1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * super.c contains code to handle: - mount structures
9 * - filesystem drivers list
11 * - umount system call
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
53 static inline void __super_lock(struct super_block *sb, bool excl)
56 down_write(&sb->s_umount);
58 down_read(&sb->s_umount);
61 static inline void super_unlock(struct super_block *sb, bool excl)
64 up_write(&sb->s_umount);
66 up_read(&sb->s_umount);
69 static inline void __super_lock_excl(struct super_block *sb)
71 __super_lock(sb, true);
74 static inline void super_unlock_excl(struct super_block *sb)
76 super_unlock(sb, true);
79 static inline void super_unlock_shared(struct super_block *sb)
81 super_unlock(sb, false);
84 static inline bool wait_born(struct super_block *sb)
89 * Pairs with smp_store_release() in super_wake() and ensures
90 * that we see SB_BORN or SB_DYING after we're woken.
92 flags = smp_load_acquire(&sb->s_flags);
93 return flags & (SB_BORN | SB_DYING);
97 * super_lock - wait for superblock to become ready and lock it
98 * @sb: superblock to wait for
99 * @excl: whether exclusive access is required
101 * If the superblock has neither passed through vfs_get_tree() or
102 * generic_shutdown_super() yet wait for it to happen. Either superblock
103 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
104 * woken and we'll see SB_DYING.
106 * The caller must have acquired a temporary reference on @sb->s_count.
108 * Return: This returns true if SB_BORN was set, false if SB_DYING was
109 * set. The function acquires s_umount and returns with it held.
111 static __must_check bool super_lock(struct super_block *sb, bool excl)
114 lockdep_assert_not_held(&sb->s_umount);
117 __super_lock(sb, excl);
120 * Has gone through generic_shutdown_super() in the meantime.
121 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
122 * grab a reference to this. Tell them so.
124 if (sb->s_flags & SB_DYING)
127 /* Has called ->get_tree() successfully. */
128 if (sb->s_flags & SB_BORN)
131 super_unlock(sb, excl);
133 /* wait until the superblock is ready or dying */
134 wait_var_event(&sb->s_flags, wait_born(sb));
137 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
138 * Just reacquire @sb->s_umount for the caller.
143 /* wait and acquire read-side of @sb->s_umount */
144 static inline bool super_lock_shared(struct super_block *sb)
146 return super_lock(sb, false);
149 /* wait and acquire write-side of @sb->s_umount */
150 static inline bool super_lock_excl(struct super_block *sb)
152 return super_lock(sb, true);
156 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
157 static void super_wake(struct super_block *sb, unsigned int flag)
159 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
160 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
163 * Pairs with smp_load_acquire() in super_lock() to make sure
164 * all initializations in the superblock are seen by the user
165 * seeing SB_BORN sent.
167 smp_store_release(&sb->s_flags, sb->s_flags | flag);
169 * Pairs with the barrier in prepare_to_wait_event() to make sure
170 * ___wait_var_event() either sees SB_BORN set or
171 * waitqueue_active() check in wake_up_var() sees the waiter.
174 wake_up_var(&sb->s_flags);
178 * One thing we have to be careful of with a per-sb shrinker is that we don't
179 * drop the last active reference to the superblock from within the shrinker.
180 * If that happens we could trigger unregistering the shrinker from within the
181 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
182 * take a passive reference to the superblock to avoid this from occurring.
184 static unsigned long super_cache_scan(struct shrinker *shrink,
185 struct shrink_control *sc)
187 struct super_block *sb;
194 sb = container_of(shrink, struct super_block, s_shrink);
197 * Deadlock avoidance. We may hold various FS locks, and we don't want
198 * to recurse into the FS that called us in clear_inode() and friends..
200 if (!(sc->gfp_mask & __GFP_FS))
203 if (!super_trylock_shared(sb))
206 if (sb->s_op->nr_cached_objects)
207 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
209 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
210 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
211 total_objects = dentries + inodes + fs_objects + 1;
215 /* proportion the scan between the caches */
216 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
217 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
218 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
221 * prune the dcache first as the icache is pinned by it, then
222 * prune the icache, followed by the filesystem specific caches
224 * Ensure that we always scan at least one object - memcg kmem
225 * accounting uses this to fully empty the caches.
227 sc->nr_to_scan = dentries + 1;
228 freed = prune_dcache_sb(sb, sc);
229 sc->nr_to_scan = inodes + 1;
230 freed += prune_icache_sb(sb, sc);
233 sc->nr_to_scan = fs_objects + 1;
234 freed += sb->s_op->free_cached_objects(sb, sc);
237 super_unlock_shared(sb);
241 static unsigned long super_cache_count(struct shrinker *shrink,
242 struct shrink_control *sc)
244 struct super_block *sb;
245 long total_objects = 0;
247 sb = container_of(shrink, struct super_block, s_shrink);
250 * We don't call super_trylock_shared() here as it is a scalability
251 * bottleneck, so we're exposed to partial setup state. The shrinker
252 * rwsem does not protect filesystem operations backing
253 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
254 * change between super_cache_count and super_cache_scan, so we really
255 * don't need locks here.
257 * However, if we are currently mounting the superblock, the underlying
258 * filesystem might be in a state of partial construction and hence it
259 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check
260 * to avoid this situation, so do the same here. The memory barrier is
261 * matched with the one in mount_fs() as we don't hold locks here.
263 if (!(sb->s_flags & SB_BORN))
267 if (sb->s_op && sb->s_op->nr_cached_objects)
268 total_objects = sb->s_op->nr_cached_objects(sb, sc);
270 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
271 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
276 total_objects = vfs_pressure_ratio(total_objects);
277 return total_objects;
280 static void destroy_super_work(struct work_struct *work)
282 struct super_block *s = container_of(work, struct super_block,
286 for (i = 0; i < SB_FREEZE_LEVELS; i++)
287 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
291 static void destroy_super_rcu(struct rcu_head *head)
293 struct super_block *s = container_of(head, struct super_block, rcu);
294 INIT_WORK(&s->destroy_work, destroy_super_work);
295 schedule_work(&s->destroy_work);
298 /* Free a superblock that has never been seen by anyone */
299 static void destroy_unused_super(struct super_block *s)
303 super_unlock_excl(s);
304 list_lru_destroy(&s->s_dentry_lru);
305 list_lru_destroy(&s->s_inode_lru);
307 put_user_ns(s->s_user_ns);
309 free_prealloced_shrinker(&s->s_shrink);
310 /* no delays needed */
311 destroy_super_work(&s->destroy_work);
315 * alloc_super - create new superblock
316 * @type: filesystem type superblock should belong to
317 * @flags: the mount flags
318 * @user_ns: User namespace for the super_block
320 * Allocates and initializes a new &struct super_block. alloc_super()
321 * returns a pointer new superblock or %NULL if allocation had failed.
