size
1770  *
1771  * This is a helper function for 'dbg_check_idx_size()' which is called for
1772  * every indexing node and adds its size to the 'long long' variable pointed to
1773  * by @priv.
1774  */
1775 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776 {
1777         long long *idx_size = priv;
1778         int add;
1779
1780         add = ubifs_idx_node_sz(c, znode->child_cnt);
1781         add = ALIGN(add, 8);
1782         *idx_size += add;
1783         return 0;
1784 }
1785
1786 /**
1787  * dbg_check_idx_size - check index size.
1788  * @c: UBIFS file-system description object
1789  * @idx_size: size to check
1790  *
1791  * This function walks the UBIFS index, calculates its size and checks that the
1792  * size is equivalent to @idx_size. Returns zero in case of success and a
1793  * negative error code in case of failure.
1794  */
1795 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796 {
1797         int err;
1798         long long calc = 0;
1799
1800         if (!dbg_is_chk_index(c))
1801                 return 0;
1802
1803         err = dbg_walk_index(c, NULL, add_size, &calc);
1804         if (err) {
1805                 ubifs_err("error %d while walking the index", err);
1806                 return err;
1807         }
1808
1809         if (calc != idx_size) {
1810                 ubifs_err("index size check failed: calculated size is %lld, "
1811                           "should be %lld", calc, idx_size);
1812                 dump_stack();
1813                 return -EINVAL;
1814         }
1815
1816         return 0;
1817 }
1818
1819 /**
1820  * struct fsck_inode - information about an inode used when checking the file-system.
1821  * @rb: link in the RB-tree of inodes
1822  * @inum: inode number
1823  * @mode: inode type, permissions, etc
1824  * @nlink: inode link count
1825  * @xattr_cnt: count of extended attributes
1826  * @references: how many directory/xattr entries refer this inode (calculated
1827  *              while walking the index)
1828  * @calc_cnt: for directory inode count of child directories
1829  * @size: inode size (read from on-flash inode)
1830  * @xattr_sz: summary size of all extended attributes (read from on-flash
1831  *            inode)
1832  * @calc_sz: for directories calculated directory size
1833  * @calc_xcnt: count of extended attributes
1834  * @calc_xsz: calculated summary size of all extended attributes
1835  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836  *             inode (read from on-flash inode)
1837  * @calc_xnms: calculated sum of lengths of all extended attribute names
1838  */
1839 struct fsck_inode {
1840         struct rb_node rb;
1841         ino_t inum;
1842         umode_t mode;
1843         unsigned int nlink;
1844         unsigned int xattr_cnt;
1845         int references;
1846         int calc_cnt;
1847         long long size;
1848         unsigned int xattr_sz;
1849         long long calc_sz;
1850         long long calc_xcnt;
1851         long long calc_xsz;
1852         unsigned int xattr_nms;
1853         long long calc_xnms;
1854 };
1855
1856 /**
1857  * struct fsck_data - private FS checking information.
1858  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859  */
1860 struct fsck_data {
1861         struct rb_root inodes;
1862 };
1863
1864 /**
1865  * add_inode - add inode information to RB-tree of inodes.
1866  * @c: UBIFS file-system description object
1867  * @fsckd: FS checking information
1868  * @ino: raw UBIFS inode to add
1869  *
1870  * This is a helper function for 'check_leaf()' which adds information about
1871  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872  * case of success and a negative error code in case of failure.
1873  */
1874 static struct fsck_inode *add_inode(struct ubifs_info *c,
1875                                     struct fsck_data *fsckd,
1876                                     struct ubifs_ino_node *ino)
1877 {
1878         struct rb_node **p, *parent = NULL;
1879         struct fsck_inode *fscki;
1880         ino_t inum = key_inum_flash(c, &ino->key);
1881         struct inode *inode;
1882         struct ubifs_inode *ui;
1883
1884         p = &fsckd->inodes.rb_node;
1885         while (*p) {
1886                 parent = *p;
1887                 fscki = rb_entry(parent, struct fsck_inode, rb);
1888                 if (inum < fscki->inum)
1889                         p = &(*p)->rb_left;
1890                 else if (inum > fscki->inum)
1891                         p = &(*p)->rb_right;
1892                 else
1893                         return fscki;
1894         }
1895
1896         if (inum > c->highest_inum) {
1897                 ubifs_err("too high inode number, max. is %lu",
1898                           (unsigned long)c->highest_inum);
1899                 return ERR_PTR(-EINVAL);
1900         }
1901
1902         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903         if (!fscki)
1904                 return ERR_PTR(-ENOMEM);
1905
1906         inode = ilookup(c->vfs_sb, inum);
1907
1908         fscki->inum = inum;
1909         /*
1910          * If the inode is present in the VFS inode cache, use it instead of
1911          * the on-flash inode which might be out-of-date. E.g., the size might
1912          * be out-of-date. If we do not do this, the following may happen, for
1913          * example:
1914          *   1. A power cut happens
1915          *   2. We mount the file-system R/O, the replay process fixes up the
1916          *      inode size in the VFS cache, but on on-flash.
1917          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1918          *      size.
1919          */
1920         if (!inode) {
1921                 fscki->nlink = le32_to_cpu(ino->nlink);
1922                 fscki->size = le64_to_cpu(ino->size);
1923                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926                 fscki->mode = le32_to_cpu(ino->mode);
1927         } else {
1928                 ui = ubifs_inode(inode);
1929                 fscki->nlink = inode->i_nlink;
1930                 fscki->size = inode->i_size;
1931                 fscki->xattr_cnt = ui->xattr_cnt;
1932                 fscki->xattr_sz = ui->xattr_size;
1933                 fscki->xattr_nms = ui->xattr_names;
1934                 fscki->mode = inode->i_mode;
1935                 iput(inode);
1936         }
1937
1938         if (S_ISDIR(fscki->mode)) {
1939                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940                 fscki->calc_cnt = 2;
1941         }
1942
1943         rb_link_node(&fscki->rb, parent, p);
1944         rb_insert_color(&fscki->rb, &fsckd->inodes);
1945
1946         return fscki;
1947 }
1948
1949 /**
1950  * search_inode - search inode in the RB-tree of inodes.
