4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
59 struct super_block *sb;
66 sb = container_of(shrink, struct super_block, s_shrink);
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
72 if (!(sc->gfp_mask & __GFP_FS))
75 if (!grab_super_passive(sb))
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
81 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 total_objects = dentries + inodes + fs_objects + 1;
87 /* proportion the scan between the caches */
88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
95 freed = prune_dcache_sb(sb, dentries, sc->nid);
96 freed += prune_icache_sb(sb, inodes, sc->nid);
99 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
101 freed += sb->s_op->free_cached_objects(sb, fs_objects,
109 static unsigned long super_cache_count(struct shrinker *shrink,
110 struct shrink_control *sc)
112 struct super_block *sb;
113 long total_objects = 0;
115 sb = container_of(shrink, struct super_block, s_shrink);
117 if (!grab_super_passive(sb))
120 if (sb->s_op && sb->s_op->nr_cached_objects)
121 total_objects = sb->s_op->nr_cached_objects(sb,
124 total_objects += list_lru_count_node(&sb->s_dentry_lru,
126 total_objects += list_lru_count_node(&sb->s_inode_lru,
129 total_objects = vfs_pressure_ratio(total_objects);
131 return total_objects;
135 * destroy_super - frees a superblock
136 * @s: superblock to free
138 * Frees a superblock.
140 static void destroy_super(struct super_block *s)
143 list_lru_destroy(&s->s_dentry_lru);
144 list_lru_destroy(&s->s_inode_lru);
145 for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 percpu_counter_destroy(&s->s_writers.counter[i]);
148 WARN_ON(!list_empty(&s->s_mounts));
155 * alloc_super - create new superblock
156 * @type: filesystem type superblock should belong to
157 * @flags: the mount flags
159 * Allocates and initializes a new &struct super_block. alloc_super()
160 * returns a pointer new superblock or %NULL if allocation had failed.
162 static struct super_block *alloc_super(struct file_system_type *type, int flags)
164 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
165 static const struct super_operations default_op;
171 INIT_LIST_HEAD(&s->s_mounts);
173 if (security_sb_alloc(s))
176 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
177 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
179 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
180 &type->s_writers_key[i], 0);
182 init_waitqueue_head(&s->s_writers.wait);
183 init_waitqueue_head(&s->s_writers.wait_unfrozen);
185 s->s_bdi = &default_backing_dev_info;
186 INIT_HLIST_NODE(&s->s_instances);
187 INIT_HLIST_BL_HEAD(&s->s_anon);
188 INIT_LIST_HEAD(&s->s_inodes);
190 if (list_lru_init(&s->s_dentry_lru))
192 if (list_lru_init(&s->s_inode_lru))
195 init_rwsem(&s->s_umount);
196 lockdep_set_class(&s->s_umount, &type->s_umount_key);
198 * sget() can have s_umount recursion.
200 * When it cannot find a suitable sb, it allocates a new
201 * one (this one), and tries again to find a suitable old
204 * In case that succeeds, it will acquire the s_umount
205 * lock of the old one. Since these are clearly distrinct
206 * locks, and this object isn't exposed yet, there's no
209 * Annotate this by putting this lock in a different
212 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
214 atomic_set(&s->s_active, 1);
215 mutex_init(&s->s_vfs_rename_mutex);
216 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
217 mutex_init(&s->s_dquot.dqio_mutex);
218 mutex_init(&s->s_dquot.dqonoff_mutex);
219 init_rwsem(&s->s_dquot.dqptr_sem);
220 s->s_maxbytes = MAX_NON_LFS;
221 s->s_op = &default_op;
222 s->s_time_gran = 1000000000;
223 s->cleancache_poolid = -1;
225 s->s_shrink.seeks = DEFAULT_SEEKS;
226 s->s_shrink.scan_objects = super_cache_scan;
227 s->s_shrink.count_objects = super_cache_count;
228 s->s_shrink.batch = 1024;
229 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
237 /* Superblock refcounting */
240 * Drop a superblock's refcount. The caller must hold sb_lock.
