1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * super.c contains code to handle: - mount structures
9 * - filesystem drivers list
11 * - umount system call
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
40 static int thaw_super_locked(struct super_block *sb);
42 static LIST_HEAD(super_blocks);
43 static DEFINE_SPINLOCK(sb_lock);
45 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
52 * One thing we have to be careful of with a per-sb shrinker is that we don't
53 * drop the last active reference to the superblock from within the shrinker.
54 * If that happens we could trigger unregistering the shrinker from within the
55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
56 * take a passive reference to the superblock to avoid this from occurring.
58 static unsigned long super_cache_scan(struct shrinker *shrink,
59 struct shrink_control *sc)
61 struct super_block *sb;
68 sb = container_of(shrink, struct super_block, s_shrink);
71 * Deadlock avoidance. We may hold various FS locks, and we don't want
72 * to recurse into the FS that called us in clear_inode() and friends..
74 if (!(sc->gfp_mask & __GFP_FS))
77 if (!trylock_super(sb))
80 if (sb->s_op->nr_cached_objects)
81 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
83 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
84 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
85 total_objects = dentries + inodes + fs_objects + 1;
89 /* proportion the scan between the caches */
90 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
91 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
92 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95 * prune the dcache first as the icache is pinned by it, then
96 * prune the icache, followed by the filesystem specific caches
98 * Ensure that we always scan at least one object - memcg kmem
99 * accounting uses this to fully empty the caches.
101 sc->nr_to_scan = dentries + 1;
102 freed = prune_dcache_sb(sb, sc);
103 sc->nr_to_scan = inodes + 1;
104 freed += prune_icache_sb(sb, sc);
107 sc->nr_to_scan = fs_objects + 1;
108 freed += sb->s_op->free_cached_objects(sb, sc);
111 up_read(&sb->s_umount);
115 static unsigned long super_cache_count(struct shrinker *shrink,
116 struct shrink_control *sc)
118 struct super_block *sb;
119 long total_objects = 0;
121 sb = container_of(shrink, struct super_block, s_shrink);
124 * Don't call trylock_super as it is a potential
125 * scalability bottleneck. The counts could get updated
126 * between super_cache_count and super_cache_scan anyway.
127 * Call to super_cache_count with shrinker_rwsem held
128 * ensures the safety of call to list_lru_shrink_count() and
129 * s_op->nr_cached_objects().
131 if (sb->s_op && sb->s_op->nr_cached_objects)
132 total_objects = sb->s_op->nr_cached_objects(sb, sc);
134 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
135 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
137 total_objects = vfs_pressure_ratio(total_objects);
138 return total_objects;
141 static void destroy_super_work(struct work_struct *work)
143 struct super_block *s = container_of(work, struct super_block,
147 for (i = 0; i < SB_FREEZE_LEVELS; i++)
148 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
152 static void destroy_super_rcu(struct rcu_head *head)
154 struct super_block *s = container_of(head, struct super_block, rcu);
155 INIT_WORK(&s->destroy_work, destroy_super_work);
156 schedule_work(&s->destroy_work);
159 /* Free a superblock that has never been seen by anyone */
160 static void destroy_unused_super(struct super_block *s)
164 up_write(&s->s_umount);
165 list_lru_destroy(&s->s_dentry_lru);
166 list_lru_destroy(&s->s_inode_lru);
168 put_user_ns(s->s_user_ns);
170 free_prealloced_shrinker(&s->s_shrink);
171 /* no delays needed */
172 destroy_super_work(&s->destroy_work);
176 * alloc_super - create new superblock
177 * @type: filesystem type superblock should belong to
178 * @flags: the mount flags
179 * @user_ns: User namespace for the super_block
181 * Allocates and initializes a new &struct super_block. alloc_super()
182 * returns a pointer new superblock or %NULL if allocation had failed.
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 struct user_namespace *user_ns)
187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
188 static const struct super_operations default_op;
194 INIT_LIST_HEAD(&s->s_mounts);
195 s->s_user_ns = get_user_ns(user_ns);
196 init_rwsem(&s->s_umount);
197 lockdep_set_class(&s->s_umount, &type->s_umount_key);
199 * sget() can have s_umount recursion.
