4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
59 struct super_block *sb;
66 sb = container_of(shrink, struct super_block, s_shrink);
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
72 if (!(sc->gfp_mask & __GFP_FS))
75 if (!grab_super_passive(sb))
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
81 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 total_objects = dentries + inodes + fs_objects + 1;
85 /* proportion the scan between the caches */
86 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
87 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 * prune the dcache first as the icache is pinned by it, then
91 * prune the icache, followed by the filesystem specific caches
93 freed = prune_dcache_sb(sb, dentries, sc->nid);
94 freed += prune_icache_sb(sb, inodes, sc->nid);
97 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
99 freed += sb->s_op->free_cached_objects(sb, fs_objects,
107 static unsigned long super_cache_count(struct shrinker *shrink,
108 struct shrink_control *sc)
110 struct super_block *sb;
111 long total_objects = 0;
113 sb = container_of(shrink, struct super_block, s_shrink);
115 if (!grab_super_passive(sb))
118 if (sb->s_op && sb->s_op->nr_cached_objects)
119 total_objects = sb->s_op->nr_cached_objects(sb,
122 total_objects += list_lru_count_node(&sb->s_dentry_lru,
124 total_objects += list_lru_count_node(&sb->s_inode_lru,
127 total_objects = vfs_pressure_ratio(total_objects);
129 return total_objects;
133 * destroy_super - frees a superblock
134 * @s: superblock to free
136 * Frees a superblock.
138 static void destroy_super(struct super_block *s)
141 list_lru_destroy(&s->s_dentry_lru);
142 list_lru_destroy(&s->s_inode_lru);
143 for (i = 0; i < SB_FREEZE_LEVELS; i++)
144 percpu_counter_destroy(&s->s_writers.counter[i]);
146 WARN_ON(!list_empty(&s->s_mounts));
153 * alloc_super - create new superblock
154 * @type: filesystem type superblock should belong to
155 * @flags: the mount flags
157 * Allocates and initializes a new &struct super_block. alloc_super()
158 * returns a pointer new superblock or %NULL if allocation had failed.
160 static struct super_block *alloc_super(struct file_system_type *type, int flags)
162 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
163 static const struct super_operations default_op;
169 INIT_LIST_HEAD(&s->s_mounts);
171 if (security_sb_alloc(s))
174 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
175 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
177 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
178 &type->s_writers_key[i], 0);
180 init_waitqueue_head(&s->s_writers.wait);
181 init_waitqueue_head(&s->s_writers.wait_unfrozen);
183 s->s_bdi = &default_backing_dev_info;
184 INIT_HLIST_NODE(&s->s_instances);
185 INIT_HLIST_BL_HEAD(&s->s_anon);
186 INIT_LIST_HEAD(&s->s_inodes);
188 if (list_lru_init(&s->s_dentry_lru))
190 if (list_lru_init(&s->s_inode_lru))
193 init_rwsem(&s->s_umount);
194 lockdep_set_class(&s->s_umount, &type->s_umount_key);
196 * sget() can have s_umount recursion.
198 * When it cannot find a suitable sb, it allocates a new
199 * one (this one), and tries again to find a suitable old
202 * In case that succeeds, it will acquire the s_umount
203 * lock of the old one. Since these are clearly distrinct
204 * locks, and this object isn't exposed yet, there's no
207 * Annotate this by putting this lock in a different
210 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
212 atomic_set(&s->s_active, 1);
213 mutex_init(&s->s_vfs_rename_mutex);
214 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
215 mutex_init(&s->s_dquot.dqio_mutex);
216 mutex_init(&s->s_dquot.dqonoff_mutex);
217 init_rwsem(&s->s_dquot.dqptr_sem);
218 s->s_maxbytes = MAX_NON_LFS;
219 s->s_op = &default_op;
220 s->s_time_gran = 1000000000;
221 s->cleancache_poolid = -1;
223 s->s_shrink.seeks = DEFAULT_SEEKS;
224 s->s_shrink.scan_objects = super_cache_scan;
225 s->s_shrink.count_objects = super_cache_count;
226 s->s_shrink.batch = 1024;
227 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
235 /* Superblock refcounting */
238 * Drop a superblock's refcount. The caller must hold sb_lock.
