2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
44 struct page *page = buf->page;
45 struct address_space *mapping;
49 mapping = page_mapping(page);
51 WARN_ON(!PageUptodate(page));
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
61 wait_on_page_writeback(page);
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
68 * If we succeeded in removing the mapping, set LRU flag
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 struct page *page = buf->page;
103 if (!PageUptodate(page)) {
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
110 if (!page->mapping) {
116 * Uh oh, read-error from disk.
118 if (!PageUptodate(page)) {
124 * Page is ok afterall, we are done.
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
223 if (!--spd->nr_pages)
225 if (pipe->nrbufs < pipe->buffers)
231 if (spd->flags & SPLICE_F_NONBLOCK) {
237 if (signal_pending(current)) {
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
251 pipe->waiting_writers++;
253 pipe->waiting_writers--;
259 wakeup_pipe_readers(pipe);
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 page_cache_release(spd->pages[i]);
273 * Check if we need to grow the arrays holding pages and partial page
276 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
280 spd->nr_pages_max = buffers;
281 if (buffers <= PIPE_DEF_BUFFERS)
284 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
285 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
287 if (spd->pages && spd->partial)
295 void splice_shrink_spd(struct splice_pipe_desc *spd)
297 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
305 __generic_file_splice_read(struct file *in, loff_t *ppos,
306 struct pipe_inode_info *pipe, size_t len,
309 struct address_space *mapping = in->f_mapping;
310 unsigned int loff, nr_pages, req_pages;
311 struct page *pages[PIPE_DEF_BUFFERS];
312 struct partial_page partial[PIPE_DEF_BUFFERS];
314 pgoff_t index, end_index;
317 struct splice_pipe_desc spd = {
320 .nr_pages_max = PIPE_DEF_BUFFERS,
322 .ops = &page_cache_pipe_buf_ops,
323 .spd_release = spd_release_page,
326 if (splice_grow_spd(pipe, &spd))
329 index = *ppos >> PAGE_CACHE_SHIFT;
330 loff = *ppos & ~PAGE_CACHE_MASK;
331 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
332 nr_pages = min(req_pages, spd.nr_pages_max);
335 * Lookup the (hopefully) full range of pages we need.
337 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
338 index += spd.nr_pages;
341 * If find_get_pages_contig() returned fewer pages than we needed,
342 * readahead/allocate the rest and fill in the holes.
344 if (spd.nr_pages < nr_pages)
345 page_cache_sync_readahead(mapping, &in->f_ra, in,
346 index, req_pages - spd.nr_pages);
349 while (spd.nr_pages < nr_pages) {
351 * Page could be there, find_get_pages_contig() breaks on
354 page = find_get_page(mapping, index);
357 * page didn't exist, allocate one.
359 page = page_cache_alloc_cold(mapping);
363 error = add_to_page_cache_lru(page, mapping, index,
365 if (unlikely(error)) {
366 page_cache_release(page);
367 if (error == -EEXIST)
372 * add_to_page_cache() locks the page, unlock it
373 * to avoid convoluting the logic below even more.
378 spd.pages[spd.nr_pages++] = page;
383 * Now loop over the map and see if we need to start IO on any
384 * pages, fill in the partial map, etc.
386 index = *ppos >> PAGE_CACHE_SHIFT;
387 nr_pages = spd.nr_pages;
389 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
390 unsigned int this_len;
396 * this_len is the max we'll use from this page
398 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
399 page = spd.pages[page_nr];
401 if (PageReadahead(page))
402 page_cache_async_readahead(mapping, &in->f_ra, in,
403 page, index, req_pages - page_nr);
406 * If the page isn't uptodate, we may need to start io on it
408 if (!PageUptodate(page)) {
412 * Page was truncated, or invalidated by the
413 * filesystem. Redo the find/create, but this time the
414 * page is kept locked, so there's no chance of another
415 * race with truncate/invalidate.
