2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
44 struct page *page = buf->page;
45 struct address_space *mapping;
49 mapping = page_mapping(page);
51 WARN_ON(!PageUptodate(page));
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
61 wait_on_page_writeback(page);
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
68 * If we succeeded in removing the mapping, set LRU flag
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 struct page *page = buf->page;
103 if (!PageUptodate(page)) {
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
110 if (!page->mapping) {
116 * Uh oh, read-error from disk.
118 if (!PageUptodate(page)) {
124 * Page is ok afterall, we are done.
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
166 * splice_to_pipe - fill passed data into a pipe
167 * @pipe: pipe to fill
171 * @spd contains a map of pages and len/offset tuples, along with
172 * the struct pipe_buf_operations associated with these pages. This
173 * function will link that data to the pipe.
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
196 if (pipe->nrbufs < pipe->buffers) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
215 if (!--spd->nr_pages)
217 if (pipe->nrbufs < pipe->buffers)
223 if (spd->flags & SPLICE_F_NONBLOCK) {
229 if (signal_pending(current)) {
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
243 pipe->waiting_writers++;
245 pipe->waiting_writers--;
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
265 page_cache_release(spd->pages[i]);
269 * Check if we need to grow the arrays holding pages and partial page
272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
274 if (pipe->buffers <= PIPE_DEF_BUFFERS)
277 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
278 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
280 if (spd->pages && spd->partial)
288 void splice_shrink_spd(struct pipe_inode_info *pipe,
289 struct splice_pipe_desc *spd)
291 if (pipe->buffers <= PIPE_DEF_BUFFERS)
299 __generic_file_splice_read(struct file *in, loff_t *ppos,
300 struct pipe_inode_info *pipe, size_t len,
303 struct address_space *mapping = in->f_mapping;
304 unsigned int loff, nr_pages, req_pages;
305 struct page *pages[PIPE_DEF_BUFFERS];
306 struct partial_page partial[PIPE_DEF_BUFFERS];
308 pgoff_t index, end_index;
311 struct splice_pipe_desc spd = {
315 .ops = &page_cache_pipe_buf_ops,
316 .spd_release = spd_release_page,
319 if (splice_grow_spd(pipe, &spd))
322 index = *ppos >> PAGE_CACHE_SHIFT;
323 loff = *ppos & ~PAGE_CACHE_MASK;
324 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
325 nr_pages = min(req_pages, pipe->buffers);
328 * Lookup the (hopefully) full range of pages we need.
330 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
331 index += spd.nr_pages;
334 * If find_get_pages_contig() returned fewer pages than we needed,
335 * readahead/allocate the rest and fill in the holes.
337 if (spd.nr_pages < nr_pages)
338 page_cache_sync_readahead(mapping, &in->f_ra, in,
339 index, req_pages - spd.nr_pages);
342 while (spd.nr_pages < nr_pages) {
344 * Page could be there, find_get_pages_contig() breaks on
347 page = find_get_page(mapping, index);
350 * page didn't exist, allocate one.
352 page = page_cache_alloc_cold(mapping);
356 error = add_to_page_cache_lru(page, mapping, index,
358 if (unlikely(error)) {
359 page_cache_release(page);
360 if (error == -EEXIST)
365 * add_to_page_cache() locks the page, unlock it
366 * to avoid convoluting the logic below even more.
371 spd.pages[spd.nr_pages++] = page;
376 * Now loop over the map and see if we need to start IO on any
377 * pages, fill in the partial map, etc.
379 index = *ppos >> PAGE_CACHE_SHIFT;
380 nr_pages = spd.nr_pages;
382 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
383 unsigned int this_len;
389 * this_len is the max we'll use from this page
391 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
392 page = spd.pages[page_nr];
394 if (PageReadahead(page))
395 page_cache_async_readahead(mapping, &in->f_ra, in,
396 page, index, req_pages - page_nr);
399 * If the page isn't uptodate, we may need to start io on it
401 if (!PageUptodate(page)) {
403 * If in nonblock mode then dont block on waiting
404 * for an in-flight io page
406 if (flags & SPLICE_F_NONBLOCK) {
407 if (!trylock_page(page)) {
415 * Page was truncated, or invalidated by the
416 * filesystem. Redo the find/create, but this time the
417 * page is kept locked, so there's no chance of another
418 * race with truncate/invalidate.