323 static struct super_block *alloc_super(struct file_system_type *type, int flags,
324 struct user_namespace *user_ns)
326 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
327 static const struct super_operations default_op;
333 INIT_LIST_HEAD(&s->s_mounts);
334 s->s_user_ns = get_user_ns(user_ns);
335 init_rwsem(&s->s_umount);
336 lockdep_set_class(&s->s_umount, &type->s_umount_key);
338 * sget() can have s_umount recursion.
340 * When it cannot find a suitable sb, it allocates a new
341 * one (this one), and tries again to find a suitable old
344 * In case that succeeds, it will acquire the s_umount
345 * lock of the old one. Since these are clearly distrinct
346 * locks, and this object isn't exposed yet, there's no
349 * Annotate this by putting this lock in a different
352 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
354 if (security_sb_alloc(s))
357 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
358 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
360 &type->s_writers_key[i]))
363 s->s_bdi = &noop_backing_dev_info;
365 if (s->s_user_ns != &init_user_ns)
366 s->s_iflags |= SB_I_NODEV;
367 INIT_HLIST_NODE(&s->s_instances);
368 INIT_HLIST_BL_HEAD(&s->s_roots);
369 mutex_init(&s->s_sync_lock);
370 INIT_LIST_HEAD(&s->s_inodes);
371 spin_lock_init(&s->s_inode_list_lock);
372 INIT_LIST_HEAD(&s->s_inodes_wb);
373 spin_lock_init(&s->s_inode_wblist_lock);
376 atomic_set(&s->s_active, 1);
377 mutex_init(&s->s_vfs_rename_mutex);
378 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
379 init_rwsem(&s->s_dquot.dqio_sem);
380 s->s_maxbytes = MAX_NON_LFS;
381 s->s_op = &default_op;
382 s->s_time_gran = 1000000000;
383 s->s_time_min = TIME64_MIN;
384 s->s_time_max = TIME64_MAX;
386 s->s_shrink.seeks = DEFAULT_SEEKS;
387 s->s_shrink.scan_objects = super_cache_scan;
388 s->s_shrink.count_objects = super_cache_count;
389 s->s_shrink.batch = 1024;
390 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
391 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
393 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
395 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
400 destroy_unused_super(s);
404 /* Superblock refcounting */
407 * Drop a superblock's refcount. The caller must hold sb_lock.
409 static void __put_super(struct super_block *s)
412 list_del_init(&s->s_list);
413 WARN_ON(s->s_dentry_lru.node);
414 WARN_ON(s->s_inode_lru.node);
415 WARN_ON(!list_empty(&s->s_mounts));
417 put_user_ns(s->s_user_ns);
419 call_rcu(&s->rcu, destroy_super_rcu);
424 * put_super - drop a temporary reference to superblock
425 * @sb: superblock in question
427 * Drops a temporary reference, frees superblock if there's no
430 void put_super(struct super_block *sb)
434 spin_unlock(&sb_lock);
437 static void kill_super_notify(struct super_block *sb)
439 lockdep_assert_not_held(&sb->s_umount);
441 /* already notified earlier */
442 if (sb->s_flags & SB_DEAD)
446 * Remove it from @fs_supers so it isn't found by new
447 * sget{_fc}() walkers anymore. Any concurrent mounter still
448 * managing to grab a temporary reference is guaranteed to
449 * already see SB_DYING and will wait until we notify them about
453 hlist_del_init(&sb->s_instances);
454 spin_unlock(&sb_lock);
457 * Let concurrent mounts know that this thing is really dead.
458 * We don't need @sb->s_umount here as every concurrent caller
459 * will see SB_DYING and either discard the superblock or wait
462 super_wake(sb, SB_DEAD);
466 * deactivate_locked_super - drop an active reference to superblock
467 * @s: superblock to deactivate
469 * Drops an active reference to superblock, converting it into a temporary
470 * one if there is no other active references left. In that case we
471 * tell fs driver to shut it down and drop the temporary reference we
474 * Caller holds exclusive lock on superblock; that lock is released.
476 void deactivate_locked_super(struct super_block *s)
478 struct file_system_type *fs = s->s_type;
479 if (atomic_dec_and_test(&s->s_active)) {
480 unregister_shrinker(&s->s_shrink);
483 kill_super_notify(s);
486 * Since list_lru_destroy() may sleep, we cannot call it from
487 * put_super(), where we hold the sb_lock. Therefore we destroy
488 * the lru lists right now.
490 list_lru_destroy(&s->s_dentry_lru);
491 list_lru_destroy(&s->s_inode_lru);
496 super_unlock_excl(s);
500 EXPORT_SYMBOL(deactivate_locked_super);
503 * deactivate_super - drop an active reference to superblock
504 * @s: superblock to deactivate
506 * Variant of deactivate_locked_super(), except that superblock is *not*
507 * locked by caller. If we are going to drop the final active reference,
508 * lock will be acquired prior to that.
510 void deactivate_super(struct super_block *s)
512 if (!atomic_add_unless(&s->s_active, -1, 1)) {
513 __super_lock_excl(s);
514 deactivate_locked_super(s);
518 EXPORT_SYMBOL(deactivate_super);
521 * grab_super - acquire an active reference
522 * @s: reference we are trying to make active
524 * Tries to acquire an active reference. grab_super() is used when we
525 * had just found a superblock in super_blocks or fs_type->fs_supers
526 * and want to turn it into a full-blown active reference. grab_super()
527 * is called with sb_lock held and drops it. Returns 1 in case of
528 * success, 0 if we had failed (superblock contents was already dead or
529 * dying when grab_super() had been called). Note that this is only
530 * called for superblocks not in rundown mode (== ones still on ->fs_supers
531 * of their type), so increment of ->s_count is OK here.
533 static int grab_super(struct super_block *s) __releases(sb_lock)
538 spin_unlock(&sb_lock);
539 born = super_lock_excl(s);
540 if (born && atomic_inc_not_zero(&s->s_active)) {
544 super_unlock_excl(s);
549 static inline bool wait_dead(struct super_block *sb)
554 * Pairs with memory barrier in super_wake() and ensures
555 * that we see SB_DEAD after we're woken.