417 if (!page->mapping) {
419 page = find_or_create_page(mapping, index,
420 mapping_gfp_mask(mapping));
426 page_cache_release(spd.pages[page_nr]);
427 spd.pages[page_nr] = page;
430 * page was already under io and is now done, great
432 if (PageUptodate(page)) {
438 * need to read in the page
440 error = mapping->a_ops->readpage(in, page);
441 if (unlikely(error)) {
443 * We really should re-lookup the page here,
444 * but it complicates things a lot. Instead
445 * lets just do what we already stored, and
446 * we'll get it the next time we are called.
448 if (error == AOP_TRUNCATED_PAGE)
456 * i_size must be checked after PageUptodate.
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
460 if (unlikely(!isize || index > end_index))
464 * if this is the last page, see if we need to shrink
465 * the length and stop
467 if (end_index == index) {
471 * max good bytes in this page
473 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
478 * force quit after adding this page
480 this_len = min(this_len, plen - loff);
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
496 while (page_nr < nr_pages)
497 page_cache_release(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
501 error = splice_to_pipe(pipe, &spd);
503 splice_shrink_spd(&spd);
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
528 isize = i_size_read(in->f_mapping->host);
529 if (unlikely(*ppos >= isize))
532 left = isize - *ppos;
533 if (unlikely(left < len))
536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
544 EXPORT_SYMBOL(generic_file_splice_read);
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
548 .map = generic_pipe_buf_map,
549 .unmap = generic_pipe_buf_unmap,
550 .confirm = generic_pipe_buf_confirm,
551 .release = generic_pipe_buf_release,
552 .steal = generic_pipe_buf_steal,
553 .get = generic_pipe_buf_get,
556 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
557 unsigned long vlen, loff_t offset)
565 /* The cast to a user pointer is valid due to the set_fs() */
566 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
572 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
580 /* The cast to a user pointer is valid due to the set_fs() */
581 res = vfs_write(file, (const char __user *)buf, count, &pos);
587 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
588 struct pipe_inode_info *pipe, size_t len,
591 unsigned int nr_pages;
592 unsigned int nr_freed;
594 struct page *pages[PIPE_DEF_BUFFERS];
595 struct partial_page partial[PIPE_DEF_BUFFERS];
596 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
601 struct splice_pipe_desc spd = {
604 .nr_pages_max = PIPE_DEF_BUFFERS,
606 .ops = &default_pipe_buf_ops,
607 .spd_release = spd_release_page,
610 if (splice_grow_spd(pipe, &spd))
615 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
616 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
621 offset = *ppos & ~PAGE_CACHE_MASK;
622 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
624 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
627 page = alloc_page(GFP_USER);
632 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
633 vec[i].iov_base = (void __user *) page_address(page);
634 vec[i].iov_len = this_len;
641 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
652 for (i = 0; i < spd.nr_pages; i++) {
653 this_len = min_t(size_t, vec[i].iov_len, res);
654 spd.partial[i].offset = 0;
655 spd.partial[i].len = this_len;
657 __free_page(spd.pages[i]);
663 spd.nr_pages -= nr_freed;
665 res = splice_to_pipe(pipe, &spd);
672 splice_shrink_spd(&spd);
676 for (i = 0; i < spd.nr_pages; i++)
677 __free_page(spd.pages[i]);
682 EXPORT_SYMBOL(default_file_splice_read);
685 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
686 * using sendpage(). Return the number of bytes sent.
688 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
689 struct pipe_buffer *buf, struct splice_desc *sd)
691 struct file *file = sd->u.file;
692 loff_t pos = sd->pos;
695 if (!likely(file->f_op && file->f_op->sendpage))
698 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
699 if (sd->len < sd->total_len)
700 more |= MSG_SENDPAGE_NOTLAST;
701 return file->f_op->sendpage(file, buf->page, buf->offset,
702 sd->len, &pos, more);
706 * This is a little more tricky than the file -> pipe splicing. There are
707 * basically three cases:
709 * - Destination page already exists in the address space and there
710 * are users of it. For that case we have no other option that
711 * copying the data. Tough luck.