420 if (!page->mapping) {
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
429 page_cache_release(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
433 * page was already under io and is now done, great
435 if (PageUptodate(page)) {
441 * need to read in the page
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
446 * We really should re-lookup the page here,
447 * but it complicates things a lot. Instead
448 * lets just do what we already stored, and
449 * we'll get it the next time we are called.
451 if (error == AOP_TRUNCATED_PAGE)
459 * i_size must be checked after PageUptodate.
461 isize = i_size_read(mapping->host);
462 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
463 if (unlikely(!isize || index > end_index))
467 * if this is the last page, see if we need to shrink
468 * the length and stop
470 if (end_index == index) {
474 * max good bytes in this page
476 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
481 * force quit after adding this page
483 this_len = min(this_len, plen - loff);
487 spd.partial[page_nr].offset = loff;
488 spd.partial[page_nr].len = this_len;
496 * Release any pages at the end, if we quit early. 'page_nr' is how far
497 * we got, 'nr_pages' is how many pages are in the map.
499 while (page_nr < nr_pages)
500 page_cache_release(spd.pages[page_nr++]);
501 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
504 error = splice_to_pipe(pipe, &spd);
506 splice_shrink_spd(pipe, &spd);
511 * generic_file_splice_read - splice data from file to a pipe
512 * @in: file to splice from
513 * @ppos: position in @in
514 * @pipe: pipe to splice to
515 * @len: number of bytes to splice
516 * @flags: splice modifier flags
519 * Will read pages from given file and fill them into a pipe. Can be
520 * used as long as the address_space operations for the source implements
524 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
525 struct pipe_inode_info *pipe, size_t len,
531 isize = i_size_read(in->f_mapping->host);
532 if (unlikely(*ppos >= isize))
535 left = isize - *ppos;
536 if (unlikely(left < len))
539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
547 EXPORT_SYMBOL(generic_file_splice_read);
549 static const struct pipe_buf_operations default_pipe_buf_ops = {
551 .map = generic_pipe_buf_map,
552 .unmap = generic_pipe_buf_unmap,
553 .confirm = generic_pipe_buf_confirm,
554 .release = generic_pipe_buf_release,
555 .steal = generic_pipe_buf_steal,
556 .get = generic_pipe_buf_get,
559 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
560 unsigned long vlen, loff_t offset)
568 /* The cast to a user pointer is valid due to the set_fs() */
569 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
575 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
583 /* The cast to a user pointer is valid due to the set_fs() */
584 res = vfs_write(file, (const char __user *)buf, count, &pos);
590 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
591 struct pipe_inode_info *pipe, size_t len,
594 unsigned int nr_pages;
595 unsigned int nr_freed;
597 struct page *pages[PIPE_DEF_BUFFERS];
598 struct partial_page partial[PIPE_DEF_BUFFERS];
599 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
605 struct splice_pipe_desc spd = {
609 .ops = &default_pipe_buf_ops,
610 .spd_release = spd_release_page,
613 if (splice_grow_spd(pipe, &spd))
618 if (pipe->buffers > PIPE_DEF_BUFFERS) {
619 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
624 index = *ppos >> PAGE_CACHE_SHIFT;
625 offset = *ppos & ~PAGE_CACHE_MASK;
626 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
628 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
631 page = alloc_page(GFP_USER);
636 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
637 vec[i].iov_base = (void __user *) page_address(page);
638 vec[i].iov_len = this_len;
645 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
656 for (i = 0; i < spd.nr_pages; i++) {
657 this_len = min_t(size_t, vec[i].iov_len, res);
658 spd.partial[i].offset = 0;
659 spd.partial[i].len = this_len;
661 __free_page(spd.pages[i]);
667 spd.nr_pages -= nr_freed;
669 res = splice_to_pipe(pipe, &spd);
676 splice_shrink_spd(pipe, &spd);
680 for (i = 0; i < spd.nr_pages; i++)
681 __free_page(spd.pages[i]);
686 EXPORT_SYMBOL(default_file_splice_read);
689 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
690 * using sendpage(). Return the number of bytes sent.