557 flags = smp_load_acquire(&sb->s_flags);
558 return flags & SB_DEAD;
562 * grab_super_dead - acquire an active reference to a superblock
563 * @sb: superblock to acquire
565 * Acquire a temporary reference on a superblock and try to trade it for
566 * an active reference. This is used in sget{_fc}() to wait for a
567 * superblock to either become SB_BORN or for it to pass through
568 * sb->kill() and be marked as SB_DEAD.
570 * Return: This returns true if an active reference could be acquired,
573 static bool grab_super_dead(struct super_block *sb)
577 if (grab_super(sb)) {
579 lockdep_assert_held(&sb->s_umount);
582 wait_var_event(&sb->s_flags, wait_dead(sb));
583 lockdep_assert_not_held(&sb->s_umount);
589 * super_trylock_shared - try to grab ->s_umount shared
590 * @sb: reference we are trying to grab
592 * Try to prevent fs shutdown. This is used in places where we
593 * cannot take an active reference but we need to ensure that the
594 * filesystem is not shut down while we are working on it. It returns
595 * false if we cannot acquire s_umount or if we lose the race and
596 * filesystem already got into shutdown, and returns true with the s_umount
597 * lock held in read mode in case of success. On successful return,
598 * the caller must drop the s_umount lock when done.
600 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
601 * The reason why it's safe is that we are OK with doing trylock instead
602 * of down_read(). There's a couple of places that are OK with that, but
603 * it's very much not a general-purpose interface.
605 bool super_trylock_shared(struct super_block *sb)
607 if (down_read_trylock(&sb->s_umount)) {
608 if (!(sb->s_flags & SB_DYING) && sb->s_root &&
609 (sb->s_flags & SB_BORN))
611 super_unlock_shared(sb);
618 * retire_super - prevents superblock from being reused
619 * @sb: superblock to retire
621 * The function marks superblock to be ignored in superblock test, which
622 * prevents it from being reused for any new mounts. If the superblock has
623 * a private bdi, it also unregisters it, but doesn't reduce the refcount
624 * of the superblock to prevent potential races. The refcount is reduced
625 * by generic_shutdown_super(). The function can not be called
626 * concurrently with generic_shutdown_super(). It is safe to call the
627 * function multiple times, subsequent calls have no effect.
629 * The marker will affect the re-use only for block-device-based
630 * superblocks. Other superblocks will still get marked if this function
631 * is used, but that will not affect their reusability.
633 void retire_super(struct super_block *sb)
635 WARN_ON(!sb->s_bdev);
636 __super_lock_excl(sb);
637 if (sb->s_iflags & SB_I_PERSB_BDI) {
638 bdi_unregister(sb->s_bdi);
639 sb->s_iflags &= ~SB_I_PERSB_BDI;
641 sb->s_iflags |= SB_I_RETIRED;
642 super_unlock_excl(sb);
644 EXPORT_SYMBOL(retire_super);
647 * generic_shutdown_super - common helper for ->kill_sb()
648 * @sb: superblock to kill
650 * generic_shutdown_super() does all fs-independent work on superblock
651 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
652 * that need destruction out of superblock, call generic_shutdown_super()
653 * and release aforementioned objects. Note: dentries and inodes _are_
654 * taken care of and do not need specific handling.
656 * Upon calling this function, the filesystem may no longer alter or
657 * rearrange the set of dentries belonging to this super_block, nor may it
658 * change the attachments of dentries to inodes.
660 void generic_shutdown_super(struct super_block *sb)
662 const struct super_operations *sop = sb->s_op;
665 shrink_dcache_for_umount(sb);
667 sb->s_flags &= ~SB_ACTIVE;
669 cgroup_writeback_umount();
671 /* Evict all inodes with zero refcount. */
675 * Clean up and evict any inodes that still have references due
676 * to fsnotify or the security policy.
678 fsnotify_sb_delete(sb);
679 security_sb_delete(sb);
682 * Now that all potentially-encrypted inodes have been evicted,
683 * the fscrypt keyring can be destroyed.
685 fscrypt_destroy_keyring(sb);
687 if (sb->s_dio_done_wq) {
688 destroy_workqueue(sb->s_dio_done_wq);
689 sb->s_dio_done_wq = NULL;
695 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
696 "VFS: Busy inodes after unmount of %s (%s)",
697 sb->s_id, sb->s_type->name)) {
699 * Adding a proper bailout path here would be hard, but
700 * we can at least make it more likely that a later
701 * iput_final() or such crashes cleanly.
705 spin_lock(&sb->s_inode_list_lock);
706 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
707 inode->i_op = VFS_PTR_POISON;
708 inode->i_sb = VFS_PTR_POISON;
709 inode->i_mapping = VFS_PTR_POISON;
711 spin_unlock(&sb->s_inode_list_lock);
715 * Broadcast to everyone that grabbed a temporary reference to this
716 * superblock before we removed it from @fs_supers that the superblock
717 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
718 * discard this superblock and treat it as dead.
720 * We leave the superblock on @fs_supers so it can be found by
721 * sget{_fc}() until we passed sb->kill_sb().
723 super_wake(sb, SB_DYING);
724 super_unlock_excl(sb);
725 if (sb->s_bdi != &noop_backing_dev_info) {
726 if (sb->s_iflags & SB_I_PERSB_BDI)
727 bdi_unregister(sb->s_bdi);
729 sb->s_bdi = &noop_backing_dev_info;
733 EXPORT_SYMBOL(generic_shutdown_super);
735 bool mount_capable(struct fs_context *fc)
737 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
738 return capable(CAP_SYS_ADMIN);
740 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
744 * sget_fc - Find or create a superblock
745 * @fc: Filesystem context.
746 * @test: Comparison callback
747 * @set: Setup callback
749 * Create a new superblock or find an existing one.
751 * The @test callback is used to find a matching existing superblock.
752 * Whether or not the requested parameters in @fc are taken into account
753 * is specific to the @test callback that is used. They may even be
754 * completely ignored.
756 * If an extant superblock is matched, it will be returned unless:
758 * (1) the namespace the filesystem context @fc and the extant
759 * superblock's namespace differ
761 * (2) the filesystem context @fc has requested that reusing an extant
762 * superblock is not allowed
764 * In both cases EBUSY will be returned.