1951  * @fsckd: FS checking information
1952  * @inum: inode number to search
1953  *
1954  * This is a helper function for 'check_leaf()' which searches inode @inum in
1955  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956  * the inode was not found.
1957  */
1958 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959 {
1960         struct rb_node *p;
1961         struct fsck_inode *fscki;
1962
1963         p = fsckd->inodes.rb_node;
1964         while (p) {
1965                 fscki = rb_entry(p, struct fsck_inode, rb);
1966                 if (inum < fscki->inum)
1967                         p = p->rb_left;
1968                 else if (inum > fscki->inum)
1969                         p = p->rb_right;
1970                 else
1971                         return fscki;
1972         }
1973         return NULL;
1974 }
1975
1976 /**
1977  * read_add_inode - read inode node and add it to RB-tree of inodes.
1978  * @c: UBIFS file-system description object
1979  * @fsckd: FS checking information
1980  * @inum: inode number to read
1981  *
1982  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984  * information pointer in case of success and a negative error code in case of
1985  * failure.
1986  */
1987 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988                                          struct fsck_data *fsckd, ino_t inum)
1989 {
1990         int n, err;
1991         union ubifs_key key;
1992         struct ubifs_znode *znode;
1993         struct ubifs_zbranch *zbr;
1994         struct ubifs_ino_node *ino;
1995         struct fsck_inode *fscki;
1996
1997         fscki = search_inode(fsckd, inum);
1998         if (fscki)
1999                 return fscki;
2000
2001         ino_key_init(c, &key, inum);
2002         err = ubifs_lookup_level0(c, &key, &znode, &n);
2003         if (!err) {
2004                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005                 return ERR_PTR(-ENOENT);
2006         } else if (err < 0) {
2007                 ubifs_err("error %d while looking up inode %lu",
2008                           err, (unsigned long)inum);
2009                 return ERR_PTR(err);
2010         }
2011
2012         zbr = &znode->zbranch[n];
2013         if (zbr->len < UBIFS_INO_NODE_SZ) {
2014                 ubifs_err("bad node %lu node length %d",
2015                           (unsigned long)inum, zbr->len);
2016                 return ERR_PTR(-EINVAL);
2017         }
2018
2019         ino = kmalloc(zbr->len, GFP_NOFS);
2020         if (!ino)
2021                 return ERR_PTR(-ENOMEM);
2022
2023         err = ubifs_tnc_read_node(c, zbr, ino);
2024         if (err) {
2025                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026                           zbr->lnum, zbr->offs, err);
2027                 kfree(ino);
2028                 return ERR_PTR(err);
2029         }
2030
2031         fscki = add_inode(c, fsckd, ino);
2032         kfree(ino);
2033         if (IS_ERR(fscki)) {
2034                 ubifs_err("error %ld while adding inode %lu node",
2035                           PTR_ERR(fscki), (unsigned long)inum);
2036                 return fscki;
2037         }
2038
2039         return fscki;
2040 }
2041
2042 /**
2043  * check_leaf - check leaf node.
2044  * @c: UBIFS file-system description object
2045  * @zbr: zbranch of the leaf node to check
2046  * @priv: FS checking information
2047  *
2048  * This is a helper function for 'dbg_check_filesystem()' which is called for
2049  * every single leaf node while walking the indexing tree. It checks that the
2050  * leaf node referred from the indexing tree exists, has correct CRC, and does
2051  * some other basic validation. This function is also responsible for building
2052  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053  * calculates reference count, size, etc for each inode in order to later
2054  * compare them to the information stored inside the inodes and detect possible
2055  * inconsistencies. Returns zero in case of success and a negative error code
2056  * in case of failure.
2057  */
2058 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059                       void *priv)
2060 {
2061         ino_t inum;
2062         void *node;
2063         struct ubifs_ch *ch;
2064         int err, type = key_type(c, &zbr->key);
2065         struct fsck_inode *fscki;
2066
2067         if (zbr->len < UBIFS_CH_SZ) {
2068                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2069                           zbr->len, zbr->lnum, zbr->offs);
2070                 return -EINVAL;
2071         }
2072
2073         node = kmalloc(zbr->len, GFP_NOFS);
2074         if (!node)
2075                 return -ENOMEM;
2076
2077         err = ubifs_tnc_read_node(c, zbr, node);
2078         if (err) {
2079                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080                           zbr->lnum, zbr->offs, err);
2081                 goto out_free;
2082         }
2083
2084         /* If this is an inode node, add it to RB-tree of inodes */
2085         if (type == UBIFS_INO_KEY) {
2086                 fscki = add_inode(c, priv, node);
2087                 if (IS_ERR(fscki)) {
2088                         err = PTR_ERR(fscki);
2089                         ubifs_err("error %d while adding inode node", err);
2090                         goto out_dump;
2091                 }
2092                 goto out;
2093         }
2094
2095         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096             type != UBIFS_DATA_KEY) {
2097                 ubifs_err("unexpected node type %d at LEB %d:%d",
2098                           type, zbr->lnum, zbr->offs);
2099                 err = -EINVAL;
2100                 goto out_free;
2101         }
2102
2103         ch = node;
2104         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105                 ubifs_err("too high sequence number, max. is %llu",
2106                           c->max_sqnum);
2107                 err = -EINVAL;
2108                 goto out_dump;
2109         }
2110
2111         if (type == UBIFS_DATA_KEY) {
2112                 long long blk_offs;
2113                 struct ubifs_data_node *dn = node;
2114
2115                 /*
2116                  * Search the inode node this data node belongs to and insert
2117                  * it to the RB-tree of inodes.