692 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
693 struct pipe_buffer *buf, struct splice_desc *sd)
695 struct file *file = sd->u.file;
696 loff_t pos = sd->pos;
699 ret = buf->ops->confirm(pipe, buf);
701 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
702 if (file->f_op && file->f_op->sendpage)
703 ret = file->f_op->sendpage(file, buf->page, buf->offset,
704 sd->len, &pos, more);
713 * This is a little more tricky than the file -> pipe splicing. There are
714 * basically three cases:
716 * - Destination page already exists in the address space and there
717 * are users of it. For that case we have no other option that
718 * copying the data. Tough luck.
719 * - Destination page already exists in the address space, but there
720 * are no users of it. Make sure it's uptodate, then drop it. Fall
721 * through to last case.
722 * - Destination page does not exist, we can add the pipe page to
723 * the page cache and avoid the copy.
725 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
726 * sd->flags), we attempt to migrate pages from the pipe to the output
727 * file address space page cache. This is possible if no one else has
728 * the pipe page referenced outside of the pipe and page cache. If
729 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
730 * a new page in the output file page cache and fill/dirty that.
732 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
733 struct splice_desc *sd)
735 struct file *file = sd->u.file;
736 struct address_space *mapping = file->f_mapping;
737 unsigned int offset, this_len;
743 * make sure the data in this buffer is uptodate
745 ret = buf->ops->confirm(pipe, buf);
749 offset = sd->pos & ~PAGE_CACHE_MASK;
752 if (this_len + offset > PAGE_CACHE_SIZE)
753 this_len = PAGE_CACHE_SIZE - offset;
755 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
756 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
760 if (buf->page != page) {
762 * Careful, ->map() uses KM_USER0!
764 char *src = buf->ops->map(pipe, buf, 1);
765 char *dst = kmap_atomic(page, KM_USER1);
767 memcpy(dst + offset, src + buf->offset, this_len);
768 flush_dcache_page(page);
769 kunmap_atomic(dst, KM_USER1);
770 buf->ops->unmap(pipe, buf, src);
772 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
777 EXPORT_SYMBOL(pipe_to_file);
779 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
782 if (waitqueue_active(&pipe->wait))
783 wake_up_interruptible(&pipe->wait);
784 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
788 * splice_from_pipe_feed - feed available data from a pipe to a file
789 * @pipe: pipe to splice from
790 * @sd: information to @actor
791 * @actor: handler that splices the data
794 * This function loops over the pipe and calls @actor to do the
795 * actual moving of a single struct pipe_buffer to the desired
796 * destination. It returns when there's no more buffers left in
797 * the pipe or if the requested number of bytes (@sd->total_len)
798 * have been copied. It returns a positive number (one) if the
799 * pipe needs to be filled with more data, zero if the required
800 * number of bytes have been copied and -errno on error.
802 * This, together with splice_from_pipe_{begin,end,next}, may be
803 * used to implement the functionality of __splice_from_pipe() when
804 * locking is required around copying the pipe buffers to the
807 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
812 while (pipe->nrbufs) {
813 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
814 const struct pipe_buf_operations *ops = buf->ops;
817 if (sd->len > sd->total_len)
818 sd->len = sd->total_len;
820 ret = actor(pipe, buf, sd);
829 sd->num_spliced += ret;
832 sd->total_len -= ret;
836 ops->release(pipe, buf);
837 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
840 sd->need_wakeup = true;
849 EXPORT_SYMBOL(splice_from_pipe_feed);
852 * splice_from_pipe_next - wait for some data to splice from
853 * @pipe: pipe to splice from
854 * @sd: information about the splice operation
857 * This function will wait for some data and return a positive
858 * value (one) if pipe buffers are available. It will return zero
859 * or -errno if no more data needs to be spliced.
861 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
863 while (!pipe->nrbufs) {
867 if (!pipe->waiting_writers && sd->num_spliced)
870 if (sd->flags & SPLICE_F_NONBLOCK)
873 if (signal_pending(current))
876 if (sd->need_wakeup) {
877 wakeup_pipe_writers(pipe);
878 sd->need_wakeup = false;
886 EXPORT_SYMBOL(splice_from_pipe_next);
889 * splice_from_pipe_begin - start splicing from pipe
890 * @sd: information about the splice operation
893 * This function should be called before a loop containing
894 * splice_from_pipe_next() and splice_from_pipe_feed() to
895 * initialize the necessary fields of @sd.