766 * If no match is made, a new superblock will be allocated and basic
767 * initialisation will be performed (s_type, s_fs_info and s_id will be
768 * set and the @set callback will be invoked), the superblock will be
769 * published and it will be returned in a partially constructed state
770 * with SB_BORN and SB_ACTIVE as yet unset.
772 * Return: On success, an extant or newly created superblock is
773 * returned. On failure an error pointer is returned.
775 struct super_block *sget_fc(struct fs_context *fc,
776 int (*test)(struct super_block *, struct fs_context *),
777 int (*set)(struct super_block *, struct fs_context *))
779 struct super_block *s = NULL;
780 struct super_block *old;
781 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
787 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
789 goto share_extant_sb;
793 spin_unlock(&sb_lock);
794 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
796 return ERR_PTR(-ENOMEM);
800 s->s_fs_info = fc->s_fs_info;
804 spin_unlock(&sb_lock);
805 destroy_unused_super(s);
808 fc->s_fs_info = NULL;
809 s->s_type = fc->fs_type;
810 s->s_iflags |= fc->s_iflags;
811 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
813 * Make the superblock visible on @super_blocks and @fs_supers.
814 * It's in a nascent state and users should wait on SB_BORN or
815 * SB_DYING to be set.
817 list_add_tail(&s->s_list, &super_blocks);
818 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
819 spin_unlock(&sb_lock);
820 get_filesystem(s->s_type);
821 register_shrinker_prepared(&s->s_shrink);
825 if (user_ns != old->s_user_ns || fc->exclusive) {
826 spin_unlock(&sb_lock);
827 destroy_unused_super(s);
829 warnfc(fc, "reusing existing filesystem not allowed");
831 warnfc(fc, "reusing existing filesystem in another namespace not allowed");
832 return ERR_PTR(-EBUSY);
834 if (!grab_super_dead(old))
836 destroy_unused_super(s);
839 EXPORT_SYMBOL(sget_fc);
842 * sget - find or create a superblock
843 * @type: filesystem type superblock should belong to
844 * @test: comparison callback
845 * @set: setup callback
846 * @flags: mount flags
847 * @data: argument to each of them
849 struct super_block *sget(struct file_system_type *type,
850 int (*test)(struct super_block *,void *),
851 int (*set)(struct super_block *,void *),
855 struct user_namespace *user_ns = current_user_ns();
856 struct super_block *s = NULL;
857 struct super_block *old;
860 /* We don't yet pass the user namespace of the parent
861 * mount through to here so always use &init_user_ns
862 * until that changes.
864 if (flags & SB_SUBMOUNT)
865 user_ns = &init_user_ns;
870 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
871 if (!test(old, data))
873 if (user_ns != old->s_user_ns) {
874 spin_unlock(&sb_lock);
875 destroy_unused_super(s);
876 return ERR_PTR(-EBUSY);
878 if (!grab_super_dead(old))
880 destroy_unused_super(s);
885 spin_unlock(&sb_lock);
886 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
888 return ERR_PTR(-ENOMEM);
894 spin_unlock(&sb_lock);
895 destroy_unused_super(s);
899 strscpy(s->s_id, type->name, sizeof(s->s_id));
900 list_add_tail(&s->s_list, &super_blocks);
901 hlist_add_head(&s->s_instances, &type->fs_supers);
902 spin_unlock(&sb_lock);
903 get_filesystem(type);
904 register_shrinker_prepared(&s->s_shrink);
909 void drop_super(struct super_block *sb)
911 super_unlock_shared(sb);
915 EXPORT_SYMBOL(drop_super);
917 void drop_super_exclusive(struct super_block *sb)
919 super_unlock_excl(sb);
922 EXPORT_SYMBOL(drop_super_exclusive);
924 static void __iterate_supers(void (*f)(struct super_block *))
926 struct super_block *sb, *p = NULL;
929 list_for_each_entry(sb, &super_blocks, s_list) {
930 /* Pairs with memory marrier in super_wake(). */
931 if (smp_load_acquire(&sb->s_flags) & SB_DYING)
934 spin_unlock(&sb_lock);
945 spin_unlock(&sb_lock);
948 * iterate_supers - call function for all active superblocks
949 * @f: function to call
950 * @arg: argument to pass to it
952 * Scans the superblock list and calls given function, passing it
953 * locked superblock and given argument.
955 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
957 struct super_block *sb, *p = NULL;
960 list_for_each_entry(sb, &super_blocks, s_list) {
964 spin_unlock(&sb_lock);
966 born = super_lock_shared(sb);
967 if (born && sb->s_root)
969 super_unlock_shared(sb);
978 spin_unlock(&sb_lock);
982 * iterate_supers_type - call function for superblocks of given type
984 * @f: function to call
985 * @arg: argument to pass to it
987 * Scans the superblock list and calls given function, passing it
988 * locked superblock and given argument.
990 void iterate_supers_type(struct file_system_type *type,
991 void (*f)(struct super_block *, void *), void *arg)
993 struct super_block *sb, *p = NULL;
996 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
1000 spin_unlock(&sb_lock);
1002 born = super_lock_shared(sb);
1003 if (born && sb->s_root)
1005 super_unlock_shared(sb);
1007 spin_lock(&sb_lock);
1014 spin_unlock(&sb_lock);
1017 EXPORT_SYMBOL(iterate_supers_type);
1020 * get_active_super - get an active reference to the superblock of a device
1021 * @bdev: device to get the superblock for
1023 * Scans the superblock list and finds the superblock of the file system
1024 * mounted on the device given. Returns the superblock with an active
1025 * reference or %NULL if none was found.
1027 struct super_block *get_active_super(struct block_device *bdev)
1029 struct super_block *sb;
1034 spin_lock(&sb_lock);
1035 list_for_each_entry(sb, &super_blocks, s_list) {
1036 if (sb->s_bdev == bdev) {
1037 if (!grab_super(sb))
1039 super_unlock_excl(sb);
1043 spin_unlock(&sb_lock);
1047 struct super_block *user_get_super(dev_t dev, bool excl)
1049 struct super_block *sb;
1051 spin_lock(&sb_lock);
1052 list_for_each_entry(sb, &super_blocks, s_list) {
1053 if (sb->s_dev == dev) {
1057 spin_unlock(&sb_lock);
1059 born = super_lock(sb, excl);
1060 if (born && sb->s_root)
1062 super_unlock(sb, excl);
1063 /* nope, got unmounted */
1064 spin_lock(&sb_lock);
1069 spin_unlock(&sb_lock);
1074 * reconfigure_super - asks filesystem to change superblock parameters
1075 * @fc: The superblock and configuration
1077 * Alters the configuration parameters of a live superblock.