242 static void __put_super(struct super_block *sb)
244 if (!--sb->s_count) {
245 list_del_init(&sb->s_list);
251 * put_super - drop a temporary reference to superblock
252 * @sb: superblock in question
254 * Drops a temporary reference, frees superblock if there's no
257 static void put_super(struct super_block *sb)
261 spin_unlock(&sb_lock);
266 * deactivate_locked_super - drop an active reference to superblock
267 * @s: superblock to deactivate
269 * Drops an active reference to superblock, converting it into a temprory
270 * one if there is no other active references left. In that case we
271 * tell fs driver to shut it down and drop the temporary reference we
274 * Caller holds exclusive lock on superblock; that lock is released.
276 void deactivate_locked_super(struct super_block *s)
278 struct file_system_type *fs = s->s_type;
279 if (atomic_dec_and_test(&s->s_active)) {
280 cleancache_invalidate_fs(s);
283 /* caches are now gone, we can safely kill the shrinker now */
284 unregister_shrinker(&s->s_shrink);
289 up_write(&s->s_umount);
293 EXPORT_SYMBOL(deactivate_locked_super);
296 * deactivate_super - drop an active reference to superblock
297 * @s: superblock to deactivate
299 * Variant of deactivate_locked_super(), except that superblock is *not*
300 * locked by caller. If we are going to drop the final active reference,
301 * lock will be acquired prior to that.
303 void deactivate_super(struct super_block *s)
305 if (!atomic_add_unless(&s->s_active, -1, 1)) {
306 down_write(&s->s_umount);
307 deactivate_locked_super(s);
311 EXPORT_SYMBOL(deactivate_super);
314 * grab_super - acquire an active reference
315 * @s: reference we are trying to make active
317 * Tries to acquire an active reference. grab_super() is used when we
318 * had just found a superblock in super_blocks or fs_type->fs_supers
319 * and want to turn it into a full-blown active reference. grab_super()
320 * is called with sb_lock held and drops it. Returns 1 in case of
321 * success, 0 if we had failed (superblock contents was already dead or
322 * dying when grab_super() had been called). Note that this is only
323 * called for superblocks not in rundown mode (== ones still on ->fs_supers
324 * of their type), so increment of ->s_count is OK here.
326 static int grab_super(struct super_block *s) __releases(sb_lock)
329 spin_unlock(&sb_lock);
330 down_write(&s->s_umount);
331 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
335 up_write(&s->s_umount);
341 * grab_super_passive - acquire a passive reference
342 * @sb: reference we are trying to grab
344 * Tries to acquire a passive reference. This is used in places where we
345 * cannot take an active reference but we need to ensure that the
346 * superblock does not go away while we are working on it. It returns
347 * false if a reference was not gained, and returns true with the s_umount
348 * lock held in read mode if a reference is gained. On successful return,
349 * the caller must drop the s_umount lock and the passive reference when
352 bool grab_super_passive(struct super_block *sb)
355 if (hlist_unhashed(&sb->s_instances)) {
356 spin_unlock(&sb_lock);
361 spin_unlock(&sb_lock);
363 if (down_read_trylock(&sb->s_umount)) {
364 if (sb->s_root && (sb->s_flags & MS_BORN))
366 up_read(&sb->s_umount);
374 * generic_shutdown_super - common helper for ->kill_sb()
375 * @sb: superblock to kill
377 * generic_shutdown_super() does all fs-independent work on superblock
378 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
379 * that need destruction out of superblock, call generic_shutdown_super()
380 * and release aforementioned objects. Note: dentries and inodes _are_
381 * taken care of and do not need specific handling.
383 * Upon calling this function, the filesystem may no longer alter or
384 * rearrange the set of dentries belonging to this super_block, nor may it
385 * change the attachments of dentries to inodes.
