2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
51 mapping = page_mapping(page);
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
70 * If we succeeded in removing the mapping, set LRU flag
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
105 if (!PageUptodate(page)) {
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
126 * Page is ok afterall, we are done.
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
224 if (!--spd->nr_pages)
226 if (pipe->nrbufs < pipe->buffers)
232 if (spd->flags & SPLICE_F_NONBLOCK) {
238 if (signal_pending(current)) {
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
252 pipe->waiting_writers++;
254 pipe->waiting_writers--;
260 wakeup_pipe_readers(pipe);
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
267 EXPORT_SYMBOL_GPL(splice_to_pipe);
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
271 put_page(spd->pages[i]);
275 * Check if we need to grow the arrays holding pages and partial page
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
289 if (spd->pages && spd->partial)
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
316 pgoff_t index, end_index;
319 struct splice_pipe_desc spd = {
322 .nr_pages_max = PIPE_DEF_BUFFERS,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
328 if (splice_grow_spd(pipe, &spd))
331 index = *ppos >> PAGE_SHIFT;
332 loff = *ppos & ~PAGE_MASK;
333 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
337 * Lookup the (hopefully) full range of pages we need.
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
351 while (spd.nr_pages < nr_pages) {
353 * Page could be there, find_get_pages_contig() breaks on
356 page = find_get_page(mapping, index);
359 * page didn't exist, allocate one.
361 page = page_cache_alloc_cold(mapping);
365 error = add_to_page_cache_lru(page, mapping, index,
366 mapping_gfp_constraint(mapping, GFP_KERNEL));
367 if (unlikely(error)) {
369 if (error == -EEXIST)
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
380 spd.pages[spd.nr_pages++] = page;
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
388 index = *ppos >> PAGE_SHIFT;
389 nr_pages = spd.nr_pages;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
398 * this_len is the max we'll use from this page
400 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401 page = spd.pages[page_nr];
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
408 * If the page isn't uptodate, we may need to start io on it
410 if (!PageUptodate(page)) {
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
419 if (!page->mapping) {
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
429 put_page(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
433 * page was already under io and is now done, great
435 if (PageUptodate(page)) {
441 * need to read in the page
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
448 if (error == AOP_TRUNCATED_PAGE)
456 * i_size must be checked after PageUptodate.
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_SHIFT;
460 if (unlikely(!isize || index > end_index))
464 * if this is the last page, see if we need to shrink
465 * the length and stop
467 if (end_index == index) {
471 * max good bytes in this page
473 plen = ((isize - 1) & ~PAGE_MASK) + 1;
478 * force quit after adding this page
480 this_len = min(this_len, plen - loff);
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
496 while (page_nr < nr_pages)
497 put_page(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
501 error = splice_to_pipe(pipe, &spd);
503 splice_shrink_spd(&spd);
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
528 if (IS_DAX(in->f_mapping->host))
529 return default_file_splice_read(in, ppos, pipe, len, flags);
531 isize = i_size_read(in->f_mapping->host);
532 if (unlikely(*ppos >= isize))
535 left = isize - *ppos;
536 if (unlikely(left < len))
539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
547 EXPORT_SYMBOL(generic_file_splice_read);
549 static const struct pipe_buf_operations default_pipe_buf_ops = {
551 .confirm = generic_pipe_buf_confirm,
552 .release = generic_pipe_buf_release,
553 .steal = generic_pipe_buf_steal,
554 .get = generic_pipe_buf_get,
557 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558 struct pipe_buffer *buf)
563 /* Pipe buffer operations for a socket and similar. */
564 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
566 .confirm = generic_pipe_buf_confirm,
567 .release = generic_pipe_buf_release,
568 .steal = generic_pipe_buf_nosteal,
569 .get = generic_pipe_buf_get,
571 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
573 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574 unsigned long vlen, loff_t offset)
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