240 static void __put_super(struct super_block *sb)
242 if (!--sb->s_count) {
243 list_del_init(&sb->s_list);
249 * put_super - drop a temporary reference to superblock
250 * @sb: superblock in question
252 * Drops a temporary reference, frees superblock if there's no
255 static void put_super(struct super_block *sb)
259 spin_unlock(&sb_lock);
264 * deactivate_locked_super - drop an active reference to superblock
265 * @s: superblock to deactivate
267 * Drops an active reference to superblock, converting it into a temprory
268 * one if there is no other active references left. In that case we
269 * tell fs driver to shut it down and drop the temporary reference we
272 * Caller holds exclusive lock on superblock; that lock is released.
274 void deactivate_locked_super(struct super_block *s)
276 struct file_system_type *fs = s->s_type;
277 if (atomic_dec_and_test(&s->s_active)) {
278 cleancache_invalidate_fs(s);
281 /* caches are now gone, we can safely kill the shrinker now */
282 unregister_shrinker(&s->s_shrink);
287 up_write(&s->s_umount);
291 EXPORT_SYMBOL(deactivate_locked_super);
294 * deactivate_super - drop an active reference to superblock
295 * @s: superblock to deactivate
297 * Variant of deactivate_locked_super(), except that superblock is *not*
298 * locked by caller. If we are going to drop the final active reference,
299 * lock will be acquired prior to that.
301 void deactivate_super(struct super_block *s)
303 if (!atomic_add_unless(&s->s_active, -1, 1)) {
304 down_write(&s->s_umount);
305 deactivate_locked_super(s);
309 EXPORT_SYMBOL(deactivate_super);
312 * grab_super - acquire an active reference
313 * @s: reference we are trying to make active
315 * Tries to acquire an active reference. grab_super() is used when we
316 * had just found a superblock in super_blocks or fs_type->fs_supers
317 * and want to turn it into a full-blown active reference. grab_super()
318 * is called with sb_lock held and drops it. Returns 1 in case of
319 * success, 0 if we had failed (superblock contents was already dead or
320 * dying when grab_super() had been called). Note that this is only
321 * called for superblocks not in rundown mode (== ones still on ->fs_supers
322 * of their type), so increment of ->s_count is OK here.
324 static int grab_super(struct super_block *s) __releases(sb_lock)
327 spin_unlock(&sb_lock);
328 down_write(&s->s_umount);
329 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
333 up_write(&s->s_umount);
339 * grab_super_passive - acquire a passive reference
340 * @sb: reference we are trying to grab
342 * Tries to acquire a passive reference. This is used in places where we
343 * cannot take an active reference but we need to ensure that the
344 * superblock does not go away while we are working on it. It returns
345 * false if a reference was not gained, and returns true with the s_umount
346 * lock held in read mode if a reference is gained. On successful return,
347 * the caller must drop the s_umount lock and the passive reference when
350 bool grab_super_passive(struct super_block *sb)
353 if (hlist_unhashed(&sb->s_instances)) {
354 spin_unlock(&sb_lock);
359 spin_unlock(&sb_lock);
361 if (down_read_trylock(&sb->s_umount)) {
362 if (sb->s_root && (sb->s_flags & MS_BORN))
364 up_read(&sb->s_umount);
372 * generic_shutdown_super - common helper for ->kill_sb()
373 * @sb: superblock to kill
375 * generic_shutdown_super() does all fs-independent work on superblock
376 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
377 * that need destruction out of superblock, call generic_shutdown_super()
378 * and release aforementioned objects. Note: dentries and inodes _are_
379 * taken care of and do not need specific handling.
381 * Upon calling this function, the filesystem may no longer alter or
382 * rearrange the set of dentries belonging to this super_block, nor may it
383 * change the attachments of dentries to inodes.
