2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
48 mapping = page_mapping(page);
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
60 wait_on_page_writeback(page);
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
67 * If we succeeded in removing the mapping, set LRU flag
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
99 struct page *page = buf->page;
102 if (!PageUptodate(page)) {
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page->mapping) {
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page)) {
123 * Page is ok afterall, we are done.
134 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 if (waitqueue_active(&pipe->wait))
168 wake_up_interruptible(&pipe->wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
186 unsigned int spd_pages = spd->nr_pages;
187 int ret, do_wakeup, page_nr;
196 if (!pipe->readers) {
197 send_sig(SIGPIPE, current, 0);
203 if (pipe->nrbufs < pipe->buffers) {
204 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205 struct pipe_buffer *buf = pipe->bufs + newbuf;
207 buf->page = spd->pages[page_nr];
208 buf->offset = spd->partial[page_nr].offset;
209 buf->len = spd->partial[page_nr].len;
210 buf->private = spd->partial[page_nr].private;
212 if (spd->flags & SPLICE_F_GIFT)
213 buf->flags |= PIPE_BUF_FLAG_GIFT;
222 if (!--spd->nr_pages)
224 if (pipe->nrbufs < pipe->buffers)
230 if (spd->flags & SPLICE_F_NONBLOCK) {
236 if (signal_pending(current)) {
244 if (waitqueue_active(&pipe->wait))
245 wake_up_interruptible_sync(&pipe->wait);
246 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
250 pipe->waiting_writers++;
252 pipe->waiting_writers--;
258 wakeup_pipe_readers(pipe);
260 while (page_nr < spd_pages)
261 spd->spd_release(spd, page_nr++);
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 page_cache_release(spd->pages[i]);
272 * Check if we need to grow the arrays holding pages and partial page
275 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 if (pipe->buffers <= PIPE_DEF_BUFFERS)
280 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
281 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283 if (spd->pages && spd->partial)
291 void splice_shrink_spd(struct pipe_inode_info *pipe,
292 struct splice_pipe_desc *spd)
294 if (pipe->buffers <= PIPE_DEF_BUFFERS)
302 __generic_file_splice_read(struct file *in, loff_t *ppos,
303 struct pipe_inode_info *pipe, size_t len,
306 struct address_space *mapping = in->f_mapping;
307 unsigned int loff, nr_pages, req_pages;
308 struct page *pages[PIPE_DEF_BUFFERS];
309 struct partial_page partial[PIPE_DEF_BUFFERS];
311 pgoff_t index, end_index;
314 struct splice_pipe_desc spd = {
318 .ops = &page_cache_pipe_buf_ops,
319 .spd_release = spd_release_page,
322 if (splice_grow_spd(pipe, &spd))
325 index = *ppos >> PAGE_CACHE_SHIFT;
326 loff = *ppos & ~PAGE_CACHE_MASK;
327 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
328 nr_pages = min(req_pages, pipe->buffers);
331 * Lookup the (hopefully) full range of pages we need.
333 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
334 index += spd.nr_pages;
337 * If find_get_pages_contig() returned fewer pages than we needed,
338 * readahead/allocate the rest and fill in the holes.
340 if (spd.nr_pages < nr_pages)
341 page_cache_sync_readahead(mapping, &in->f_ra, in,
342 index, req_pages - spd.nr_pages);
345 while (spd.nr_pages < nr_pages) {
347 * Page could be there, find_get_pages_contig() breaks on
350 page = find_get_page(mapping, index);
353 * page didn't exist, allocate one.
355 page = page_cache_alloc_cold(mapping);
359 error = add_to_page_cache_lru(page, mapping, index,
361 if (unlikely(error)) {
362 page_cache_release(page);
363 if (error == -EEXIST)
368 * add_to_page_cache() locks the page, unlock it
369 * to avoid convoluting the logic below even more.
374 spd.pages[spd.nr_pages++] = page;
379 * Now loop over the map and see if we need to start IO on any
380 * pages, fill in the partial map, etc.
