4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
41 * alloc_super - create new superblock
42 * @type: filesystem type superblock should belong to
44 * Allocates and initializes a new &struct super_block. alloc_super()
45 * returns a pointer new superblock or %NULL if allocation had failed.
47 static struct super_block *alloc_super(struct file_system_type *type)
49 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
50 static const struct super_operations default_op;
53 if (security_sb_alloc(s)) {
59 s->s_files = alloc_percpu(struct list_head);
68 for_each_possible_cpu(i)
69 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
72 INIT_LIST_HEAD(&s->s_files);
74 INIT_LIST_HEAD(&s->s_instances);
75 INIT_HLIST_BL_HEAD(&s->s_anon);
76 INIT_LIST_HEAD(&s->s_inodes);
77 INIT_LIST_HEAD(&s->s_dentry_lru);
78 init_rwsem(&s->s_umount);
79 mutex_init(&s->s_lock);
80 lockdep_set_class(&s->s_umount, &type->s_umount_key);
82 * The locking rules for s_lock are up to the
83 * filesystem. For example ext3fs has different
84 * lock ordering than usbfs:
86 lockdep_set_class(&s->s_lock, &type->s_lock_key);
88 * sget() can have s_umount recursion.
90 * When it cannot find a suitable sb, it allocates a new
91 * one (this one), and tries again to find a suitable old
94 * In case that succeeds, it will acquire the s_umount
95 * lock of the old one. Since these are clearly distrinct
96 * locks, and this object isn't exposed yet, there's no
99 * Annotate this by putting this lock in a different
102 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
104 atomic_set(&s->s_active, 1);
105 mutex_init(&s->s_vfs_rename_mutex);
106 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
107 mutex_init(&s->s_dquot.dqio_mutex);
108 mutex_init(&s->s_dquot.dqonoff_mutex);
109 init_rwsem(&s->s_dquot.dqptr_sem);
110 init_waitqueue_head(&s->s_wait_unfrozen);
111 s->s_maxbytes = MAX_NON_LFS;
112 s->s_op = &default_op;
113 s->s_time_gran = 1000000000;
120 * destroy_super - frees a superblock
121 * @s: superblock to free
123 * Frees a superblock.
125 static inline void destroy_super(struct super_block *s)
128 free_percpu(s->s_files);
136 /* Superblock refcounting */
139 * Drop a superblock's refcount. The caller must hold sb_lock.
141 void __put_super(struct super_block *sb)
143 if (!--sb->s_count) {
144 list_del_init(&sb->s_list);
150 * put_super - drop a temporary reference to superblock
151 * @sb: superblock in question
153 * Drops a temporary reference, frees superblock if there's no
156 void put_super(struct super_block *sb)
160 spin_unlock(&sb_lock);
165 * deactivate_locked_super - drop an active reference to superblock
166 * @s: superblock to deactivate
168 * Drops an active reference to superblock, converting it into a temprory
169 * one if there is no other active references left. In that case we
170 * tell fs driver to shut it down and drop the temporary reference we
173 * Caller holds exclusive lock on superblock; that lock is released.
175 void deactivate_locked_super(struct super_block *s)
177 struct file_system_type *fs = s->s_type;
178 if (atomic_dec_and_test(&s->s_active)) {
181 * We need to call rcu_barrier so all the delayed rcu free
182 * inodes are flushed before we release the fs module.
188 up_write(&s->s_umount);
192 EXPORT_SYMBOL(deactivate_locked_super);
195 * deactivate_super - drop an active reference to superblock
196 * @s: superblock to deactivate
198 * Variant of deactivate_locked_super(), except that superblock is *not*
199 * locked by caller. If we are going to drop the final active reference,
200 * lock will be acquired prior to that.
202 void deactivate_super(struct super_block *s)
204 if (!atomic_add_unless(&s->s_active, -1, 1)) {
205 down_write(&s->s_umount);
206 deactivate_locked_super(s);
210 EXPORT_SYMBOL(deactivate_super);
213 * grab_super - acquire an active reference
214 * @s: reference we are trying to make active
216 * Tries to acquire an active reference. grab_super() is used when we
217 * had just found a superblock in super_blocks or fs_type->fs_supers
218 * and want to turn it into a full-blown active reference. grab_super()
219 * is called with sb_lock held and drops it. Returns 1 in case of
220 * success, 0 if we had failed (superblock contents was already dead or
221 * dying when grab_super() had been called).