387 void generic_shutdown_super(struct super_block *sb)
389 const struct super_operations *sop = sb->s_op;
392 shrink_dcache_for_umount(sb);
394 sb->s_flags &= ~MS_ACTIVE;
396 fsnotify_unmount_inodes(&sb->s_inodes);
400 if (sb->s_dio_done_wq) {
401 destroy_workqueue(sb->s_dio_done_wq);
402 sb->s_dio_done_wq = NULL;
408 if (!list_empty(&sb->s_inodes)) {
409 printk("VFS: Busy inodes after unmount of %s. "
410 "Self-destruct in 5 seconds. Have a nice day...\n",
415 /* should be initialized for __put_super_and_need_restart() */
416 hlist_del_init(&sb->s_instances);
417 spin_unlock(&sb_lock);
418 up_write(&sb->s_umount);
421 EXPORT_SYMBOL(generic_shutdown_super);
424 * sget - find or create a superblock
425 * @type: filesystem type superblock should belong to
426 * @test: comparison callback
427 * @set: setup callback
428 * @flags: mount flags
429 * @data: argument to each of them
431 struct super_block *sget(struct file_system_type *type,
432 int (*test)(struct super_block *,void *),
433 int (*set)(struct super_block *,void *),
437 struct super_block *s = NULL;
438 struct super_block *old;
444 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
445 if (!test(old, data))
447 if (!grab_super(old))
450 up_write(&s->s_umount);
458 spin_unlock(&sb_lock);
459 s = alloc_super(type, flags);
461 return ERR_PTR(-ENOMEM);
467 spin_unlock(&sb_lock);
468 up_write(&s->s_umount);
473 strlcpy(s->s_id, type->name, sizeof(s->s_id));
474 list_add_tail(&s->s_list, &super_blocks);
475 hlist_add_head(&s->s_instances, &type->fs_supers);
476 spin_unlock(&sb_lock);
477 get_filesystem(type);
478 register_shrinker(&s->s_shrink);
484 void drop_super(struct super_block *sb)
486 up_read(&sb->s_umount);
490 EXPORT_SYMBOL(drop_super);
493 * iterate_supers - call function for all active superblocks
494 * @f: function to call
495 * @arg: argument to pass to it
497 * Scans the superblock list and calls given function, passing it
498 * locked superblock and given argument.
500 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
502 struct super_block *sb, *p = NULL;
505 list_for_each_entry(sb, &super_blocks, s_list) {
506 if (hlist_unhashed(&sb->s_instances))
509 spin_unlock(&sb_lock);
511 down_read(&sb->s_umount);
512 if (sb->s_root && (sb->s_flags & MS_BORN))
514 up_read(&sb->s_umount);
523 spin_unlock(&sb_lock);
527 * iterate_supers_type - call function for superblocks of given type
529 * @f: function to call
530 * @arg: argument to pass to it
532 * Scans the superblock list and calls given function, passing it
533 * locked superblock and given argument.
535 void iterate_supers_type(struct file_system_type *type,
536 void (*f)(struct super_block *, void *), void *arg)
538 struct super_block *sb, *p = NULL;
541 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
543 spin_unlock(&sb_lock);
545 down_read(&sb->s_umount);
546 if (sb->s_root && (sb->s_flags & MS_BORN))
548 up_read(&sb->s_umount);
557 spin_unlock(&sb_lock);
560 EXPORT_SYMBOL(iterate_supers_type);
563 * get_super - get the superblock of a device
564 * @bdev: device to get the superblock for
566 * Scans the superblock list and finds the superblock of the file system
567 * mounted on the device given. %NULL is returned if no match is found.
570 struct super_block *get_super(struct block_device *bdev)
572 struct super_block *sb;
579 list_for_each_entry(sb, &super_blocks, s_list) {
580 if (hlist_unhashed(&sb->s_instances))
582 if (sb->s_bdev == bdev) {
584 spin_unlock(&sb_lock);
585 down_read(&sb->s_umount);
587 if (sb->s_root && (sb->s_flags & MS_BORN))
589 up_read(&sb->s_umount);
590 /* nope, got unmounted */
596 spin_unlock(&sb_lock);
600 EXPORT_SYMBOL(get_super);
603 * get_super_thawed - get thawed superblock of a device
604 * @bdev: device to get the superblock for
606 * Scans the superblock list and finds the superblock of the file system
607 * mounted on the device. The superblock is returned once it is thawed
608 * (or immediately if it was not frozen). %NULL is returned if no match
611 struct super_block *get_super_thawed(struct block_device *bdev)
614 struct super_block *s = get_super(bdev);
615 if (!s || s->s_writers.frozen == SB_UNFROZEN)
617 up_read(&s->s_umount);
618 wait_event(s->s_writers.wait_unfrozen,
619 s->s_writers.frozen == SB_UNFROZEN);
623 EXPORT_SYMBOL(get_super_thawed);
626 * get_active_super - get an active reference to the superblock of a device
627 * @bdev: device to get the superblock for
629 * Scans the superblock list and finds the superblock of the file system
630 * mounted on the device given. Returns the superblock with an active
631 * reference or %NULL if none was found.