1079 int reconfigure_super(struct fs_context *fc)
1081 struct super_block *sb = fc->root->d_sb;
1083 bool remount_ro = false;
1084 bool remount_rw = false;
1085 bool force = fc->sb_flags & SB_FORCE;
1087 if (fc->sb_flags_mask & ~MS_RMT_MASK)
1089 if (sb->s_writers.frozen != SB_UNFROZEN)
1092 retval = security_sb_remount(sb, fc->security);
1096 if (fc->sb_flags_mask & SB_RDONLY) {
1098 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1099 bdev_read_only(sb->s_bdev))
1102 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1103 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1107 if (!hlist_empty(&sb->s_pins)) {
1108 super_unlock_excl(sb);
1109 group_pin_kill(&sb->s_pins);
1110 __super_lock_excl(sb);
1113 if (sb->s_writers.frozen != SB_UNFROZEN)
1115 remount_ro = !sb_rdonly(sb);
1118 shrink_dcache_sb(sb);
1120 /* If we are reconfiguring to RDONLY and current sb is read/write,
1121 * make sure there are no files open for writing.
1125 sb_start_ro_state_change(sb);
1127 retval = sb_prepare_remount_readonly(sb);
1131 } else if (remount_rw) {
1133 * Protect filesystem's reconfigure code from writes from
1134 * userspace until reconfigure finishes.
1136 sb_start_ro_state_change(sb);
1139 if (fc->ops->reconfigure) {
1140 retval = fc->ops->reconfigure(fc);
1143 goto cancel_readonly;
1144 /* If forced remount, go ahead despite any errors */
1145 WARN(1, "forced remount of a %s fs returned %i\n",
1146 sb->s_type->name, retval);
1150 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1151 (fc->sb_flags & fc->sb_flags_mask)));
1152 sb_end_ro_state_change(sb);
1155 * Some filesystems modify their metadata via some other path than the
1156 * bdev buffer cache (eg. use a private mapping, or directories in
1157 * pagecache, etc). Also file data modifications go via their own
1158 * mappings. So If we try to mount readonly then copy the filesystem
1159 * from bdev, we could get stale data, so invalidate it to give a best
1160 * effort at coherency.
1162 if (remount_ro && sb->s_bdev)
1163 invalidate_bdev(sb->s_bdev);
1167 sb_end_ro_state_change(sb);
1171 static void do_emergency_remount_callback(struct super_block *sb)
1173 bool born = super_lock_excl(sb);
1175 if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1176 struct fs_context *fc;
1178 fc = fs_context_for_reconfigure(sb->s_root,
1179 SB_RDONLY | SB_FORCE, SB_RDONLY);
1181 if (parse_monolithic_mount_data(fc, NULL) == 0)
1182 (void)reconfigure_super(fc);
1186 super_unlock_excl(sb);
1189 static void do_emergency_remount(struct work_struct *work)
1191 __iterate_supers(do_emergency_remount_callback);
1193 printk("Emergency Remount complete\n");
1196 void emergency_remount(void)
1198 struct work_struct *work;
1200 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1202 INIT_WORK(work, do_emergency_remount);
1203 schedule_work(work);
1207 static void do_thaw_all_callback(struct super_block *sb)
1209 bool born = super_lock_excl(sb);
1211 if (born && sb->s_root) {
1212 if (IS_ENABLED(CONFIG_BLOCK))
1213 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
1214 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1215 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1217 super_unlock_excl(sb);
1221 static void do_thaw_all(struct work_struct *work)
1223 __iterate_supers(do_thaw_all_callback);
1225 printk(KERN_WARNING "Emergency Thaw complete\n");
1229 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1231 * Used for emergency unfreeze of all filesystems via SysRq
1233 void emergency_thaw_all(void)
1235 struct work_struct *work;
1237 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1239 INIT_WORK(work, do_thaw_all);
1240 schedule_work(work);
1244 static DEFINE_IDA(unnamed_dev_ida);
1247 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1248 * @p: Pointer to a dev_t.
1250 * Filesystems which don't use real block devices can call this function
1251 * to allocate a virtual block device.
1253 * Context: Any context. Frequently called while holding sb_lock.
1254 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1255 * or -ENOMEM if memory allocation failed.
1257 int get_anon_bdev(dev_t *p)
1262 * Many userspace utilities consider an FSID of 0 invalid.
1263 * Always return at least 1 from get_anon_bdev.
1265 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1275 EXPORT_SYMBOL(get_anon_bdev);
1277 void free_anon_bdev(dev_t dev)
1279 ida_free(&unnamed_dev_ida, MINOR(dev));
1281 EXPORT_SYMBOL(free_anon_bdev);
1283 int set_anon_super(struct super_block *s, void *data)
1285 return get_anon_bdev(&s->s_dev);
1287 EXPORT_SYMBOL(set_anon_super);
1289 void kill_anon_super(struct super_block *sb)
1291 dev_t dev = sb->s_dev;
1292 generic_shutdown_super(sb);
1293 kill_super_notify(sb);
1294 free_anon_bdev(dev);
1296 EXPORT_SYMBOL(kill_anon_super);
1298 void kill_litter_super(struct super_block *sb)
1301 d_genocide(sb->s_root);
1302 kill_anon_super(sb);
1304 EXPORT_SYMBOL(kill_litter_super);
1306 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1308 return set_anon_super(sb, NULL);
1310 EXPORT_SYMBOL(set_anon_super_fc);
1312 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1314 return sb->s_fs_info == fc->s_fs_info;
1317 static int test_single_super(struct super_block *s, struct fs_context *fc)
1322 static int vfs_get_super(struct fs_context *fc,
1323 int (*test)(struct super_block *, struct fs_context *),
1324 int (*fill_super)(struct super_block *sb,
1325 struct fs_context *fc))
1327 struct super_block *sb;
1330 sb = sget_fc(fc, test, set_anon_super_fc);
1335 err = fill_super(sb, fc);
1339 sb->s_flags |= SB_ACTIVE;
1342 fc->root = dget(sb->s_root);
1346 deactivate_locked_super(sb);
1350 int get_tree_nodev(struct fs_context *fc,
1351 int (*fill_super)(struct super_block *sb,
1352 struct fs_context *fc))
1354 return vfs_get_super(fc, NULL, fill_super);
1356 EXPORT_SYMBOL(get_tree_nodev);
1358 int get_tree_single(struct fs_context *fc,
1359 int (*fill_super)(struct super_block *sb,
1360 struct fs_context *fc))
1362 return vfs_get_super(fc, test_single_super, fill_super);
1364 EXPORT_SYMBOL(get_tree_single);
1366 int get_tree_keyed(struct fs_context *fc,
1367 int (*fill_super)(struct super_block *sb,
1368 struct fs_context *fc),
1371 fc->s_fs_info = key;
1372 return vfs_get_super(fc, test_keyed_super, fill_super);
1374 EXPORT_SYMBOL(get_tree_keyed);
1376 static int set_bdev_super(struct super_block *s, void *data)
1378 s->s_dev = *(dev_t *)data;
1382 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1384 return set_bdev_super(s, fc->sget_key);
1387 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1389 return !(s->s_iflags & SB_I_RETIRED) &&
1390 s->s_dev == *(dev_t *)fc->sget_key;
1394 * sget_dev - Find or create a superblock by device number
1395 * @fc: Filesystem context.