2118                  */
2119                 inum = key_inum_flash(c, &dn->key);
2120                 fscki = read_add_inode(c, priv, inum);
2121                 if (IS_ERR(fscki)) {
2122                         err = PTR_ERR(fscki);
2123                         ubifs_err("error %d while processing data node and "
2124                                   "trying to find inode node %lu",
2125                                   err, (unsigned long)inum);
2126                         goto out_dump;
2127                 }
2128
2129                 /* Make sure the data node is within inode size */
2130                 blk_offs = key_block_flash(c, &dn->key);
2131                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2132                 blk_offs += le32_to_cpu(dn->size);
2133                 if (blk_offs > fscki->size) {
2134                         ubifs_err("data node at LEB %d:%d is not within inode "
2135                                   "size %lld", zbr->lnum, zbr->offs,
2136                                   fscki->size);
2137                         err = -EINVAL;
2138                         goto out_dump;
2139                 }
2140         } else {
2141                 int nlen;
2142                 struct ubifs_dent_node *dent = node;
2143                 struct fsck_inode *fscki1;
2144
2145                 err = ubifs_validate_entry(c, dent);
2146                 if (err)
2147                         goto out_dump;
2148
2149                 /*
2150                  * Search the inode node this entry refers to and the parent
2151                  * inode node and insert them to the RB-tree of inodes.
2152                  */
2153                 inum = le64_to_cpu(dent->inum);
2154                 fscki = read_add_inode(c, priv, inum);
2155                 if (IS_ERR(fscki)) {
2156                         err = PTR_ERR(fscki);
2157                         ubifs_err("error %d while processing entry node and "
2158                                   "trying to find inode node %lu",
2159                                   err, (unsigned long)inum);
2160                         goto out_dump;
2161                 }
2162
2163                 /* Count how many direntries or xentries refers this inode */
2164                 fscki->references += 1;
2165
2166                 inum = key_inum_flash(c, &dent->key);
2167                 fscki1 = read_add_inode(c, priv, inum);
2168                 if (IS_ERR(fscki1)) {
2169                         err = PTR_ERR(fscki1);
2170                         ubifs_err("error %d while processing entry node and "
2171                                   "trying to find parent inode node %lu",
2172                                   err, (unsigned long)inum);
2173                         goto out_dump;
2174                 }
2175
2176                 nlen = le16_to_cpu(dent->nlen);
2177                 if (type == UBIFS_XENT_KEY) {
2178                         fscki1->calc_xcnt += 1;
2179                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181                         fscki1->calc_xnms += nlen;
2182                 } else {
2183                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184                         if (dent->type == UBIFS_ITYPE_DIR)
2185                                 fscki1->calc_cnt += 1;
2186                 }
2187         }
2188
2189 out:
2190         kfree(node);
2191         return 0;
2192
2193 out_dump:
2194         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195         ubifs_dump_node(c, node);
2196 out_free:
2197         kfree(node);
2198         return err;
2199 }
2200
2201 /**
2202  * free_inodes - free RB-tree of inodes.
2203  * @fsckd: FS checking information
2204  */
2205 static void free_inodes(struct fsck_data *fsckd)
2206 {
2207         struct rb_node *this = fsckd->inodes.rb_node;
2208         struct fsck_inode *fscki;
2209
2210         while (this) {
2211                 if (this->rb_left)
2212                         this = this->rb_left;
2213                 else if (this->rb_right)
2214                         this = this->rb_right;
2215                 else {
2216                         fscki = rb_entry(this, struct fsck_inode, rb);
2217                         this = rb_parent(this);
2218                         if (this) {
2219                                 if (this->rb_left == &fscki->rb)
2220                                         this->rb_left = NULL;
2221                                 else
2222                                         this->rb_right = NULL;
2223                         }
2224                         kfree(fscki);
2225                 }
2226         }
2227 }
2228
2229 /**
2230  * check_inodes - checks all inodes.
2231  * @c: UBIFS file-system description object
2232  * @fsckd: FS checking information
2233  *
2234  * This is a helper function for 'dbg_check_filesystem()' which walks the
2235  * RB-tree of inodes after the index scan has been finished, and checks that
2236  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237  * %-EINVAL if not, and a negative error code in case of failure.
2238  */
2239 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240 {
2241         int n, err;
2242         union ubifs_key key;
2243         struct ubifs_znode *znode;
2244         struct ubifs_zbranch *zbr;
2245         struct ubifs_ino_node *ino;
2246         struct fsck_inode *fscki;
2247         struct rb_node *this = rb_first(&fsckd->inodes);
2248
2249         while (this) {
2250                 fscki = rb_entry(this, struct fsck_inode, rb);
2251                 this = rb_next(this);
2252
2253                 if (S_ISDIR(fscki->mode)) {
2254                         /*
2255                          * Directories have to have exactly one reference (they
2256                          * cannot have hardlinks), although root inode is an
2257                          * exception.