633 struct super_block *get_active_super(struct block_device *bdev)
635 struct super_block *sb;
642 list_for_each_entry(sb, &super_blocks, s_list) {
643 if (hlist_unhashed(&sb->s_instances))
645 if (sb->s_bdev == bdev) {
648 up_write(&sb->s_umount);
652 spin_unlock(&sb_lock);
656 struct super_block *user_get_super(dev_t dev)
658 struct super_block *sb;
662 list_for_each_entry(sb, &super_blocks, s_list) {
663 if (hlist_unhashed(&sb->s_instances))
665 if (sb->s_dev == dev) {
667 spin_unlock(&sb_lock);
668 down_read(&sb->s_umount);
670 if (sb->s_root && (sb->s_flags & MS_BORN))
672 up_read(&sb->s_umount);
673 /* nope, got unmounted */
679 spin_unlock(&sb_lock);
684 * do_remount_sb - asks filesystem to change mount options.
685 * @sb: superblock in question
686 * @flags: numeric part of options
687 * @data: the rest of options
688 * @force: whether or not to force the change
690 * Alters the mount options of a mounted file system.
692 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
697 if (sb->s_writers.frozen != SB_UNFROZEN)
701 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
705 if (flags & MS_RDONLY)
707 shrink_dcache_sb(sb);
709 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
711 /* If we are remounting RDONLY and current sb is read/write,
712 make sure there are no rw files opened */
715 sb->s_readonly_remount = 1;
718 retval = sb_prepare_remount_readonly(sb);
726 if (sb->s_op->remount_fs) {
727 retval = sb->s_op->remount_fs(sb, &flags, data);
730 goto cancel_readonly;
731 /* If forced remount, go ahead despite any errors */
732 WARN(1, "forced remount of a %s fs returned %i\n",
733 sb->s_type->name, retval);
736 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
737 /* Needs to be ordered wrt mnt_is_readonly() */
739 sb->s_readonly_remount = 0;
742 * Some filesystems modify their metadata via some other path than the
743 * bdev buffer cache (eg. use a private mapping, or directories in
744 * pagecache, etc). Also file data modifications go via their own
745 * mappings. So If we try to mount readonly then copy the filesystem
746 * from bdev, we could get stale data, so invalidate it to give a best
747 * effort at coherency.
749 if (remount_ro && sb->s_bdev)
750 invalidate_bdev(sb->s_bdev);
754 sb->s_readonly_remount = 0;
758 static void do_emergency_remount(struct work_struct *work)
760 struct super_block *sb, *p = NULL;
763 list_for_each_entry(sb, &super_blocks, s_list) {
764 if (hlist_unhashed(&sb->s_instances))
767 spin_unlock(&sb_lock);
768 down_write(&sb->s_umount);
769 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
770 !(sb->s_flags & MS_RDONLY)) {
772 * What lock protects sb->s_flags??
774 do_remount_sb(sb, MS_RDONLY, NULL, 1);
776 up_write(&sb->s_umount);
784 spin_unlock(&sb_lock);
786 printk("Emergency Remount complete\n");
789 void emergency_remount(void)
791 struct work_struct *work;
793 work = kmalloc(sizeof(*work), GFP_ATOMIC);
795 INIT_WORK(work, do_emergency_remount);
801 * Unnamed block devices are dummy devices used by virtual
802 * filesystems which don't use real block-devices. -- jrs
805 static DEFINE_IDA(unnamed_dev_ida);
806 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
807 /* Many userspace utilities consider an FSID of 0 invalid.
808 * Always return at least 1 from get_anon_bdev.