897 void splice_from_pipe_begin(struct splice_desc *sd)
900 sd->need_wakeup = false;
902 EXPORT_SYMBOL(splice_from_pipe_begin);
905 * splice_from_pipe_end - finish splicing from pipe
906 * @pipe: pipe to splice from
907 * @sd: information about the splice operation
910 * This function will wake up pipe writers if necessary. It should
911 * be called after a loop containing splice_from_pipe_next() and
912 * splice_from_pipe_feed().
914 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
917 wakeup_pipe_writers(pipe);
919 EXPORT_SYMBOL(splice_from_pipe_end);
922 * __splice_from_pipe - splice data from a pipe to given actor
923 * @pipe: pipe to splice from
924 * @sd: information to @actor
925 * @actor: handler that splices the data
928 * This function does little more than loop over the pipe and call
929 * @actor to do the actual moving of a single struct pipe_buffer to
930 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
934 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
939 splice_from_pipe_begin(sd);
941 ret = splice_from_pipe_next(pipe, sd);
943 ret = splice_from_pipe_feed(pipe, sd, actor);
945 splice_from_pipe_end(pipe, sd);
947 return sd->num_spliced ? sd->num_spliced : ret;
949 EXPORT_SYMBOL(__splice_from_pipe);
952 * splice_from_pipe - splice data from a pipe to a file
953 * @pipe: pipe to splice from
954 * @out: file to splice to
955 * @ppos: position in @out
956 * @len: how many bytes to splice
957 * @flags: splice modifier flags
958 * @actor: handler that splices the data
961 * See __splice_from_pipe. This function locks the pipe inode,
962 * otherwise it's identical to __splice_from_pipe().
965 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
966 loff_t *ppos, size_t len, unsigned int flags,
970 struct splice_desc sd = {
978 ret = __splice_from_pipe(pipe, &sd, actor);
985 * generic_file_splice_write - splice data from a pipe to a file
987 * @out: file to write to
988 * @ppos: position in @out
989 * @len: number of bytes to splice
990 * @flags: splice modifier flags
993 * Will either move or copy pages (determined by @flags options) from
994 * the given pipe inode to the given file.
998 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
999 loff_t *ppos, size_t len, unsigned int flags)
1001 struct address_space *mapping = out->f_mapping;
1002 struct inode *inode = mapping->host;
1003 struct splice_desc sd = {
1013 splice_from_pipe_begin(&sd);
1015 ret = splice_from_pipe_next(pipe, &sd);
1019 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1020 ret = file_remove_suid(out);
1022 file_update_time(out);
1023 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1025 mutex_unlock(&inode->i_mutex);
1027 splice_from_pipe_end(pipe, &sd);
1032 ret = sd.num_spliced;
1035 unsigned long nr_pages;
1038 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1040 err = generic_write_sync(out, *ppos, ret);
1045 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1051 EXPORT_SYMBOL(generic_file_splice_write);
1053 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1054 struct splice_desc *sd)
1059 ret = buf->ops->confirm(pipe, buf);
1063 data = buf->ops->map(pipe, buf, 0);
1064 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1065 buf->ops->unmap(pipe, buf, data);
1070 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1071 struct file *out, loff_t *ppos,
1072 size_t len, unsigned int flags)
1076 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 * generic_splice_sendpage - splice data from a pipe to a socket
1085 * @pipe: pipe to splice from
1086 * @out: socket to write to
1087 * @ppos: position in @out
1088 * @len: number of bytes to splice
1089 * @flags: splice modifier flags
1092 * Will send @len bytes from the pipe to a network socket. No data copying
1096 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1097 loff_t *ppos, size_t len, unsigned int flags)
1099 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1102 EXPORT_SYMBOL(generic_splice_sendpage);
1105 * Attempt to initiate a splice from pipe to file.