2258                          */
2259                         if (fscki->inum != UBIFS_ROOT_INO &&
2260                             fscki->references != 1) {
2261                                 ubifs_err("directory inode %lu has %d "
2262                                           "direntries which refer it, but "
2263                                           "should be 1",
2264                                           (unsigned long)fscki->inum,
2265                                           fscki->references);
2266                                 goto out_dump;
2267                         }
2268                         if (fscki->inum == UBIFS_ROOT_INO &&
2269                             fscki->references != 0) {
2270                                 ubifs_err("root inode %lu has non-zero (%d) "
2271                                           "direntries which refer it",
2272                                           (unsigned long)fscki->inum,
2273                                           fscki->references);
2274                                 goto out_dump;
2275                         }
2276                         if (fscki->calc_sz != fscki->size) {
2277                                 ubifs_err("directory inode %lu size is %lld, "
2278                                           "but calculated size is %lld",
2279                                           (unsigned long)fscki->inum,
2280                                           fscki->size, fscki->calc_sz);
2281                                 goto out_dump;
2282                         }
2283                         if (fscki->calc_cnt != fscki->nlink) {
2284                                 ubifs_err("directory inode %lu nlink is %d, "
2285                                           "but calculated nlink is %d",
2286                                           (unsigned long)fscki->inum,
2287                                           fscki->nlink, fscki->calc_cnt);
2288                                 goto out_dump;
2289                         }
2290                 } else {
2291                         if (fscki->references != fscki->nlink) {
2292                                 ubifs_err("inode %lu nlink is %d, but "
2293                                           "calculated nlink is %d",
2294                                           (unsigned long)fscki->inum,
2295                                           fscki->nlink, fscki->references);
2296                                 goto out_dump;
2297                         }
2298                 }
2299                 if (fscki->xattr_sz != fscki->calc_xsz) {
2300                         ubifs_err("inode %lu has xattr size %u, but "
2301                                   "calculated size is %lld",
2302                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2303                                   fscki->calc_xsz);
2304                         goto out_dump;
2305                 }
2306                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307                         ubifs_err("inode %lu has %u xattrs, but "
2308                                   "calculated count is %lld",
2309                                   (unsigned long)fscki->inum,
2310                                   fscki->xattr_cnt, fscki->calc_xcnt);
2311                         goto out_dump;
2312                 }
2313                 if (fscki->xattr_nms != fscki->calc_xnms) {
2314                         ubifs_err("inode %lu has xattr names' size %u, but "
2315                                   "calculated names' size is %lld",
2316                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2317                                   fscki->calc_xnms);
2318                         goto out_dump;
2319                 }
2320         }
2321
2322         return 0;
2323
2324 out_dump:
2325         /* Read the bad inode and dump it */
2326         ino_key_init(c, &key, fscki->inum);
2327         err = ubifs_lookup_level0(c, &key, &znode, &n);
2328         if (!err) {
2329                 ubifs_err("inode %lu not found in index",
2330                           (unsigned long)fscki->inum);
2331                 return -ENOENT;
2332         } else if (err < 0) {
2333                 ubifs_err("error %d while looking up inode %lu",
2334                           err, (unsigned long)fscki->inum);
2335                 return err;
2336         }
2337
2338         zbr = &znode->zbranch[n];
2339         ino = kmalloc(zbr->len, GFP_NOFS);
2340         if (!ino)
2341                 return -ENOMEM;
2342
2343         err = ubifs_tnc_read_node(c, zbr, ino);
2344         if (err) {
2345                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346                           zbr->lnum, zbr->offs, err);
2347                 kfree(ino);
2348                 return err;
2349         }
2350
2351         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353         ubifs_dump_node(c, ino);
2354         kfree(ino);
2355         return -EINVAL;
2356 }
2357
2358 /**
2359  * dbg_check_filesystem - check the file-system.
2360  * @c: UBIFS file-system description object
2361  *
2362  * This function checks the file system, namely:
2363  * o makes sure that all leaf nodes exist and their CRCs are correct;
2364  * o makes sure inode nlink, size, xattr size/count are correct (for all
2365  *   inodes).
2366  *
2367  * The function reads whole indexing tree and all nodes, so it is pretty
2368  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369  * not, and a negative error code in case of failure.
2370  */
2371 int dbg_check_filesystem(struct ubifs_info *c)
2372 {
2373         int err;
2374         struct fsck_data fsckd;
2375
2376         if (!dbg_is_chk_fs(c))
2377                 return 0;
2378
2379         fsckd.inodes = RB_ROOT;
2380         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381         if (err)
2382                 goto out_free;
2383
2384         err = check_inodes(c, &fsckd);
2385         if (err)
2386                 goto out_free;
2387
2388         free_inodes(&fsckd);
2389         return 0;
2390
2391 out_free:
2392         ubifs_err("file-system check failed with error %d", err);
2393         dump_stack();
2394         free_inodes(&fsckd);
2395         return err;
2396 }
2397
2398 /**
2399  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400  * @c: UBIFS file-system description object
2401  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402  *
2403  * This function returns zero if the list of data nodes is sorted correctly,
2404  * and %-EINVAL if not.
2405  */
2406 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407 {
2408         struct list_head *cur;
2409         struct ubifs_scan_node *sa, *sb;
2410
2411         if (!dbg_is_chk_gen(c))
2412                 return 0;
2413
2414         for (cur = head->next; cur->next != head; cur = cur->next) {
2415                 ino_t inuma, inumb;
2416                 uint32_t blka, blkb;
2417
2418                 cond_resched();
2419                 sa = container_of(cur, struct ubifs_scan_node, list);
2420                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422                 if (sa->type != UBIFS_DATA_NODE) {
2423                         ubifs_err("bad node type %d", sa->type);
2424                         ubifs_dump_node(c, sa->node);
2425                         return -EINVAL;
2426                 }
2427                 if (sb->type != UBIFS_DATA_NODE) {
2428                         ubifs_err("bad node type %d", sb->type);
2429                         ubifs_dump_node(c, sb->node);
2430                         return -EINVAL;
2431                 }
2432
2433                 inuma = key_inum(c, &sa->key);
2434                 inumb = key_inum(c, &sb->key);
2435
2436                 if (inuma < inumb)
2437                         continue;
2438                 if (inuma > inumb) {
2439                         ubifs_err("larger inum %lu goes before inum %lu",
2440                                   (unsigned long)inuma, (unsigned long)inumb);
2441                         goto error_dump;
2442                 }
2443
2444                 blka = key_block(c, &sa->key);
2445                 blkb = key_block(c, &sb->key);
2446
2447                 if (blka > blkb) {
2448                         ubifs_err("larger block %u goes before %u", blka, blkb);
2449                         goto error_dump;
2450                 }
2451                 if (blka == blkb) {
2452                         ubifs_err("two data nodes for the same block");
2453                         goto error_dump;
2454                 }
2455         }
2456
2457         return 0;
2458
2459 error_dump:
2460         ubifs_dump_node(c, sa->node);
2461         ubifs_dump_node(c, sb->node);
2462         return -EINVAL;
2463 }
2464
2465 /**
2466  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467  * @c: UBIFS file-system description object
2468  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469  *
2470  * This function returns zero if the list of non-data nodes is sorted correctly,
2471  * and %-EINVAL if not.