810 static int unnamed_dev_start = 1;
812 int get_anon_bdev(dev_t *p)
818 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
820 spin_lock(&unnamed_dev_lock);
821 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
823 unnamed_dev_start = dev + 1;
824 spin_unlock(&unnamed_dev_lock);
825 if (error == -EAGAIN)
826 /* We raced and lost with another CPU. */
831 if (dev == (1 << MINORBITS)) {
832 spin_lock(&unnamed_dev_lock);
833 ida_remove(&unnamed_dev_ida, dev);
834 if (unnamed_dev_start > dev)
835 unnamed_dev_start = dev;
836 spin_unlock(&unnamed_dev_lock);
839 *p = MKDEV(0, dev & MINORMASK);
842 EXPORT_SYMBOL(get_anon_bdev);
844 void free_anon_bdev(dev_t dev)
846 int slot = MINOR(dev);
847 spin_lock(&unnamed_dev_lock);
848 ida_remove(&unnamed_dev_ida, slot);
849 if (slot < unnamed_dev_start)
850 unnamed_dev_start = slot;
851 spin_unlock(&unnamed_dev_lock);
853 EXPORT_SYMBOL(free_anon_bdev);
855 int set_anon_super(struct super_block *s, void *data)
857 int error = get_anon_bdev(&s->s_dev);
859 s->s_bdi = &noop_backing_dev_info;
863 EXPORT_SYMBOL(set_anon_super);
865 void kill_anon_super(struct super_block *sb)
867 dev_t dev = sb->s_dev;
868 generic_shutdown_super(sb);
872 EXPORT_SYMBOL(kill_anon_super);
874 void kill_litter_super(struct super_block *sb)
877 d_genocide(sb->s_root);
881 EXPORT_SYMBOL(kill_litter_super);
883 static int ns_test_super(struct super_block *sb, void *data)
885 return sb->s_fs_info == data;
888 static int ns_set_super(struct super_block *sb, void *data)
890 sb->s_fs_info = data;
891 return set_anon_super(sb, NULL);
894 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
895 void *data, int (*fill_super)(struct super_block *, void *, int))
897 struct super_block *sb;
899 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
905 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
907 deactivate_locked_super(sb);
911 sb->s_flags |= MS_ACTIVE;
914 return dget(sb->s_root);
917 EXPORT_SYMBOL(mount_ns);
920 static int set_bdev_super(struct super_block *s, void *data)
923 s->s_dev = s->s_bdev->bd_dev;
926 * We set the bdi here to the queue backing, file systems can
927 * overwrite this in ->fill_super()
929 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
933 static int test_bdev_super(struct super_block *s, void *data)
935 return (void *)s->s_bdev == data;
938 struct dentry *mount_bdev(struct file_system_type *fs_type,
939 int flags, const char *dev_name, void *data,
940 int (*fill_super)(struct super_block *, void *, int))
942 struct block_device *bdev;
943 struct super_block *s;
944 fmode_t mode = FMODE_READ | FMODE_EXCL;
947 if (!(flags & MS_RDONLY))
950 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
952 return ERR_CAST(bdev);
955 * once the super is inserted into the list by sget, s_umount
956 * will protect the lockfs code from trying to start a snapshot
957 * while we are mounting
959 mutex_lock(&bdev->bd_fsfreeze_mutex);
960 if (bdev->bd_fsfreeze_count > 0) {
961 mutex_unlock(&bdev->bd_fsfreeze_mutex);
965 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
967 mutex_unlock(&bdev->bd_fsfreeze_mutex);
972 if ((flags ^ s->s_flags) & MS_RDONLY) {
973 deactivate_locked_super(s);
979 * s_umount nests inside bd_mutex during
980 * __invalidate_device(). blkdev_put() acquires
981 * bd_mutex and can't be called under s_umount. Drop
982 * s_umount temporarily. This is safe as we're
983 * holding an active reference.