589 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
597 /* The cast to a user pointer is valid due to the set_fs() */
598 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
603 EXPORT_SYMBOL(kernel_write);
605 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606 struct pipe_inode_info *pipe, size_t len,
609 unsigned int nr_pages;
610 unsigned int nr_freed;
612 struct page *pages[PIPE_DEF_BUFFERS];
613 struct partial_page partial[PIPE_DEF_BUFFERS];
614 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
619 struct splice_pipe_desc spd = {
622 .nr_pages_max = PIPE_DEF_BUFFERS,
624 .ops = &default_pipe_buf_ops,
625 .spd_release = spd_release_page,
628 if (splice_grow_spd(pipe, &spd))
633 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
639 offset = *ppos & ~PAGE_MASK;
640 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
642 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
645 page = alloc_page(GFP_USER);
650 this_len = min_t(size_t, len, PAGE_SIZE - offset);
651 vec[i].iov_base = (void __user *) page_address(page);
652 vec[i].iov_len = this_len;
659 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
670 for (i = 0; i < spd.nr_pages; i++) {
671 this_len = min_t(size_t, vec[i].iov_len, res);
672 spd.partial[i].offset = 0;
673 spd.partial[i].len = this_len;
675 __free_page(spd.pages[i]);
681 spd.nr_pages -= nr_freed;
683 res = splice_to_pipe(pipe, &spd);
690 splice_shrink_spd(&spd);
694 for (i = 0; i < spd.nr_pages; i++)
695 __free_page(spd.pages[i]);
700 EXPORT_SYMBOL(default_file_splice_read);
703 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704 * using sendpage(). Return the number of bytes sent.
706 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707 struct pipe_buffer *buf, struct splice_desc *sd)
709 struct file *file = sd->u.file;
710 loff_t pos = sd->pos;
713 if (!likely(file->f_op->sendpage))
716 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
718 if (sd->len < sd->total_len && pipe->nrbufs > 1)
719 more |= MSG_SENDPAGE_NOTLAST;
721 return file->f_op->sendpage(file, buf->page, buf->offset,
722 sd->len, &pos, more);
725 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
728 if (waitqueue_active(&pipe->wait))
729 wake_up_interruptible(&pipe->wait);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
734 * splice_from_pipe_feed - feed available data from a pipe to a file
735 * @pipe: pipe to splice from
736 * @sd: information to @actor
737 * @actor: handler that splices the data
740 * This function loops over the pipe and calls @actor to do the
741 * actual moving of a single struct pipe_buffer to the desired
742 * destination. It returns when there's no more buffers left in
743 * the pipe or if the requested number of bytes (@sd->total_len)
744 * have been copied. It returns a positive number (one) if the
745 * pipe needs to be filled with more data, zero if the required
746 * number of bytes have been copied and -errno on error.
748 * This, together with splice_from_pipe_{begin,end,next}, may be
749 * used to implement the functionality of __splice_from_pipe() when
750 * locking is required around copying the pipe buffers to the
753 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
758 while (pipe->nrbufs) {
759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 const struct pipe_buf_operations *ops = buf->ops;
763 if (sd->len > sd->total_len)
764 sd->len = sd->total_len;
766 ret = buf->ops->confirm(pipe, buf);
773 ret = actor(pipe, buf, sd);
780 sd->num_spliced += ret;
783 sd->total_len -= ret;
787 ops->release(pipe, buf);
788 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
791 sd->need_wakeup = true;
802 * splice_from_pipe_next - wait for some data to splice from
803 * @pipe: pipe to splice from
804 * @sd: information about the splice operation
807 * This function will wait for some data and return a positive
808 * value (one) if pipe buffers are available. It will return zero
809 * or -errno if no more data needs to be spliced.
811 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
814 * Check for signal early to make process killable when there are
815 * always buffers available
817 if (signal_pending(current))
820 while (!pipe->nrbufs) {
824 if (!pipe->waiting_writers && sd->num_spliced)
827 if (sd->flags & SPLICE_F_NONBLOCK)
830 if (signal_pending(current))
833 if (sd->need_wakeup) {
834 wakeup_pipe_writers(pipe);
835 sd->need_wakeup = false;
845 * splice_from_pipe_begin - start splicing from pipe
846 * @sd: information about the splice operation
849 * This function should be called before a loop containing
850 * splice_from_pipe_next() and splice_from_pipe_feed() to
851 * initialize the necessary fields of @sd.