712 * - Destination page already exists in the address space, but there
713 * are no users of it. Make sure it's uptodate, then drop it. Fall
714 * through to last case.
715 * - Destination page does not exist, we can add the pipe page to
716 * the page cache and avoid the copy.
718 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
719 * sd->flags), we attempt to migrate pages from the pipe to the output
720 * file address space page cache. This is possible if no one else has
721 * the pipe page referenced outside of the pipe and page cache. If
722 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
723 * a new page in the output file page cache and fill/dirty that.
725 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
726 struct splice_desc *sd)
728 struct file *file = sd->u.file;
729 struct address_space *mapping = file->f_mapping;
730 unsigned int offset, this_len;
735 offset = sd->pos & ~PAGE_CACHE_MASK;
738 if (this_len + offset > PAGE_CACHE_SIZE)
739 this_len = PAGE_CACHE_SIZE - offset;
741 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
742 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
746 if (buf->page != page) {
747 char *src = buf->ops->map(pipe, buf, 1);
748 char *dst = kmap_atomic(page);
750 memcpy(dst + offset, src + buf->offset, this_len);
751 flush_dcache_page(page);
753 buf->ops->unmap(pipe, buf, src);
755 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
760 EXPORT_SYMBOL(pipe_to_file);
762 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
765 if (waitqueue_active(&pipe->wait))
766 wake_up_interruptible(&pipe->wait);
767 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
771 * splice_from_pipe_feed - feed available data from a pipe to a file
772 * @pipe: pipe to splice from
773 * @sd: information to @actor
774 * @actor: handler that splices the data
777 * This function loops over the pipe and calls @actor to do the
778 * actual moving of a single struct pipe_buffer to the desired
779 * destination. It returns when there's no more buffers left in
780 * the pipe or if the requested number of bytes (@sd->total_len)
781 * have been copied. It returns a positive number (one) if the
782 * pipe needs to be filled with more data, zero if the required
783 * number of bytes have been copied and -errno on error.
785 * This, together with splice_from_pipe_{begin,end,next}, may be
786 * used to implement the functionality of __splice_from_pipe() when
787 * locking is required around copying the pipe buffers to the
790 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
795 while (pipe->nrbufs) {
796 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
797 const struct pipe_buf_operations *ops = buf->ops;
800 if (sd->len > sd->total_len)
801 sd->len = sd->total_len;
803 ret = buf->ops->confirm(pipe, buf);
810 ret = actor(pipe, buf, sd);
817 sd->num_spliced += ret;
820 sd->total_len -= ret;
824 ops->release(pipe, buf);
825 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
828 sd->need_wakeup = true;
837 EXPORT_SYMBOL(splice_from_pipe_feed);
840 * splice_from_pipe_next - wait for some data to splice from
841 * @pipe: pipe to splice from
842 * @sd: information about the splice operation
845 * This function will wait for some data and return a positive
846 * value (one) if pipe buffers are available. It will return zero
847 * or -errno if no more data needs to be spliced.
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
851 while (!pipe->nrbufs) {
855 if (!pipe->waiting_writers && sd->num_spliced)
858 if (sd->flags & SPLICE_F_NONBLOCK)
861 if (signal_pending(current))
864 if (sd->need_wakeup) {
865 wakeup_pipe_writers(pipe);
866 sd->need_wakeup = false;
874 EXPORT_SYMBOL(splice_from_pipe_next);
877 * splice_from_pipe_begin - start splicing from pipe
878 * @sd: information about the splice operation
881 * This function should be called before a loop containing
882 * splice_from_pipe_next() and splice_from_pipe_feed() to
883 * initialize the necessary fields of @sd.
885 void splice_from_pipe_begin(struct splice_desc *sd)
888 sd->need_wakeup = false;
890 EXPORT_SYMBOL(splice_from_pipe_begin);
893 * splice_from_pipe_end - finish splicing from pipe
894 * @pipe: pipe to splice from
895 * @sd: information about the splice operation
898 * This function will wake up pipe writers if necessary. It should
899 * be called after a loop containing splice_from_pipe_next() and
900 * splice_from_pipe_feed().