1107 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1108 loff_t *ppos, size_t len, unsigned int flags)
1110 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1111 loff_t *, size_t, unsigned int);
1114 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1117 if (unlikely(out->f_flags & O_APPEND))
1120 ret = rw_verify_area(WRITE, out, ppos, len);
1121 if (unlikely(ret < 0))
1124 if (out->f_op && out->f_op->splice_write)
1125 splice_write = out->f_op->splice_write;
1127 splice_write = default_file_splice_write;
1129 return splice_write(pipe, out, ppos, len, flags);
1133 * Attempt to initiate a splice from a file to a pipe.
1135 static long do_splice_to(struct file *in, loff_t *ppos,
1136 struct pipe_inode_info *pipe, size_t len,
1139 ssize_t (*splice_read)(struct file *, loff_t *,
1140 struct pipe_inode_info *, size_t, unsigned int);
1143 if (unlikely(!(in->f_mode & FMODE_READ)))
1146 ret = rw_verify_area(READ, in, ppos, len);
1147 if (unlikely(ret < 0))
1150 if (in->f_op && in->f_op->splice_read)
1151 splice_read = in->f_op->splice_read;
1153 splice_read = default_file_splice_read;
1155 return splice_read(in, ppos, pipe, len, flags);
1159 * splice_direct_to_actor - splices data directly between two non-pipes
1160 * @in: file to splice from
1161 * @sd: actor information on where to splice to
1162 * @actor: handles the data splicing
1165 * This is a special case helper to splice directly between two
1166 * points, without requiring an explicit pipe. Internally an allocated
1167 * pipe is cached in the process, and reused during the lifetime of
1171 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1172 splice_direct_actor *actor)
1174 struct pipe_inode_info *pipe;
1181 * We require the input being a regular file, as we don't want to
1182 * randomly drop data for eg socket -> socket splicing. Use the
1183 * piped splicing for that!
1185 i_mode = in->f_path.dentry->d_inode->i_mode;
1186 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1190 * neither in nor out is a pipe, setup an internal pipe attached to
1191 * 'out' and transfer the wanted data from 'in' to 'out' through that
1193 pipe = current->splice_pipe;
1194 if (unlikely(!pipe)) {
1195 pipe = alloc_pipe_info(NULL);
1200 * We don't have an immediate reader, but we'll read the stuff
1201 * out of the pipe right after the splice_to_pipe(). So set
1202 * PIPE_READERS appropriately.
1206 current->splice_pipe = pipe;
1214 len = sd->total_len;
1218 * Don't block on output, we have to drain the direct pipe.
1220 sd->flags &= ~SPLICE_F_NONBLOCK;
1224 loff_t pos = sd->pos, prev_pos = pos;
1226 ret = do_splice_to(in, &pos, pipe, len, flags);
1227 if (unlikely(ret <= 0))
1231 sd->total_len = read_len;
1234 * NOTE: nonblocking mode only applies to the input. We
1235 * must not do the output in nonblocking mode as then we
1236 * could get stuck data in the internal pipe:
1238 ret = actor(pipe, sd);
1239 if (unlikely(ret <= 0)) {
1248 if (ret < read_len) {
1249 sd->pos = prev_pos + ret;
1255 pipe->nrbufs = pipe->curbuf = 0;
1261 * If we did an incomplete transfer we must release
1262 * the pipe buffers in question:
1264 for (i = 0; i < pipe->buffers; i++) {
1265 struct pipe_buffer *buf = pipe->bufs + i;
1268 buf->ops->release(pipe, buf);
1278 EXPORT_SYMBOL(splice_direct_to_actor);
1280 static int direct_splice_actor(struct pipe_inode_info *pipe,
1281 struct splice_desc *sd)
1283 struct file *file = sd->u.file;
1285 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1289 * do_splice_direct - splices data directly between two files
1290 * @in: file to splice from
1291 * @ppos: input file offset
1292 * @out: file to splice to
1293 * @len: number of bytes to splice
1294 * @flags: splice modifier flags
1297 * For use by do_sendfile(). splice can easily emulate sendfile, but
1298 * doing it in the application would incur an extra system call
1299 * (splice in + splice out, as compared to just sendfile()). So this helper
1300 * can splice directly through a process-private pipe.
1303 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1304 size_t len, unsigned int flags)
1306 struct splice_desc sd = {
1315 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1322 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1323 struct pipe_inode_info *opipe,
1324 size_t len, unsigned int flags);
1326 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1327 * location, so checking ->i_pipe is not enough to verify that this is a
1330 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1332 if (S_ISFIFO(inode->i_mode))
1333 return inode->i_pipe;
1339 * Determine where to splice to/from.