853 static void splice_from_pipe_begin(struct splice_desc *sd)
856 sd->need_wakeup = false;
860 * splice_from_pipe_end - finish splicing from pipe
861 * @pipe: pipe to splice from
862 * @sd: information about the splice operation
865 * This function will wake up pipe writers if necessary. It should
866 * be called after a loop containing splice_from_pipe_next() and
867 * splice_from_pipe_feed().
869 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
872 wakeup_pipe_writers(pipe);
876 * __splice_from_pipe - splice data from a pipe to given actor
877 * @pipe: pipe to splice from
878 * @sd: information to @actor
879 * @actor: handler that splices the data
882 * This function does little more than loop over the pipe and call
883 * @actor to do the actual moving of a single struct pipe_buffer to
884 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
888 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
893 splice_from_pipe_begin(sd);
896 ret = splice_from_pipe_next(pipe, sd);
898 ret = splice_from_pipe_feed(pipe, sd, actor);
900 splice_from_pipe_end(pipe, sd);
902 return sd->num_spliced ? sd->num_spliced : ret;
904 EXPORT_SYMBOL(__splice_from_pipe);
907 * splice_from_pipe - splice data from a pipe to a file
908 * @pipe: pipe to splice from
909 * @out: file to splice to
910 * @ppos: position in @out
911 * @len: how many bytes to splice
912 * @flags: splice modifier flags
913 * @actor: handler that splices the data
916 * See __splice_from_pipe. This function locks the pipe inode,
917 * otherwise it's identical to __splice_from_pipe().
920 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921 loff_t *ppos, size_t len, unsigned int flags,
925 struct splice_desc sd = {
933 ret = __splice_from_pipe(pipe, &sd, actor);
940 * iter_file_splice_write - splice data from a pipe to a file
942 * @out: file to write to
943 * @ppos: position in @out
944 * @len: number of bytes to splice
945 * @flags: splice modifier flags
948 * Will either move or copy pages (determined by @flags options) from
949 * the given pipe inode to the given file.
950 * This one is ->write_iter-based.
954 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955 loff_t *ppos, size_t len, unsigned int flags)
957 struct splice_desc sd = {
963 int nbufs = pipe->buffers;
964 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
968 if (unlikely(!array))
973 splice_from_pipe_begin(&sd);
974 while (sd.total_len) {
975 struct iov_iter from;
979 ret = splice_from_pipe_next(pipe, &sd);
983 if (unlikely(nbufs < pipe->buffers)) {
985 nbufs = pipe->buffers;
986 array = kcalloc(nbufs, sizeof(struct bio_vec),
994 /* build the vector */
996 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997 struct pipe_buffer *buf = pipe->bufs + idx;
998 size_t this_len = buf->len;
1000 if (this_len > left)
1003 if (idx == pipe->buffers - 1)
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (unlikely(ret)) {
1008 if (ret == -ENODATA)
1013 array[n].bv_page = buf->page;
1014 array[n].bv_len = this_len;
1015 array[n].bv_offset = buf->offset;
1019 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020 sd.total_len - left);
1021 ret = vfs_iter_write(out, &from, &sd.pos);
1025 sd.num_spliced += ret;
1026 sd.total_len -= ret;
1029 /* dismiss the fully eaten buffers, adjust the partial one */
1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 if (ret >= buf->len) {
1033 const struct pipe_buf_operations *ops = buf->ops;
1037 ops->release(pipe, buf);
1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1041 sd.need_wakeup = true;
1051 splice_from_pipe_end(pipe, &sd);
1056 ret = sd.num_spliced;
1061 EXPORT_SYMBOL(iter_file_splice_write);
1063 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1068 loff_t tmp = sd->pos;
1070 data = kmap(buf->page);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1077 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1103 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1109 EXPORT_SYMBOL(generic_splice_sendpage);
1112 * Attempt to initiate a splice from pipe to file.
1114 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1123 splice_write = default_file_splice_write;
1125 return splice_write(pipe, out, ppos, len, flags);
1129 * Attempt to initiate a splice from a file to a pipe.