985 up_write(&s->s_umount);
986 blkdev_put(bdev, mode);
987 down_write(&s->s_umount);
989 char b[BDEVNAME_SIZE];
992 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
993 sb_set_blocksize(s, block_size(bdev));
994 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
996 deactivate_locked_super(s);
1000 s->s_flags |= MS_ACTIVE;
1004 return dget(s->s_root);
1009 blkdev_put(bdev, mode);
1011 return ERR_PTR(error);
1013 EXPORT_SYMBOL(mount_bdev);
1015 void kill_block_super(struct super_block *sb)
1017 struct block_device *bdev = sb->s_bdev;
1018 fmode_t mode = sb->s_mode;
1020 bdev->bd_super = NULL;
1021 generic_shutdown_super(sb);
1022 sync_blockdev(bdev);
1023 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1024 blkdev_put(bdev, mode | FMODE_EXCL);
1027 EXPORT_SYMBOL(kill_block_super);
1030 struct dentry *mount_nodev(struct file_system_type *fs_type,
1031 int flags, void *data,
1032 int (*fill_super)(struct super_block *, void *, int))
1035 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1040 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1042 deactivate_locked_super(s);
1043 return ERR_PTR(error);
1045 s->s_flags |= MS_ACTIVE;
1046 return dget(s->s_root);
1048 EXPORT_SYMBOL(mount_nodev);
1050 static int compare_single(struct super_block *s, void *p)
1055 struct dentry *mount_single(struct file_system_type *fs_type,
1056 int flags, void *data,
1057 int (*fill_super)(struct super_block *, void *, int))
1059 struct super_block *s;
1062 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1066 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1068 deactivate_locked_super(s);
1069 return ERR_PTR(error);
1071 s->s_flags |= MS_ACTIVE;
1073 do_remount_sb(s, flags, data, 0);
1075 return dget(s->s_root);
1077 EXPORT_SYMBOL(mount_single);
1080 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1082 struct dentry *root;
1083 struct super_block *sb;
1084 char *secdata = NULL;
1085 int error = -ENOMEM;
1087 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1088 secdata = alloc_secdata();
1092 error = security_sb_copy_data(data, secdata);
1094 goto out_free_secdata;
1097 root = type->mount(type, flags, name, data);
1099 error = PTR_ERR(root);
1100 goto out_free_secdata;
1104 WARN_ON(!sb->s_bdi);
1105 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1106 sb->s_flags |= MS_BORN;
1108 error = security_sb_kern_mount(sb, flags, secdata);
1113 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1114 * but s_maxbytes was an unsigned long long for many releases. Throw
1115 * this warning for a little while to try and catch filesystems that
1116 * violate this rule.
1118 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1119 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1121 up_write(&sb->s_umount);
1122 free_secdata(secdata);
1126 deactivate_locked_super(sb);
1128 free_secdata(secdata);
1130 return ERR_PTR(error);
1134 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1137 void __sb_end_write(struct super_block *sb, int level)
1139 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1141 * Make sure s_writers are updated before we wake up waiters in
1145 if (waitqueue_active(&sb->s_writers.wait))
1146 wake_up(&sb->s_writers.wait);
1147 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1149 EXPORT_SYMBOL(__sb_end_write);
1151 #ifdef CONFIG_LOCKDEP
1153 * We want lockdep to tell us about possible deadlocks with freezing but
1154 * it's it bit tricky to properly instrument it. Getting a freeze protection
1155 * works as getting a read lock but there are subtle problems. XFS for example
1156 * gets freeze protection on internal level twice in some cases, which is OK
1157 * only because we already hold a freeze protection also on higher level. Due
1158 * to these cases we have to tell lockdep we are doing trylock when we
1159 * already hold a freeze protection for a higher freeze level.
1161 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1167 for (i = 0; i < level - 1; i++)
1168 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1173 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1178 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1181 int __sb_start_write(struct super_block *sb, int level, bool wait)
1184 if (unlikely(sb->s_writers.frozen >= level)) {
1187 wait_event(sb->s_writers.wait_unfrozen,
1188 sb->s_writers.frozen < level);
1191 #ifdef CONFIG_LOCKDEP
1192 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1194 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1196 * Make sure counter is updated before we check for frozen.
1197 * freeze_super() first sets frozen and then checks the counter.