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
905 wakeup_pipe_writers(pipe);
907 EXPORT_SYMBOL(splice_from_pipe_end);
910 * __splice_from_pipe - splice data from a pipe to given actor
911 * @pipe: pipe to splice from
912 * @sd: information to @actor
913 * @actor: handler that splices the data
916 * This function does little more than loop over the pipe and call
917 * @actor to do the actual moving of a single struct pipe_buffer to
918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
927 splice_from_pipe_begin(sd);
929 ret = splice_from_pipe_next(pipe, sd);
931 ret = splice_from_pipe_feed(pipe, sd, actor);
933 splice_from_pipe_end(pipe, sd);
935 return sd->num_spliced ? sd->num_spliced : ret;
937 EXPORT_SYMBOL(__splice_from_pipe);
940 * splice_from_pipe - splice data from a pipe to a file
941 * @pipe: pipe to splice from
942 * @out: file to splice to
943 * @ppos: position in @out
944 * @len: how many bytes to splice
945 * @flags: splice modifier flags
946 * @actor: handler that splices the data
949 * See __splice_from_pipe. This function locks the pipe inode,
950 * otherwise it's identical to __splice_from_pipe().
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954 loff_t *ppos, size_t len, unsigned int flags,
958 struct splice_desc sd = {
966 ret = __splice_from_pipe(pipe, &sd, actor);
973 * generic_file_splice_write - splice data from a pipe to a file
975 * @out: file to write to
976 * @ppos: position in @out
977 * @len: number of bytes to splice
978 * @flags: splice modifier flags
981 * Will either move or copy pages (determined by @flags options) from
982 * the given pipe inode to the given file.
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987 loff_t *ppos, size_t len, unsigned int flags)
989 struct address_space *mapping = out->f_mapping;
990 struct inode *inode = mapping->host;
991 struct splice_desc sd = {
999 sb_start_write(inode->i_sb);
1003 splice_from_pipe_begin(&sd);
1005 ret = splice_from_pipe_next(pipe, &sd);
1009 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1010 ret = file_remove_suid(out);
1012 ret = file_update_time(out);
1014 ret = splice_from_pipe_feed(pipe, &sd,
1017 mutex_unlock(&inode->i_mutex);
1019 splice_from_pipe_end(pipe, &sd);
1024 ret = sd.num_spliced;
1029 err = generic_write_sync(out, *ppos, ret);
1034 balance_dirty_pages_ratelimited(mapping);
1036 sb_end_write(inode->i_sb);
1041 EXPORT_SYMBOL(generic_file_splice_write);
1043 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1044 struct splice_desc *sd)
1049 data = buf->ops->map(pipe, buf, 0);
1050 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1051 buf->ops->unmap(pipe, buf, data);
1056 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1057 struct file *out, loff_t *ppos,
1058 size_t len, unsigned int flags)
1062 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1070 * generic_splice_sendpage - splice data from a pipe to a socket
1071 * @pipe: pipe to splice from
1072 * @out: socket to write to
1073 * @ppos: position in @out
1074 * @len: number of bytes to splice
1075 * @flags: splice modifier flags
1078 * Will send @len bytes from the pipe to a network socket. No data copying
1082 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1083 loff_t *ppos, size_t len, unsigned int flags)
1085 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1088 EXPORT_SYMBOL(generic_splice_sendpage);
1091 * Attempt to initiate a splice from pipe to file.
1093 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1094 loff_t *ppos, size_t len, unsigned int flags)
1096 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1097 loff_t *, size_t, unsigned int);
1100 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1103 if (unlikely(out->f_flags & O_APPEND))
1106 ret = rw_verify_area(WRITE, out, ppos, len);
1107 if (unlikely(ret < 0))
1110 if (out->f_op && out->f_op->splice_write)
1111 splice_write = out->f_op->splice_write;
1113 splice_write = default_file_splice_write;
1115 return splice_write(pipe, out, ppos, len, flags);
1119 * Attempt to initiate a splice from a file to a pipe.