382 index = *ppos >> PAGE_CACHE_SHIFT;
383 nr_pages = spd.nr_pages;
385 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
386 unsigned int this_len;
392 * this_len is the max we'll use from this page
394 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
395 page = spd.pages[page_nr];
397 if (PageReadahead(page))
398 page_cache_async_readahead(mapping, &in->f_ra, in,
399 page, index, req_pages - page_nr);
402 * If the page isn't uptodate, we may need to start io on it
404 if (!PageUptodate(page)) {
408 * Page was truncated, or invalidated by the
409 * filesystem. Redo the find/create, but this time the
410 * page is kept locked, so there's no chance of another
411 * race with truncate/invalidate.
413 if (!page->mapping) {
415 page = find_or_create_page(mapping, index,
416 mapping_gfp_mask(mapping));
422 page_cache_release(spd.pages[page_nr]);
423 spd.pages[page_nr] = page;
426 * page was already under io and is now done, great
428 if (PageUptodate(page)) {
434 * need to read in the page
436 error = mapping->a_ops->readpage(in, page);
437 if (unlikely(error)) {
439 * We really should re-lookup the page here,
440 * but it complicates things a lot. Instead
441 * lets just do what we already stored, and
442 * we'll get it the next time we are called.
444 if (error == AOP_TRUNCATED_PAGE)
452 * i_size must be checked after PageUptodate.
454 isize = i_size_read(mapping->host);
455 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
456 if (unlikely(!isize || index > end_index))
460 * if this is the last page, see if we need to shrink
461 * the length and stop
463 if (end_index == index) {
467 * max good bytes in this page
469 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
474 * force quit after adding this page
476 this_len = min(this_len, plen - loff);
480 spd.partial[page_nr].offset = loff;
481 spd.partial[page_nr].len = this_len;
489 * Release any pages at the end, if we quit early. 'page_nr' is how far
490 * we got, 'nr_pages' is how many pages are in the map.
492 while (page_nr < nr_pages)
493 page_cache_release(spd.pages[page_nr++]);
494 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497 error = splice_to_pipe(pipe, &spd);
499 splice_shrink_spd(pipe, &spd);
504 * generic_file_splice_read - splice data from file to a pipe
505 * @in: file to splice from
506 * @ppos: position in @in
507 * @pipe: pipe to splice to
508 * @len: number of bytes to splice
509 * @flags: splice modifier flags
512 * Will read pages from given file and fill them into a pipe. Can be
513 * used as long as the address_space operations for the source implements
517 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
518 struct pipe_inode_info *pipe, size_t len,
524 isize = i_size_read(in->f_mapping->host);
525 if (unlikely(*ppos >= isize))
528 left = isize - *ppos;
529 if (unlikely(left < len))
532 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540 EXPORT_SYMBOL(generic_file_splice_read);
542 static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .map = generic_pipe_buf_map,
545 .unmap = generic_pipe_buf_unmap,
546 .confirm = generic_pipe_buf_confirm,
547 .release = generic_pipe_buf_release,
548 .steal = generic_pipe_buf_steal,
549 .get = generic_pipe_buf_get,
552 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
553 unsigned long vlen, loff_t offset)
561 /* The cast to a user pointer is valid due to the set_fs() */
562 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
568 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
576 /* The cast to a user pointer is valid due to the set_fs() */
577 res = vfs_write(file, (const char __user *)buf, count, &pos);
583 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
584 struct pipe_inode_info *pipe, size_t len,
587 unsigned int nr_pages;
588 unsigned int nr_freed;
590 struct page *pages[PIPE_DEF_BUFFERS];
591 struct partial_page partial[PIPE_DEF_BUFFERS];
592 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
597 struct splice_pipe_desc spd = {
601 .ops = &default_pipe_buf_ops,
602 .spd_release = spd_release_page,
605 if (splice_grow_spd(pipe, &spd))
610 if (pipe->buffers > PIPE_DEF_BUFFERS) {
611 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
616 offset = *ppos & ~PAGE_CACHE_MASK;
617 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
622 page = alloc_page(GFP_USER);
627 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
628 vec[i].iov_base = (void __user *) page_address(page);
629 vec[i].iov_len = this_len;
636 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
647 for (i = 0; i < spd.nr_pages; i++) {
648 this_len = min_t(size_t, vec[i].iov_len, res);
649 spd.partial[i].offset = 0;
650 spd.partial[i].len = this_len;
652 __free_page(spd.pages[i]);
658 spd.nr_pages -= nr_freed;
660 res = splice_to_pipe(pipe, &spd);
667 splice_shrink_spd(pipe, &spd);
671 for (i = 0; i < spd.nr_pages; i++)
672 __free_page(spd.pages[i]);
677 EXPORT_SYMBOL(default_file_splice_read);
680 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
681 * using sendpage(). Return the number of bytes sent.