1396 * @dev: device number
1398 * Find or create a superblock using the provided device number that
1399 * will be stored in fc->sget_key.
1401 * If an extant superblock is matched, then that will be returned with
1402 * an elevated reference count that the caller must transfer or discard.
1404 * If no match is made, a new superblock will be allocated and basic
1405 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1406 * be set). The superblock will be published and it will be returned in
1407 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1410 * Return: an existing or newly created superblock on success, an error
1411 * pointer on failure.
1413 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1415 fc->sget_key = &dev;
1416 return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1418 EXPORT_SYMBOL(sget_dev);
1422 * Lock a super block that the callers holds a reference to.
1424 * The caller needs to ensure that the super_block isn't being freed while
1425 * calling this function, e.g. by holding a lock over the call to this function
1426 * and the place that clears the pointer to the superblock used by this function
1427 * before freeing the superblock.
1429 static bool super_lock_shared_active(struct super_block *sb)
1431 bool born = super_lock_shared(sb);
1433 if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1434 super_unlock_shared(sb);
1440 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1442 struct super_block *sb = bdev->bd_holder;
1444 /* bd_holder_lock ensures that the sb isn't freed */
1445 lockdep_assert_held(&bdev->bd_holder_lock);
1447 if (!super_lock_shared_active(sb))
1451 sync_filesystem(sb);
1452 shrink_dcache_sb(sb);
1453 invalidate_inodes(sb);
1454 if (sb->s_op->shutdown)
1455 sb->s_op->shutdown(sb);
1457 super_unlock_shared(sb);
1460 static void fs_bdev_sync(struct block_device *bdev)
1462 struct super_block *sb = bdev->bd_holder;
1464 lockdep_assert_held(&bdev->bd_holder_lock);
1466 if (!super_lock_shared_active(sb))
1468 sync_filesystem(sb);
1469 super_unlock_shared(sb);
1472 const struct blk_holder_ops fs_holder_ops = {
1473 .mark_dead = fs_bdev_mark_dead,
1474 .sync = fs_bdev_sync,
1476 EXPORT_SYMBOL_GPL(fs_holder_ops);
1478 int setup_bdev_super(struct super_block *sb, int sb_flags,
1479 struct fs_context *fc)
1481 blk_mode_t mode = sb_open_mode(sb_flags);
1482 struct block_device *bdev;
1484 bdev = blkdev_get_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1487 errorf(fc, "%s: Can't open blockdev", fc->source);
1488 return PTR_ERR(bdev);
1492 * This really should be in blkdev_get_by_dev, but right now can't due
1493 * to legacy issues that require us to allow opening a block device node
1494 * writable from userspace even for a read-only block device.
1496 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1497 blkdev_put(bdev, sb);
1502 * Until SB_BORN flag is set, there can be no active superblock
1503 * references and thus no filesystem freezing. get_active_super() will
1504 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
1506 * It is enough to check bdev was not frozen before we set s_bdev.
1508 mutex_lock(&bdev->bd_fsfreeze_mutex);
1509 if (bdev->bd_fsfreeze_count > 0) {
1510 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1512 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1513 blkdev_put(bdev, sb);
1516 spin_lock(&sb_lock);
1518 sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1519 if (bdev_stable_writes(bdev))
1520 sb->s_iflags |= SB_I_STABLE_WRITES;
1521 spin_unlock(&sb_lock);
1522 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1524 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1525 shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1527 sb_set_blocksize(sb, block_size(bdev));
1530 EXPORT_SYMBOL_GPL(setup_bdev_super);
1533 * get_tree_bdev - Get a superblock based on a single block device
1534 * @fc: The filesystem context holding the parameters
1535 * @fill_super: Helper to initialise a new superblock
1537 int get_tree_bdev(struct fs_context *fc,
1538 int (*fill_super)(struct super_block *,
1539 struct fs_context *))
1541 struct super_block *s;
1546 return invalf(fc, "No source specified");
1548 error = lookup_bdev(fc->source, &dev);
1550 errorf(fc, "%s: Can't lookup blockdev", fc->source);
1554 fc->sb_flags |= SB_NOSEC;
1555 s = sget_dev(fc, dev);
1560 /* Don't summarily change the RO/RW state. */
1561 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1562 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1563 deactivate_locked_super(s);
1568 * We drop s_umount here because we need to open the bdev and
1569 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1570 * bdev_mark_dead()). It is safe because we have active sb
1571 * reference and SB_BORN is not set yet.
1573 super_unlock_excl(s);
1574 error = setup_bdev_super(s, fc->sb_flags, fc);
1575 __super_lock_excl(s);
1577 error = fill_super(s, fc);
1579 deactivate_locked_super(s);
1582 s->s_flags |= SB_ACTIVE;
1586 fc->root = dget(s->s_root);
1589 EXPORT_SYMBOL(get_tree_bdev);
1591 static int test_bdev_super(struct super_block *s, void *data)
1593 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1596 struct dentry *mount_bdev(struct file_system_type *fs_type,
1597 int flags, const char *dev_name, void *data,
1598 int (*fill_super)(struct super_block *, void *, int))
1600 struct super_block *s;
1604 error = lookup_bdev(dev_name, &dev);
1606 return ERR_PTR(error);
1609 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1614 if ((flags ^ s->s_flags) & SB_RDONLY) {
1615 deactivate_locked_super(s);
1616 return ERR_PTR(-EBUSY);
1620 * We drop s_umount here because we need to open the bdev and
1621 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1622 * bdev_mark_dead()). It is safe because we have active sb
1623 * reference and SB_BORN is not set yet.