1121 static long do_splice_to(struct file *in, loff_t *ppos,
1122 struct pipe_inode_info *pipe, size_t len,
1125 ssize_t (*splice_read)(struct file *, loff_t *,
1126 struct pipe_inode_info *, size_t, unsigned int);
1129 if (unlikely(!(in->f_mode & FMODE_READ)))
1132 ret = rw_verify_area(READ, in, ppos, len);
1133 if (unlikely(ret < 0))
1136 if (in->f_op && in->f_op->splice_read)
1137 splice_read = in->f_op->splice_read;
1139 splice_read = default_file_splice_read;
1141 return splice_read(in, ppos, pipe, len, flags);
1145 * splice_direct_to_actor - splices data directly between two non-pipes
1146 * @in: file to splice from
1147 * @sd: actor information on where to splice to
1148 * @actor: handles the data splicing
1151 * This is a special case helper to splice directly between two
1152 * points, without requiring an explicit pipe. Internally an allocated
1153 * pipe is cached in the process, and reused during the lifetime of
1157 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1158 splice_direct_actor *actor)
1160 struct pipe_inode_info *pipe;
1167 * We require the input being a regular file, as we don't want to
1168 * randomly drop data for eg socket -> socket splicing. Use the
1169 * piped splicing for that!
1171 i_mode = in->f_path.dentry->d_inode->i_mode;
1172 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1176 * neither in nor out is a pipe, setup an internal pipe attached to
1177 * 'out' and transfer the wanted data from 'in' to 'out' through that
1179 pipe = current->splice_pipe;
1180 if (unlikely(!pipe)) {
1181 pipe = alloc_pipe_info(NULL);
1186 * We don't have an immediate reader, but we'll read the stuff
1187 * out of the pipe right after the splice_to_pipe(). So set
1188 * PIPE_READERS appropriately.
1192 current->splice_pipe = pipe;
1200 len = sd->total_len;
1204 * Don't block on output, we have to drain the direct pipe.
1206 sd->flags &= ~SPLICE_F_NONBLOCK;
1210 loff_t pos = sd->pos, prev_pos = pos;
1212 ret = do_splice_to(in, &pos, pipe, len, flags);
1213 if (unlikely(ret <= 0))
1217 sd->total_len = read_len;
1220 * NOTE: nonblocking mode only applies to the input. We
1221 * must not do the output in nonblocking mode as then we
1222 * could get stuck data in the internal pipe:
1224 ret = actor(pipe, sd);
1225 if (unlikely(ret <= 0)) {
1234 if (ret < read_len) {
1235 sd->pos = prev_pos + ret;
1241 pipe->nrbufs = pipe->curbuf = 0;
1247 * If we did an incomplete transfer we must release
1248 * the pipe buffers in question:
1250 for (i = 0; i < pipe->buffers; i++) {
1251 struct pipe_buffer *buf = pipe->bufs + i;
1254 buf->ops->release(pipe, buf);
1264 EXPORT_SYMBOL(splice_direct_to_actor);
1266 static int direct_splice_actor(struct pipe_inode_info *pipe,
1267 struct splice_desc *sd)
1269 struct file *file = sd->u.file;
1271 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1276 * do_splice_direct - splices data directly between two files
1277 * @in: file to splice from
1278 * @ppos: input file offset
1279 * @out: file to splice to
1280 * @len: number of bytes to splice
1281 * @flags: splice modifier flags
1284 * For use by do_sendfile(). splice can easily emulate sendfile, but
1285 * doing it in the application would incur an extra system call
1286 * (splice in + splice out, as compared to just sendfile()). So this helper
1287 * can splice directly through a process-private pipe.
1290 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1291 size_t len, unsigned int flags)
1293 struct splice_desc sd = {
1302 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1309 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1310 struct pipe_inode_info *opipe,
1311 size_t len, unsigned int flags);
1314 * Determine where to splice to/from.