683 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
684 struct pipe_buffer *buf, struct splice_desc *sd)
686 struct file *file = sd->u.file;
687 loff_t pos = sd->pos;
690 if (!likely(file->f_op && file->f_op->sendpage))
693 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
694 return file->f_op->sendpage(file, buf->page, buf->offset,
695 sd->len, &pos, more);
699 * This is a little more tricky than the file -> pipe splicing. There are
700 * basically three cases:
702 * - Destination page already exists in the address space and there
703 * are users of it. For that case we have no other option that
704 * copying the data. Tough luck.
705 * - Destination page already exists in the address space, but there
706 * are no users of it. Make sure it's uptodate, then drop it. Fall
707 * through to last case.
708 * - Destination page does not exist, we can add the pipe page to
709 * the page cache and avoid the copy.
711 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
712 * sd->flags), we attempt to migrate pages from the pipe to the output
713 * file address space page cache. This is possible if no one else has
714 * the pipe page referenced outside of the pipe and page cache. If
715 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
716 * a new page in the output file page cache and fill/dirty that.
718 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
719 struct splice_desc *sd)
721 struct file *file = sd->u.file;
722 struct address_space *mapping = file->f_mapping;
723 unsigned int offset, this_len;
728 offset = sd->pos & ~PAGE_CACHE_MASK;
731 if (this_len + offset > PAGE_CACHE_SIZE)
732 this_len = PAGE_CACHE_SIZE - offset;
734 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
735 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
739 if (buf->page != page) {
740 char *src = buf->ops->map(pipe, buf, 1);
741 char *dst = kmap_atomic(page);
743 memcpy(dst + offset, src + buf->offset, this_len);
744 flush_dcache_page(page);
746 buf->ops->unmap(pipe, buf, src);
748 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
753 EXPORT_SYMBOL(pipe_to_file);
755 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
758 if (waitqueue_active(&pipe->wait))
759 wake_up_interruptible(&pipe->wait);
760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
764 * splice_from_pipe_feed - feed available data from a pipe to a file
765 * @pipe: pipe to splice from
766 * @sd: information to @actor
767 * @actor: handler that splices the data
770 * This function loops over the pipe and calls @actor to do the
771 * actual moving of a single struct pipe_buffer to the desired
772 * destination. It returns when there's no more buffers left in
773 * the pipe or if the requested number of bytes (@sd->total_len)
774 * have been copied. It returns a positive number (one) if the
775 * pipe needs to be filled with more data, zero if the required
776 * number of bytes have been copied and -errno on error.
778 * This, together with splice_from_pipe_{begin,end,next}, may be
779 * used to implement the functionality of __splice_from_pipe() when
780 * locking is required around copying the pipe buffers to the
783 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
788 while (pipe->nrbufs) {
789 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
790 const struct pipe_buf_operations *ops = buf->ops;
793 if (sd->len > sd->total_len)
794 sd->len = sd->total_len;
796 ret = buf->ops->confirm(pipe, buf);
803 ret = actor(pipe, buf, sd);
810 sd->num_spliced += ret;
813 sd->total_len -= ret;
817 ops->release(pipe, buf);
818 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
821 sd->need_wakeup = true;
830 EXPORT_SYMBOL(splice_from_pipe_feed);
833 * splice_from_pipe_next - wait for some data to splice from
834 * @pipe: pipe to splice from
835 * @sd: information about the splice operation
838 * This function will wait for some data and return a positive
839 * value (one) if pipe buffers are available. It will return zero
840 * or -errno if no more data needs to be spliced.
