1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Squashfs - a compressed read only filesystem for Linux
5 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
6 * Phillip Lougher <phillip@squashfs.org.uk>
12 * Blocks in Squashfs are compressed. To avoid repeatedly decompressing
13 * recently accessed data Squashfs uses two small metadata and fragment caches.
15 * This file implements a generic cache implementation used for both caches,
16 * plus functions layered ontop of the generic cache implementation to
17 * access the metadata and fragment caches.
19 * To avoid out of memory and fragmentation issues with vmalloc the cache
20 * uses sequences of kmalloced PAGE_SIZE buffers.
22 * It should be noted that the cache is not used for file datablocks, these
23 * are decompressed and cached in the page-cache in the normal way. The
24 * cache is only used to temporarily cache fragment and metadata blocks
25 * which have been read as as a result of a metadata (i.e. inode or
26 * directory) or fragment access. Because metadata and fragments are packed
27 * together into blocks (to gain greater compression) the read of a particular
28 * piece of metadata or fragment will retrieve other metadata/fragments which
29 * have been packed with it, these because of locality-of-reference may be read
30 * in the near future. Temporarily caching them ensures they are available for
31 * near future access without requiring an additional read and decompress.
35 #include <linux/vfs.h>
36 #include <linux/slab.h>
37 #include <linux/vmalloc.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/wait.h>
41 #include <linux/pagemap.h>
43 #include "squashfs_fs.h"
44 #include "squashfs_fs_sb.h"
46 #include "page_actor.h"
49 * Look-up block in cache, and increment usage count. If not in cache, read
50 * and decompress it from disk.
52 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
53 struct squashfs_cache *cache, u64 block, int length)
56 struct squashfs_cache_entry *entry;
58 spin_lock(&cache->lock);
61 for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
62 if (cache->entry[i].block == block) {
66 i = (i + 1) % cache->entries;
69 if (n == cache->entries) {
71 * Block not in cache, if all cache entries are used
72 * go to sleep waiting for one to become available.
74 if (cache->unused == 0) {
76 spin_unlock(&cache->lock);
77 wait_event(cache->wait_queue, cache->unused);
78 spin_lock(&cache->lock);
84 * At least one unused cache entry. A simple
85 * round-robin strategy is used to choose the entry to
86 * be evicted from the cache.
89 for (n = 0; n < cache->entries; n++) {
90 if (cache->entry[i].refcount == 0)
92 i = (i + 1) % cache->entries;
95 cache->next_blk = (i + 1) % cache->entries;
96 entry = &cache->entry[i];
99 * Initialise chosen cache entry, and fill it in from
103 entry->block = block;
106 entry->num_waiters = 0;
108 spin_unlock(&cache->lock);
110 entry->length = squashfs_read_data(sb, block, length,
111 &entry->next_index, entry->actor);
113 spin_lock(&cache->lock);
115 if (entry->length < 0)
116 entry->error = entry->length;
121 * While filling this entry one or more other processes
122 * have looked it up in the cache, and have slept
123 * waiting for it to become available.
125 if (entry->num_waiters) {
126 spin_unlock(&cache->lock);
127 wake_up_all(&entry->wait_queue);
129 spin_unlock(&cache->lock);
135 * Block already in cache. Increment refcount so it doesn't
136 * get reused until we're finished with it, if it was
137 * previously unused there's one less cache entry available
140 entry = &cache->entry[i];
141 if (entry->refcount == 0)
146 * If the entry is currently being filled in by another process
147 * go to sleep waiting for it to become available.
149 if (entry->pending) {
150 entry->num_waiters++;
151 spin_unlock(&cache->lock);
152 wait_event(entry->wait_queue, !entry->pending);
154 spin_unlock(&cache->lock);
160 TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
161 cache->name, i, entry->block, entry->refcount, entry->error);
164 ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
171 * Release cache entry, once usage count is zero it can be reused.
173 void squashfs_cache_put(struct squashfs_cache_entry *entry)
175 struct squashfs_cache *cache = entry->cache;
177 spin_lock(&cache->lock);
179 if (entry->refcount == 0) {
182 * If there's any processes waiting for a block to become
183 * available, wake one up.
185 if (cache->num_waiters) {
186 spin_unlock(&cache->lock);
187 wake_up(&cache->wait_queue);
191 spin_unlock(&cache->lock);
195 * Delete cache reclaiming all kmalloced buffers.