1131 static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1146 if (in->f_op->splice_read)
1147 splice_read = in->f_op->splice_read;
1149 splice_read = default_file_splice_read;
1151 return splice_read(in, ppos, pipe, len, flags);
1155 * splice_direct_to_actor - splices data directly between two non-pipes
1156 * @in: file to splice from
1157 * @sd: actor information on where to splice to
1158 * @actor: handles the data splicing
1161 * This is a special case helper to splice directly between two
1162 * points, without requiring an explicit pipe. Internally an allocated
1163 * pipe is cached in the process, and reused during the lifetime of
1167 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1168 splice_direct_actor *actor)
1170 struct pipe_inode_info *pipe;
1177 * We require the input being a regular file, as we don't want to
1178 * randomly drop data for eg socket -> socket splicing. Use the
1179 * piped splicing for that!
1181 i_mode = file_inode(in)->i_mode;
1182 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186 * neither in nor out is a pipe, setup an internal pipe attached to
1187 * 'out' and transfer the wanted data from 'in' to 'out' through that
1189 pipe = current->splice_pipe;
1190 if (unlikely(!pipe)) {
1191 pipe = alloc_pipe_info();
1196 * We don't have an immediate reader, but we'll read the stuff
1197 * out of the pipe right after the splice_to_pipe(). So set
1198 * PIPE_READERS appropriately.
1202 current->splice_pipe = pipe;
1210 len = sd->total_len;
1214 * Don't block on output, we have to drain the direct pipe.
1216 sd->flags &= ~SPLICE_F_NONBLOCK;
1217 more = sd->flags & SPLICE_F_MORE;
1221 loff_t pos = sd->pos, prev_pos = pos;
1223 ret = do_splice_to(in, &pos, pipe, len, flags);
1224 if (unlikely(ret <= 0))
1228 sd->total_len = read_len;
1231 * If more data is pending, set SPLICE_F_MORE
1232 * If this is the last data and SPLICE_F_MORE was not set
1233 * initially, clears it.
1236 sd->flags |= SPLICE_F_MORE;
1238 sd->flags &= ~SPLICE_F_MORE;
1240 * NOTE: nonblocking mode only applies to the input. We
1241 * must not do the output in nonblocking mode as then we
1242 * could get stuck data in the internal pipe:
1244 ret = actor(pipe, sd);
1245 if (unlikely(ret <= 0)) {
1254 if (ret < read_len) {
1255 sd->pos = prev_pos + ret;
1261 pipe->nrbufs = pipe->curbuf = 0;
1267 * If we did an incomplete transfer we must release
1268 * the pipe buffers in question:
1270 for (i = 0; i < pipe->buffers; i++) {
1271 struct pipe_buffer *buf = pipe->bufs + i;
1274 buf->ops->release(pipe, buf);
1284 EXPORT_SYMBOL(splice_direct_to_actor);
1286 static int direct_splice_actor(struct pipe_inode_info *pipe,
1287 struct splice_desc *sd)
1289 struct file *file = sd->u.file;
1291 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1296 * do_splice_direct - splices data directly between two files
1297 * @in: file to splice from
1298 * @ppos: input file offset
1299 * @out: file to splice to
1300 * @opos: output file offset
1301 * @len: number of bytes to splice
1302 * @flags: splice modifier flags
1305 * For use by do_sendfile(). splice can easily emulate sendfile, but
1306 * doing it in the application would incur an extra system call
1307 * (splice in + splice out, as compared to just sendfile()). So this helper
1308 * can splice directly through a process-private pipe.
1311 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1312 loff_t *opos, size_t len, unsigned int flags)
1314 struct splice_desc sd = {
1324 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1327 if (unlikely(out->f_flags & O_APPEND))
1330 ret = rw_verify_area(WRITE, out, opos, len);
1331 if (unlikely(ret < 0))
1334 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1340 EXPORT_SYMBOL(do_splice_direct);
1342 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1343 struct pipe_inode_info *opipe,
1344 size_t len, unsigned int flags);
1347 * Determine where to splice to/from.