385 void generic_shutdown_super(struct super_block *sb)
387 const struct super_operations *sop = sb->s_op;
390 shrink_dcache_for_umount(sb);
392 sb->s_flags &= ~MS_ACTIVE;
394 fsnotify_unmount_inodes(&sb->s_inodes);
398 if (sb->s_dio_done_wq) {
399 destroy_workqueue(sb->s_dio_done_wq);
400 sb->s_dio_done_wq = NULL;
406 if (!list_empty(&sb->s_inodes)) {
407 printk("VFS: Busy inodes after unmount of %s. "
408 "Self-destruct in 5 seconds. Have a nice day...\n",
413 /* should be initialized for __put_super_and_need_restart() */
414 hlist_del_init(&sb->s_instances);
415 spin_unlock(&sb_lock);
416 up_write(&sb->s_umount);
419 EXPORT_SYMBOL(generic_shutdown_super);
422 * sget - find or create a superblock
423 * @type: filesystem type superblock should belong to
424 * @test: comparison callback
425 * @set: setup callback
426 * @flags: mount flags
427 * @data: argument to each of them
429 struct super_block *sget(struct file_system_type *type,
430 int (*test)(struct super_block *,void *),
431 int (*set)(struct super_block *,void *),
435 struct super_block *s = NULL;
436 struct super_block *old;
442 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
443 if (!test(old, data))
445 if (!grab_super(old))
448 up_write(&s->s_umount);
456 spin_unlock(&sb_lock);
457 s = alloc_super(type, flags);
459 return ERR_PTR(-ENOMEM);
465 spin_unlock(&sb_lock);
466 up_write(&s->s_umount);
471 strlcpy(s->s_id, type->name, sizeof(s->s_id));
472 list_add_tail(&s->s_list, &super_blocks);
473 hlist_add_head(&s->s_instances, &type->fs_supers);
474 spin_unlock(&sb_lock);
475 get_filesystem(type);
476 register_shrinker(&s->s_shrink);
482 void drop_super(struct super_block *sb)
484 up_read(&sb->s_umount);
488 EXPORT_SYMBOL(drop_super);
491 * iterate_supers - call function for all active superblocks
492 * @f: function to call
493 * @arg: argument to pass to it
495 * Scans the superblock list and calls given function, passing it
496 * locked superblock and given argument.
498 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
500 struct super_block *sb, *p = NULL;
503 list_for_each_entry(sb, &super_blocks, s_list) {
504 if (hlist_unhashed(&sb->s_instances))
507 spin_unlock(&sb_lock);
509 down_read(&sb->s_umount);
510 if (sb->s_root && (sb->s_flags & MS_BORN))
512 up_read(&sb->s_umount);
521 spin_unlock(&sb_lock);
525 * iterate_supers_type - call function for superblocks of given type
527 * @f: function to call
528 * @arg: argument to pass to it
530 * Scans the superblock list and calls given function, passing it
531 * locked superblock and given argument.
533 void iterate_supers_type(struct file_system_type *type,
534 void (*f)(struct super_block *, void *), void *arg)
536 struct super_block *sb, *p = NULL;
539 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
541 spin_unlock(&sb_lock);
543 down_read(&sb->s_umount);
544 if (sb->s_root && (sb->s_flags & MS_BORN))
546 up_read(&sb->s_umount);
555 spin_unlock(&sb_lock);
558 EXPORT_SYMBOL(iterate_supers_type);
561 * get_super - get the superblock of a device
562 * @bdev: device to get the superblock for
564 * Scans the superblock list and finds the superblock of the file system
565 * mounted on the device given. %NULL is returned if no match is found.
568 struct super_block *get_super(struct block_device *bdev)
570 struct super_block *sb;
577 list_for_each_entry(sb, &super_blocks, s_list) {
578 if (hlist_unhashed(&sb->s_instances))
580 if (sb->s_bdev == bdev) {
582 spin_unlock(&sb_lock);
583 down_read(&sb->s_umount);
585 if (sb->s_root && (sb->s_flags & MS_BORN))
587 up_read(&sb->s_umount);
588 /* nope, got unmounted */
594 spin_unlock(&sb_lock);
598 EXPORT_SYMBOL(get_super);
601 * get_super_thawed - get thawed superblock of a device
602 * @bdev: device to get the superblock for
604 * Scans the superblock list and finds the superblock of the file system
605 * mounted on the device. The superblock is returned once it is thawed
606 * (or immediately if it was not frozen). %NULL is returned if no match
609 struct super_block *get_super_thawed(struct block_device *bdev)
612 struct super_block *s = get_super(bdev);
613 if (!s || s->s_writers.frozen == SB_UNFROZEN)
615 up_read(&s->s_umount);
616 wait_event(s->s_writers.wait_unfrozen,
617 s->s_writers.frozen == SB_UNFROZEN);
621 EXPORT_SYMBOL(get_super_thawed);
624 * get_active_super - get an active reference to the superblock of a device
625 * @bdev: device to get the superblock for
627 * Scans the superblock list and finds the superblock of the file system
628 * mounted on the device given. Returns the superblock with an active
629 * reference or %NULL if none was found.