201 * When it cannot find a suitable sb, it allocates a new
202 * one (this one), and tries again to find a suitable old
205 * In case that succeeds, it will acquire the s_umount
206 * lock of the old one. Since these are clearly distrinct
207 * locks, and this object isn't exposed yet, there's no
210 * Annotate this by putting this lock in a different
213 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
215 if (security_sb_alloc(s))
218 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
219 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
221 &type->s_writers_key[i]))
224 init_waitqueue_head(&s->s_writers.wait_unfrozen);
225 s->s_bdi = &noop_backing_dev_info;
227 if (s->s_user_ns != &init_user_ns)
228 s->s_iflags |= SB_I_NODEV;
229 INIT_HLIST_NODE(&s->s_instances);
230 INIT_HLIST_BL_HEAD(&s->s_roots);
231 mutex_init(&s->s_sync_lock);
232 INIT_LIST_HEAD(&s->s_inodes);
233 spin_lock_init(&s->s_inode_list_lock);
234 INIT_LIST_HEAD(&s->s_inodes_wb);
235 spin_lock_init(&s->s_inode_wblist_lock);
237 if (list_lru_init_memcg(&s->s_dentry_lru))
239 if (list_lru_init_memcg(&s->s_inode_lru))
242 atomic_set(&s->s_active, 1);
243 mutex_init(&s->s_vfs_rename_mutex);
244 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
245 init_rwsem(&s->s_dquot.dqio_sem);
246 s->s_maxbytes = MAX_NON_LFS;
247 s->s_op = &default_op;
248 s->s_time_gran = 1000000000;
249 s->cleancache_poolid = CLEANCACHE_NO_POOL;
251 s->s_shrink.seeks = DEFAULT_SEEKS;
252 s->s_shrink.scan_objects = super_cache_scan;
253 s->s_shrink.count_objects = super_cache_count;
254 s->s_shrink.batch = 1024;
255 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
256 if (prealloc_shrinker(&s->s_shrink))
261 destroy_unused_super(s);
265 /* Superblock refcounting */
268 * Drop a superblock's refcount. The caller must hold sb_lock.
270 static void __put_super(struct super_block *s)
273 list_del_init(&s->s_list);
274 WARN_ON(s->s_dentry_lru.node);
275 WARN_ON(s->s_inode_lru.node);
276 WARN_ON(!list_empty(&s->s_mounts));
278 put_user_ns(s->s_user_ns);
280 call_rcu(&s->rcu, destroy_super_rcu);
285 * put_super - drop a temporary reference to superblock
286 * @sb: superblock in question
288 * Drops a temporary reference, frees superblock if there's no
291 static void put_super(struct super_block *sb)
295 spin_unlock(&sb_lock);
300 * deactivate_locked_super - drop an active reference to superblock
301 * @s: superblock to deactivate
303 * Drops an active reference to superblock, converting it into a temporary
304 * one if there is no other active references left. In that case we
305 * tell fs driver to shut it down and drop the temporary reference we
308 * Caller holds exclusive lock on superblock; that lock is released.
310 void deactivate_locked_super(struct super_block *s)
312 struct file_system_type *fs = s->s_type;
313 if (atomic_dec_and_test(&s->s_active)) {
314 cleancache_invalidate_fs(s);
315 unregister_shrinker(&s->s_shrink);
319 * Since list_lru_destroy() may sleep, we cannot call it from
320 * put_super(), where we hold the sb_lock. Therefore we destroy
321 * the lru lists right now.
323 list_lru_destroy(&s->s_dentry_lru);
324 list_lru_destroy(&s->s_inode_lru);
329 up_write(&s->s_umount);
333 EXPORT_SYMBOL(deactivate_locked_super);
336 * deactivate_super - drop an active reference to superblock
337 * @s: superblock to deactivate
339 * Variant of deactivate_locked_super(), except that superblock is *not*
340 * locked by caller. If we are going to drop the final active reference,
341 * lock will be acquired prior to that.
343 void deactivate_super(struct super_block *s)
345 if (!atomic_add_unless(&s->s_active, -1, 1)) {
346 down_write(&s->s_umount);
347 deactivate_locked_super(s);
351 EXPORT_SYMBOL(deactivate_super);
354 * grab_super - acquire an active reference
355 * @s: reference we are trying to make active
357 * Tries to acquire an active reference. grab_super() is used when we
358 * had just found a superblock in super_blocks or fs_type->fs_supers
359 * and want to turn it into a full-blown active reference. grab_super()
360 * is called with sb_lock held and drops it. Returns 1 in case of
361 * success, 0 if we had failed (superblock contents was already dead or
362 * dying when grab_super() had been called). Note that this is only
363 * called for superblocks not in rundown mode (== ones still on ->fs_supers
364 * of their type), so increment of ->s_count is OK here.