1349 static long do_splice(struct file *in, loff_t __user *off_in,
1350 struct file *out, loff_t __user *off_out,
1351 size_t len, unsigned int flags)
1353 struct pipe_inode_info *ipipe;
1354 struct pipe_inode_info *opipe;
1358 ipipe = get_pipe_info(in);
1359 opipe = get_pipe_info(out);
1361 if (ipipe && opipe) {
1362 if (off_in || off_out)
1365 if (!(in->f_mode & FMODE_READ))
1368 if (!(out->f_mode & FMODE_WRITE))
1371 /* Splicing to self would be fun, but... */
1375 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1382 if (!(out->f_mode & FMODE_PWRITE))
1384 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1387 offset = out->f_pos;
1390 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1393 if (unlikely(out->f_flags & O_APPEND))
1396 ret = rw_verify_area(WRITE, out, &offset, len);
1397 if (unlikely(ret < 0))
1400 file_start_write(out);
1401 ret = do_splice_from(ipipe, out, &offset, len, flags);
1402 file_end_write(out);
1405 out->f_pos = offset;
1406 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1416 if (!(in->f_mode & FMODE_PREAD))
1418 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1424 ret = do_splice_to(in, &offset, opipe, len, flags);
1428 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1438 * Map an iov into an array of pages and offset/length tupples. With the
1439 * partial_page structure, we can map several non-contiguous ranges into
1440 * our ones pages[] map instead of splitting that operation into pieces.
1441 * Could easily be exported as a generic helper for other users, in which
1442 * case one would probably want to add a 'max_nr_pages' parameter as well.
1444 static int get_iovec_page_array(const struct iovec __user *iov,
1445 unsigned int nr_vecs, struct page **pages,
1446 struct partial_page *partial, bool aligned,
1447 unsigned int pipe_buffers)
1449 int buffers = 0, error = 0;
1452 unsigned long off, npages;
1459 if (copy_from_user(&entry, iov, sizeof(entry)))
1462 base = entry.iov_base;
1463 len = entry.iov_len;
1466 * Sanity check this iovec. 0 read succeeds.
1472 if (!access_ok(VERIFY_READ, base, len))
1476 * Get this base offset and number of pages, then map
1477 * in the user pages.
1479 off = (unsigned long) base & ~PAGE_MASK;
1482 * If asked for alignment, the offset must be zero and the
1483 * length a multiple of the PAGE_SIZE.
1486 if (aligned && (off || len & ~PAGE_MASK))
1489 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 if (npages > pipe_buffers - buffers)
1491 npages = pipe_buffers - buffers;
1493 error = get_user_pages_fast((unsigned long)base, npages,
1494 0, &pages[buffers]);
1496 if (unlikely(error <= 0))
1500 * Fill this contiguous range into the partial page map.
1502 for (i = 0; i < error; i++) {
1503 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1505 partial[buffers].offset = off;
1506 partial[buffers].len = plen;
1514 * We didn't complete this iov, stop here since it probably
1515 * means we have to move some of this into a pipe to
1516 * be able to continue.
1522 * Don't continue if we mapped fewer pages than we asked for,
1523 * or if we mapped the max number of pages that we have
1526 if (error < npages || buffers == pipe_buffers)
1539 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1540 struct splice_desc *sd)
1542 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1543 return n == sd->len ? n : -EFAULT;
1547 * For lack of a better implementation, implement vmsplice() to userspace
1548 * as a simple copy of the pipes pages to the user iov.
1550 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1551 unsigned long nr_segs, unsigned int flags)
1553 struct pipe_inode_info *pipe;
1554 struct splice_desc sd;
1556 struct iovec iovstack[UIO_FASTIOV];
1557 struct iovec *iov = iovstack;
1558 struct iov_iter iter;
1560 pipe = get_pipe_info(file);
1564 ret = import_iovec(READ, uiov, nr_segs,
1565 ARRAY_SIZE(iovstack), &iov, &iter);
1569 sd.total_len = iov_iter_count(&iter);
1577 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1586 * vmsplice splices a user address range into a pipe. It can be thought of
1587 * as splice-from-memory, where the regular splice is splice-from-file (or
1588 * to file). In both cases the output is a pipe, naturally.