1200 if (unlikely(sb->s_writers.frozen >= level)) {
1201 __sb_end_write(sb, level);
1206 EXPORT_SYMBOL(__sb_start_write);
1209 * sb_wait_write - wait until all writers to given file system finish
1210 * @sb: the super for which we wait
1211 * @level: type of writers we wait for (normal vs page fault)
1213 * This function waits until there are no writers of given type to given file
1214 * system. Caller of this function should make sure there can be no new writers
1215 * of type @level before calling this function. Otherwise this function can
1218 static void sb_wait_write(struct super_block *sb, int level)
1223 * We just cycle-through lockdep here so that it does not complain
1224 * about returning with lock to userspace
1226 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1227 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1233 * We use a barrier in prepare_to_wait() to separate setting
1234 * of frozen and checking of the counter
1236 prepare_to_wait(&sb->s_writers.wait, &wait,
1237 TASK_UNINTERRUPTIBLE);
1239 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1243 finish_wait(&sb->s_writers.wait, &wait);
1248 * freeze_super - lock the filesystem and force it into a consistent state
1249 * @sb: the super to lock
1251 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1252 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1255 * During this function, sb->s_writers.frozen goes through these values:
1257 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1259 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1260 * writes should be blocked, though page faults are still allowed. We wait for
1261 * all writes to complete and then proceed to the next stage.
1263 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1264 * but internal fs threads can still modify the filesystem (although they
1265 * should not dirty new pages or inodes), writeback can run etc. After waiting
1266 * for all running page faults we sync the filesystem which will clean all
1267 * dirty pages and inodes (no new dirty pages or inodes can be created when
1270 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1271 * modification are blocked (e.g. XFS preallocation truncation on inode
1272 * reclaim). This is usually implemented by blocking new transactions for
1273 * filesystems that have them and need this additional guard. After all
1274 * internal writers are finished we call ->freeze_fs() to finish filesystem
1275 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1276 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1278 * sb->s_writers.frozen is protected by sb->s_umount.
1280 int freeze_super(struct super_block *sb)
1284 atomic_inc(&sb->s_active);
1285 down_write(&sb->s_umount);
1286 if (sb->s_writers.frozen != SB_UNFROZEN) {
1287 deactivate_locked_super(sb);
1291 if (!(sb->s_flags & MS_BORN)) {
1292 up_write(&sb->s_umount);
1293 return 0; /* sic - it's "nothing to do" */
1296 if (sb->s_flags & MS_RDONLY) {
1297 /* Nothing to do really... */
1298 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1299 up_write(&sb->s_umount);
1303 /* From now on, no new normal writers can start */
1304 sb->s_writers.frozen = SB_FREEZE_WRITE;
1307 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1308 up_write(&sb->s_umount);
1310 sb_wait_write(sb, SB_FREEZE_WRITE);
1312 /* Now we go and block page faults... */
1313 down_write(&sb->s_umount);
1314 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1317 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1319 /* All writers are done so after syncing there won't be dirty data */
1320 sync_filesystem(sb);
1322 /* Now wait for internal filesystem counter */
1323 sb->s_writers.frozen = SB_FREEZE_FS;
1325 sb_wait_write(sb, SB_FREEZE_FS);
1327 if (sb->s_op->freeze_fs) {
1328 ret = sb->s_op->freeze_fs(sb);
1331 "VFS:Filesystem freeze failed\n");
1332 sb->s_writers.frozen = SB_UNFROZEN;
1334 wake_up(&sb->s_writers.wait_unfrozen);
1335 deactivate_locked_super(sb);
1340 * This is just for debugging purposes so that fs can warn if it
1341 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1343 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1344 up_write(&sb->s_umount);
1347 EXPORT_SYMBOL(freeze_super);
1350 * thaw_super -- unlock filesystem
1351 * @sb: the super to thaw
1353 * Unlocks the filesystem and marks it writeable again after freeze_super().
1355 int thaw_super(struct super_block *sb)
1359 down_write(&sb->s_umount);
1360 if (sb->s_writers.frozen == SB_UNFROZEN) {
1361 up_write(&sb->s_umount);
1365 if (sb->s_flags & MS_RDONLY)
1368 if (sb->s_op->unfreeze_fs) {
1369 error = sb->s_op->unfreeze_fs(sb);
1372 "VFS:Filesystem thaw failed\n");
1373 up_write(&sb->s_umount);
1379 sb->s_writers.frozen = SB_UNFROZEN;
1381 wake_up(&sb->s_writers.wait_unfrozen);
1382 deactivate_locked_super(sb);
1386 EXPORT_SYMBOL(thaw_super);