2472  */
2473 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474 {
2475         struct list_head *cur;
2476         struct ubifs_scan_node *sa, *sb;
2477
2478         if (!dbg_is_chk_gen(c))
2479                 return 0;
2480
2481         for (cur = head->next; cur->next != head; cur = cur->next) {
2482                 ino_t inuma, inumb;
2483                 uint32_t hasha, hashb;
2484
2485                 cond_resched();
2486                 sa = container_of(cur, struct ubifs_scan_node, list);
2487                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2488
2489                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490                     sa->type != UBIFS_XENT_NODE) {
2491                         ubifs_err("bad node type %d", sa->type);
2492                         ubifs_dump_node(c, sa->node);
2493                         return -EINVAL;
2494                 }
2495                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496                     sa->type != UBIFS_XENT_NODE) {
2497                         ubifs_err("bad node type %d", sb->type);
2498                         ubifs_dump_node(c, sb->node);
2499                         return -EINVAL;
2500                 }
2501
2502                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503                         ubifs_err("non-inode node goes before inode node");
2504                         goto error_dump;
2505                 }
2506
2507                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508                         continue;
2509
2510                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511                         /* Inode nodes are sorted in descending size order */
2512                         if (sa->len < sb->len) {
2513                                 ubifs_err("smaller inode node goes first");
2514                                 goto error_dump;
2515                         }
2516                         continue;
2517                 }
2518
2519                 /*
2520                  * This is either a dentry or xentry, which should be sorted in
2521                  * ascending (parent ino, hash) order.
2522                  */
2523                 inuma = key_inum(c, &sa->key);
2524                 inumb = key_inum(c, &sb->key);
2525
2526                 if (inuma < inumb)
2527                         continue;
2528                 if (inuma > inumb) {
2529                         ubifs_err("larger inum %lu goes before inum %lu",
2530                                   (unsigned long)inuma, (unsigned long)inumb);
2531                         goto error_dump;
2532                 }
2533
2534                 hasha = key_block(c, &sa->key);
2535                 hashb = key_block(c, &sb->key);
2536
2537                 if (hasha > hashb) {
2538                         ubifs_err("larger hash %u goes before %u",
2539                                   hasha, hashb);
2540                         goto error_dump;
2541                 }
2542         }
2543
2544         return 0;
2545
2546 error_dump:
2547         ubifs_msg("dumping first node");
2548         ubifs_dump_node(c, sa->node);
2549         ubifs_msg("dumping second node");
2550         ubifs_dump_node(c, sb->node);
2551         return -EINVAL;
2552         return 0;
2553 }
2554
2555 static inline int chance(unsigned int n, unsigned int out_of)
2556 {
2557         return !!((random32() % out_of) + 1 <= n);
2558
2559 }
2560
2561 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562 {
2563         struct ubifs_debug_info *d = c->dbg;
2564
2565         ubifs_assert(dbg_is_tst_rcvry(c));
2566
2567         if (!d->pc_cnt) {
2568                 /* First call - decide delay to the power cut */
2569                 if (chance(1, 2)) {
2570                         unsigned long delay;
2571
2572                         if (chance(1, 2)) {
2573                                 d->pc_delay = 1;
2574                                 /* Fail withing 1 minute */
2575                                 delay = random32() % 60000;
2576                                 d->pc_timeout = jiffies;
2577                                 d->pc_timeout += msecs_to_jiffies(delay);
2578                                 ubifs_warn("failing after %lums", delay);
2579                         } else {
2580                                 d->pc_delay = 2;
2581                                 delay = random32() % 10000;
2582                                 /* Fail within 10000 operations */
2583                                 d->pc_cnt_max = delay;
2584                                 ubifs_warn("failing after %lu calls", delay);
2585                         }
2586                 }
2587
2588                 d->pc_cnt += 1;
2589         }
2590
2591         /* Determine if failure delay has expired */
2592         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593                         return 0;
2594         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595                         return 0;
2596
2597         if (lnum == UBIFS_SB_LNUM) {
2598                 if (write && chance(1, 2))
2599                         return 0;
2600                 if (chance(19, 20))
2601                         return 0;
2602                 ubifs_warn("failing in super block LEB %d", lnum);
2603         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604                 if (chance(19, 20))
2605                         return 0;
2606                 ubifs_warn("failing in master LEB %d", lnum);
2607         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608                 if (write && chance(99, 100))
2609                         return 0;
2610                 if (chance(399, 400))
2611                         return 0;
2612                 ubifs_warn("failing in log LEB %d", lnum);
2613         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614                 if (write && chance(7, 8))
2615                         return 0;
2616                 if (chance(19, 20))
2617                         return 0;
2618                 ubifs_warn("failing in LPT LEB %d", lnum);
2619         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620                 if (write && chance(1, 2))
2621                         return 0;
2622                 if (chance(9, 10))
2623                         return 0;
2624                 ubifs_warn("failing in orphan LEB %d", lnum);
2625         } else if (lnum == c->ihead_lnum) {
2626                 if (chance(99, 100))
2627                         return 0;
2628                 ubifs_warn("failing in index head LEB %d", lnum);
2629         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630                 if (chance(9, 10))
2631                         return 0;
2632                 ubifs_warn("failing in GC head LEB %d", lnum);
2633         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634                    !ubifs_search_bud(c, lnum)) {
2635                 if (chance(19, 20))
2636                         return 0;
2637                 ubifs_warn("failing in non-bud LEB %d", lnum);
2638         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640                 if (chance(999, 1000))