1341 static long do_splice(struct file *in, loff_t __user *off_in,
1342 struct file *out, loff_t __user *off_out,
1343 size_t len, unsigned int flags)
1345 struct pipe_inode_info *ipipe;
1346 struct pipe_inode_info *opipe;
1347 loff_t offset, *off;
1350 ipipe = pipe_info(in->f_path.dentry->d_inode);
1351 opipe = pipe_info(out->f_path.dentry->d_inode);
1353 if (ipipe && opipe) {
1354 if (off_in || off_out)
1357 if (!(in->f_mode & FMODE_READ))
1360 if (!(out->f_mode & FMODE_WRITE))
1363 /* Splicing to self would be fun, but... */
1367 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1374 if (!out->f_op || !out->f_op->llseek ||
1375 out->f_op->llseek == no_llseek)
1377 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1383 ret = do_splice_from(ipipe, out, off, len, flags);
1385 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1395 if (!in->f_op || !in->f_op->llseek ||
1396 in->f_op->llseek == no_llseek)
1398 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1404 ret = do_splice_to(in, off, opipe, len, flags);
1406 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1416 * Map an iov into an array of pages and offset/length tupples. With the
1417 * partial_page structure, we can map several non-contiguous ranges into
1418 * our ones pages[] map instead of splitting that operation into pieces.
1419 * Could easily be exported as a generic helper for other users, in which
1420 * case one would probably want to add a 'max_nr_pages' parameter as well.
1422 static int get_iovec_page_array(const struct iovec __user *iov,
1423 unsigned int nr_vecs, struct page **pages,
1424 struct partial_page *partial, int aligned,
1425 unsigned int pipe_buffers)
1427 int buffers = 0, error = 0;
1430 unsigned long off, npages;
1437 if (copy_from_user(&entry, iov, sizeof(entry)))
1440 base = entry.iov_base;
1441 len = entry.iov_len;
1444 * Sanity check this iovec. 0 read succeeds.
1450 if (!access_ok(VERIFY_READ, base, len))
1454 * Get this base offset and number of pages, then map
1455 * in the user pages.
1457 off = (unsigned long) base & ~PAGE_MASK;
1460 * If asked for alignment, the offset must be zero and the
1461 * length a multiple of the PAGE_SIZE.
1464 if (aligned && (off || len & ~PAGE_MASK))
1467 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468 if (npages > pipe_buffers - buffers)
1469 npages = pipe_buffers - buffers;
1471 error = get_user_pages_fast((unsigned long)base, npages,
1472 0, &pages[buffers]);
1474 if (unlikely(error <= 0))
1478 * Fill this contiguous range into the partial page map.
1480 for (i = 0; i < error; i++) {
1481 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1483 partial[buffers].offset = off;
1484 partial[buffers].len = plen;
1492 * We didn't complete this iov, stop here since it probably
1493 * means we have to move some of this into a pipe to
1494 * be able to continue.
1500 * Don't continue if we mapped fewer pages than we asked for,
1501 * or if we mapped the max number of pages that we have
1504 if (error < npages || buffers == pipe_buffers)
1517 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1518 struct splice_desc *sd)
1523 ret = buf->ops->confirm(pipe, buf);
1528 * See if we can use the atomic maps, by prefaulting in the
1529 * pages and doing an atomic copy
1531 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1532 src = buf->ops->map(pipe, buf, 1);
1533 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1535 buf->ops->unmap(pipe, buf, src);
1543 * No dice, use slow non-atomic map and copy
1545 src = buf->ops->map(pipe, buf, 0);
1548 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1551 buf->ops->unmap(pipe, buf, src);
1554 sd->u.userptr += ret;
1559 * For lack of a better implementation, implement vmsplice() to userspace
1560 * as a simple copy of the pipes pages to the user iov.
1562 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1563 unsigned long nr_segs, unsigned int flags)
1565 struct pipe_inode_info *pipe;
1566 struct splice_desc sd;
1571 pipe = pipe_info(file->f_path.dentry->d_inode);
1583 * Get user address base and length for this iovec.