842 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
844 while (!pipe->nrbufs) {
848 if (!pipe->waiting_writers && sd->num_spliced)
851 if (sd->flags & SPLICE_F_NONBLOCK)
854 if (signal_pending(current))
857 if (sd->need_wakeup) {
858 wakeup_pipe_writers(pipe);
859 sd->need_wakeup = false;
867 EXPORT_SYMBOL(splice_from_pipe_next);
870 * splice_from_pipe_begin - start splicing from pipe
871 * @sd: information about the splice operation
874 * This function should be called before a loop containing
875 * splice_from_pipe_next() and splice_from_pipe_feed() to
876 * initialize the necessary fields of @sd.
878 void splice_from_pipe_begin(struct splice_desc *sd)
881 sd->need_wakeup = false;
883 EXPORT_SYMBOL(splice_from_pipe_begin);
886 * splice_from_pipe_end - finish splicing from pipe
887 * @pipe: pipe to splice from
888 * @sd: information about the splice operation
891 * This function will wake up pipe writers if necessary. It should
892 * be called after a loop containing splice_from_pipe_next() and
893 * splice_from_pipe_feed().
895 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
898 wakeup_pipe_writers(pipe);
900 EXPORT_SYMBOL(splice_from_pipe_end);
903 * __splice_from_pipe - splice data from a pipe to given actor
904 * @pipe: pipe to splice from
905 * @sd: information to @actor
906 * @actor: handler that splices the data
909 * This function does little more than loop over the pipe and call
910 * @actor to do the actual moving of a single struct pipe_buffer to
911 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
915 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
920 splice_from_pipe_begin(sd);
922 ret = splice_from_pipe_next(pipe, sd);
924 ret = splice_from_pipe_feed(pipe, sd, actor);
926 splice_from_pipe_end(pipe, sd);
928 return sd->num_spliced ? sd->num_spliced : ret;
930 EXPORT_SYMBOL(__splice_from_pipe);
933 * splice_from_pipe - splice data from a pipe to a file
934 * @pipe: pipe to splice from
935 * @out: file to splice to
936 * @ppos: position in @out
937 * @len: how many bytes to splice
938 * @flags: splice modifier flags
939 * @actor: handler that splices the data
942 * See __splice_from_pipe. This function locks the pipe inode,
943 * otherwise it's identical to __splice_from_pipe().
946 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
947 loff_t *ppos, size_t len, unsigned int flags,
951 struct splice_desc sd = {
959 ret = __splice_from_pipe(pipe, &sd, actor);
966 * generic_file_splice_write - splice data from a pipe to a file
968 * @out: file to write to
969 * @ppos: position in @out
970 * @len: number of bytes to splice
971 * @flags: splice modifier flags
974 * Will either move or copy pages (determined by @flags options) from
975 * the given pipe inode to the given file.
979 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
980 loff_t *ppos, size_t len, unsigned int flags)
982 struct address_space *mapping = out->f_mapping;
983 struct inode *inode = mapping->host;
984 struct splice_desc sd = {
994 splice_from_pipe_begin(&sd);
996 ret = splice_from_pipe_next(pipe, &sd);
1000 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1001 ret = file_remove_suid(out);
1003 file_update_time(out);
1004 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1006 mutex_unlock(&inode->i_mutex);
1008 splice_from_pipe_end(pipe, &sd);
1013 ret = sd.num_spliced;
1016 unsigned long nr_pages;
1019 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1021 err = generic_write_sync(out, *ppos, ret);
1026 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1032 EXPORT_SYMBOL(generic_file_splice_write);
1034 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1035 struct splice_desc *sd)
1040 data = buf->ops->map(pipe, buf, 0);
1041 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1042 buf->ops->unmap(pipe, buf, data);
1047 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1048 struct file *out, loff_t *ppos,
1049 size_t len, unsigned int flags)
1053 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1061 * generic_splice_sendpage - splice data from a pipe to a socket
1062 * @pipe: pipe to splice from
1063 * @out: socket to write to
1064 * @ppos: position in @out
1065 * @len: number of bytes to splice
1066 * @flags: splice modifier flags
1069 * Will send @len bytes from the pipe to a network socket. No data copying
1073 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1074 loff_t *ppos, size_t len, unsigned int flags)
1076 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1079 EXPORT_SYMBOL(generic_splice_sendpage);
1082 * Attempt to initiate a splice from pipe to file.