2641                         return 0;
2642                 ubifs_warn("failing in bud LEB %d commit running", lnum);
2643         } else {
2644                 if (chance(9999, 10000))
2645                         return 0;
2646                 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647         }
2648
2649         d->pc_happened = 1;
2650         ubifs_warn("========== Power cut emulated ==========");
2651         dump_stack();
2652         return 1;
2653 }
2654
2655 static void cut_data(const void *buf, unsigned int len)
2656 {
2657         unsigned int from, to, i, ffs = chance(1, 2);
2658         unsigned char *p = (void *)buf;
2659
2660         from = random32() % (len + 1);
2661         if (chance(1, 2))
2662                 to = random32() % (len - from + 1);
2663         else
2664                 to = len;
2665
2666         if (from < to)
2667                 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668                            ffs ? "0xFFs" : "random data");
2669
2670         if (ffs)
2671                 for (i = from; i < to; i++)
2672                         p[i] = 0xFF;
2673         else
2674                 for (i = from; i < to; i++)
2675                         p[i] = random32() % 0x100;
2676 }
2677
2678 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679                   int offs, int len)
2680 {
2681         int err, failing;
2682
2683         if (c->dbg->pc_happened)
2684                 return -EROFS;
2685
2686         failing = power_cut_emulated(c, lnum, 1);
2687         if (failing)
2688                 cut_data(buf, len);
2689         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690         if (err)
2691                 return err;
2692         if (failing)
2693                 return -EROFS;
2694         return 0;
2695 }
2696
2697 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698                    int len)
2699 {
2700         int err;
2701
2702         if (c->dbg->pc_happened)
2703                 return -EROFS;
2704         if (power_cut_emulated(c, lnum, 1))
2705                 return -EROFS;
2706         err = ubi_leb_change(c->ubi, lnum, buf, len);
2707         if (err)
2708                 return err;
2709         if (power_cut_emulated(c, lnum, 1))
2710                 return -EROFS;
2711         return 0;
2712 }
2713
2714 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715 {
2716         int err;
2717
2718         if (c->dbg->pc_happened)
2719                 return -EROFS;
2720         if (power_cut_emulated(c, lnum, 0))
2721                 return -EROFS;
2722         err = ubi_leb_unmap(c->ubi, lnum);
2723         if (err)
2724                 return err;
2725         if (power_cut_emulated(c, lnum, 0))
2726                 return -EROFS;
2727         return 0;
2728 }
2729
2730 int dbg_leb_map(struct ubifs_info *c, int lnum)
2731 {
2732         int err;
2733
2734         if (c->dbg->pc_happened)
2735                 return -EROFS;
2736         if (power_cut_emulated(c, lnum, 0))
2737                 return -EROFS;
2738         err = ubi_leb_map(c->ubi, lnum);
2739         if (err)
2740                 return err;
2741         if (power_cut_emulated(c, lnum, 0))
2742                 return -EROFS;
2743         return 0;
2744 }
2745
2746 /*
2747  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748  * contain the stuff specific to particular file-system mounts.
2749  */
2750 static struct dentry *dfs_rootdir;
2751
2752 static int dfs_file_open(struct inode *inode, struct file *file)
2753 {
2754         file->private_data = inode->i_private;
2755         return nonseekable_open(inode, file);
2756 }
2757
2758 /**
2759  * provide_user_output - provide output to the user reading a debugfs file.
2760  * @val: boolean value for the answer
2761  * @u: the buffer to store the answer at
2762  * @count: size of the buffer
2763  * @ppos: position in the @u output buffer
2764  *
2765  * This is a simple helper function which stores @val boolean value in the user
2766  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767  * bytes written to @u in case of success and a negative error code in case of
2768  * failure.
2769  */
2770 static int provide_user_output(int val, char __user *u, size_t count,
2771                                loff_t *ppos)
2772 {
2773         char buf[3];
2774
2775         if (val)
2776                 buf[0] = '1';
2777         else
2778                 buf[0] = '0';
2779         buf[1] = '\n';
2780         buf[2] = 0x00;
2781
2782         return simple_read_from_buffer(u, count, ppos, buf, 2);
2783 }
2784
2785 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786                              loff_t *ppos)
2787 {
2788         struct dentry *dent = file->f_path.dentry;
2789         struct ubifs_info *c = file->private_data;
2790         struct ubifs_debug_info *d = c->dbg;
2791         int val;
2792
2793         if (dent == d->dfs_chk_gen)
2794                 val = d->chk_gen;
2795         else if (dent == d->dfs_chk_index)
2796                 val = d->chk_index;
2797         else if (dent == d->dfs_chk_orph)
2798                 val = d->chk_orph;
2799         else if (dent == d->dfs_chk_lprops)
2800                 val = d->chk_lprops;
2801         else if (dent == d->dfs_chk_fs)
2802                 val = d->chk_fs;
2803         else if (dent == d->dfs_tst_rcvry)
2804                 val = d->tst_rcvry;
2805         else if (dent == d->dfs_ro_error)
2806                 val = c->ro_error;
2807         else
2808                 return -EINVAL;
2809
2810         return provide_user_output(val, u, count, ppos);
2811 }
2812
2813 /**
2814  * interpret_user_input - interpret user debugfs file input.
2815  * @u: user-provided buffer with the input
2816  * @count: buffer size
2817  *
2818  * This is a helper function which interpret user input to a boolean UBIFS
2819  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2820  * in case of failure.
2821  */
2822 static int interpret_user_input(const char __user *u, size_t count)
2823 {
2824         size_t buf_size;
2825         char buf[8];
2826
2827         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2828         if (copy_from_user(buf, u, buf_size))
2829                 return -EFAULT;
2830
2831         if (buf[0] == '1')
2832                 return 1;
2833         else if (buf[0] == '0')
2834                 return 0;
2835
2836         return -EINVAL;
2837 }
2838
2839 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2840                               size_t count, loff_t *ppos)
2841 {
2842         struct ubifs_info *c = file->private_data;
2843         struct ubifs_debug_info *d = c->dbg;
2844         struct dentry *dent = file->f_path.dentry;
2845         int val;
2846
2847         /*
2848          * TODO: this is racy - the file-system might have already been
2849          * unmounted and we'd oops in this case. The plan is to fix it with
2850          * help of 'iterate_supers_type()' which we should have in v3.0: when
2851          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2852          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2853          * superblocks and fine the one with the same UUID, and take the
2854          * locking right.