366 static int grab_super(struct super_block *s) __releases(sb_lock)
369 spin_unlock(&sb_lock);
370 down_write(&s->s_umount);
371 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
375 up_write(&s->s_umount);
381 * trylock_super - try to grab ->s_umount shared
382 * @sb: reference we are trying to grab
384 * Try to prevent fs shutdown. This is used in places where we
385 * cannot take an active reference but we need to ensure that the
386 * filesystem is not shut down while we are working on it. It returns
387 * false if we cannot acquire s_umount or if we lose the race and
388 * filesystem already got into shutdown, and returns true with the s_umount
389 * lock held in read mode in case of success. On successful return,
390 * the caller must drop the s_umount lock when done.
392 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
393 * The reason why it's safe is that we are OK with doing trylock instead
394 * of down_read(). There's a couple of places that are OK with that, but
395 * it's very much not a general-purpose interface.
397 bool trylock_super(struct super_block *sb)
399 if (down_read_trylock(&sb->s_umount)) {
400 if (!hlist_unhashed(&sb->s_instances) &&
401 sb->s_root && (sb->s_flags & SB_BORN))
403 up_read(&sb->s_umount);
410 * generic_shutdown_super - common helper for ->kill_sb()
411 * @sb: superblock to kill
413 * generic_shutdown_super() does all fs-independent work on superblock
414 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
415 * that need destruction out of superblock, call generic_shutdown_super()
416 * and release aforementioned objects. Note: dentries and inodes _are_
417 * taken care of and do not need specific handling.
419 * Upon calling this function, the filesystem may no longer alter or
420 * rearrange the set of dentries belonging to this super_block, nor may it
421 * change the attachments of dentries to inodes.
423 void generic_shutdown_super(struct super_block *sb)
425 const struct super_operations *sop = sb->s_op;
428 shrink_dcache_for_umount(sb);
430 sb->s_flags &= ~SB_ACTIVE;
432 fsnotify_unmount_inodes(sb);
433 cgroup_writeback_umount();
437 if (sb->s_dio_done_wq) {
438 destroy_workqueue(sb->s_dio_done_wq);
439 sb->s_dio_done_wq = NULL;
445 if (!list_empty(&sb->s_inodes)) {
446 printk("VFS: Busy inodes after unmount of %s. "
447 "Self-destruct in 5 seconds. Have a nice day...\n",
452 /* should be initialized for __put_super_and_need_restart() */
453 hlist_del_init(&sb->s_instances);
454 spin_unlock(&sb_lock);
455 up_write(&sb->s_umount);
456 if (sb->s_bdi != &noop_backing_dev_info) {
458 sb->s_bdi = &noop_backing_dev_info;
462 EXPORT_SYMBOL(generic_shutdown_super);
465 * sget_userns - find or create a superblock
466 * @type: filesystem type superblock should belong to
467 * @test: comparison callback
468 * @set: setup callback
469 * @flags: mount flags
470 * @user_ns: User namespace for the super_block
471 * @data: argument to each of them
473 struct super_block *sget_userns(struct file_system_type *type,
474 int (*test)(struct super_block *,void *),
475 int (*set)(struct super_block *,void *),
476 int flags, struct user_namespace *user_ns,
479 struct super_block *s = NULL;
480 struct super_block *old;
483 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
484 !(type->fs_flags & FS_USERNS_MOUNT) &&
485 !capable(CAP_SYS_ADMIN))
486 return ERR_PTR(-EPERM);
490 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
491 if (!test(old, data))
493 if (user_ns != old->s_user_ns) {
494 spin_unlock(&sb_lock);
495 destroy_unused_super(s);
496 return ERR_PTR(-EBUSY);
498 if (!grab_super(old))
500 destroy_unused_super(s);
505 spin_unlock(&sb_lock);
506 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
508 return ERR_PTR(-ENOMEM);
514 spin_unlock(&sb_lock);
515 destroy_unused_super(s);
519 strlcpy(s->s_id, type->name, sizeof(s->s_id));
520 list_add_tail(&s->s_list, &super_blocks);
521 hlist_add_head(&s->s_instances, &type->fs_supers);
522 spin_unlock(&sb_lock);
523 get_filesystem(type);
524 register_shrinker_prepared(&s->s_shrink);
528 EXPORT_SYMBOL(sget_userns);
531 * sget - find or create a superblock
532 * @type: filesystem type superblock should belong to
533 * @test: comparison callback
534 * @set: setup callback
535 * @flags: mount flags
536 * @data: argument to each of them
538 struct super_block *sget(struct file_system_type *type,
539 int (*test)(struct super_block *,void *),
540 int (*set)(struct super_block *,void *),
544 struct user_namespace *user_ns = current_user_ns();
546 /* We don't yet pass the user namespace of the parent
547 * mount through to here so always use &init_user_ns
548 * until that changes.