1316 static long do_splice(struct file *in, loff_t __user *off_in,
1317 struct file *out, loff_t __user *off_out,
1318 size_t len, unsigned int flags)
1320 struct pipe_inode_info *ipipe;
1321 struct pipe_inode_info *opipe;
1322 loff_t offset, *off;
1325 ipipe = get_pipe_info(in);
1326 opipe = get_pipe_info(out);
1328 if (ipipe && opipe) {
1329 if (off_in || off_out)
1332 if (!(in->f_mode & FMODE_READ))
1335 if (!(out->f_mode & FMODE_WRITE))
1338 /* Splicing to self would be fun, but... */
1342 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1349 if (!(out->f_mode & FMODE_PWRITE))
1351 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1357 ret = do_splice_from(ipipe, out, off, len, flags);
1359 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1369 if (!(in->f_mode & FMODE_PREAD))
1371 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1377 ret = do_splice_to(in, off, opipe, len, flags);
1379 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1389 * Map an iov into an array of pages and offset/length tupples. With the
1390 * partial_page structure, we can map several non-contiguous ranges into
1391 * our ones pages[] map instead of splitting that operation into pieces.
1392 * Could easily be exported as a generic helper for other users, in which
1393 * case one would probably want to add a 'max_nr_pages' parameter as well.
1395 static int get_iovec_page_array(const struct iovec __user *iov,
1396 unsigned int nr_vecs, struct page **pages,
1397 struct partial_page *partial, bool aligned,
1398 unsigned int pipe_buffers)
1400 int buffers = 0, error = 0;
1403 unsigned long off, npages;
1410 if (copy_from_user(&entry, iov, sizeof(entry)))
1413 base = entry.iov_base;
1414 len = entry.iov_len;
1417 * Sanity check this iovec. 0 read succeeds.
1423 if (!access_ok(VERIFY_READ, base, len))
1427 * Get this base offset and number of pages, then map
1428 * in the user pages.
1430 off = (unsigned long) base & ~PAGE_MASK;
1433 * If asked for alignment, the offset must be zero and the
1434 * length a multiple of the PAGE_SIZE.
1437 if (aligned && (off || len & ~PAGE_MASK))
1440 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1441 if (npages > pipe_buffers - buffers)
1442 npages = pipe_buffers - buffers;
1444 error = get_user_pages_fast((unsigned long)base, npages,
1445 0, &pages[buffers]);
1447 if (unlikely(error <= 0))
1451 * Fill this contiguous range into the partial page map.
1453 for (i = 0; i < error; i++) {
1454 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1456 partial[buffers].offset = off;
1457 partial[buffers].len = plen;
1465 * We didn't complete this iov, stop here since it probably
1466 * means we have to move some of this into a pipe to
1467 * be able to continue.
1473 * Don't continue if we mapped fewer pages than we asked for,
1474 * or if we mapped the max number of pages that we have
1477 if (error < npages || buffers == pipe_buffers)
1490 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1491 struct splice_desc *sd)
1497 * See if we can use the atomic maps, by prefaulting in the
1498 * pages and doing an atomic copy
1500 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1501 src = buf->ops->map(pipe, buf, 1);
1502 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1504 buf->ops->unmap(pipe, buf, src);
1512 * No dice, use slow non-atomic map and copy
1514 src = buf->ops->map(pipe, buf, 0);
1517 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1520 buf->ops->unmap(pipe, buf, src);
1523 sd->u.userptr += ret;
1528 * For lack of a better implementation, implement vmsplice() to userspace
1529 * as a simple copy of the pipes pages to the user iov.
1531 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1532 unsigned long nr_segs, unsigned int flags)
1534 struct pipe_inode_info *pipe;
1535 struct splice_desc sd;
1540 pipe = get_pipe_info(file);
1552 * Get user address base and length for this iovec.