1084 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1085 loff_t *ppos, size_t len, unsigned int flags)
1087 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1088 loff_t *, size_t, unsigned int);
1091 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1094 if (unlikely(out->f_flags & O_APPEND))
1097 ret = rw_verify_area(WRITE, out, ppos, len);
1098 if (unlikely(ret < 0))
1101 if (out->f_op && out->f_op->splice_write)
1102 splice_write = out->f_op->splice_write;
1104 splice_write = default_file_splice_write;
1106 return splice_write(pipe, out, ppos, len, flags);
1110 * Attempt to initiate a splice from a file to a pipe.
1112 static long do_splice_to(struct file *in, loff_t *ppos,
1113 struct pipe_inode_info *pipe, size_t len,
1116 ssize_t (*splice_read)(struct file *, loff_t *,
1117 struct pipe_inode_info *, size_t, unsigned int);
1120 if (unlikely(!(in->f_mode & FMODE_READ)))
1123 ret = rw_verify_area(READ, in, ppos, len);
1124 if (unlikely(ret < 0))
1127 if (in->f_op && in->f_op->splice_read)
1128 splice_read = in->f_op->splice_read;
1130 splice_read = default_file_splice_read;
1132 return splice_read(in, ppos, pipe, len, flags);
1136 * splice_direct_to_actor - splices data directly between two non-pipes
1137 * @in: file to splice from
1138 * @sd: actor information on where to splice to
1139 * @actor: handles the data splicing
1142 * This is a special case helper to splice directly between two
1143 * points, without requiring an explicit pipe. Internally an allocated
1144 * pipe is cached in the process, and reused during the lifetime of
1148 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1149 splice_direct_actor *actor)
1151 struct pipe_inode_info *pipe;
1158 * We require the input being a regular file, as we don't want to
1159 * randomly drop data for eg socket -> socket splicing. Use the
1160 * piped splicing for that!
1162 i_mode = in->f_path.dentry->d_inode->i_mode;
1163 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1167 * neither in nor out is a pipe, setup an internal pipe attached to
1168 * 'out' and transfer the wanted data from 'in' to 'out' through that
1170 pipe = current->splice_pipe;
1171 if (unlikely(!pipe)) {
1172 pipe = alloc_pipe_info(NULL);
1177 * We don't have an immediate reader, but we'll read the stuff
1178 * out of the pipe right after the splice_to_pipe(). So set
1179 * PIPE_READERS appropriately.
1183 current->splice_pipe = pipe;
1191 len = sd->total_len;
1195 * Don't block on output, we have to drain the direct pipe.
1197 sd->flags &= ~SPLICE_F_NONBLOCK;
1201 loff_t pos = sd->pos, prev_pos = pos;
1203 ret = do_splice_to(in, &pos, pipe, len, flags);
1204 if (unlikely(ret <= 0))
1208 sd->total_len = read_len;
1211 * NOTE: nonblocking mode only applies to the input. We
1212 * must not do the output in nonblocking mode as then we
1213 * could get stuck data in the internal pipe:
1215 ret = actor(pipe, sd);
1216 if (unlikely(ret <= 0)) {
1225 if (ret < read_len) {
1226 sd->pos = prev_pos + ret;
1232 pipe->nrbufs = pipe->curbuf = 0;
1238 * If we did an incomplete transfer we must release
1239 * the pipe buffers in question:
1241 for (i = 0; i < pipe->buffers; i++) {
1242 struct pipe_buffer *buf = pipe->bufs + i;
1245 buf->ops->release(pipe, buf);
1255 EXPORT_SYMBOL(splice_direct_to_actor);
1257 static int direct_splice_actor(struct pipe_inode_info *pipe,
1258 struct splice_desc *sd)
1260 struct file *file = sd->u.file;
1262 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267 * do_splice_direct - splices data directly between two files
1268 * @in: file to splice from
1269 * @ppos: input file offset
1270 * @out: file to splice to
1271 * @len: number of bytes to splice
1272 * @flags: splice modifier flags
1275 * For use by do_sendfile(). splice can easily emulate sendfile, but
1276 * doing it in the application would incur an extra system call
1277 * (splice in + splice out, as compared to just sendfile()). So this helper
1278 * can splice directly through a process-private pipe.