2855          *
2856          * The other way to go suggested by Al Viro is to create a separate
2857          * 'ubifs-debug' file-system instead.
2858          */
2859         if (file->f_path.dentry == d->dfs_dump_lprops) {
2860                 ubifs_dump_lprops(c);
2861                 return count;
2862         }
2863         if (file->f_path.dentry == d->dfs_dump_budg) {
2864                 ubifs_dump_budg(c, &c->bi);
2865                 return count;
2866         }
2867         if (file->f_path.dentry == d->dfs_dump_tnc) {
2868                 mutex_lock(&c->tnc_mutex);
2869                 ubifs_dump_tnc(c);
2870                 mutex_unlock(&c->tnc_mutex);
2871                 return count;
2872         }
2873
2874         val = interpret_user_input(u, count);
2875         if (val < 0)
2876                 return val;
2877
2878         if (dent == d->dfs_chk_gen)
2879                 d->chk_gen = val;
2880         else if (dent == d->dfs_chk_index)
2881                 d->chk_index = val;
2882         else if (dent == d->dfs_chk_orph)
2883                 d->chk_orph = val;
2884         else if (dent == d->dfs_chk_lprops)
2885                 d->chk_lprops = val;
2886         else if (dent == d->dfs_chk_fs)
2887                 d->chk_fs = val;
2888         else if (dent == d->dfs_tst_rcvry)
2889                 d->tst_rcvry = val;
2890         else if (dent == d->dfs_ro_error)
2891                 c->ro_error = !!val;
2892         else
2893                 return -EINVAL;
2894
2895         return count;
2896 }
2897
2898 static const struct file_operations dfs_fops = {
2899         .open = dfs_file_open,
2900         .read = dfs_file_read,
2901         .write = dfs_file_write,
2902         .owner = THIS_MODULE,
2903         .llseek = no_llseek,
2904 };
2905
2906 /**
2907  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2908  * @c: UBIFS file-system description object
2909  *
2910  * This function creates all debugfs files for this instance of UBIFS. Returns
2911  * zero in case of success and a negative error code in case of failure.
2912  *
2913  * Note, the only reason we have not merged this function with the
2914  * 'ubifs_debugging_init()' function is because it is better to initialize
2915  * debugfs interfaces at the very end of the mount process, and remove them at
2916  * the very beginning of the mount process.
2917  */
2918 int dbg_debugfs_init_fs(struct ubifs_info *c)
2919 {
2920         int err, n;
2921         const char *fname;
2922         struct dentry *dent;
2923         struct ubifs_debug_info *d = c->dbg;
2924
2925         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2926                 return 0;
2927
2928         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2929                      c->vi.ubi_num, c->vi.vol_id);
2930         if (n == UBIFS_DFS_DIR_LEN) {
2931                 /* The array size is too small */
2932                 fname = UBIFS_DFS_DIR_NAME;
2933                 dent = ERR_PTR(-EINVAL);
2934                 goto out;
2935         }
2936
2937         fname = d->dfs_dir_name;
2938         dent = debugfs_create_dir(fname, dfs_rootdir);
2939         if (IS_ERR_OR_NULL(dent))
2940                 goto out;
2941         d->dfs_dir = dent;
2942
2943         fname = "dump_lprops";
2944         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2945         if (IS_ERR_OR_NULL(dent))
2946                 goto out_remove;
2947         d->dfs_dump_lprops = dent;
2948
2949         fname = "dump_budg";
2950         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2951         if (IS_ERR_OR_NULL(dent))
2952                 goto out_remove;
2953         d->dfs_dump_budg = dent;
2954
2955         fname = "dump_tnc";
2956         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2957         if (IS_ERR_OR_NULL(dent))
2958                 goto out_remove;
2959         d->dfs_dump_tnc = dent;
2960
2961         fname = "chk_general";
2962         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2963                                    &dfs_fops);
2964         if (IS_ERR_OR_NULL(dent))
2965                 goto out_remove;
2966         d->dfs_chk_gen = dent;
2967
2968         fname = "chk_index";
2969         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2970                                    &dfs_fops);
2971         if (IS_ERR_OR_NULL(dent))
2972                 goto out_remove;
2973         d->dfs_chk_index = dent;
2974
2975         fname = "chk_orphans";
2976         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2977                                    &dfs_fops);
2978         if (IS_ERR_OR_NULL(dent))
2979                 goto out_remove;
2980         d->dfs_chk_orph = dent;
2981
2982         fname = "chk_lprops";
2983         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2984                                    &dfs_fops);
2985         if (IS_ERR_OR_NULL(dent))
2986                 goto out_remove;
2987         d->dfs_chk_lprops = dent;
2988
2989         fname = "chk_fs";
2990         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2991                                    &dfs_fops);
2992         if (IS_ERR_OR_NULL(dent))
2993                 goto out_remove;
2994         d->dfs_chk_fs = dent;
2995
2996         fname = "tst_recovery";
2997         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2998                                    &dfs_fops);
2999         if (IS_ERR_OR_NULL(dent))
3000                 goto out_remove;
3001         d->dfs_tst_rcvry = dent;
3002
3003         fname = "ro_error";
3004         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3005                                    &dfs_fops);
3006         if (IS_ERR_OR_NULL(dent))
3007                 goto out_remove;
3008         d->dfs_ro_error = dent;
3009
3010         return 0;
3011
3012 out_remove:
3013         debugfs_remove_recursive(d->dfs_dir);
3014 out:
3015         err = dent ? PTR_ERR(dent) : -ENODEV;
3016         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3017                   fname, err);
3018         return err;
3019 }
3020
3021 /**
3022  * dbg_debugfs_exit_fs - remove all debugfs files.