550 if (flags & SB_SUBMOUNT)
551 user_ns = &init_user_ns;
553 /* Ensure the requestor has permissions over the target filesystem */
554 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
555 return ERR_PTR(-EPERM);
557 return sget_userns(type, test, set, flags, user_ns, data);
562 void drop_super(struct super_block *sb)
564 up_read(&sb->s_umount);
568 EXPORT_SYMBOL(drop_super);
570 void drop_super_exclusive(struct super_block *sb)
572 up_write(&sb->s_umount);
575 EXPORT_SYMBOL(drop_super_exclusive);
577 static void __iterate_supers(void (*f)(struct super_block *))
579 struct super_block *sb, *p = NULL;
582 list_for_each_entry(sb, &super_blocks, s_list) {
583 if (hlist_unhashed(&sb->s_instances))
586 spin_unlock(&sb_lock);
597 spin_unlock(&sb_lock);
600 * iterate_supers - call function for all active superblocks
601 * @f: function to call
602 * @arg: argument to pass to it
604 * Scans the superblock list and calls given function, passing it
605 * locked superblock and given argument.
607 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
609 struct super_block *sb, *p = NULL;
612 list_for_each_entry(sb, &super_blocks, s_list) {
613 if (hlist_unhashed(&sb->s_instances))
616 spin_unlock(&sb_lock);
618 down_read(&sb->s_umount);
619 if (sb->s_root && (sb->s_flags & SB_BORN))
621 up_read(&sb->s_umount);
630 spin_unlock(&sb_lock);
634 * iterate_supers_type - call function for superblocks of given type
636 * @f: function to call
637 * @arg: argument to pass to it
639 * Scans the superblock list and calls given function, passing it
640 * locked superblock and given argument.
642 void iterate_supers_type(struct file_system_type *type,
643 void (*f)(struct super_block *, void *), void *arg)
645 struct super_block *sb, *p = NULL;
648 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
650 spin_unlock(&sb_lock);
652 down_read(&sb->s_umount);
653 if (sb->s_root && (sb->s_flags & SB_BORN))
655 up_read(&sb->s_umount);
664 spin_unlock(&sb_lock);
667 EXPORT_SYMBOL(iterate_supers_type);
669 static struct super_block *__get_super(struct block_device *bdev, bool excl)
671 struct super_block *sb;
678 list_for_each_entry(sb, &super_blocks, s_list) {
679 if (hlist_unhashed(&sb->s_instances))
681 if (sb->s_bdev == bdev) {
683 spin_unlock(&sb_lock);
685 down_read(&sb->s_umount);
687 down_write(&sb->s_umount);
689 if (sb->s_root && (sb->s_flags & SB_BORN))
692 up_read(&sb->s_umount);
694 up_write(&sb->s_umount);
695 /* nope, got unmounted */
701 spin_unlock(&sb_lock);
706 * get_super - get the superblock of a device
707 * @bdev: device to get the superblock for
709 * Scans the superblock list and finds the superblock of the file system
710 * mounted on the device given. %NULL is returned if no match is found.
712 struct super_block *get_super(struct block_device *bdev)
714 return __get_super(bdev, false);
716 EXPORT_SYMBOL(get_super);
718 static struct super_block *__get_super_thawed(struct block_device *bdev,
722 struct super_block *s = __get_super(bdev, excl);
723 if (!s || s->s_writers.frozen == SB_UNFROZEN)
726 up_read(&s->s_umount);
728 up_write(&s->s_umount);
729 wait_event(s->s_writers.wait_unfrozen,
730 s->s_writers.frozen == SB_UNFROZEN);
736 * get_super_thawed - get thawed superblock of a device
737 * @bdev: device to get the superblock for
739 * Scans the superblock list and finds the superblock of the file system
740 * mounted on the device. The superblock is returned once it is thawed
741 * (or immediately if it was not frozen). %NULL is returned if no match
744 struct super_block *get_super_thawed(struct block_device *bdev)
746 return __get_super_thawed(bdev, false);
748 EXPORT_SYMBOL(get_super_thawed);
751 * get_super_exclusive_thawed - get thawed superblock of a device
752 * @bdev: device to get the superblock for
754 * Scans the superblock list and finds the superblock of the file system
755 * mounted on the device. The superblock is returned once it is thawed
756 * (or immediately if it was not frozen) and s_umount semaphore is held
757 * in exclusive mode. %NULL is returned if no match is found.