1625 super_unlock_excl(s);
1626 error = setup_bdev_super(s, flags, NULL);
1627 __super_lock_excl(s);
1629 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1631 deactivate_locked_super(s);
1632 return ERR_PTR(error);
1635 s->s_flags |= SB_ACTIVE;
1638 return dget(s->s_root);
1640 EXPORT_SYMBOL(mount_bdev);
1642 void kill_block_super(struct super_block *sb)
1644 struct block_device *bdev = sb->s_bdev;
1646 generic_shutdown_super(sb);
1648 sync_blockdev(bdev);
1649 blkdev_put(bdev, sb);
1653 EXPORT_SYMBOL(kill_block_super);
1656 struct dentry *mount_nodev(struct file_system_type *fs_type,
1657 int flags, void *data,
1658 int (*fill_super)(struct super_block *, void *, int))
1661 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1666 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1668 deactivate_locked_super(s);
1669 return ERR_PTR(error);
1671 s->s_flags |= SB_ACTIVE;
1672 return dget(s->s_root);
1674 EXPORT_SYMBOL(mount_nodev);
1676 int reconfigure_single(struct super_block *s,
1677 int flags, void *data)
1679 struct fs_context *fc;
1682 /* The caller really need to be passing fc down into mount_single(),
1683 * then a chunk of this can be removed. [Bollocks -- AV]
1684 * Better yet, reconfiguration shouldn't happen, but rather the second
1685 * mount should be rejected if the parameters are not compatible.
1687 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1691 ret = parse_monolithic_mount_data(fc, data);
1695 ret = reconfigure_super(fc);
1701 static int compare_single(struct super_block *s, void *p)
1706 struct dentry *mount_single(struct file_system_type *fs_type,
1707 int flags, void *data,
1708 int (*fill_super)(struct super_block *, void *, int))
1710 struct super_block *s;
1713 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1717 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1719 s->s_flags |= SB_ACTIVE;
1721 error = reconfigure_single(s, flags, data);
1723 if (unlikely(error)) {
1724 deactivate_locked_super(s);
1725 return ERR_PTR(error);
1727 return dget(s->s_root);
1729 EXPORT_SYMBOL(mount_single);
1732 * vfs_get_tree - Get the mountable root
1733 * @fc: The superblock configuration context.
1735 * The filesystem is invoked to get or create a superblock which can then later
1736 * be used for mounting. The filesystem places a pointer to the root to be
1737 * used for mounting in @fc->root.
1739 int vfs_get_tree(struct fs_context *fc)
1741 struct super_block *sb;
1747 /* Get the mountable root in fc->root, with a ref on the root and a ref
1748 * on the superblock.
1750 error = fc->ops->get_tree(fc);
1755 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1757 /* We don't know what the locking state of the superblock is -
1758 * if there is a superblock.
1763 sb = fc->root->d_sb;
1764 WARN_ON(!sb->s_bdi);
1767 * super_wake() contains a memory barrier which also care of
1768 * ordering for super_cache_count(). We place it before setting
1769 * SB_BORN as the data dependency between the two functions is
1770 * the superblock structure contents that we just set up, not
1773 super_wake(sb, SB_BORN);
1775 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1776 if (unlikely(error)) {
1782 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1783 * but s_maxbytes was an unsigned long long for many releases. Throw
1784 * this warning for a little while to try and catch filesystems that
1785 * violate this rule.
1787 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1788 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1792 EXPORT_SYMBOL(vfs_get_tree);
1795 * Setup private BDI for given superblock. It gets automatically cleaned up
1796 * in generic_shutdown_super().
1798 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1800 struct backing_dev_info *bdi;
1804 bdi = bdi_alloc(NUMA_NO_NODE);
1808 va_start(args, fmt);
1809 err = bdi_register_va(bdi, fmt, args);
1815 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1817 sb->s_iflags |= SB_I_PERSB_BDI;
1821 EXPORT_SYMBOL(super_setup_bdi_name);
1824 * Setup private BDI for given superblock. I gets automatically cleaned up
1825 * in generic_shutdown_super().
1827 int super_setup_bdi(struct super_block *sb)
1829 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1831 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1832 atomic_long_inc_return(&bdi_seq));
1834 EXPORT_SYMBOL(super_setup_bdi);
1837 * sb_wait_write - wait until all writers to given file system finish
1838 * @sb: the super for which we wait
1839 * @level: type of writers we wait for (normal vs page fault)
1841 * This function waits until there are no writers of given type to given file
1844 static void sb_wait_write(struct super_block *sb, int level)
1846 percpu_down_write(sb->s_writers.rw_sem + level-1);
1850 * We are going to return to userspace and forget about these locks, the
1851 * ownership goes to the caller of thaw_super() which does unlock().
1853 static void lockdep_sb_freeze_release(struct super_block *sb)
1857 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1858 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1862 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1864 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1868 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1869 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1872 static void sb_freeze_unlock(struct super_block *sb, int level)
1874 for (level--; level >= 0; level--)
1875 percpu_up_write(sb->s_writers.rw_sem + level);
1878 static int wait_for_partially_frozen(struct super_block *sb)
1883 unsigned short old = sb->s_writers.frozen;
1885 up_write(&sb->s_umount);
1886 ret = wait_var_event_killable(&sb->s_writers.frozen,
1887 sb->s_writers.frozen != old);
1888 down_write(&sb->s_umount);
1889 } while (ret == 0 &&
1890 sb->s_writers.frozen != SB_UNFROZEN &&
1891 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1897 * freeze_super - lock the filesystem and force it into a consistent state
1898 * @sb: the super to lock
1899 * @who: context that wants to freeze
1901 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1902 * freeze_fs. Subsequent calls to this without first thawing the fs may return
1906 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1907 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1909 * The @who argument distinguishes between the kernel and userspace trying to
1910 * freeze the filesystem. Although there cannot be multiple kernel freezes or
1911 * multiple userspace freezes in effect at any given time, the kernel and
1912 * userspace can both hold a filesystem frozen. The filesystem remains frozen
1913 * until there are no kernel or userspace freezes in effect.