223 static int grab_super(struct super_block *s) __releases(sb_lock)
225 if (atomic_inc_not_zero(&s->s_active)) {
226 spin_unlock(&sb_lock);
229 /* it's going away */
231 spin_unlock(&sb_lock);
232 /* wait for it to die */
233 down_write(&s->s_umount);
234 up_write(&s->s_umount);
240 * Superblock locking. We really ought to get rid of these two.
242 void lock_super(struct super_block * sb)
245 mutex_lock(&sb->s_lock);
248 void unlock_super(struct super_block * sb)
251 mutex_unlock(&sb->s_lock);
254 EXPORT_SYMBOL(lock_super);
255 EXPORT_SYMBOL(unlock_super);
258 * generic_shutdown_super - common helper for ->kill_sb()
259 * @sb: superblock to kill
261 * generic_shutdown_super() does all fs-independent work on superblock
262 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
263 * that need destruction out of superblock, call generic_shutdown_super()
264 * and release aforementioned objects. Note: dentries and inodes _are_
265 * taken care of and do not need specific handling.
267 * Upon calling this function, the filesystem may no longer alter or
268 * rearrange the set of dentries belonging to this super_block, nor may it
269 * change the attachments of dentries to inodes.
271 void generic_shutdown_super(struct super_block *sb)
273 const struct super_operations *sop = sb->s_op;
277 shrink_dcache_for_umount(sb);
280 sb->s_flags &= ~MS_ACTIVE;
282 fsnotify_unmount_inodes(&sb->s_inodes);
289 if (!list_empty(&sb->s_inodes)) {
290 printk("VFS: Busy inodes after unmount of %s. "
291 "Self-destruct in 5 seconds. Have a nice day...\n",
297 /* should be initialized for __put_super_and_need_restart() */
298 list_del_init(&sb->s_instances);
299 spin_unlock(&sb_lock);
300 up_write(&sb->s_umount);
303 EXPORT_SYMBOL(generic_shutdown_super);
306 * sget - find or create a superblock
307 * @type: filesystem type superblock should belong to
308 * @test: comparison callback
309 * @set: setup callback
310 * @data: argument to each of them
312 struct super_block *sget(struct file_system_type *type,
313 int (*test)(struct super_block *,void *),
314 int (*set)(struct super_block *,void *),
317 struct super_block *s = NULL;
318 struct super_block *old;
324 list_for_each_entry(old, &type->fs_supers, s_instances) {
325 if (!test(old, data))
327 if (!grab_super(old))
330 up_write(&s->s_umount);
334 down_write(&old->s_umount);
335 if (unlikely(!(old->s_flags & MS_BORN))) {
336 deactivate_locked_super(old);
343 spin_unlock(&sb_lock);
344 s = alloc_super(type);
346 return ERR_PTR(-ENOMEM);
352 spin_unlock(&sb_lock);
353 up_write(&s->s_umount);
358 strlcpy(s->s_id, type->name, sizeof(s->s_id));
359 list_add_tail(&s->s_list, &super_blocks);
360 list_add(&s->s_instances, &type->fs_supers);
361 spin_unlock(&sb_lock);
362 get_filesystem(type);
368 void drop_super(struct super_block *sb)
370 up_read(&sb->s_umount);
374 EXPORT_SYMBOL(drop_super);
377 * sync_supers - helper for periodic superblock writeback
379 * Call the write_super method if present on all dirty superblocks in
380 * the system. This is for the periodic writeback used by most older
381 * filesystems. For data integrity superblock writeback use
382 * sync_filesystems() instead.
384 * Note: check the dirty flag before waiting, so we don't
385 * hold up the sync while mounting a device. (The newly
386 * mounted device won't need syncing.)
388 void sync_supers(void)
390 struct super_block *sb, *p = NULL;
393 list_for_each_entry(sb, &super_blocks, s_list) {
394 if (list_empty(&sb->s_instances))
396 if (sb->s_op->write_super && sb->s_dirt) {
398 spin_unlock(&sb_lock);
400 down_read(&sb->s_umount);
401 if (sb->s_root && sb->s_dirt)
402 sb->s_op->write_super(sb);
403 up_read(&sb->s_umount);
413 spin_unlock(&sb_lock);
417 * iterate_supers - call function for all active superblocks
418 * @f: function to call
419 * @arg: argument to pass to it
421 * Scans the superblock list and calls given function, passing it
422 * locked superblock and given argument.
424 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
426 struct super_block *sb, *p = NULL;
429 list_for_each_entry(sb, &super_blocks, s_list) {
430 if (list_empty(&sb->s_instances))
433 spin_unlock(&sb_lock);
435 down_read(&sb->s_umount);
438 up_read(&sb->s_umount);
447 spin_unlock(&sb_lock);
451 * get_super - get the superblock of a device
452 * @bdev: device to get the superblock for
454 * Scans the superblock list and finds the superblock of the file system
455 * mounted on the device given. %NULL is returned if no match is found.