759 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
761 return __get_super_thawed(bdev, true);
763 EXPORT_SYMBOL(get_super_exclusive_thawed);
766 * get_active_super - get an active reference to the superblock of a device
767 * @bdev: device to get the superblock for
769 * Scans the superblock list and finds the superblock of the file system
770 * mounted on the device given. Returns the superblock with an active
771 * reference or %NULL if none was found.
773 struct super_block *get_active_super(struct block_device *bdev)
775 struct super_block *sb;
782 list_for_each_entry(sb, &super_blocks, s_list) {
783 if (hlist_unhashed(&sb->s_instances))
785 if (sb->s_bdev == bdev) {
788 up_write(&sb->s_umount);
792 spin_unlock(&sb_lock);
796 struct super_block *user_get_super(dev_t dev)
798 struct super_block *sb;
802 list_for_each_entry(sb, &super_blocks, s_list) {
803 if (hlist_unhashed(&sb->s_instances))
805 if (sb->s_dev == dev) {
807 spin_unlock(&sb_lock);
808 down_read(&sb->s_umount);
810 if (sb->s_root && (sb->s_flags & SB_BORN))
812 up_read(&sb->s_umount);
813 /* nope, got unmounted */
819 spin_unlock(&sb_lock);
824 * do_remount_sb - asks filesystem to change mount options.
825 * @sb: superblock in question
826 * @sb_flags: revised superblock flags
827 * @data: the rest of options
828 * @force: whether or not to force the change
830 * Alters the mount options of a mounted file system.
832 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
837 if (sb->s_writers.frozen != SB_UNFROZEN)
841 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
845 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
848 if (!hlist_empty(&sb->s_pins)) {
849 up_write(&sb->s_umount);
850 group_pin_kill(&sb->s_pins);
851 down_write(&sb->s_umount);
854 if (sb->s_writers.frozen != SB_UNFROZEN)
856 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
859 shrink_dcache_sb(sb);
861 /* If we are remounting RDONLY and current sb is read/write,
862 make sure there are no rw files opened */
865 sb->s_readonly_remount = 1;
868 retval = sb_prepare_remount_readonly(sb);
874 if (sb->s_op->remount_fs) {
875 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
878 goto cancel_readonly;
879 /* If forced remount, go ahead despite any errors */
880 WARN(1, "forced remount of a %s fs returned %i\n",
881 sb->s_type->name, retval);
884 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
885 /* Needs to be ordered wrt mnt_is_readonly() */
887 sb->s_readonly_remount = 0;
890 * Some filesystems modify their metadata via some other path than the
891 * bdev buffer cache (eg. use a private mapping, or directories in
892 * pagecache, etc). Also file data modifications go via their own
893 * mappings. So If we try to mount readonly then copy the filesystem
894 * from bdev, we could get stale data, so invalidate it to give a best
895 * effort at coherency.
897 if (remount_ro && sb->s_bdev)
898 invalidate_bdev(sb->s_bdev);
902 sb->s_readonly_remount = 0;
906 static void do_emergency_remount_callback(struct super_block *sb)
908 down_write(&sb->s_umount);
909 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
912 * What lock protects sb->s_flags??
914 do_remount_sb(sb, SB_RDONLY, NULL, 1);
916 up_write(&sb->s_umount);
919 static void do_emergency_remount(struct work_struct *work)
921 __iterate_supers(do_emergency_remount_callback);
923 printk("Emergency Remount complete\n");
926 void emergency_remount(void)
928 struct work_struct *work;
930 work = kmalloc(sizeof(*work), GFP_ATOMIC);
932 INIT_WORK(work, do_emergency_remount);
937 static void do_thaw_all_callback(struct super_block *sb)
939 down_write(&sb->s_umount);
940 if (sb->s_root && sb->s_flags & MS_BORN) {
941 emergency_thaw_bdev(sb);
942 thaw_super_locked(sb);
944 up_write(&sb->s_umount);
948 static void do_thaw_all(struct work_struct *work)
950 __iterate_supers(do_thaw_all_callback);
952 printk(KERN_WARNING "Emergency Thaw complete\n");
956 * emergency_thaw_all -- forcibly thaw every frozen filesystem
958 * Used for emergency unfreeze of all filesystems via SysRq
960 void emergency_thaw_all(void)
962 struct work_struct *work;
964 work = kmalloc(sizeof(*work), GFP_ATOMIC);
966 INIT_WORK(work, do_thaw_all);
972 * Unnamed block devices are dummy devices used by virtual
973 * filesystems which don't use real block-devices. -- jrs
976 static DEFINE_IDA(unnamed_dev_ida);
977 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
978 /* Many userspace utilities consider an FSID of 0 invalid.