1554 error = get_user(base, &iov->iov_base);
1555 if (unlikely(error))
1557 error = get_user(len, &iov->iov_len);
1558 if (unlikely(error))
1562 * Sanity check this iovec. 0 read succeeds.
1566 if (unlikely(!base)) {
1571 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1579 sd.u.userptr = base;
1582 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1608 * vmsplice splices a user address range into a pipe. It can be thought of
1609 * as splice-from-memory, where the regular splice is splice-from-file (or
1610 * to file). In both cases the output is a pipe, naturally.
1612 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1613 unsigned long nr_segs, unsigned int flags)
1615 struct pipe_inode_info *pipe;
1616 struct page *pages[PIPE_DEF_BUFFERS];
1617 struct partial_page partial[PIPE_DEF_BUFFERS];
1618 struct splice_pipe_desc spd = {
1621 .nr_pages_max = PIPE_DEF_BUFFERS,
1623 .ops = &user_page_pipe_buf_ops,
1624 .spd_release = spd_release_page,
1628 pipe = get_pipe_info(file);
1632 if (splice_grow_spd(pipe, &spd))
1635 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1638 if (spd.nr_pages <= 0)
1641 ret = splice_to_pipe(pipe, &spd);
1643 splice_shrink_spd(&spd);
1648 * Note that vmsplice only really supports true splicing _from_ user memory
1649 * to a pipe, not the other way around. Splicing from user memory is a simple
1650 * operation that can be supported without any funky alignment restrictions
1651 * or nasty vm tricks. We simply map in the user memory and fill them into
1652 * a pipe. The reverse isn't quite as easy, though. There are two possible
1653 * solutions for that:
1655 * - memcpy() the data internally, at which point we might as well just
1656 * do a regular read() on the buffer anyway.
1657 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1658 * has restriction limitations on both ends of the pipe).
1660 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1663 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1664 unsigned long, nr_segs, unsigned int, flags)
1669 if (unlikely(nr_segs > UIO_MAXIOV))
1671 else if (unlikely(!nr_segs))
1677 if (f.file->f_mode & FMODE_WRITE)
1678 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1679 else if (f.file->f_mode & FMODE_READ)
1680 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1688 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1689 int, fd_out, loff_t __user *, off_out,
1690 size_t, len, unsigned int, flags)
1701 if (in.file->f_mode & FMODE_READ) {
1702 out = fdget(fd_out);
1704 if (out.file->f_mode & FMODE_WRITE)
1705 error = do_splice(in.file, off_in,
1717 * Make sure there's data to read. Wait for input if we can, otherwise
1718 * return an appropriate error.
1720 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1725 * Check ->nrbufs without the inode lock first. This function
1726 * is speculative anyways, so missing one is ok.
1734 while (!pipe->nrbufs) {
1735 if (signal_pending(current)) {
1741 if (!pipe->waiting_writers) {
1742 if (flags & SPLICE_F_NONBLOCK) {
1755 * Make sure there's writeable room. Wait for room if we can, otherwise
1756 * return an appropriate error.
1758 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1763 * Check ->nrbufs without the inode lock first. This function
1764 * is speculative anyways, so missing one is ok.
1766 if (pipe->nrbufs < pipe->buffers)
1772 while (pipe->nrbufs >= pipe->buffers) {
1773 if (!pipe->readers) {
1774 send_sig(SIGPIPE, current, 0);
1778 if (flags & SPLICE_F_NONBLOCK) {
1782 if (signal_pending(current)) {
1786 pipe->waiting_writers++;
1788 pipe->waiting_writers--;
1796 * Splice contents of ipipe to opipe.
1798 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1799 struct pipe_inode_info *opipe,
1800 size_t len, unsigned int flags)
1802 struct pipe_buffer *ibuf, *obuf;
1804 bool input_wakeup = false;
1808 ret = ipipe_prep(ipipe, flags);
1812 ret = opipe_prep(opipe, flags);
1817 * Potential ABBA deadlock, work around it by ordering lock
1818 * grabbing by pipe info address. Otherwise two different processes
1819 * could deadlock (one doing tee from A -> B, the other from B -> A).