458 struct super_block *get_super(struct block_device *bdev)
460 struct super_block *sb;
467 list_for_each_entry(sb, &super_blocks, s_list) {
468 if (list_empty(&sb->s_instances))
470 if (sb->s_bdev == bdev) {
472 spin_unlock(&sb_lock);
473 down_read(&sb->s_umount);
477 up_read(&sb->s_umount);
478 /* nope, got unmounted */
484 spin_unlock(&sb_lock);
488 EXPORT_SYMBOL(get_super);
491 * get_active_super - get an active reference to the superblock of a device
492 * @bdev: device to get the superblock for
494 * Scans the superblock list and finds the superblock of the file system
495 * mounted on the device given. Returns the superblock with an active
496 * reference or %NULL if none was found.
498 struct super_block *get_active_super(struct block_device *bdev)
500 struct super_block *sb;
507 list_for_each_entry(sb, &super_blocks, s_list) {
508 if (list_empty(&sb->s_instances))
510 if (sb->s_bdev == bdev) {
511 if (grab_super(sb)) /* drops sb_lock */
517 spin_unlock(&sb_lock);
521 struct super_block *user_get_super(dev_t dev)
523 struct super_block *sb;
527 list_for_each_entry(sb, &super_blocks, s_list) {
528 if (list_empty(&sb->s_instances))
530 if (sb->s_dev == dev) {
532 spin_unlock(&sb_lock);
533 down_read(&sb->s_umount);
537 up_read(&sb->s_umount);
538 /* nope, got unmounted */
544 spin_unlock(&sb_lock);
549 * do_remount_sb - asks filesystem to change mount options.
550 * @sb: superblock in question
551 * @flags: numeric part of options
552 * @data: the rest of options
553 * @force: whether or not to force the change
555 * Alters the mount options of a mounted file system.
557 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
562 if (sb->s_frozen != SB_UNFROZEN)
566 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
570 if (flags & MS_RDONLY)
572 shrink_dcache_sb(sb);
575 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
577 /* If we are remounting RDONLY and current sb is read/write,
578 make sure there are no rw files opened */
582 else if (!fs_may_remount_ro(sb))
586 if (sb->s_op->remount_fs) {
587 retval = sb->s_op->remount_fs(sb, &flags, data);
591 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
594 * Some filesystems modify their metadata via some other path than the
595 * bdev buffer cache (eg. use a private mapping, or directories in
596 * pagecache, etc). Also file data modifications go via their own
597 * mappings. So If we try to mount readonly then copy the filesystem
598 * from bdev, we could get stale data, so invalidate it to give a best
599 * effort at coherency.
601 if (remount_ro && sb->s_bdev)
602 invalidate_bdev(sb->s_bdev);
606 static void do_emergency_remount(struct work_struct *work)
608 struct super_block *sb, *p = NULL;
611 list_for_each_entry(sb, &super_blocks, s_list) {
612 if (list_empty(&sb->s_instances))
615 spin_unlock(&sb_lock);
616 down_write(&sb->s_umount);
617 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
619 * What lock protects sb->s_flags??