631 struct super_block *get_active_super(struct block_device *bdev)
633 struct super_block *sb;
640 list_for_each_entry(sb, &super_blocks, s_list) {
641 if (hlist_unhashed(&sb->s_instances))
643 if (sb->s_bdev == bdev) {
646 up_write(&sb->s_umount);
650 spin_unlock(&sb_lock);
654 struct super_block *user_get_super(dev_t dev)
656 struct super_block *sb;
660 list_for_each_entry(sb, &super_blocks, s_list) {
661 if (hlist_unhashed(&sb->s_instances))
663 if (sb->s_dev == dev) {
665 spin_unlock(&sb_lock);
666 down_read(&sb->s_umount);
668 if (sb->s_root && (sb->s_flags & MS_BORN))
670 up_read(&sb->s_umount);
671 /* nope, got unmounted */
677 spin_unlock(&sb_lock);
682 * do_remount_sb - asks filesystem to change mount options.
683 * @sb: superblock in question
684 * @flags: numeric part of options
685 * @data: the rest of options
686 * @force: whether or not to force the change
688 * Alters the mount options of a mounted file system.
690 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
695 if (sb->s_writers.frozen != SB_UNFROZEN)
699 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
703 if (flags & MS_RDONLY)
705 shrink_dcache_sb(sb);
707 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
709 /* If we are remounting RDONLY and current sb is read/write,
710 make sure there are no rw files opened */
713 sb->s_readonly_remount = 1;
716 retval = sb_prepare_remount_readonly(sb);
724 if (sb->s_op->remount_fs) {
725 retval = sb->s_op->remount_fs(sb, &flags, data);
728 goto cancel_readonly;
729 /* If forced remount, go ahead despite any errors */
730 WARN(1, "forced remount of a %s fs returned %i\n",
731 sb->s_type->name, retval);
734 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
735 /* Needs to be ordered wrt mnt_is_readonly() */
737 sb->s_readonly_remount = 0;
740 * Some filesystems modify their metadata via some other path than the
741 * bdev buffer cache (eg. use a private mapping, or directories in
742 * pagecache, etc). Also file data modifications go via their own
743 * mappings. So If we try to mount readonly then copy the filesystem
744 * from bdev, we could get stale data, so invalidate it to give a best
745 * effort at coherency.
747 if (remount_ro && sb->s_bdev)
748 invalidate_bdev(sb->s_bdev);
752 sb->s_readonly_remount = 0;
756 static void do_emergency_remount(struct work_struct *work)
758 struct super_block *sb, *p = NULL;
761 list_for_each_entry(sb, &super_blocks, s_list) {
762 if (hlist_unhashed(&sb->s_instances))
765 spin_unlock(&sb_lock);
766 down_write(&sb->s_umount);
767 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
768 !(sb->s_flags & MS_RDONLY)) {
770 * What lock protects sb->s_flags??
772 do_remount_sb(sb, MS_RDONLY, NULL, 1);
774 up_write(&sb->s_umount);
782 spin_unlock(&sb_lock);
784 printk("Emergency Remount complete\n");
787 void emergency_remount(void)
789 struct work_struct *work;
791 work = kmalloc(sizeof(*work), GFP_ATOMIC);
793 INIT_WORK(work, do_emergency_remount);
799 * Unnamed block devices are dummy devices used by virtual
800 * filesystems which don't use real block-devices. -- jrs
803 static DEFINE_IDA(unnamed_dev_ida);
804 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
805 /* Many userspace utilities consider an FSID of 0 invalid.
806 * Always return at least 1 from get_anon_bdev.