1915 * During this function, sb->s_writers.frozen goes through these values:
1917 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1919 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1920 * writes should be blocked, though page faults are still allowed. We wait for
1921 * all writes to complete and then proceed to the next stage.
1923 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1924 * but internal fs threads can still modify the filesystem (although they
1925 * should not dirty new pages or inodes), writeback can run etc. After waiting
1926 * for all running page faults we sync the filesystem which will clean all
1927 * dirty pages and inodes (no new dirty pages or inodes can be created when
1930 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1931 * modification are blocked (e.g. XFS preallocation truncation on inode
1932 * reclaim). This is usually implemented by blocking new transactions for
1933 * filesystems that have them and need this additional guard. After all
1934 * internal writers are finished we call ->freeze_fs() to finish filesystem
1935 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1936 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1938 * sb->s_writers.frozen is protected by sb->s_umount.
1940 int freeze_super(struct super_block *sb, enum freeze_holder who)
1944 atomic_inc(&sb->s_active);
1945 if (!super_lock_excl(sb))
1946 WARN(1, "Dying superblock while freezing!");
1949 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
1950 if (sb->s_writers.freeze_holders & who) {
1951 deactivate_locked_super(sb);
1955 WARN_ON(sb->s_writers.freeze_holders == 0);
1958 * Someone else already holds this type of freeze; share the
1959 * freeze and assign the active ref to the freeze.
1961 sb->s_writers.freeze_holders |= who;
1962 super_unlock_excl(sb);
1966 if (sb->s_writers.frozen != SB_UNFROZEN) {
1967 ret = wait_for_partially_frozen(sb);
1969 deactivate_locked_super(sb);
1976 if (!(sb->s_flags & SB_BORN)) {
1977 super_unlock_excl(sb);
1978 return 0; /* sic - it's "nothing to do" */
1981 if (sb_rdonly(sb)) {
1982 /* Nothing to do really... */
1983 sb->s_writers.freeze_holders |= who;
1984 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1985 wake_up_var(&sb->s_writers.frozen);
1986 super_unlock_excl(sb);
1990 sb->s_writers.frozen = SB_FREEZE_WRITE;
1991 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1992 super_unlock_excl(sb);
1993 sb_wait_write(sb, SB_FREEZE_WRITE);
1994 if (!super_lock_excl(sb))
1995 WARN(1, "Dying superblock while freezing!");
1997 /* Now we go and block page faults... */
1998 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1999 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2001 /* All writers are done so after syncing there won't be dirty data */
2002 ret = sync_filesystem(sb);
2004 sb->s_writers.frozen = SB_UNFROZEN;
2005 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2006 wake_up_var(&sb->s_writers.frozen);
2007 deactivate_locked_super(sb);
2011 /* Now wait for internal filesystem counter */
2012 sb->s_writers.frozen = SB_FREEZE_FS;
2013 sb_wait_write(sb, SB_FREEZE_FS);
2015 if (sb->s_op->freeze_fs) {
2016 ret = sb->s_op->freeze_fs(sb);
2019 "VFS:Filesystem freeze failed\n");
2020 sb->s_writers.frozen = SB_UNFROZEN;
2021 sb_freeze_unlock(sb, SB_FREEZE_FS);
2022 wake_up_var(&sb->s_writers.frozen);
2023 deactivate_locked_super(sb);
2028 * For debugging purposes so that fs can warn if it sees write activity
2029 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2031 sb->s_writers.freeze_holders |= who;
2032 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2033 wake_up_var(&sb->s_writers.frozen);
2034 lockdep_sb_freeze_release(sb);
2035 super_unlock_excl(sb);
2038 EXPORT_SYMBOL(freeze_super);
2041 * Undoes the effect of a freeze_super_locked call. If the filesystem is
2042 * frozen both by userspace and the kernel, a thaw call from either source
2043 * removes that state without releasing the other state or unlocking the
2046 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2050 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2051 if (!(sb->s_writers.freeze_holders & who)) {
2052 super_unlock_excl(sb);
2057 * Freeze is shared with someone else. Release our hold and
2058 * drop the active ref that freeze_super assigned to the
2061 if (sb->s_writers.freeze_holders & ~who) {
2062 sb->s_writers.freeze_holders &= ~who;
2063 deactivate_locked_super(sb);
2067 super_unlock_excl(sb);
2071 if (sb_rdonly(sb)) {
2072 sb->s_writers.freeze_holders &= ~who;
2073 sb->s_writers.frozen = SB_UNFROZEN;
2074 wake_up_var(&sb->s_writers.frozen);
2078 lockdep_sb_freeze_acquire(sb);
2080 if (sb->s_op->unfreeze_fs) {
2081 error = sb->s_op->unfreeze_fs(sb);
2083 printk(KERN_ERR "VFS:Filesystem thaw failed\n");
2084 lockdep_sb_freeze_release(sb);
2085 super_unlock_excl(sb);
2090 sb->s_writers.freeze_holders &= ~who;
2091 sb->s_writers.frozen = SB_UNFROZEN;
2092 wake_up_var(&sb->s_writers.frozen);
2093 sb_freeze_unlock(sb, SB_FREEZE_FS);
2095 deactivate_locked_super(sb);
2100 * thaw_super -- unlock filesystem
2101 * @sb: the super to thaw
2102 * @who: context that wants to freeze
2104 * Unlocks the filesystem and marks it writeable again after freeze_super()
2105 * if there are no remaining freezes on the filesystem.
2108 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2109 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2111 int thaw_super(struct super_block *sb, enum freeze_holder who)
2113 if (!super_lock_excl(sb))
2114 WARN(1, "Dying superblock while thawing!");
2115 return thaw_super_locked(sb, who);
2117 EXPORT_SYMBOL(thaw_super);
2120 * Create workqueue for deferred direct IO completions. We allocate the
2121 * workqueue when it's first needed. This avoids creating workqueue for
2122 * filesystems that don't need it and also allows us to create the workqueue
2123 * late enough so the we can include s_id in the name of the workqueue.
2125 int sb_init_dio_done_wq(struct super_block *sb)
2127 struct workqueue_struct *old;
2128 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2134 * This has to be atomic as more DIOs can race to create the workqueue
2136 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2137 /* Someone created workqueue before us? Free ours... */
2139 destroy_workqueue(wq);