1590 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1591 unsigned long nr_segs, unsigned int flags)
1593 struct pipe_inode_info *pipe;
1594 struct page *pages[PIPE_DEF_BUFFERS];
1595 struct partial_page partial[PIPE_DEF_BUFFERS];
1596 struct splice_pipe_desc spd = {
1599 .nr_pages_max = PIPE_DEF_BUFFERS,
1601 .ops = &user_page_pipe_buf_ops,
1602 .spd_release = spd_release_page,
1606 pipe = get_pipe_info(file);
1610 if (splice_grow_spd(pipe, &spd))
1613 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1616 if (spd.nr_pages <= 0)
1619 ret = splice_to_pipe(pipe, &spd);
1621 splice_shrink_spd(&spd);
1626 * Note that vmsplice only really supports true splicing _from_ user memory
1627 * to a pipe, not the other way around. Splicing from user memory is a simple
1628 * operation that can be supported without any funky alignment restrictions
1629 * or nasty vm tricks. We simply map in the user memory and fill them into
1630 * a pipe. The reverse isn't quite as easy, though. There are two possible
1631 * solutions for that:
1633 * - memcpy() the data internally, at which point we might as well just
1634 * do a regular read() on the buffer anyway.
1635 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1636 * has restriction limitations on both ends of the pipe).
1638 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1641 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1642 unsigned long, nr_segs, unsigned int, flags)
1647 if (unlikely(nr_segs > UIO_MAXIOV))
1649 else if (unlikely(!nr_segs))
1655 if (f.file->f_mode & FMODE_WRITE)
1656 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1657 else if (f.file->f_mode & FMODE_READ)
1658 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1666 #ifdef CONFIG_COMPAT
1667 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1668 unsigned int, nr_segs, unsigned int, flags)
1671 struct iovec __user *iov;
1672 if (nr_segs > UIO_MAXIOV)
1674 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1675 for (i = 0; i < nr_segs; i++) {
1676 struct compat_iovec v;
1677 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1678 get_user(v.iov_len, &iov32[i].iov_len) ||
1679 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1680 put_user(v.iov_len, &iov[i].iov_len))
1683 return sys_vmsplice(fd, iov, nr_segs, flags);
1687 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1688 int, fd_out, loff_t __user *, off_out,
1689 size_t, len, unsigned int, flags)
1700 if (in.file->f_mode & FMODE_READ) {
1701 out = fdget(fd_out);
1703 if (out.file->f_mode & FMODE_WRITE)
1704 error = do_splice(in.file, off_in,
1716 * Make sure there's data to read. Wait for input if we can, otherwise
1717 * return an appropriate error.
1719 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1724 * Check ->nrbufs without the inode lock first. This function
1725 * is speculative anyways, so missing one is ok.
1733 while (!pipe->nrbufs) {
1734 if (signal_pending(current)) {
1740 if (!pipe->waiting_writers) {
1741 if (flags & SPLICE_F_NONBLOCK) {
1754 * Make sure there's writeable room. Wait for room if we can, otherwise
1755 * return an appropriate error.
1757 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1762 * Check ->nrbufs without the inode lock first. This function
1763 * is speculative anyways, so missing one is ok.
1765 if (pipe->nrbufs < pipe->buffers)
1771 while (pipe->nrbufs >= pipe->buffers) {
1772 if (!pipe->readers) {
1773 send_sig(SIGPIPE, current, 0);
1777 if (flags & SPLICE_F_NONBLOCK) {
1781 if (signal_pending(current)) {
1785 pipe->waiting_writers++;
1787 pipe->waiting_writers--;
1795 * Splice contents of ipipe to opipe.
1797 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1798 struct pipe_inode_info *opipe,
1799 size_t len, unsigned int flags)
1801 struct pipe_buffer *ibuf, *obuf;
1803 bool input_wakeup = false;
1807 ret = ipipe_prep(ipipe, flags);
1811 ret = opipe_prep(opipe, flags);
1816 * Potential ABBA deadlock, work around it by ordering lock
1817 * grabbing by pipe info address. Otherwise two different processes
1818 * could deadlock (one doing tee from A -> B, the other from B -> A).