1281 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1282 size_t len, unsigned int flags)
1284 struct splice_desc sd = {
1293 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1300 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1301 struct pipe_inode_info *opipe,
1302 size_t len, unsigned int flags);
1305 * Determine where to splice to/from.
1307 static long do_splice(struct file *in, loff_t __user *off_in,
1308 struct file *out, loff_t __user *off_out,
1309 size_t len, unsigned int flags)
1311 struct pipe_inode_info *ipipe;
1312 struct pipe_inode_info *opipe;
1313 loff_t offset, *off;
1316 ipipe = get_pipe_info(in);
1317 opipe = get_pipe_info(out);
1319 if (ipipe && opipe) {
1320 if (off_in || off_out)
1323 if (!(in->f_mode & FMODE_READ))
1326 if (!(out->f_mode & FMODE_WRITE))
1329 /* Splicing to self would be fun, but... */
1333 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1340 if (!(out->f_mode & FMODE_PWRITE))
1342 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1348 ret = do_splice_from(ipipe, out, off, len, flags);
1350 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1360 if (!(in->f_mode & FMODE_PREAD))
1362 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1368 ret = do_splice_to(in, off, opipe, len, flags);
1370 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1380 * Map an iov into an array of pages and offset/length tupples. With the
1381 * partial_page structure, we can map several non-contiguous ranges into
1382 * our ones pages[] map instead of splitting that operation into pieces.
1383 * Could easily be exported as a generic helper for other users, in which
1384 * case one would probably want to add a 'max_nr_pages' parameter as well.
1386 static int get_iovec_page_array(const struct iovec __user *iov,
1387 unsigned int nr_vecs, struct page **pages,
1388 struct partial_page *partial, int aligned,
1389 unsigned int pipe_buffers)
1391 int buffers = 0, error = 0;
1394 unsigned long off, npages;
1401 if (copy_from_user(&entry, iov, sizeof(entry)))
1404 base = entry.iov_base;
1405 len = entry.iov_len;
1408 * Sanity check this iovec. 0 read succeeds.
1414 if (!access_ok(VERIFY_READ, base, len))
1418 * Get this base offset and number of pages, then map
1419 * in the user pages.
1421 off = (unsigned long) base & ~PAGE_MASK;
1424 * If asked for alignment, the offset must be zero and the
1425 * length a multiple of the PAGE_SIZE.
1428 if (aligned && (off || len & ~PAGE_MASK))
1431 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1432 if (npages > pipe_buffers - buffers)
1433 npages = pipe_buffers - buffers;
1435 error = get_user_pages_fast((unsigned long)base, npages,
1436 0, &pages[buffers]);
1438 if (unlikely(error <= 0))
1442 * Fill this contiguous range into the partial page map.
1444 for (i = 0; i < error; i++) {
1445 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1447 partial[buffers].offset = off;
1448 partial[buffers].len = plen;
1456 * We didn't complete this iov, stop here since it probably
1457 * means we have to move some of this into a pipe to
1458 * be able to continue.
1464 * Don't continue if we mapped fewer pages than we asked for,
1465 * or if we mapped the max number of pages that we have
1468 if (error < npages || buffers == pipe_buffers)
1481 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1482 struct splice_desc *sd)
1488 * See if we can use the atomic maps, by prefaulting in the
1489 * pages and doing an atomic copy
1491 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1492 src = buf->ops->map(pipe, buf, 1);
1493 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1495 buf->ops->unmap(pipe, buf, src);
1503 * No dice, use slow non-atomic map and copy
1505 src = buf->ops->map(pipe, buf, 0);
1508 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1511 buf->ops->unmap(pipe, buf, src);
1514 sd->u.userptr += ret;
1519 * For lack of a better implementation, implement vmsplice() to userspace
1520 * as a simple copy of the pipes pages to the user iov.
1522 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1523 unsigned long nr_segs, unsigned int flags)
1525 struct pipe_inode_info *pipe;
1526 struct splice_desc sd;
1531 pipe = get_pipe_info(file);
1543 * Get user address base and length for this iovec.