808 static int unnamed_dev_start = 1;
810 int get_anon_bdev(dev_t *p)
816 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
818 spin_lock(&unnamed_dev_lock);
819 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
821 unnamed_dev_start = dev + 1;
822 spin_unlock(&unnamed_dev_lock);
823 if (error == -EAGAIN)
824 /* We raced and lost with another CPU. */
829 if (dev == (1 << MINORBITS)) {
830 spin_lock(&unnamed_dev_lock);
831 ida_remove(&unnamed_dev_ida, dev);
832 if (unnamed_dev_start > dev)
833 unnamed_dev_start = dev;
834 spin_unlock(&unnamed_dev_lock);
837 *p = MKDEV(0, dev & MINORMASK);
840 EXPORT_SYMBOL(get_anon_bdev);
842 void free_anon_bdev(dev_t dev)
844 int slot = MINOR(dev);
845 spin_lock(&unnamed_dev_lock);
846 ida_remove(&unnamed_dev_ida, slot);
847 if (slot < unnamed_dev_start)
848 unnamed_dev_start = slot;
849 spin_unlock(&unnamed_dev_lock);
851 EXPORT_SYMBOL(free_anon_bdev);
853 int set_anon_super(struct super_block *s, void *data)
855 int error = get_anon_bdev(&s->s_dev);
857 s->s_bdi = &noop_backing_dev_info;
861 EXPORT_SYMBOL(set_anon_super);
863 void kill_anon_super(struct super_block *sb)
865 dev_t dev = sb->s_dev;
866 generic_shutdown_super(sb);
870 EXPORT_SYMBOL(kill_anon_super);
872 void kill_litter_super(struct super_block *sb)
875 d_genocide(sb->s_root);
879 EXPORT_SYMBOL(kill_litter_super);
881 static int ns_test_super(struct super_block *sb, void *data)
883 return sb->s_fs_info == data;
886 static int ns_set_super(struct super_block *sb, void *data)
888 sb->s_fs_info = data;
889 return set_anon_super(sb, NULL);
892 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
893 void *data, int (*fill_super)(struct super_block *, void *, int))
895 struct super_block *sb;
897 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
903 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
905 deactivate_locked_super(sb);
909 sb->s_flags |= MS_ACTIVE;
912 return dget(sb->s_root);
915 EXPORT_SYMBOL(mount_ns);
918 static int set_bdev_super(struct super_block *s, void *data)
921 s->s_dev = s->s_bdev->bd_dev;
924 * We set the bdi here to the queue backing, file systems can
925 * overwrite this in ->fill_super()
927 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
931 static int test_bdev_super(struct super_block *s, void *data)
933 return (void *)s->s_bdev == data;
936 struct dentry *mount_bdev(struct file_system_type *fs_type,
937 int flags, const char *dev_name, void *data,
938 int (*fill_super)(struct super_block *, void *, int))
940 struct block_device *bdev;
941 struct super_block *s;
942 fmode_t mode = FMODE_READ | FMODE_EXCL;
945 if (!(flags & MS_RDONLY))
948 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
950 return ERR_CAST(bdev);
953 * once the super is inserted into the list by sget, s_umount
954 * will protect the lockfs code from trying to start a snapshot
955 * while we are mounting
957 mutex_lock(&bdev->bd_fsfreeze_mutex);
958 if (bdev->bd_fsfreeze_count > 0) {
959 mutex_unlock(&bdev->bd_fsfreeze_mutex);
963 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
965 mutex_unlock(&bdev->bd_fsfreeze_mutex);
970 if ((flags ^ s->s_flags) & MS_RDONLY) {
971 deactivate_locked_super(s);
977 * s_umount nests inside bd_mutex during
978 * __invalidate_device(). blkdev_put() acquires
979 * bd_mutex and can't be called under s_umount. Drop
980 * s_umount temporarily. This is safe as we're
981 * holding an active reference.