1821 pipe_double_lock(ipipe, opipe);
1824 if (!opipe->readers) {
1825 send_sig(SIGPIPE, current, 0);
1831 if (!ipipe->nrbufs && !ipipe->writers)
1835 * Cannot make any progress, because either the input
1836 * pipe is empty or the output pipe is full.
1838 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1839 /* Already processed some buffers, break */
1843 if (flags & SPLICE_F_NONBLOCK) {
1849 * We raced with another reader/writer and haven't
1850 * managed to process any buffers. A zero return
1851 * value means EOF, so retry instead.
1858 ibuf = ipipe->bufs + ipipe->curbuf;
1859 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1860 obuf = opipe->bufs + nbuf;
1862 if (len >= ibuf->len) {
1864 * Simply move the whole buffer from ipipe to opipe
1869 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1871 input_wakeup = true;
1874 * Get a reference to this pipe buffer,
1875 * so we can copy the contents over.
1877 ibuf->ops->get(ipipe, ibuf);
1881 * Don't inherit the gift flag, we need to
1882 * prevent multiple steals of this page.
1884 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1888 ibuf->offset += obuf->len;
1889 ibuf->len -= obuf->len;
1899 * If we put data in the output pipe, wakeup any potential readers.
1902 wakeup_pipe_readers(opipe);
1905 wakeup_pipe_writers(ipipe);
1911 * Link contents of ipipe to opipe.
1913 static int link_pipe(struct pipe_inode_info *ipipe,
1914 struct pipe_inode_info *opipe,
1915 size_t len, unsigned int flags)
1917 struct pipe_buffer *ibuf, *obuf;
1918 int ret = 0, i = 0, nbuf;
1921 * Potential ABBA deadlock, work around it by ordering lock
1922 * grabbing by pipe info address. Otherwise two different processes
1923 * could deadlock (one doing tee from A -> B, the other from B -> A).
1925 pipe_double_lock(ipipe, opipe);
1928 if (!opipe->readers) {
1929 send_sig(SIGPIPE, current, 0);
1936 * If we have iterated all input buffers or ran out of
1937 * output room, break.
1939 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1942 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1943 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946 * Get a reference to this pipe buffer,
1947 * so we can copy the contents over.
1949 ibuf->ops->get(ipipe, ibuf);
1951 obuf = opipe->bufs + nbuf;
1955 * Don't inherit the gift flag, we need to
1956 * prevent multiple steals of this page.
1958 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1960 if (obuf->len > len)
1970 * return EAGAIN if we have the potential of some data in the
1971 * future, otherwise just return 0
1973 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1980 * If we put data in the output pipe, wakeup any potential readers.
1983 wakeup_pipe_readers(opipe);
1989 * This is a tee(1) implementation that works on pipes. It doesn't copy
1990 * any data, it simply references the 'in' pages on the 'out' pipe.
1991 * The 'flags' used are the SPLICE_F_* variants, currently the only
1992 * applicable one is SPLICE_F_NONBLOCK.
1994 static long do_tee(struct file *in, struct file *out, size_t len,
1997 struct pipe_inode_info *ipipe = get_pipe_info(in);
1998 struct pipe_inode_info *opipe = get_pipe_info(out);
2002 * Duplicate the contents of ipipe to opipe without actually
2005 if (ipipe && opipe && ipipe != opipe) {
2007 * Keep going, unless we encounter an error. The ipipe/opipe
2008 * ordering doesn't really matter.
2010 ret = ipipe_prep(ipipe, flags);
2012 ret = opipe_prep(opipe, flags);
2014 ret = link_pipe(ipipe, opipe, len, flags);
2021 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2032 if (in.file->f_mode & FMODE_READ) {
2033 struct fd out = fdget(fdout);
2035 if (out.file->f_mode & FMODE_WRITE)
2036 error = do_tee(in.file, out.file,