1545 error = get_user(base, &iov->iov_base);
1546 if (unlikely(error))
1548 error = get_user(len, &iov->iov_len);
1549 if (unlikely(error))
1553 * Sanity check this iovec. 0 read succeeds.
1557 if (unlikely(!base)) {
1562 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1570 sd.u.userptr = base;
1573 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1599 * vmsplice splices a user address range into a pipe. It can be thought of
1600 * as splice-from-memory, where the regular splice is splice-from-file (or
1601 * to file). In both cases the output is a pipe, naturally.
1603 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1604 unsigned long nr_segs, unsigned int flags)
1606 struct pipe_inode_info *pipe;
1607 struct page *pages[PIPE_DEF_BUFFERS];
1608 struct partial_page partial[PIPE_DEF_BUFFERS];
1609 struct splice_pipe_desc spd = {
1613 .ops = &user_page_pipe_buf_ops,
1614 .spd_release = spd_release_page,
1618 pipe = get_pipe_info(file);
1622 if (splice_grow_spd(pipe, &spd))
1625 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1626 spd.partial, flags & SPLICE_F_GIFT,
1628 if (spd.nr_pages <= 0)
1631 ret = splice_to_pipe(pipe, &spd);
1633 splice_shrink_spd(pipe, &spd);
1638 * Note that vmsplice only really supports true splicing _from_ user memory
1639 * to a pipe, not the other way around. Splicing from user memory is a simple
1640 * operation that can be supported without any funky alignment restrictions
1641 * or nasty vm tricks. We simply map in the user memory and fill them into
1642 * a pipe. The reverse isn't quite as easy, though. There are two possible
1643 * solutions for that:
1645 * - memcpy() the data internally, at which point we might as well just
1646 * do a regular read() on the buffer anyway.
1647 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1648 * has restriction limitations on both ends of the pipe).
1650 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1653 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1654 unsigned long, nr_segs, unsigned int, flags)
1660 if (unlikely(nr_segs > UIO_MAXIOV))
1662 else if (unlikely(!nr_segs))
1666 file = fget_light(fd, &fput);
1668 if (file->f_mode & FMODE_WRITE)
1669 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1670 else if (file->f_mode & FMODE_READ)
1671 error = vmsplice_to_user(file, iov, nr_segs, flags);
1673 fput_light(file, fput);
1679 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1680 int, fd_out, loff_t __user *, off_out,
1681 size_t, len, unsigned int, flags)
1684 struct file *in, *out;
1685 int fput_in, fput_out;
1691 in = fget_light(fd_in, &fput_in);
1693 if (in->f_mode & FMODE_READ) {
1694 out = fget_light(fd_out, &fput_out);
1696 if (out->f_mode & FMODE_WRITE)
1697 error = do_splice(in, off_in,
1700 fput_light(out, fput_out);
1704 fput_light(in, fput_in);
1711 * Make sure there's data to read. Wait for input if we can, otherwise
1712 * return an appropriate error.
1714 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719 * Check ->nrbufs without the inode lock first. This function
1720 * is speculative anyways, so missing one is ok.
1728 while (!pipe->nrbufs) {
1729 if (signal_pending(current)) {
1735 if (!pipe->waiting_writers) {
1736 if (flags & SPLICE_F_NONBLOCK) {
1749 * Make sure there's writeable room. Wait for room if we can, otherwise
1750 * return an appropriate error.
1752 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757 * Check ->nrbufs without the inode lock first. This function
1758 * is speculative anyways, so missing one is ok.
1760 if (pipe->nrbufs < pipe->buffers)
1766 while (pipe->nrbufs >= pipe->buffers) {
1767 if (!pipe->readers) {
1768 send_sig(SIGPIPE, current, 0);
1772 if (flags & SPLICE_F_NONBLOCK) {
1776 if (signal_pending(current)) {
1780 pipe->waiting_writers++;
1782 pipe->waiting_writers--;
1790 * Splice contents of ipipe to opipe.
1792 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1793 struct pipe_inode_info *opipe,
1794 size_t len, unsigned int flags)
1796 struct pipe_buffer *ibuf, *obuf;
1798 bool input_wakeup = false;
1802 ret = ipipe_prep(ipipe, flags);
1806 ret = opipe_prep(opipe, flags);
1811 * Potential ABBA deadlock, work around it by ordering lock
1812 * grabbing by pipe info address. Otherwise two different processes
1813 * could deadlock (one doing tee from A -> B, the other from B -> A).