3023  * @c: UBIFS file-system description object
3024  */
3025 void dbg_debugfs_exit_fs(struct ubifs_info *c)
3026 {
3027         if (IS_ENABLED(CONFIG_DEBUG_FS))
3028                 debugfs_remove_recursive(c->dbg->dfs_dir);
3029 }
3030
3031 struct ubifs_global_debug_info ubifs_dbg;
3032
3033 static struct dentry *dfs_chk_gen;
3034 static struct dentry *dfs_chk_index;
3035 static struct dentry *dfs_chk_orph;
3036 static struct dentry *dfs_chk_lprops;
3037 static struct dentry *dfs_chk_fs;
3038 static struct dentry *dfs_tst_rcvry;
3039
3040 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3041                                     size_t count, loff_t *ppos)
3042 {
3043         struct dentry *dent = file->f_path.dentry;
3044         int val;
3045
3046         if (dent == dfs_chk_gen)
3047                 val = ubifs_dbg.chk_gen;
3048         else if (dent == dfs_chk_index)
3049                 val = ubifs_dbg.chk_index;
3050         else if (dent == dfs_chk_orph)
3051                 val = ubifs_dbg.chk_orph;
3052         else if (dent == dfs_chk_lprops)
3053                 val = ubifs_dbg.chk_lprops;
3054         else if (dent == dfs_chk_fs)
3055                 val = ubifs_dbg.chk_fs;
3056         else if (dent == dfs_tst_rcvry)
3057                 val = ubifs_dbg.tst_rcvry;
3058         else
3059                 return -EINVAL;
3060
3061         return provide_user_output(val, u, count, ppos);
3062 }
3063
3064 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3065                                      size_t count, loff_t *ppos)
3066 {
3067         struct dentry *dent = file->f_path.dentry;
3068         int val;
3069
3070         val = interpret_user_input(u, count);
3071         if (val < 0)
3072                 return val;
3073
3074         if (dent == dfs_chk_gen)
3075                 ubifs_dbg.chk_gen = val;
3076         else if (dent == dfs_chk_index)
3077                 ubifs_dbg.chk_index = val;
3078         else if (dent == dfs_chk_orph)
3079                 ubifs_dbg.chk_orph = val;
3080         else if (dent == dfs_chk_lprops)
3081                 ubifs_dbg.chk_lprops = val;
3082         else if (dent == dfs_chk_fs)
3083                 ubifs_dbg.chk_fs = val;
3084         else if (dent == dfs_tst_rcvry)
3085                 ubifs_dbg.tst_rcvry = val;
3086         else
3087                 return -EINVAL;
3088
3089         return count;
3090 }
3091
3092 static const struct file_operations dfs_global_fops = {
3093         .read = dfs_global_file_read,
3094         .write = dfs_global_file_write,
3095         .owner = THIS_MODULE,
3096         .llseek = no_llseek,
3097 };
3098
3099 /**
3100  * dbg_debugfs_init - initialize debugfs file-system.
3101  *
3102  * UBIFS uses debugfs file-system to expose various debugging knobs to
3103  * user-space. This function creates "ubifs" directory in the debugfs
3104  * file-system. Returns zero in case of success and a negative error code in
3105  * case of failure.
3106  */
3107 int dbg_debugfs_init(void)
3108 {
3109         int err;
3110         const char *fname;
3111         struct dentry *dent;
3112
3113         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3114                 return 0;
3115
3116         fname = "ubifs";
3117         dent = debugfs_create_dir(fname, NULL);
3118         if (IS_ERR_OR_NULL(dent))
3119                 goto out;
3120         dfs_rootdir = dent;
3121
3122         fname = "chk_general";
3123         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3124                                    &dfs_global_fops);
3125         if (IS_ERR_OR_NULL(dent))
3126                 goto out_remove;
3127         dfs_chk_gen = dent;
3128
3129         fname = "chk_index";
3130         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3131                                    &dfs_global_fops);
3132         if (IS_ERR_OR_NULL(dent))
3133                 goto out_remove;
3134         dfs_chk_index = dent;
3135
3136         fname = "chk_orphans";
3137         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3138                                    &dfs_global_fops);
3139         if (IS_ERR_OR_NULL(dent))
3140                 goto out_remove;
3141         dfs_chk_orph = dent;
3142
3143         fname = "chk_lprops";
3144         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3145                                    &dfs_global_fops);
3146         if (IS_ERR_OR_NULL(dent))
3147                 goto out_remove;
3148         dfs_chk_lprops = dent;
3149
3150         fname = "chk_fs";
3151         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3152                                    &dfs_global_fops);
3153         if (IS_ERR_OR_NULL(dent))
3154                 goto out_remove;
3155         dfs_chk_fs = dent;
3156
3157         fname = "tst_recovery";
3158         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3159                                    &dfs_global_fops);
3160         if (IS_ERR_OR_NULL(dent))
3161                 goto out_remove;
3162         dfs_tst_rcvry = dent;
3163
3164         return 0;
3165
3166 out_remove:
3167         debugfs_remove_recursive(dfs_rootdir);
3168 out:
3169         err = dent ? PTR_ERR(dent) : -ENODEV;
3170         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3171                   fname, err);
3172         return err;
3173 }
3174
3175 /**
3176  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3177  */
3178 void dbg_debugfs_exit(void)
3179 {
3180         if (IS_ENABLED(CONFIG_DEBUG_FS))
3181                 debugfs_remove_recursive(dfs_rootdir);
3182 }
3183
3184 /**
3185  * ubifs_debugging_init - initialize UBIFS debugging.
3186  * @c: UBIFS file-system description object
3187  *
3188  * This function initializes debugging-related data for the file system.
3189  * Returns zero in case of success and a negative error code in case of
3190  * failure.
3191  */
3192 int ubifs_debugging_init(struct ubifs_info *c)
3193 {
3194         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3195         if (!c->dbg)
3196                 return -ENOMEM;
3197
3198         return 0;
3199 }
3200
3201 /**
3202  * ubifs_debugging_exit - free debugging data.
3203  * @c: UBIFS file-system description object
3204  */
3205 void ubifs_debugging_exit(struct ubifs_info *c)
3206 {
3207         kfree(c->dbg);
3208 }