979 * Always return at least 1 from get_anon_bdev.
981 static int unnamed_dev_start = 1;
983 int get_anon_bdev(dev_t *p)
989 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
991 spin_lock(&unnamed_dev_lock);
992 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
994 unnamed_dev_start = dev + 1;
995 spin_unlock(&unnamed_dev_lock);
996 if (error == -EAGAIN)
997 /* We raced and lost with another CPU. */
1002 if (dev >= (1 << MINORBITS)) {
1003 spin_lock(&unnamed_dev_lock);
1004 ida_remove(&unnamed_dev_ida, dev);
1005 if (unnamed_dev_start > dev)
1006 unnamed_dev_start = dev;
1007 spin_unlock(&unnamed_dev_lock);
1010 *p = MKDEV(0, dev & MINORMASK);
1013 EXPORT_SYMBOL(get_anon_bdev);
1015 void free_anon_bdev(dev_t dev)
1017 int slot = MINOR(dev);
1018 spin_lock(&unnamed_dev_lock);
1019 ida_remove(&unnamed_dev_ida, slot);
1020 if (slot < unnamed_dev_start)
1021 unnamed_dev_start = slot;
1022 spin_unlock(&unnamed_dev_lock);
1024 EXPORT_SYMBOL(free_anon_bdev);
1026 int set_anon_super(struct super_block *s, void *data)
1028 return get_anon_bdev(&s->s_dev);
1031 EXPORT_SYMBOL(set_anon_super);
1033 void kill_anon_super(struct super_block *sb)
1035 dev_t dev = sb->s_dev;
1036 generic_shutdown_super(sb);
1037 free_anon_bdev(dev);
1040 EXPORT_SYMBOL(kill_anon_super);
1042 void kill_litter_super(struct super_block *sb)
1045 d_genocide(sb->s_root);
1046 kill_anon_super(sb);
1049 EXPORT_SYMBOL(kill_litter_super);
1051 static int ns_test_super(struct super_block *sb, void *data)
1053 return sb->s_fs_info == data;
1056 static int ns_set_super(struct super_block *sb, void *data)
1058 sb->s_fs_info = data;
1059 return set_anon_super(sb, NULL);
1062 struct dentry *mount_ns(struct file_system_type *fs_type,
1063 int flags, void *data, void *ns, struct user_namespace *user_ns,
1064 int (*fill_super)(struct super_block *, void *, int))
1066 struct super_block *sb;
1068 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1069 * over the namespace.
1071 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1072 return ERR_PTR(-EPERM);
1074 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1077 return ERR_CAST(sb);
1081 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1083 deactivate_locked_super(sb);
1084 return ERR_PTR(err);
1087 sb->s_flags |= SB_ACTIVE;
1090 return dget(sb->s_root);
1093 EXPORT_SYMBOL(mount_ns);
1096 static int set_bdev_super(struct super_block *s, void *data)
1099 s->s_dev = s->s_bdev->bd_dev;
1100 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1105 static int test_bdev_super(struct super_block *s, void *data)
1107 return (void *)s->s_bdev == data;
1110 struct dentry *mount_bdev(struct file_system_type *fs_type,
1111 int flags, const char *dev_name, void *data,
1112 int (*fill_super)(struct super_block *, void *, int))
1114 struct block_device *bdev;
1115 struct super_block *s;
1116 fmode_t mode = FMODE_READ | FMODE_EXCL;
1119 if (!(flags & SB_RDONLY))
1120 mode |= FMODE_WRITE;
1122 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1124 return ERR_CAST(bdev);
1127 * once the super is inserted into the list by sget, s_umount
1128 * will protect the lockfs code from trying to start a snapshot
1129 * while we are mounting
1131 mutex_lock(&bdev->bd_fsfreeze_mutex);
1132 if (bdev->bd_fsfreeze_count > 0) {
1133 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1137 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1139 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1144 if ((flags ^ s->s_flags) & SB_RDONLY) {
1145 deactivate_locked_super(s);
1151 * s_umount nests inside bd_mutex during
1152 * __invalidate_device(). blkdev_put() acquires
1153 * bd_mutex and can't be called under s_umount. Drop
1154 * s_umount temporarily. This is safe as we're
1155 * holding an active reference.