1820 pipe_double_lock(ipipe, opipe);
1823 if (!opipe->readers) {
1824 send_sig(SIGPIPE, current, 0);
1830 if (!ipipe->nrbufs && !ipipe->writers)
1834 * Cannot make any progress, because either the input
1835 * pipe is empty or the output pipe is full.
1837 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1838 /* Already processed some buffers, break */
1842 if (flags & SPLICE_F_NONBLOCK) {
1848 * We raced with another reader/writer and haven't
1849 * managed to process any buffers. A zero return
1850 * value means EOF, so retry instead.
1857 ibuf = ipipe->bufs + ipipe->curbuf;
1858 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1859 obuf = opipe->bufs + nbuf;
1861 if (len >= ibuf->len) {
1863 * Simply move the whole buffer from ipipe to opipe
1868 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1870 input_wakeup = true;
1873 * Get a reference to this pipe buffer,
1874 * so we can copy the contents over.
1876 ibuf->ops->get(ipipe, ibuf);
1880 * Don't inherit the gift flag, we need to
1881 * prevent multiple steals of this page.
1883 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887 ibuf->offset += obuf->len;
1888 ibuf->len -= obuf->len;
1898 * If we put data in the output pipe, wakeup any potential readers.
1901 wakeup_pipe_readers(opipe);
1904 wakeup_pipe_writers(ipipe);
1910 * Link contents of ipipe to opipe.
1912 static int link_pipe(struct pipe_inode_info *ipipe,
1913 struct pipe_inode_info *opipe,
1914 size_t len, unsigned int flags)
1916 struct pipe_buffer *ibuf, *obuf;
1917 int ret = 0, i = 0, nbuf;
1920 * Potential ABBA deadlock, work around it by ordering lock
1921 * grabbing by pipe info address. Otherwise two different processes
1922 * could deadlock (one doing tee from A -> B, the other from B -> A).
1924 pipe_double_lock(ipipe, opipe);
1927 if (!opipe->readers) {
1928 send_sig(SIGPIPE, current, 0);
1935 * If we have iterated all input buffers or ran out of
1936 * output room, break.
1938 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1941 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1942 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1945 * Get a reference to this pipe buffer,
1946 * so we can copy the contents over.
1948 ibuf->ops->get(ipipe, ibuf);
1950 obuf = opipe->bufs + nbuf;
1954 * Don't inherit the gift flag, we need to
1955 * prevent multiple steals of this page.
1957 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1959 if (obuf->len > len)
1969 * return EAGAIN if we have the potential of some data in the
1970 * future, otherwise just return 0
1972 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1979 * If we put data in the output pipe, wakeup any potential readers.
1982 wakeup_pipe_readers(opipe);
1988 * This is a tee(1) implementation that works on pipes. It doesn't copy
1989 * any data, it simply references the 'in' pages on the 'out' pipe.
1990 * The 'flags' used are the SPLICE_F_* variants, currently the only
1991 * applicable one is SPLICE_F_NONBLOCK.
1993 static long do_tee(struct file *in, struct file *out, size_t len,
1996 struct pipe_inode_info *ipipe = get_pipe_info(in);
1997 struct pipe_inode_info *opipe = get_pipe_info(out);
2001 * Duplicate the contents of ipipe to opipe without actually
2004 if (ipipe && opipe && ipipe != opipe) {
2006 * Keep going, unless we encounter an error. The ipipe/opipe
2007 * ordering doesn't really matter.
2009 ret = ipipe_prep(ipipe, flags);
2011 ret = opipe_prep(opipe, flags);
2013 ret = link_pipe(ipipe, opipe, len, flags);
2020 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2031 if (in.file->f_mode & FMODE_READ) {
2032 struct fd out = fdget(fdout);
2034 if (out.file->f_mode & FMODE_WRITE)
2035 error = do_tee(in.file, out.file,