1815 pipe_double_lock(ipipe, opipe);
1818 if (!opipe->readers) {
1819 send_sig(SIGPIPE, current, 0);
1825 if (!ipipe->nrbufs && !ipipe->writers)
1829 * Cannot make any progress, because either the input
1830 * pipe is empty or the output pipe is full.
1832 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1833 /* Already processed some buffers, break */
1837 if (flags & SPLICE_F_NONBLOCK) {
1843 * We raced with another reader/writer and haven't
1844 * managed to process any buffers. A zero return
1845 * value means EOF, so retry instead.
1852 ibuf = ipipe->bufs + ipipe->curbuf;
1853 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1854 obuf = opipe->bufs + nbuf;
1856 if (len >= ibuf->len) {
1858 * Simply move the whole buffer from ipipe to opipe
1863 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1865 input_wakeup = true;
1868 * Get a reference to this pipe buffer,
1869 * so we can copy the contents over.
1871 ibuf->ops->get(ipipe, ibuf);
1875 * Don't inherit the gift flag, we need to
1876 * prevent multiple steals of this page.
1878 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1882 ibuf->offset += obuf->len;
1883 ibuf->len -= obuf->len;
1893 * If we put data in the output pipe, wakeup any potential readers.
1896 wakeup_pipe_readers(opipe);
1899 wakeup_pipe_writers(ipipe);
1905 * Link contents of ipipe to opipe.
1907 static int link_pipe(struct pipe_inode_info *ipipe,
1908 struct pipe_inode_info *opipe,
1909 size_t len, unsigned int flags)
1911 struct pipe_buffer *ibuf, *obuf;
1912 int ret = 0, i = 0, nbuf;
1915 * Potential ABBA deadlock, work around it by ordering lock
1916 * grabbing by pipe info address. Otherwise two different processes
1917 * could deadlock (one doing tee from A -> B, the other from B -> A).
1919 pipe_double_lock(ipipe, opipe);
1922 if (!opipe->readers) {
1923 send_sig(SIGPIPE, current, 0);
1930 * If we have iterated all input buffers or ran out of
1931 * output room, break.
1933 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1936 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1937 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1940 * Get a reference to this pipe buffer,
1941 * so we can copy the contents over.
1943 ibuf->ops->get(ipipe, ibuf);
1945 obuf = opipe->bufs + nbuf;
1949 * Don't inherit the gift flag, we need to
1950 * prevent multiple steals of this page.
1952 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1954 if (obuf->len > len)
1964 * return EAGAIN if we have the potential of some data in the
1965 * future, otherwise just return 0
1967 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1974 * If we put data in the output pipe, wakeup any potential readers.
1977 wakeup_pipe_readers(opipe);
1983 * This is a tee(1) implementation that works on pipes. It doesn't copy
1984 * any data, it simply references the 'in' pages on the 'out' pipe.
1985 * The 'flags' used are the SPLICE_F_* variants, currently the only
1986 * applicable one is SPLICE_F_NONBLOCK.
1988 static long do_tee(struct file *in, struct file *out, size_t len,
1991 struct pipe_inode_info *ipipe = get_pipe_info(in);
1992 struct pipe_inode_info *opipe = get_pipe_info(out);
1996 * Duplicate the contents of ipipe to opipe without actually
1999 if (ipipe && opipe && ipipe != opipe) {
2001 * Keep going, unless we encounter an error. The ipipe/opipe
2002 * ordering doesn't really matter.
2004 ret = ipipe_prep(ipipe, flags);
2006 ret = opipe_prep(opipe, flags);
2008 ret = link_pipe(ipipe, opipe, len, flags);
2015 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024 in = fget_light(fdin, &fput_in);
2026 if (in->f_mode & FMODE_READ) {
2028 struct file *out = fget_light(fdout, &fput_out);
2031 if (out->f_mode & FMODE_WRITE)
2032 error = do_tee(in, out, len, flags);
2033 fput_light(out, fput_out);
2036 fput_light(in, fput_in);