1157 up_write(&s->s_umount);
1158 blkdev_put(bdev, mode);
1159 down_write(&s->s_umount);
1162 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1163 sb_set_blocksize(s, block_size(bdev));
1164 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1166 deactivate_locked_super(s);
1170 s->s_flags |= SB_ACTIVE;
1174 return dget(s->s_root);
1179 blkdev_put(bdev, mode);
1181 return ERR_PTR(error);
1183 EXPORT_SYMBOL(mount_bdev);
1185 void kill_block_super(struct super_block *sb)
1187 struct block_device *bdev = sb->s_bdev;
1188 fmode_t mode = sb->s_mode;
1190 bdev->bd_super = NULL;
1191 generic_shutdown_super(sb);
1192 sync_blockdev(bdev);
1193 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1194 blkdev_put(bdev, mode | FMODE_EXCL);
1197 EXPORT_SYMBOL(kill_block_super);
1200 struct dentry *mount_nodev(struct file_system_type *fs_type,
1201 int flags, void *data,
1202 int (*fill_super)(struct super_block *, void *, int))
1205 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1210 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1212 deactivate_locked_super(s);
1213 return ERR_PTR(error);
1215 s->s_flags |= SB_ACTIVE;
1216 return dget(s->s_root);
1218 EXPORT_SYMBOL(mount_nodev);
1220 static int compare_single(struct super_block *s, void *p)
1225 struct dentry *mount_single(struct file_system_type *fs_type,
1226 int flags, void *data,
1227 int (*fill_super)(struct super_block *, void *, int))
1229 struct super_block *s;
1232 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1236 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1238 deactivate_locked_super(s);
1239 return ERR_PTR(error);
1241 s->s_flags |= SB_ACTIVE;
1243 do_remount_sb(s, flags, data, 0);
1245 return dget(s->s_root);
1247 EXPORT_SYMBOL(mount_single);
1250 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1252 struct dentry *root;
1253 struct super_block *sb;
1254 char *secdata = NULL;
1255 int error = -ENOMEM;
1257 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1258 secdata = alloc_secdata();
1262 error = security_sb_copy_data(data, secdata);
1264 goto out_free_secdata;
1267 root = type->mount(type, flags, name, data);
1269 error = PTR_ERR(root);
1270 goto out_free_secdata;
1274 WARN_ON(!sb->s_bdi);
1275 sb->s_flags |= SB_BORN;
1277 error = security_sb_kern_mount(sb, flags, secdata);
1282 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1283 * but s_maxbytes was an unsigned long long for many releases. Throw
1284 * this warning for a little while to try and catch filesystems that
1285 * violate this rule.
1287 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1288 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1290 up_write(&sb->s_umount);
1291 free_secdata(secdata);
1295 deactivate_locked_super(sb);
1297 free_secdata(secdata);
1299 return ERR_PTR(error);
1303 * Setup private BDI for given superblock. It gets automatically cleaned up
1304 * in generic_shutdown_super().
1306 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1308 struct backing_dev_info *bdi;
1312 bdi = bdi_alloc(GFP_KERNEL);
1316 bdi->name = sb->s_type->name;
1318 va_start(args, fmt);
1319 err = bdi_register_va(bdi, fmt, args);
1325 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1330 EXPORT_SYMBOL(super_setup_bdi_name);
1333 * Setup private BDI for given superblock. I gets automatically cleaned up
1334 * in generic_shutdown_super().
1336 int super_setup_bdi(struct super_block *sb)
1338 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1340 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1341 atomic_long_inc_return(&bdi_seq));
1343 EXPORT_SYMBOL(super_setup_bdi);
1346 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1349 void __sb_end_write(struct super_block *sb, int level)
1351 percpu_up_read(sb->s_writers.rw_sem + level-1);
1353 EXPORT_SYMBOL(__sb_end_write);
1356 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1359 int __sb_start_write(struct super_block *sb, int level, bool wait)
1361 bool force_trylock = false;
1364 #ifdef CONFIG_LOCKDEP
1366 * We want lockdep to tell us about possible deadlocks with freezing
1367 * but it's it bit tricky to properly instrument it. Getting a freeze
1368 * protection works as getting a read lock but there are subtle
1369 * problems. XFS for example gets freeze protection on internal level
1370 * twice in some cases, which is OK only because we already hold a
1371 * freeze protection also on higher level. Due to these cases we have
1372 * to use wait == F (trylock mode) which must not fail.
1377 for (i = 0; i < level - 1; i++)
1378 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1379 force_trylock = true;
1384 if (wait && !force_trylock)
1385 percpu_down_read(sb->s_writers.rw_sem + level-1);
1387 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1389 WARN_ON(force_trylock && !ret);
1392 EXPORT_SYMBOL(__sb_start_write);
1395 * sb_wait_write - wait until all writers to given file system finish
1396 * @sb: the super for which we wait
1397 * @level: type of writers we wait for (normal vs page fault)
1399 * This function waits until there are no writers of given type to given file
1402 static void sb_wait_write(struct super_block *sb, int level)
1404 percpu_down_write(sb->s_writers.rw_sem + level-1);
1408 * We are going to return to userspace and forget about these locks, the
1409 * ownership goes to the caller of thaw_super() which does unlock().