1585 error = get_user(base, &iov->iov_base);
1586 if (unlikely(error))
1588 error = get_user(len, &iov->iov_len);
1589 if (unlikely(error))
1593 * Sanity check this iovec. 0 read succeeds.
1597 if (unlikely(!base)) {
1602 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1610 sd.u.userptr = base;
1613 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1639 * vmsplice splices a user address range into a pipe. It can be thought of
1640 * as splice-from-memory, where the regular splice is splice-from-file (or
1641 * to file). In both cases the output is a pipe, naturally.
1643 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1644 unsigned long nr_segs, unsigned int flags)
1646 struct pipe_inode_info *pipe;
1647 struct page *pages[PIPE_DEF_BUFFERS];
1648 struct partial_page partial[PIPE_DEF_BUFFERS];
1649 struct splice_pipe_desc spd = {
1653 .ops = &user_page_pipe_buf_ops,
1654 .spd_release = spd_release_page,
1658 pipe = pipe_info(file->f_path.dentry->d_inode);
1662 if (splice_grow_spd(pipe, &spd))
1665 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1666 spd.partial, flags & SPLICE_F_GIFT,
1668 if (spd.nr_pages <= 0)
1671 ret = splice_to_pipe(pipe, &spd);
1673 splice_shrink_spd(pipe, &spd);
1678 * Note that vmsplice only really supports true splicing _from_ user memory
1679 * to a pipe, not the other way around. Splicing from user memory is a simple
1680 * operation that can be supported without any funky alignment restrictions
1681 * or nasty vm tricks. We simply map in the user memory and fill them into
1682 * a pipe. The reverse isn't quite as easy, though. There are two possible
1683 * solutions for that:
1685 * - memcpy() the data internally, at which point we might as well just
1686 * do a regular read() on the buffer anyway.
1687 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1688 * has restriction limitations on both ends of the pipe).
1690 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1693 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1694 unsigned long, nr_segs, unsigned int, flags)
1700 if (unlikely(nr_segs > UIO_MAXIOV))
1702 else if (unlikely(!nr_segs))
1706 file = fget_light(fd, &fput);
1708 if (file->f_mode & FMODE_WRITE)
1709 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1710 else if (file->f_mode & FMODE_READ)
1711 error = vmsplice_to_user(file, iov, nr_segs, flags);
1713 fput_light(file, fput);
1719 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1720 int, fd_out, loff_t __user *, off_out,
1721 size_t, len, unsigned int, flags)
1724 struct file *in, *out;
1725 int fput_in, fput_out;
1731 in = fget_light(fd_in, &fput_in);
1733 if (in->f_mode & FMODE_READ) {
1734 out = fget_light(fd_out, &fput_out);
1736 if (out->f_mode & FMODE_WRITE)
1737 error = do_splice(in, off_in,
1740 fput_light(out, fput_out);
1744 fput_light(in, fput_in);
1751 * Make sure there's data to read. Wait for input if we can, otherwise
1752 * return an appropriate error.
1754 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1759 * Check ->nrbufs without the inode lock first. This function
1760 * is speculative anyways, so missing one is ok.
1768 while (!pipe->nrbufs) {
1769 if (signal_pending(current)) {
1775 if (!pipe->waiting_writers) {
1776 if (flags & SPLICE_F_NONBLOCK) {
1789 * Make sure there's writeable room. Wait for room if we can, otherwise
1790 * return an appropriate error.
1792 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1797 * Check ->nrbufs without the inode lock first. This function
1798 * is speculative anyways, so missing one is ok.
1800 if (pipe->nrbufs < pipe->buffers)
1806 while (pipe->nrbufs >= pipe->buffers) {
1807 if (!pipe->readers) {
1808 send_sig(SIGPIPE, current, 0);
1812 if (flags & SPLICE_F_NONBLOCK) {
1816 if (signal_pending(current)) {
1820 pipe->waiting_writers++;
1822 pipe->waiting_writers--;
1830 * Splice contents of ipipe to opipe.
1832 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1833 struct pipe_inode_info *opipe,
1834 size_t len, unsigned int flags)
1836 struct pipe_buffer *ibuf, *obuf;
1838 bool input_wakeup = false;
1842 ret = ipipe_prep(ipipe, flags);
1846 ret = opipe_prep(opipe, flags);
1851 * Potential ABBA deadlock, work around it by ordering lock
1852 * grabbing by pipe info address. Otherwise two different processes
1853 * could deadlock (one doing tee from A -> B, the other from B -> A).