197 void squashfs_cache_delete(struct squashfs_cache *cache)
204 for (i = 0; i < cache->entries; i++) {
205 if (cache->entry[i].data) {
206 for (j = 0; j < cache->pages; j++)
207 kfree(cache->entry[i].data[j]);
208 kfree(cache->entry[i].data);
210 kfree(cache->entry[i].actor);
219 * Initialise cache allocating the specified number of entries, each of
220 * size block_size. To avoid vmalloc fragmentation issues each entry
221 * is allocated as a sequence of kmalloced PAGE_SIZE buffers.
223 struct squashfs_cache *squashfs_cache_init(char *name, int entries,
227 struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
230 ERROR("Failed to allocate %s cache\n", name);
234 cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
235 if (cache->entry == NULL) {
236 ERROR("Failed to allocate %s cache\n", name);
242 cache->unused = entries;
243 cache->entries = entries;
244 cache->block_size = block_size;
245 cache->pages = block_size >> PAGE_SHIFT;
246 cache->pages = cache->pages ? cache->pages : 1;
248 cache->num_waiters = 0;
249 spin_lock_init(&cache->lock);
250 init_waitqueue_head(&cache->wait_queue);
252 for (i = 0; i < entries; i++) {
253 struct squashfs_cache_entry *entry = &cache->entry[i];
255 init_waitqueue_head(&cache->entry[i].wait_queue);
256 entry->cache = cache;
257 entry->block = SQUASHFS_INVALID_BLK;
258 entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
259 if (entry->data == NULL) {
260 ERROR("Failed to allocate %s cache entry\n", name);
264 for (j = 0; j < cache->pages; j++) {
265 entry->data[j] = kmalloc(PAGE_SIZE, GFP_KERNEL);
266 if (entry->data[j] == NULL) {
267 ERROR("Failed to allocate %s buffer\n", name);
272 entry->actor = squashfs_page_actor_init(entry->data,
274 if (entry->actor == NULL) {
275 ERROR("Failed to allocate %s cache entry\n", name);
283 squashfs_cache_delete(cache);
289 * Copy up to length bytes from cache entry to buffer starting at offset bytes
290 * into the cache entry. If there's not length bytes then copy the number of
291 * bytes available. In all cases return the number of bytes copied.
293 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
294 int offset, int length)
296 int remaining = length;
300 else if (buffer == NULL)
301 return min(length, entry->length - offset);
303 while (offset < entry->length) {
304 void *buff = entry->data[offset / PAGE_SIZE]
305 + (offset % PAGE_SIZE);
306 int bytes = min_t(int, entry->length - offset,
307 PAGE_SIZE - (offset % PAGE_SIZE));
309 if (bytes >= remaining) {
310 memcpy(buffer, buff, remaining);
315 memcpy(buffer, buff, bytes);
321 return length - remaining;
326 * Read length bytes from metadata position <block, offset> (block is the
327 * start of the compressed block on disk, and offset is the offset into
328 * the block once decompressed). Data is packed into consecutive blocks,
329 * and length bytes may require reading more than one block.
331 int squashfs_read_metadata(struct super_block *sb, void *buffer,
332 u64 *block, int *offset, int length)
334 struct squashfs_sb_info *msblk = sb->s_fs_info;
335 int bytes, res = length;
336 struct squashfs_cache_entry *entry;
338 TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
340 if (unlikely(length < 0))
344 entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
348 } else if (*offset >= entry->length) {
353 bytes = squashfs_copy_data(buffer, entry, *offset, length);
359 if (*offset == entry->length) {
360 *block = entry->next_index;
364 squashfs_cache_put(entry);
370 squashfs_cache_put(entry);
376 * Look-up in the fragmment cache the fragment located at <start_block> in the
377 * filesystem. If necessary read and decompress it from disk.
379 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
380 u64 start_block, int length)
382 struct squashfs_sb_info *msblk = sb->s_fs_info;
384 return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
390 * Read and decompress the datablock located at <start_block> in the
391 * filesystem. The cache is used here to avoid duplicating locking and
392 * read/decompress code.
394 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
395 u64 start_block, int length)
397 struct squashfs_sb_info *msblk = sb->s_fs_info;
399 return squashfs_cache_get(sb, msblk->read_page, start_block, length);
404 * Read a filesystem table (uncompressed sequence of bytes) from disk
406 void *squashfs_read_table(struct super_block *sb, u64 block, int length)
408 int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
410 void *table, *buffer, **data;
411 struct squashfs_page_actor *actor;
413 table = buffer = kmalloc(length, GFP_KERNEL);
415 return ERR_PTR(-ENOMEM);
417 data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
423 actor = squashfs_page_actor_init(data, pages, length);
429 for (i = 0; i < pages; i++, buffer += PAGE_SIZE)
432 res = squashfs_read_data(sb, block, length |
433 SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);