1411 static void lockdep_sb_freeze_release(struct super_block *sb)
1415 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1416 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1420 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1422 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1426 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1427 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1430 static void sb_freeze_unlock(struct super_block *sb)
1434 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1435 percpu_up_write(sb->s_writers.rw_sem + level);
1439 * freeze_super - lock the filesystem and force it into a consistent state
1440 * @sb: the super to lock
1442 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1443 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1446 * During this function, sb->s_writers.frozen goes through these values:
1448 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1450 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1451 * writes should be blocked, though page faults are still allowed. We wait for
1452 * all writes to complete and then proceed to the next stage.
1454 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1455 * but internal fs threads can still modify the filesystem (although they
1456 * should not dirty new pages or inodes), writeback can run etc. After waiting
1457 * for all running page faults we sync the filesystem which will clean all
1458 * dirty pages and inodes (no new dirty pages or inodes can be created when
1461 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1462 * modification are blocked (e.g. XFS preallocation truncation on inode
1463 * reclaim). This is usually implemented by blocking new transactions for
1464 * filesystems that have them and need this additional guard. After all
1465 * internal writers are finished we call ->freeze_fs() to finish filesystem
1466 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1467 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1469 * sb->s_writers.frozen is protected by sb->s_umount.
1471 int freeze_super(struct super_block *sb)
1475 atomic_inc(&sb->s_active);
1476 down_write(&sb->s_umount);
1477 if (sb->s_writers.frozen != SB_UNFROZEN) {
1478 deactivate_locked_super(sb);
1482 if (!(sb->s_flags & SB_BORN)) {
1483 up_write(&sb->s_umount);
1484 return 0; /* sic - it's "nothing to do" */
1487 if (sb_rdonly(sb)) {
1488 /* Nothing to do really... */
1489 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1490 up_write(&sb->s_umount);
1494 sb->s_writers.frozen = SB_FREEZE_WRITE;
1495 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1496 up_write(&sb->s_umount);
1497 sb_wait_write(sb, SB_FREEZE_WRITE);
1498 down_write(&sb->s_umount);
1500 /* Now we go and block page faults... */
1501 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1502 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1504 /* All writers are done so after syncing there won't be dirty data */
1505 sync_filesystem(sb);
1507 /* Now wait for internal filesystem counter */
1508 sb->s_writers.frozen = SB_FREEZE_FS;
1509 sb_wait_write(sb, SB_FREEZE_FS);
1511 if (sb->s_op->freeze_fs) {
1512 ret = sb->s_op->freeze_fs(sb);
1515 "VFS:Filesystem freeze failed\n");
1516 sb->s_writers.frozen = SB_UNFROZEN;
1517 sb_freeze_unlock(sb);
1518 wake_up(&sb->s_writers.wait_unfrozen);
1519 deactivate_locked_super(sb);
1524 * For debugging purposes so that fs can warn if it sees write activity
1525 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1527 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1528 lockdep_sb_freeze_release(sb);
1529 up_write(&sb->s_umount);
1532 EXPORT_SYMBOL(freeze_super);
1535 * thaw_super -- unlock filesystem
1536 * @sb: the super to thaw
1538 * Unlocks the filesystem and marks it writeable again after freeze_super().
1540 static int thaw_super_locked(struct super_block *sb)
1544 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1545 up_write(&sb->s_umount);
1549 if (sb_rdonly(sb)) {
1550 sb->s_writers.frozen = SB_UNFROZEN;
1554 lockdep_sb_freeze_acquire(sb);
1556 if (sb->s_op->unfreeze_fs) {
1557 error = sb->s_op->unfreeze_fs(sb);
1560 "VFS:Filesystem thaw failed\n");
1561 lockdep_sb_freeze_release(sb);
1562 up_write(&sb->s_umount);
1567 sb->s_writers.frozen = SB_UNFROZEN;
1568 sb_freeze_unlock(sb);
1570 wake_up(&sb->s_writers.wait_unfrozen);
1571 deactivate_locked_super(sb);
1575 int thaw_super(struct super_block *sb)
1577 down_write(&sb->s_umount);
1578 return thaw_super_locked(sb);
1580 EXPORT_SYMBOL(thaw_super);