621 do_remount_sb(sb, MS_RDONLY, NULL, 1);
623 up_write(&sb->s_umount);
631 spin_unlock(&sb_lock);
633 printk("Emergency Remount complete\n");
636 void emergency_remount(void)
638 struct work_struct *work;
640 work = kmalloc(sizeof(*work), GFP_ATOMIC);
642 INIT_WORK(work, do_emergency_remount);
648 * Unnamed block devices are dummy devices used by virtual
649 * filesystems which don't use real block-devices. -- jrs
652 static DEFINE_IDA(unnamed_dev_ida);
653 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
654 static int unnamed_dev_start = 0; /* don't bother trying below it */
656 int set_anon_super(struct super_block *s, void *data)
662 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
664 spin_lock(&unnamed_dev_lock);
665 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
667 unnamed_dev_start = dev + 1;
668 spin_unlock(&unnamed_dev_lock);
669 if (error == -EAGAIN)
670 /* We raced and lost with another CPU. */
675 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
676 spin_lock(&unnamed_dev_lock);
677 ida_remove(&unnamed_dev_ida, dev);
678 if (unnamed_dev_start > dev)
679 unnamed_dev_start = dev;
680 spin_unlock(&unnamed_dev_lock);
683 s->s_dev = MKDEV(0, dev & MINORMASK);
684 s->s_bdi = &noop_backing_dev_info;
688 EXPORT_SYMBOL(set_anon_super);
690 void kill_anon_super(struct super_block *sb)
692 int slot = MINOR(sb->s_dev);
694 generic_shutdown_super(sb);
695 spin_lock(&unnamed_dev_lock);
696 ida_remove(&unnamed_dev_ida, slot);
697 if (slot < unnamed_dev_start)
698 unnamed_dev_start = slot;
699 spin_unlock(&unnamed_dev_lock);
702 EXPORT_SYMBOL(kill_anon_super);
704 void kill_litter_super(struct super_block *sb)
707 d_genocide(sb->s_root);
711 EXPORT_SYMBOL(kill_litter_super);
713 static int ns_test_super(struct super_block *sb, void *data)
715 return sb->s_fs_info == data;
718 static int ns_set_super(struct super_block *sb, void *data)
720 sb->s_fs_info = data;
721 return set_anon_super(sb, NULL);
724 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
725 void *data, int (*fill_super)(struct super_block *, void *, int))
727 struct super_block *sb;
729 sb = sget(fs_type, ns_test_super, ns_set_super, data);
736 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
738 deactivate_locked_super(sb);
742 sb->s_flags |= MS_ACTIVE;
745 return dget(sb->s_root);
748 EXPORT_SYMBOL(mount_ns);
751 static int set_bdev_super(struct super_block *s, void *data)
754 s->s_dev = s->s_bdev->bd_dev;
757 * We set the bdi here to the queue backing, file systems can
758 * overwrite this in ->fill_super()
760 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
764 static int test_bdev_super(struct super_block *s, void *data)
766 return (void *)s->s_bdev == data;
769 struct dentry *mount_bdev(struct file_system_type *fs_type,
770 int flags, const char *dev_name, void *data,
771 int (*fill_super)(struct super_block *, void *, int))
773 struct block_device *bdev;
774 struct super_block *s;
775 fmode_t mode = FMODE_READ | FMODE_EXCL;
778 if (!(flags & MS_RDONLY))
781 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
783 return ERR_CAST(bdev);
786 * once the super is inserted into the list by sget, s_umount
787 * will protect the lockfs code from trying to start a snapshot
788 * while we are mounting
790 mutex_lock(&bdev->bd_fsfreeze_mutex);
791 if (bdev->bd_fsfreeze_count > 0) {
792 mutex_unlock(&bdev->bd_fsfreeze_mutex);
796 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
797 mutex_unlock(&bdev->bd_fsfreeze_mutex);
802 if ((flags ^ s->s_flags) & MS_RDONLY) {
803 deactivate_locked_super(s);
809 * s_umount nests inside bd_mutex during
810 * __invalidate_device(). blkdev_put() acquires
811 * bd_mutex and can't be called under s_umount. Drop
812 * s_umount temporarily. This is safe as we're
813 * holding an active reference.
815 up_write(&s->s_umount);
816 blkdev_put(bdev, mode);
817 down_write(&s->s_umount);
819 char b[BDEVNAME_SIZE];
823 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
824 sb_set_blocksize(s, block_size(bdev));
825 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
827 deactivate_locked_super(s);
831 s->s_flags |= MS_ACTIVE;
835 return dget(s->s_root);
840 blkdev_put(bdev, mode);
842 return ERR_PTR(error);
844 EXPORT_SYMBOL(mount_bdev);
846 void kill_block_super(struct super_block *sb)
848 struct block_device *bdev = sb->s_bdev;
849 fmode_t mode = sb->s_mode;
851 bdev->bd_super = NULL;
852 generic_shutdown_super(sb);
854 WARN_ON_ONCE(!(mode & FMODE_EXCL));
855 blkdev_put(bdev, mode | FMODE_EXCL);
858 EXPORT_SYMBOL(kill_block_super);
861 struct dentry *mount_nodev(struct file_system_type *fs_type,
862 int flags, void *data,
863 int (*fill_super)(struct super_block *, void *, int))
866 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
873 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
875 deactivate_locked_super(s);
876 return ERR_PTR(error);
878 s->s_flags |= MS_ACTIVE;
879 return dget(s->s_root);
881 EXPORT_SYMBOL(mount_nodev);
883 static int compare_single(struct super_block *s, void *p)
888 struct dentry *mount_single(struct file_system_type *fs_type,
889 int flags, void *data,
890 int (*fill_super)(struct super_block *, void *, int))
892 struct super_block *s;
895 s = sget(fs_type, compare_single, set_anon_super, NULL);
900 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
902 deactivate_locked_super(s);
903 return ERR_PTR(error);
905 s->s_flags |= MS_ACTIVE;
907 do_remount_sb(s, flags, data, 0);
909 return dget(s->s_root);
911 EXPORT_SYMBOL(mount_single);
914 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
916 struct vfsmount *mnt;
918 char *secdata = NULL;
922 return ERR_PTR(-ENODEV);
925 mnt = alloc_vfsmnt(name);
929 if (flags & MS_KERNMOUNT)
930 mnt->mnt_flags = MNT_INTERNAL;
932 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
933 secdata = alloc_secdata();
937 error = security_sb_copy_data(data, secdata);
939 goto out_free_secdata;
942 root = type->mount(type, flags, name, data);
944 error = PTR_ERR(root);
945 goto out_free_secdata;
947 mnt->mnt_root = root;
948 mnt->mnt_sb = root->d_sb;
949 BUG_ON(!mnt->mnt_sb);
950 WARN_ON(!mnt->mnt_sb->s_bdi);
951 mnt->mnt_sb->s_flags |= MS_BORN;
953 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
958 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
959 * but s_maxbytes was an unsigned long long for many releases. Throw
960 * this warning for a little while to try and catch filesystems that
961 * violate this rule. This warning should be either removed or
962 * converted to a BUG() in 2.6.34.