983 up_write(&s->s_umount);
984 blkdev_put(bdev, mode);
985 down_write(&s->s_umount);
987 char b[BDEVNAME_SIZE];
990 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
991 sb_set_blocksize(s, block_size(bdev));
992 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
994 deactivate_locked_super(s);
998 s->s_flags |= MS_ACTIVE;
1002 return dget(s->s_root);
1007 blkdev_put(bdev, mode);
1009 return ERR_PTR(error);
1011 EXPORT_SYMBOL(mount_bdev);
1013 void kill_block_super(struct super_block *sb)
1015 struct block_device *bdev = sb->s_bdev;
1016 fmode_t mode = sb->s_mode;
1018 bdev->bd_super = NULL;
1019 generic_shutdown_super(sb);
1020 sync_blockdev(bdev);
1021 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1022 blkdev_put(bdev, mode | FMODE_EXCL);
1025 EXPORT_SYMBOL(kill_block_super);
1028 struct dentry *mount_nodev(struct file_system_type *fs_type,
1029 int flags, void *data,
1030 int (*fill_super)(struct super_block *, void *, int))
1033 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1038 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1040 deactivate_locked_super(s);
1041 return ERR_PTR(error);
1043 s->s_flags |= MS_ACTIVE;
1044 return dget(s->s_root);
1046 EXPORT_SYMBOL(mount_nodev);
1048 static int compare_single(struct super_block *s, void *p)
1053 struct dentry *mount_single(struct file_system_type *fs_type,
1054 int flags, void *data,
1055 int (*fill_super)(struct super_block *, void *, int))
1057 struct super_block *s;
1060 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1064 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1066 deactivate_locked_super(s);
1067 return ERR_PTR(error);
1069 s->s_flags |= MS_ACTIVE;
1071 do_remount_sb(s, flags, data, 0);
1073 return dget(s->s_root);
1075 EXPORT_SYMBOL(mount_single);
1078 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1080 struct dentry *root;
1081 struct super_block *sb;
1082 char *secdata = NULL;
1083 int error = -ENOMEM;
1085 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1086 secdata = alloc_secdata();
1090 error = security_sb_copy_data(data, secdata);
1092 goto out_free_secdata;
1095 root = type->mount(type, flags, name, data);
1097 error = PTR_ERR(root);
1098 goto out_free_secdata;
1102 WARN_ON(!sb->s_bdi);
1103 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1104 sb->s_flags |= MS_BORN;
1106 error = security_sb_kern_mount(sb, flags, secdata);
1111 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1112 * but s_maxbytes was an unsigned long long for many releases. Throw
1113 * this warning for a little while to try and catch filesystems that
1114 * violate this rule.
1116 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1117 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1119 up_write(&sb->s_umount);
1120 free_secdata(secdata);
1124 deactivate_locked_super(sb);
1126 free_secdata(secdata);
1128 return ERR_PTR(error);
1132 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1135 void __sb_end_write(struct super_block *sb, int level)
1137 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1139 * Make sure s_writers are updated before we wake up waiters in
1143 if (waitqueue_active(&sb->s_writers.wait))
1144 wake_up(&sb->s_writers.wait);
1145 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1147 EXPORT_SYMBOL(__sb_end_write);
1149 #ifdef CONFIG_LOCKDEP
1151 * We want lockdep to tell us about possible deadlocks with freezing but
1152 * it's it bit tricky to properly instrument it. Getting a freeze protection
1153 * works as getting a read lock but there are subtle problems. XFS for example
1154 * gets freeze protection on internal level twice in some cases, which is OK
1155 * only because we already hold a freeze protection also on higher level. Due
1156 * to these cases we have to tell lockdep we are doing trylock when we
1157 * already hold a freeze protection for a higher freeze level.
1159 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1165 for (i = 0; i < level - 1; i++)
1166 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1171 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1176 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1179 int __sb_start_write(struct super_block *sb, int level, bool wait)
1182 if (unlikely(sb->s_writers.frozen >= level)) {
1185 wait_event(sb->s_writers.wait_unfrozen,
1186 sb->s_writers.frozen < level);
1189 #ifdef CONFIG_LOCKDEP
1190 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1192 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1194 * Make sure counter is updated before we check for frozen.
1195 * freeze_super() first sets frozen and then checks the counter.