1855 pipe_double_lock(ipipe, opipe);
1858 if (!opipe->readers) {
1859 send_sig(SIGPIPE, current, 0);
1865 if (!ipipe->nrbufs && !ipipe->writers)
1869 * Cannot make any progress, because either the input
1870 * pipe is empty or the output pipe is full.
1872 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1873 /* Already processed some buffers, break */
1877 if (flags & SPLICE_F_NONBLOCK) {
1883 * We raced with another reader/writer and haven't
1884 * managed to process any buffers. A zero return
1885 * value means EOF, so retry instead.
1892 ibuf = ipipe->bufs + ipipe->curbuf;
1893 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1894 obuf = opipe->bufs + nbuf;
1896 if (len >= ibuf->len) {
1898 * Simply move the whole buffer from ipipe to opipe
1903 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1905 input_wakeup = true;
1908 * Get a reference to this pipe buffer,
1909 * so we can copy the contents over.
1911 ibuf->ops->get(ipipe, ibuf);
1915 * Don't inherit the gift flag, we need to
1916 * prevent multiple steals of this page.
1918 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1922 ibuf->offset += obuf->len;
1923 ibuf->len -= obuf->len;
1933 * If we put data in the output pipe, wakeup any potential readers.
1937 if (waitqueue_active(&opipe->wait))
1938 wake_up_interruptible(&opipe->wait);
1939 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1942 wakeup_pipe_writers(ipipe);
1948 * Link contents of ipipe to opipe.
1950 static int link_pipe(struct pipe_inode_info *ipipe,
1951 struct pipe_inode_info *opipe,
1952 size_t len, unsigned int flags)
1954 struct pipe_buffer *ibuf, *obuf;
1955 int ret = 0, i = 0, nbuf;
1958 * Potential ABBA deadlock, work around it by ordering lock
1959 * grabbing by pipe info address. Otherwise two different processes
1960 * could deadlock (one doing tee from A -> B, the other from B -> A).
1962 pipe_double_lock(ipipe, opipe);
1965 if (!opipe->readers) {
1966 send_sig(SIGPIPE, current, 0);
1973 * If we have iterated all input buffers or ran out of
1974 * output room, break.
1976 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1979 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1980 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1983 * Get a reference to this pipe buffer,
1984 * so we can copy the contents over.
1986 ibuf->ops->get(ipipe, ibuf);
1988 obuf = opipe->bufs + nbuf;
1992 * Don't inherit the gift flag, we need to
1993 * prevent multiple steals of this page.
1995 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1997 if (obuf->len > len)
2007 * return EAGAIN if we have the potential of some data in the
2008 * future, otherwise just return 0
2010 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2017 * If we put data in the output pipe, wakeup any potential readers.
2021 if (waitqueue_active(&opipe->wait))
2022 wake_up_interruptible(&opipe->wait);
2023 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
2030 * This is a tee(1) implementation that works on pipes. It doesn't copy
2031 * any data, it simply references the 'in' pages on the 'out' pipe.
2032 * The 'flags' used are the SPLICE_F_* variants, currently the only
2033 * applicable one is SPLICE_F_NONBLOCK.
2035 static long do_tee(struct file *in, struct file *out, size_t len,
2038 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
2039 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
2043 * Duplicate the contents of ipipe to opipe without actually
2046 if (ipipe && opipe && ipipe != opipe) {
2048 * Keep going, unless we encounter an error. The ipipe/opipe
2049 * ordering doesn't really matter.
2051 ret = ipipe_prep(ipipe, flags);
2053 ret = opipe_prep(opipe, flags);
2055 ret = link_pipe(ipipe, opipe, len, flags);
2062 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2071 in = fget_light(fdin, &fput_in);
2073 if (in->f_mode & FMODE_READ) {
2075 struct file *out = fget_light(fdout, &fput_out);
2078 if (out->f_mode & FMODE_WRITE)
2079 error = do_tee(in, out, len, flags);
2080 fput_light(out, fput_out);
2083 fput_light(in, fput_in);