964 WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
965 "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
967 mnt->mnt_mountpoint = mnt->mnt_root;
968 mnt->mnt_parent = mnt;
969 up_write(&mnt->mnt_sb->s_umount);
970 free_secdata(secdata);
974 deactivate_locked_super(mnt->mnt_sb);
976 free_secdata(secdata);
980 return ERR_PTR(error);
983 EXPORT_SYMBOL_GPL(vfs_kern_mount);
986 * freeze_super - lock the filesystem and force it into a consistent state
987 * @sb: the super to lock
989 * Syncs the super to make sure the filesystem is consistent and calls the fs's
990 * freeze_fs. Subsequent calls to this without first thawing the fs will return
993 int freeze_super(struct super_block *sb)
997 atomic_inc(&sb->s_active);
998 down_write(&sb->s_umount);
1000 deactivate_locked_super(sb);
1004 if (sb->s_flags & MS_RDONLY) {
1005 sb->s_frozen = SB_FREEZE_TRANS;
1007 up_write(&sb->s_umount);
1011 sb->s_frozen = SB_FREEZE_WRITE;
1014 sync_filesystem(sb);
1016 sb->s_frozen = SB_FREEZE_TRANS;
1019 sync_blockdev(sb->s_bdev);
1020 if (sb->s_op->freeze_fs) {
1021 ret = sb->s_op->freeze_fs(sb);
1024 "VFS:Filesystem freeze failed\n");
1025 sb->s_frozen = SB_UNFROZEN;
1026 deactivate_locked_super(sb);
1030 up_write(&sb->s_umount);
1033 EXPORT_SYMBOL(freeze_super);
1036 * thaw_super -- unlock filesystem
1037 * @sb: the super to thaw
1039 * Unlocks the filesystem and marks it writeable again after freeze_super().
1041 int thaw_super(struct super_block *sb)
1045 down_write(&sb->s_umount);
1046 if (sb->s_frozen == SB_UNFROZEN) {
1047 up_write(&sb->s_umount);
1051 if (sb->s_flags & MS_RDONLY)
1054 if (sb->s_op->unfreeze_fs) {
1055 error = sb->s_op->unfreeze_fs(sb);
1058 "VFS:Filesystem thaw failed\n");
1059 sb->s_frozen = SB_FREEZE_TRANS;
1060 up_write(&sb->s_umount);
1066 sb->s_frozen = SB_UNFROZEN;
1068 wake_up(&sb->s_wait_unfrozen);
1069 deactivate_locked_super(sb);
1073 EXPORT_SYMBOL(thaw_super);
1075 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1078 const char *subtype = strchr(fstype, '.');
1087 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1089 if (!mnt->mnt_sb->s_subtype)
1095 return ERR_PTR(err);
1099 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1101 struct file_system_type *type = get_fs_type(fstype);
1102 struct vfsmount *mnt;
1104 return ERR_PTR(-ENODEV);
1105 mnt = vfs_kern_mount(type, flags, name, data);
1106 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1107 !mnt->mnt_sb->s_subtype)
1108 mnt = fs_set_subtype(mnt, fstype);
1109 put_filesystem(type);
1112 EXPORT_SYMBOL_GPL(do_kern_mount);
1114 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1116 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1119 EXPORT_SYMBOL_GPL(kern_mount_data);