1198 if (unlikely(sb->s_writers.frozen >= level)) {
1199 __sb_end_write(sb, level);
1204 EXPORT_SYMBOL(__sb_start_write);
1207 * sb_wait_write - wait until all writers to given file system finish
1208 * @sb: the super for which we wait
1209 * @level: type of writers we wait for (normal vs page fault)
1211 * This function waits until there are no writers of given type to given file
1212 * system. Caller of this function should make sure there can be no new writers
1213 * of type @level before calling this function. Otherwise this function can
1216 static void sb_wait_write(struct super_block *sb, int level)
1221 * We just cycle-through lockdep here so that it does not complain
1222 * about returning with lock to userspace
1224 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1225 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1231 * We use a barrier in prepare_to_wait() to separate setting
1232 * of frozen and checking of the counter
1234 prepare_to_wait(&sb->s_writers.wait, &wait,
1235 TASK_UNINTERRUPTIBLE);
1237 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1241 finish_wait(&sb->s_writers.wait, &wait);
1246 * freeze_super - lock the filesystem and force it into a consistent state
1247 * @sb: the super to lock
1249 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1250 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1253 * During this function, sb->s_writers.frozen goes through these values:
1255 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1257 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1258 * writes should be blocked, though page faults are still allowed. We wait for
1259 * all writes to complete and then proceed to the next stage.
1261 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1262 * but internal fs threads can still modify the filesystem (although they
1263 * should not dirty new pages or inodes), writeback can run etc. After waiting
1264 * for all running page faults we sync the filesystem which will clean all
1265 * dirty pages and inodes (no new dirty pages or inodes can be created when
1268 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1269 * modification are blocked (e.g. XFS preallocation truncation on inode
1270 * reclaim). This is usually implemented by blocking new transactions for
1271 * filesystems that have them and need this additional guard. After all
1272 * internal writers are finished we call ->freeze_fs() to finish filesystem
1273 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1274 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1276 * sb->s_writers.frozen is protected by sb->s_umount.
1278 int freeze_super(struct super_block *sb)
1282 atomic_inc(&sb->s_active);
1283 down_write(&sb->s_umount);
1284 if (sb->s_writers.frozen != SB_UNFROZEN) {
1285 deactivate_locked_super(sb);
1289 if (!(sb->s_flags & MS_BORN)) {
1290 up_write(&sb->s_umount);
1291 return 0; /* sic - it's "nothing to do" */
1294 if (sb->s_flags & MS_RDONLY) {
1295 /* Nothing to do really... */
1296 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1297 up_write(&sb->s_umount);
1301 /* From now on, no new normal writers can start */
1302 sb->s_writers.frozen = SB_FREEZE_WRITE;
1305 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1306 up_write(&sb->s_umount);
1308 sb_wait_write(sb, SB_FREEZE_WRITE);
1310 /* Now we go and block page faults... */
1311 down_write(&sb->s_umount);
1312 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1315 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1317 /* All writers are done so after syncing there won't be dirty data */
1318 sync_filesystem(sb);
1320 /* Now wait for internal filesystem counter */
1321 sb->s_writers.frozen = SB_FREEZE_FS;
1323 sb_wait_write(sb, SB_FREEZE_FS);
1325 if (sb->s_op->freeze_fs) {
1326 ret = sb->s_op->freeze_fs(sb);
1329 "VFS:Filesystem freeze failed\n");
1330 sb->s_writers.frozen = SB_UNFROZEN;
1332 wake_up(&sb->s_writers.wait_unfrozen);
1333 deactivate_locked_super(sb);
1338 * This is just for debugging purposes so that fs can warn if it
1339 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1341 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1342 up_write(&sb->s_umount);
1345 EXPORT_SYMBOL(freeze_super);
1348 * thaw_super -- unlock filesystem
1349 * @sb: the super to thaw
1351 * Unlocks the filesystem and marks it writeable again after freeze_super().
1353 int thaw_super(struct super_block *sb)
1357 down_write(&sb->s_umount);
1358 if (sb->s_writers.frozen == SB_UNFROZEN) {
1359 up_write(&sb->s_umount);
1363 if (sb->s_flags & MS_RDONLY)
1366 if (sb->s_op->unfreeze_fs) {
1367 error = sb->s_op->unfreeze_fs(sb);
1370 "VFS:Filesystem thaw failed\n");
1371 up_write(&sb->s_umount);
1377 sb->s_writers.frozen = SB_UNFROZEN;
1379 wake_up(&sb->s_writers.wait_unfrozen);
1380 deactivate_locked_super(sb);
1384 EXPORT_SYMBOL(thaw_super);